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ABSTRACT

Source localization with temperature variation in a laboratory tank

Natalie Bickmore
Department of Physics and Astronomy, BYU

Bachelor of Science

Environmental variability complicates deep learning applications to ocean acoustics. Trans-
fer learning has the potential to improve the deep learning model’s ability to perform in a new
environment. This work illustrates the potential of transfer learning for the case of predicting source-
receiver range in a laboratory tank with changing water temperature. I trained a one-dimensional
four-layer convolutional neural network to predict the source-receiver range. The training dataset
consists of spectral levels from linear chirps (50-100 kHz) measured at room temperature. Due
to time-dependent ambient noise, data measured on multiple days are combined to form training
datasets with 1806 samples. The training process employs early stopping, and the trained models
are validated on test datasets also measured in room temperature water. The trained models then
process data measured in warmer water, and the error in the predicted ranges increases. The model
undergoes transfer learning using a dataset with 51 samples measured at warmer temperatures,
and new testing follows. Transfer learning refines the trained model and leads to reduced errors
in the predictions. This work provides an example of how transfer learning could be applied to
accommodate environmental variation in ocean applications of deep learning.

Keywords: source localization, deep learning, convolutional neural network, transfer learning,
underwater acoustics
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Chapter 1

Introduction

This thesis explores applications of machine learning methods to underwater acoustics. The chapter

opens with a discussion on motivation and relevance for machine learning usage in this field.

Challenges are addressed and a potential solution using transfer learning is proposed. The chapter

also outlines the rest of the thesis, recognizing previous work, and clarifying my contributions.

1.1 Motivation

Source localization is the process of estimating the position of a sound source relative to the

recording sensor [1]. Passive source localization (passive sonar) refers to the detection of sound

sources without emitting any signals, relying solely on incoming sound waves. Active source

localization (active sonar) involves emitting a signal and then analyzing the reflected waves to

determine the source location. Source localization has both defense-related and environment-related

applications. Implications on the defense side would include the discovery of mines, the location of

submarines in the deep ocean, and the detection of intruders near the coastline [2]. Environment-

related impacts would include monitoring fish stocks and observing marine mammals or other

species (especially in response to climate change). Figure 1.1 from Sinay [3], a maritime technology

1
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Figure 1.1 Illustration of active acoustic sources in the ocean, including sound emissions
from marine animals, weather, and a surface vessel. This image conceptually represents
active source localization, where emitted signals are used to analyze and detect the loca-
tion of underwater sources. Source: National Oceanic and Atmospheric Administration
(NOAA) [4]

company that provides data solutions for environmental monitoring, depicts a scene of source

localization in the ocean. The figure shows the active source localization process with a surface

vessel, a submarine, a dolphin, a pod of fish, and a whale.

For several decades, the leading technique for source localization in underwater acoustics

has been signal processing [5]. However, as noted in a review on advancements in machine

learning for underwater acoustics, "machine learning has been applied to passive sound source

localization since the early 1990s" [6]. Machine learning has been applied to underwater acoustics

in various subdomains, ranging from source target recognition to underwater communication [7].

One prominent application of machine learning is source localization.
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An approach for passive source localization in underwater acoustics is deep learning, a subset

of machine learning that employs artificial neural networks to recognize patterns. One type of

neural network that is especially good at detecting patterns is a convolutional neural network (CNN).

Supervised training of these networks relies on labeled data: data where the ground truth is known

for the property that is being learned by the network. Deep learning-based methods hold significant

potential for sonar technology, enabling efficient source tracking and localization. In addition, it has

applications in geoacoustic inversion, a technique used to characterize the seabed based on acoustic

data.

Examples of deep learning usage in underwater acoustics for source localization have grown

over the past decade. Two such examples include Huang et al. [8] and Wang et al. [9]. Huang

et al. studied source localization in a shallow water environment using a 30 hydrophone vertical

line array with both simulation data and real data. Wang et al. also used a vertical line array but

with 21 hydrophones. The results for Wang et al. were collected for shallow, deep, broadband, and

narrowband cases. The results of these two studies are compared with the results of this thesis in

Chapter 4.

Two major challenges impede the application of deep learning to oceanic source localization:

environmental variability and scarcity of labeled data. There are large databases of unlabeled

underwater acoustic data, but source localization through deep learning requires labeled underwater

acoustic datasets. The lack of large labeled datasets presents a significant obstacle to creating a

robust deep learning model because it requires extensive labeled data to train supervised learning

models. Large labeled underwater acoustic datasets are much more difficult to obtain for each

scenario.

Even with labeled data, training a reliable model is very difficult due to the fact that ocean

environments are characterized by significant noise, signal distortions, and complex propagation

phenomena [6]. These complexities include variations in water depth, ambient noise caused by
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surface and wind activity, temperature fluctuations, and differences in seafloor material. This

variability complicates the development of robust machine learning models capable of generalizing

across diverse oceanic conditions. Addressing these issues requires the development of a method to

adapt deep learning models to variable environments.

1.2 Transfer Learning Approach

One approach to address the challenges of ocean variability and limited labeled data in underwater

source localization is transfer learning. Transfer learning is a technique that enhances a deep learning

model by leveraging knowledge from a model trained on a large dataset [10]. This approach allows

accurate results to be achieved even when only a small dataset is available, making it particularly

advantageous in situations where labeled data is scarce.

The key advantage of transfer learning lies in its ability to modify an existing model to suit

a new task rather than building a new model from scratch. By modifying an existing model, it

reduces the need for extensive data collection and training. This technique works by sharing certain

deep neural network parameters from the original model while relearning others specific to the new

context [6]. This adaptability makes transfer learning a powerful tool for overcoming the limitations

of data availability and variable environmental conditions in underwater acoustics.

Hu et al. [11] tested a transfer learning approach for dolphin sound recognition. They found

that transfer learning performed more than 15% higher in average accuracy than the usual machine

learning methods. The dolphin sound recognition model was a classification model (discrete

categories), while this thesis uses a regression model (continuous values). A different study, Wang

et al., tested transfer learning for underwater acoustic source ranging. The study initially used

synthetic datasets to train the model and refined the model with real deep-sea data. Unlike this

thesis in which the source-receiver range is found using regression, Wang et al. discretized the
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source ranges into bins, creating a classification problem. Wang et al. used a probabilistic Gaussian

distribution model which makes comparison difficult with this thesis. [12].

1.3 Thesis Outline

In this thesis, I share the process and results of applying transfer learning to predict source-receiver

range in a laboratory tank when temperature fluctuations are introduced. The primary objective is

to evaluate the effectiveness of transfer learning as a method for source localization, specifically

in accounting for environmental variability such as temperature changes. In Chapter 2, I provide

information on the measurements including frequency range, temperature, and the varying ambient

noise. I also describe the neural network architecture, focusing on validation methods and early

stopping. In Chapter 3, I discuss the results of comparing prediction errors between deep learning

models and transfer learning models. This comparison demonstrates that transfer learning effectively

reduces prediction errors in the estimation of source-receiver range under temperature fluctuations

in a controlled laboratory setting. In addition, Chapter 4 concludes the thesis and explores the

applications of these findings and outlines potential directions for future research in this field.

1.4 Previous Work

The foundational work for this project was conducted by Corey Dobbs during his undergraduate

and graduate studies at Brigham Young University (BYU) [13]. He developed the original code

used for training, testing, and performing transfer learning on the models. Corey’s contributions

also included optimizing the neural network architecture, such as determining the ideal number of

samples for the model. He also conducted training and testing on multiple models to refine their

performance.

My role in this deep learning project involved building upon the existing framework. I modified
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the CNN architecture to improve the implementation of early stopping, ensuring better prevention of

overfitting. Additionally, I designed a more efficient data processing method by applying band-pass

filtering based on the frequency range. Beyond code optimization, I participated with other lab

members in collecting new data from the laboratory tank. I used these updated datasets to train and

test the models.



Chapter 2

Methods

This chapter outlines the application of transfer learning to data collected in a laboratory tank.

The first section details the experimental setup, including the features of the laboratory tank, the

measurement chain, and the relevant measurement variables. The following section discusses the

architecture of the CNNs used for training, testing, and transfer learning. It provides an overview of

key model parameters, such as the number of layers, early stopping techniques, and the number of

epochs.

2.1 Experimental Setup

Measurements were taken in the BYU underwater acoustics laboratory to train and test multiple

deep learning models. The tank is used as a surrogate for the ocean. It is a controlled environment

that I can use to test specific variables. Standard measurements were taken for training models and

variation measurements were taken for testing and applying transfer learning to the trained models.

7



2.1 Experimental Setup 8

Figure 2.1 Laboratory tank schematic from top view. BYU Laboratory acrylic tank with
two UR10e robots, tank filtration system and heater, and labeled dimensions in x, y, and z.
The left robot is the source and the right robot is the receiver. The receiver robot is on a
track that extends its reach in the y direction. This tank is used as a controlled environment
to take data to use for deep learning.
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Figure 2.2 Laboratory tank setup. BYU Laboratory tank with two UR10e robots and
hydrophones in the water at the end of robot attachments. Blue panels are anechoic panels
to reduce reflections. This is the side view of the tank.

2.1.1 Measurement Configuration

The laboratory features an acrylic tank with dimensions of 1.2 meters (x-direction), 3.6 meters

(y-direction), and 0.9 meters (z-direction, that is, depth). The depth of the water in the tank is

maintained at 0.5 meters, unless intentionally varied. Figure 2.1 represents a schematic of the

laboratory tank that includes the robot positioning system and the position of the axes. Acrylic

was chosen for the tank because its acoustic impedance is closer to that of water compared to other

materials. The tank walls are lined with polyurethane anechoic panels (Aptile SF5048) by Precision

Acoustics, designed to reduce sound reflections. Figure 2.2 is an image of the laboratory tank

showing both the robots and the anechoic paneling.

The tank is equipped with both a filtration and a heating system. The filtration system utilizes

a particle filter and UV treatment to maintain water cleanliness. The heating system is capable
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of adjusting the water temperature between 19 and 38°C. In addition, the tank undergoes regular

chemical treatments to stabilize the levels of pH and alkalinity. These chemical treatments prevent

algae from growing in filtration pipes and tank water, ensuring consistent acoustic measurements.

Two UR10e Universal Robotics robots are positioned just outside the tank, extending over the

water. Both robots are capable of moving along six axes, allowing the attached hydrophones to be

positioned within a range of 1.3 meters. The receiver robot is mounted on a Vention track, adding

a seventh axis that extends its movement by 1.4 meters in the y-direction. The robots are highly

precise, with a repeatability of 0.01 mm. In order to make this laboratory setup comparable to a real

ocean environment, the wavelength size needs to be scaled down to match the smaller dimensions of

the tank. A smaller wavelength is achieved by using signals with higher frequencies. Further details

on the laboratory setup can be found in Cameron Vongsawad’s master’s research at BYU [14].

2.1.2 Data Acquisition

A key aspect of the experimental setup is the measurement chain, which describes the process by

which a signal is generated by the computer, transmitted as a physical signal through the laboratory

tank, and received back as an electrical signal. Figure 2.3 depicts the measurement chain process

used in the BYU underwater acoustics lab. The measurement chain relies on custom LabView

software called Easy Spectrum Acoustics Underwater (ESAU), developed by Adam Kingsley for

use in the laboratory. The signal generated by ESAU is sent to the Spectrum M2p.65xx-x4 DAQ

system. The Spectrum DAQ card then converts the digital signal to analog. This analog signal is

amplified by a TEGAM 2350 amplifier, which increases the amplitude of the signal by a factor of

fifty. After passing through an impedance matching transformer, the signal is transmitted from the

source B&K8103 (Brüel and Kjær) hydrophone to the receiver B&K8103 hydrophone.

For these measurements, the source is produced by a single B&K 8103 attached to the robot

to the left of Figure 2.1. The sound is received by a small horizontal array of three B&K 8103
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Figure 2.3 Measurement chain. Measurement chain for BYU laboratory experimental
measurements using custom LabView software, ESAU (Easy Spectrum Acoustics Un-
derwater). The process begins on the left and follows along the top row. The computer
generated signal is amplified and sent to the source B&K8103 in the tank which is then
received by another B&K8103. This received signal is then converted with the preamplifier
and signal conditioner and read in by the computer.
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Figure 2.4 Hydrophone attachments in the tank. The left attachment is the source
and the right attachment is the receiver. When using three channels, all three receiving
hydrophones, spaced 1 cm apart, are used. When using only one channel, only the middle
receiving hydrophone is used.

hydrophones; the small array is oriented along the x direction in Figure 2.1. The receiver robot

holds three receiving hydrophones, each 1 cm apart. Figure 2.4 shows an image of the source and

receiver hydrophone attachments. The source hydrophone is on the left with only one channel (one

hydrophone). The receiver is on the right with three channels (three hydrophones). When using one

receiver channel, only the middle hydrophone is used. The received signals are sent to the B&K

NEXUS Conditioning Amplifier, where the charge sensitivity (specific to the hydrophone model)

and the transducer sensitivity (10 mV/Pa) are manually set. The final step in the measurement chain

is when the signal is sent through the input Spectrum DAQ card and converted back from analog to

digital. ESAU records the data as bin files due to this conversion.

The frequency band of interest for this work is 50 to 100 kHz. As mentioned earlier, higher

frequencies are used to compensate for the smaller physical dimensions of the tank to create smaller

wavelengths. This ensures that the acoustic behavior, such as reflection, diffraction, and attenuation,

scales appropriately, allowing the laboratory setup to mimic the spatial and temporal characteristics
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of sound propagation in the real ocean. This frequency range is much higher than the audible

hearing range, 20 to 20,000 Hz. ESAU (Easy Spectrum Acoustics Underwater) was used to generate

a 1-second-long linear chirp across this frequency band. The signal was transmitted from the source

B&K8103 in the tank, with 20 ms of padding (zeros) at each end. The signal was 1 second long, so

the entire recorded signal was 1.04 seconds with leading and trailing zeros. The sampling frequency

was 1 MHz and the input amplitude was 3600 mV. The source transducer was at [x=0.6, y=2.2,

z=0.25], and the center receiving transducer was at [x=0.6, y=2.05-0.55 (with 301 or 51 points),

z=0.25], unless otherwise varied.

Measurements were taken on different days to account for ambient noise in the tank. Figure 2.5

illustrates the amplitude of ambient noise in the tank over time on three different days to highlight

differences. The plot on the left is the waveform that plots the signal amplitude as a function of

time. The waveform plot only shows the first 20 ms of padding before the signal was sent. The

plot on the right shows the power spectral density as a function of frequency. This plot shows the

strength of the signal at each frequency. Each color represents a different day. Data were taken on

different days so that the model could be trained with data from multiple days at once. Combining

data across different days creates a level of inherent variability in the data, allowing the model to

learn to account for variability during training.

The measurement data were processed using signal processing techniques, including the

comparison of narrowband spectra for each source-receiver range. A fast Fourier transform was

applied to the signal. The inputs for the deep learning algorithms were the band-passed power

spectral levels from 50-100 kHz, which were the frequencies in the source signal.

2.1.3 Standard Measurements

Measurements were collected and classified into predetermined datasets as training or testing.

Figure 2.6 shows the waveforms and spectral levels of the source (a and c) and the received (b
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Figure 2.5 Ambient noise in laboratory tank on three different days. Each color represents
a different day. On the left is the waveform, a function of time. The right is the time-
averaged power spectral density levels, a function of frequency. Power spectral density
levels are a measure of the strength of the signal at each frequency. The variation across
different days helps the model learn to account for variability. The model can better
account for variability because training data includes data from different days with varying
ambient noise levels.

and d) signals. In plot a, the wave is so condensed that it looks more like a box than a traditional

wave. The source and receiver hydrophones are 0.155 m apart in the y direction, which is the closest

source-receiver range. Figure 2.7 shows the time-averaged power spectral density levels of the

received signals at two different source-receiver ranges. The plot on the left with higher PSD values

is at a source-receiver range of 0.155 m (the same source-receiver range as Figure 2.6). The right

plot is at a source-receiver range of 1.65 m, meaning the source and receiver hydrophones are farther
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apart, resulting in lower PSD values. This figure shows how the received signal changes as the

source-receiver range changes.

The training datasets consist of 301 points, each representing a distinct source-receiver range.

The water depth was maintained at 0.5 meters in the z-direction, and the average temperature of

the tank was approximately 20 ◦C, corresponding to room temperature. For each of the specified

source-receiver ranges (spaced 5 mm apart), the recorded sounds are saved. To improve the accuracy

of the model, some measurements included a ±0.02 m offset in the receiver’s y-position.

Models were tested using both one and three channel data. The number of channels refers to the

number of receiving hydrophones being used in training. The receiver robot has an attachment with

three spots, each 1 cm apart. When training a model with one channel, only data from the center

hydrophone were used. A three channel setup is most often used for source localization because it

provides opportunity for other signal processing techniques, such as beam forming, to determine

the location. In this project, I compared the use of one receiving hydrophone with three receiving

hydrophones to see if there was a significant difference. The spectral levels for these measurements,

labeled with their respective source-receiver ranges, were used to train a deep learning model.

Table 2.1 Table describing number of variation measurements. The variation measure-
ments used to test the robustness of the deep learning model and potentially apply transfer
learning are receiver x position, receiver z position, water height, and temperature. The
control values are the values used in the standard measurements. The offset values are the
variations in measurements from the control value. Transfer learning was only performed
with temperature variation measurements.

Variable Control Offset

Receiver x 0.6 m ± 1 mm, ± 2 mm, ± 5 mm, ± 1 cm, ± 2 cm

Receiver z 0.25 m ± 1 mm, ± 2 mm, ± 5 mm, ± 1 cm, ± 2 cm

Water Height 0.5 m + 2 cm, + 4 cm, + 5 cm

Temperature 20 C + 1 C, + 2 C, + 4 C
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Figure 2.6 Source versus receiver. Plots a. and c. are the monitor signal, the source signal
sent to the Tegam power amplifier but multiplied by 12 due instead of 50. Plots b. and
d. are the received signal for one hydrophone. The source and receiver hydrophones are
0.155 m apart in the y direction. Plots c. and d. are the time-averaged power spectral
density levels. Plots a. and b. are the waveforms. In plot a, the wave is so condensed that
it looks more like a box than a traditional wave. Plot c. shows a linear chirp because the
horizontal line means that each frequency has equal signal strength. The received signal is
a modified version of the source signal showing the affects of the sound traveling through
the water in the laboratory tank.
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Figure 2.7 Two power spectral density (PSD) plots at varying source-receiver ranges.
The left plot is at a source-receiver range of 0.155 m in the y direction. The right plot is
at a source-receiver range of 1.65 m in the y direction. The closer source-receiver range,
the left plot, has higher PSD values than the right plot because the two hydrophones are
closer to each other. This change in PSD shows how the received signal changes as the
source-receiver range changes.
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2.1.4 Variation Measurements

To design more accurate source-localization deep learning models that account for ocean variability,

intentional variations are required. These measurements serve to test deep learning models and

facilitate the application of transfer learning. The datasets used for testing and transfer learning

consist of 51 data points. Four variables were intentionally varied in this project: the x-position,

z-position, water depth, and temperature. The x-position of the receiver was adjusted from standard

measurements by increments of 1 mm, 2 mm, 5 mm, 1 cm, and 2 cm. Similarly, the z-position of

the receiver was varied by the same five increments. Measurements were also taken with the water

depth varied by 0.05 m, 0.04 m, and 0.02 m. Furthermore, measurements were performed when

the water was heated with the heater to 1, 2, and 4 degrees above the 20 ◦C water that corresponds

to room temperature. Table 2.1 presents a concise representation of the variation data for all four

variables. The table outlines the control and offset values for each variable. The control values are

the values used for standard measurements and the offset values create the data used for variation

measurements.

2.2 Machine Learning

After the measurements are taken, the data is transformed using the FFT to obtain spectral levels

and then undergoes processing through bandpass filtering. The results are then used in the deep

learning algorithm as the input. Several parameters have been adjusted to optimize the performance

of the model.

2.2.1 Network Architecture

The deep learning algorithm used in this thesis employs a one dimensional four-layer CNN, designed

as a regressive model rather than a classification model [15]. A regressive model predicts continuous
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numerical values, instead of categorizing results into specific classes as with a classification model.

Figure 2.8 from Corey Dobb’s thesis [13] displays the sizes of both the convolution and fully

connected layers. As shown in the far right of the figure, MSE is the loss function for this network

because I am using a regression model. The initial learning rate is set to 1e−3, with adjustments

made during training using a cosine scheduler. The learning rate is the value that controls the

step size in adjusting the weights during training. The scheduler allows the learning rate to be

dynamically adjusted.

The batch size determines how many training samples are processed at once, and for this

Figure 2.8 Network architecture. A schematic of the 1D network architecture with four
convolutional layers and two fully connected layers. The kernel is a matrix that slides
over the input data and calculates weighted sums. The kernel and feature sizes of each
layer are expressed. The kernel size is represented by the number of filters x filter length.
The feature size is represented by the number of channels x feature length. The loss is
determined at the end by comparing the predicted source-receiver range to the known
source-receiver range for the data.
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network, it is set to 32. Although batch normalization is included, max pooling is not incorporated.

Batch normalization makes training faster and more stable by adjusting the outputs of each layer.

Max pooling reduces the size of the spatial dimensions of the CNN output while preserving the

key information. A 5-fold cross-validation is used, with an 80/20 training-testing split. An 80/20

training-testing split means that 80% of the data is used for training, while the remaining 20% is

reserved solely for validation. This 20% of the data has not been seen by the model but is randomly

selected from the data used for the training. Each of the five folds uses different 20% of the training

data as the data for the validation testing. The Adam optimizer, with an epsilon value of 0.5, is

also used. The primary function of the optimizer is to conduct the backpropagation step when the

weights are updated.

2.2.2 Epochs Versus Early Stopping

Neural networks are trained for multiple epochs. In one epoch, all training data are drawn in batches

and passed through the network. There are different ways to decide how many epochs are completed.

One method is to specify the number of epochs to be completed, while another is to employ early

stopping. Early stopping is a technique used to improve model generalization and reduce overfitting.

The loss examined during early stopping is the root mean squared error (RMSE). RMSE is given

by:

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (2.1)

where N is the number of samples, yi is the true value of the ith data point, and ŷi is the predicted

value for the same data point. Early stopping occurs when the validation RMSE decreased by less

than a specified threshold over a specified number of epochs, referred to as the stopping patience.

For this work, the threshold is 0.001 and the stopping patience is 5 epochs. The model will then

save the version that corresponds to the lowest RMSE observed during training, before the five

epochs without improvement. The version that initiates early stopping corresponds to the point
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Figure 2.9 Loss curve for base model. The loss is the difference between the prediction
from the algorithm and the true value. The number of epochs corresponds to the amount of
times the entire training dataset is used to train the model, one complete run. The training
loss is the loss acquired after each epoch for the training data while the validation loss is
the loss acquired after each epoch for the validation data. The validation loss levels out to
a horizontal line at about epoch number 15. The y axis scale is very small. The loss curve
shows that optimal number of epochs is about 15.

where the loss curve is at its minimum.

Early stopping is employed to avoid overfitting and promote better generalization. Overfitting

occurs when a model learns the specific details of the training data too well, failing to generalize

to new, unseen situations. Overfitting results in good validation performance but poor testing

performance on new data. Allowing the model to run for too many epochs can exacerbate overfitting.

For this project, the maximum number of epochs is set to 15. Figure 2.9 shows the loss curve of a

model trained with a maximum of 50 epochs. The training loss is the loss acquired after each epoch

for the training data, while the validation loss is the loss acquired after each epoch for the validation

data. The validation loss line flattens out starting at about 15 epochs, which is why that value was

chosen.
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2.2.3 Training Dataset

The machine learning parameters and the corresponding decisions are described in detail in Corey

Dobbs’ thesis [13]. In his work, the ideal number of samples for the training dataset is discussed.

The challenge is to find a balance between having too many samples and not enough. Too few

samples result in a failure to capture the variation in normal room temperate data and the time-

varying ambient noise, while too many samples can lead to excessive repetition and extended

training times. His study concluded that training one model should use data collected over six days.

Each model is trained on data for multiple days due to the varying ambient noise in the tank shown

in Figure 2.5. Training on data from different days provides inherent variability in the training data,

which increases the generalizability of the model for variation data. With 301 samples in each of

those days, the training dataset, one training model incorporates 1,806 different samples.

2.2.4 Evaluating Performance

The label learned with these models is the source-receiver range. The metrics include both the root

mean squared error (RMSE) and the mean absolute percent error (MAPE). The preferred method

used to evaluate the performance of a model is MAPE. MAPE is emphasized over RMSE because it

accounts for the relative distance to the object. Because MAPE accounts for relative locations, it

allows us to make a better connection to what would happen if source localization were applied

in an ocean scenario. For example, if the receiver is 10 km away from the source, an error in the

range of 500 m is relatively small compared to the total distance, a 5% MAPE. However, a 500 m

error would be considered a large error if the source-receiver range was only 1 km, resulting in a

5% MAPE. The equation for MAPE is

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣×100 (2.2)



2.2 Machine Learning 23

where n is the number of samples, yi is the true value of the ith data point, and ŷi is the predicted

value of the ith data point. In naval applications, an error of 10% in the range is considered

acceptable. In reverberant spaces, such as a laboratory tank, larger errors are expected.

2.2.5 Transfer Learning

Transfer learning is applied to previously trained deep learning models with the aim of achieving

better generalizability on new test data samples than is obtained using the base model. Some

hyperparameters remain the same as in training, while others are modified. The number of runs,

learning rate, scheduler, and batch size are unchanged. Both models incorporate batch normalization

but exclude max pooling. For transfer learning, the epsilon value for the Adam optimizer is set to

0.01. Early stopping is disabled in transfer learning. During transfer learning, only the parameters

(or weights) of the very last layer of the original model are updated based on the 51-point transfer

dataset. Modification of the base model enables transfer learning to adapt the model to account for

the introduced variations.



Chapter 3

Results

This chapter presents the results of testing on the base deep learning model, as well as the outcomes

from applying transfer learning to the model for predicting source-receiver ranges. The comparison

of the MAPE between these two approaches is made for temperature variations.

3.1 Validation Testing Results

The training data are divided into training and validation sets with an 80/20 split. The network does

not use the validation data for training, but rather for testing. The results of the validation testing are

evaluated as the model is trained as a way to monitor the progress of the training. Consequently, the

validation testing data share similar environmental factors, such as ambient noise, temperature, and

position, since they are drawn from the same measurements taken on the same day. The five-fold

cross validation used in training results in five trained models. The average validation MAPE is the

average validation MAPE across those five trained models, whereas the best MAPE is the lowest

MAPE of those five.

Figure 3.1 shows the predicted labels versus the actual labels of the validation and generalized

testing of the base model for one of the five folds. The labels are the source-receiver ranges. The

24



3.2 Generalized Testing Results 25

predicted labels are the source-receiver ranges estimated by the deep learning model. The actual

labels are the true source-receiver ranges of the data. The plot on the left showing the validation

testing results contains 361 samples (1806 divided by 5). The red dashed line is the y = x line,

where the predicted and actual labels are the same. A result on the red dashed line means that

the model is correctly producing the source-receiver range. As mentioned above, the US Navy

classifies a MAPE of 10% as good, although larger values are expected in reverberant laboratory

tank environments.

The average MAPE results for validation testing for three channels, with the maximum number

of epochs being set to 15 (which was found to be ideal) and the updated early stopping criteria,

ranged from 11.66% to 14.43%. The best MAPE results for these models ranged from 10.07%

to 12.03%. These average MAPE values represent an improvement over earlier validation results

obtained with a previous version of early stopping from Corey Dobbs thesis [13], which produced

values between 14.06% and 15.57%. When the maximum number of epochs was increased to 1000,

the validation testing results improved further, with MAPE values ranging from 4.29% to 4.82%.

However, generalized testing did not show a decrease in MAPE, suggesting that the model may

have suffered from overfitting.

3.2 Generalized Testing Results

Generalized testing results are different from validation testing results. Generalized testing results

come from testing a trained model on a new dataset that the model has never seen before. These

datasets for our experiments contain 51 samples, as opposed to the 1806 samples used for training

and the 361 samples used for validation testing. The generalized testing datasets were taken on

different days than the training datasets. Data taken on different days always exhibited slight

variability due to ambient noise in the tank, which varied from day to day. As mentioned above,
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Figure 3.1 Predicted Versus Actual for Base Model. The left plot shows predicted labels
versus actual labels for the validation testing results on the base model with 1806 samples.
The labels are the source-receiver ranges. The predicted labels are the source-receiver
ranges estimated by the deep learning model. The actual labels are the true source-receiver
ranges of the data. The right plot shows the results with the same model for generalized
testing on a control data sample. The validation testing has 361 points (1806 divided by
5 due to five-fold cross-validation) while the generalized testing only has 51 points. The
validation testing has lower MAPE and RMSE values than the generalization plot. These
are the results for one out of the five folds of training for standard measurements.

Figure 3.1 shows the predicted labels versus the actual labels of the validation and generalized

testing of the base model with the red line being where the model is correct. The right plot showing

generalized testing results contains 51 samples. These plots are from one of the five folds of training

for the base model. The generalized testing data used for this example plot were standard data

taken on a different day than the trained model. Because the data used for generalized testing
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Table 3.1 Base model 1 testing MAPE and RMSE. The first two rows show validation
MAPE and RMSE results on base model 1 with 1806 samples that include the generalized
testing day. The next two rows show the results for generalized testing on room temperature
data. Models trained on one channel (one receiving hydrophone) and three channels (three
receiving hydrophones) of data are shown. There is never more than a 3% difference in
MAPE and a 0.01 difference in RMSE between 1 and 3 channels. The generalized testing
values are about 5% less than the generalized testing on base model 2. The average values
come from the results of all five folds, the best values are the lowest values from one of the
five folds.

Model (Base Model 1) Average MAPE Best MAPE Average RMSE Best RMSE

1 Ch Val 13.89 13.09 0.12 0.11

3 Ch Val 12.53 11.38 0.11 0.1001

1 Ch Room Temp Test 15.94 10.84 0.13 0.103

3 Ch Room Temp Test 15.2 13.56 0.13 0.107

were standard data, the only variation in the data is ambient noise and the number of samples.

The generalized testing MAPE value was higher than the validation testing MAPE value. Higher

generalized testing MAPE is what I would expect because the validation testing data is part of the

training dataset which means the model has already seen data from the same day with the same

ambient noise levels.

Generalized testing on room temperature data was performed on two different models. The

first model included data from the same day that the 51 point generalized data was taken, this will

be referred to as the base model 1. Because data from the same day was seen during training, the

model had already accounted for the specific ambient noise in the tank on that day. Base model 1

did not include data with the 0.02m y offset and included data from days 1, 2, 3, 4, and 5. Table 3.1

compares the validation and generalized testing values for models trained, without variation, on

one channel and three channels for base model 1. The generalized testing average MAPE results

were around 15%. The second model, base model 2, did not include data from the same day as
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Table 3.2 Base model 2 testing MAPE and RMSE. The first two rows show validation
MAPE and RMSE results on base model 2 with 1806 samples that include the generalized
testing day. The next two rows show the results for generalized testing on room temperature
data. Models trained on one channel (one receiving hydrophone) and three channels (three
receiving hydrophones) of data are shown. There is never more than a 3% difference in
MAPE and a 0.01 difference in RMSE between 1 and 3 channels. The generalized testing
values are about 5% greater than the generalized testing on base model 1. The average
values come from the results of all five folds, the best values are the lowest values from
one of the five folds.

Model (Base Model 2) Average MAPE Best MAPE Average RMSE Best RMSE

1 Ch Val 13.38 12.09 0.13 0.11

3 Ch Val 11.73 10.07 0.1007 0.09

1 Ch Room Temp Test 20.63 16.87 0.202 0.18

3 Ch Room Temp Test 17.91 13.08 0.19 0.13

the generalization data. Base model 2 included data from days 2, 5, 6, and 7 while the generalized

testing dataset is from day 1. Because the generalized testing dataset is from a different day than

all the training data, Table 3.2 shows the average MAPE results closer to 19%. Base model 2

generalized testing results were about 4% higher than base model 1 generalized testing results.

Base model 2 is a more realistic model because it includes the training data with a 0.02m offset

in the receiver y position and variable ambient noise. The results from base model 2 are more

representative of a source localization model that accounts for real ocean variability.

For both base model 1 and base model 2, shown in Table 3.1 and Table 3.2, there is never

more than a 3% variation in MAPE values. This 3% MAPE variation illustrates the minimal

difference in results using one channel versus three channels. Three channel data are often used

in source localization because it provides opportunity for beam forming in signal processing. One

channel measurements require less equipment because only one receiver hydrophone is needed.

Another surprising result from the comparison between one and three hydrophones is that the fold
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Table 3.3 Generalized variation results. The left column represents the amount of offset
from the control value in the measurements. The reported values for the three variables are
the differences between generalized testing on the variation data with that specific offset
and generalized testing on standard data. Testing was done on base model 2 with three
channels. There is not a significant shift in average MAPE values between both types
of generalized testing, hence why transfer learning was not applied with these variables.
Temperature had a more significant difference in MAPE values and therefore led to transfer
learning.

Offset Receiver x Receiver z Water height

1 mm 3.36 4.27 —-

2 mm 2.98 4.41 —-

5 mm 7.39 2.23 —-

1 cm 3.65 5.03 —-

2 cm 1.05 1.31 2.12

4 cm —- —- -1.1

5 cm —- —- 0.42

that produced the best validation value did not always produce the best generalization value. The

discrepancy suggests that validation performance alone may not reliably indicate generalization

ability, highlighting the need for robust evaluation across multiple data splits.

As mentioned earlier, there were four categories of variation testing data: change in receiver x

position, change in receiver z position, change in water height, and change in water temperature.

Table 3.3 shows the generalized testing results for x receiver position, z receiver position, and

water height. The values recorded in the table are the differences between generalized testing on

the variation data and generalized testing on standard data that has the same configuration as the

original training data. Base model 2 with three channels was used for Table 3.3 so the testing values

were evaluated against a control generalized testing value of 17.91%. The change in x position

led to an increase 1.09% to 7.39% in MAPE from generalized testing at x = 0.6 m. The z position
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testing follows a similar pattern. There was a 1.31% to 5.03% increase in MAPE for changing the z

position from z = 0.25 m. For shifts in water height (WH), the generalized testing MAPEs from

three different heights were off by 0.42% to 2.12% from generalized testing at WH = 0.5 m. The

difference in generalized testing MAPE values for the temperature measurements on one channel

and three channels spanned from 5.27% to 12.17%. The average MAPE increase for three channels

was 3.69% for x, 3.45% for z, 1.21% for WH, and 9.09% for temperature. Transfer learning was not

applied to the first three variables because the average MAPE differences were not as large as the

average MAPE difference for temperature variation.

3.3 Transfer Learning Results

The goal of transfer learning is to provide a deep learning technique for source localization that can

account for ocean variability better than generalized testing while still using a smaller set of labeled

measurements. Transfer learning uses a smaller set of variation data to modify the last layer of

weights on an existing model. The existing model to which transfer learning was applied was base

model 2. Transfer learning was performed on the change in temperature values for 22 ◦C and 24 ◦C.

Transfer learning was performed on temperature measurements because they performed the most

poorly out of all four variables in generalized testing. Since transfer learning modifies an existing

model, it provides both validation and generalized testing results because it creates a new model.

The generalized testing results come from testing the new transfer learning model on another set

of data measured at the higher temperature. The generalized testing data are temperature data that

were not used to train the model. Figure 3.2 and Figure 3.3 show an improvement in generalized

testing results with transfer learning by comparing predicted and actual labels for 22 ◦C and 24 ◦C

respectively. A 15% improvement is demonstrated for one fold at 22 ◦C with three channels, and a

45% improvement is presented for one fold at 24 ◦C with one channel. For 22 ◦C, the post transfer
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Figure 3.2 22 degrees generalized testing results. The left plot shows generalization
results for one fold of base model 2 with three channels before transfer learning. The
right plot shows the generalization results after transfer learning with a 22 degrees Celsius
dataset. After transfer learning, the MAPE and RMSE values are significantly lower
and the data points are closer to the red line. For this specific fold, there is about a 15%
improvement in the MAPE after transfer learning.

learning generalization results were within 1.59% of the 17.91% control generalization results on

base model 2 without temperature variation. For 24 ◦C, the post transfer learning generalization

results were within 2.56% of the 20.63% control generalization results on base model 2 without

temperature variation.

Table 3.4 presents the results at 22 ◦C for both one channel and three channels. The first two

columns show the generalized testing results of temperature data on base model 2. The next two

columns show the validation testing results of the transfer learning model. The transfer learning
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Figure 3.3 24 degrees generalized testing results. The left plot shows generalization
results for one fold of base model 2 with one channel before transfer learning. The right
plot shows the generalization results after transfer learning with a 24 degrees Celsius
dataset. After transfer learning, the MAPE and RMSE values are significantly lower and
the data points are closer to the red line. There is a larger improvement in MAPE values
with transfer learning at 24 degrees Celsius than 22. For this fold, there is about a 45%
improvement in the MAPE after transfer learning.

model is a result of applying transfer learning with 22 ◦C data on base model 2. The last two

columns represent the results of generalized testing using new 22 ◦C on the 22 ◦C transfer learning

model. Table 3.5 presents the same data but at 24 ◦C. The 24 ◦C transfer learning model is a result

of applying transfer learning with 24 ◦C data on base model 2. The last two columns represent

the results of generalized testing using new 24 ◦C on the 24 ◦C transfer learning model. In both

tables, the generalized testing MAPE results after transfer learning are significantly, between about
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Table 3.4 22 degree transfer learning results. MAPE validation and generalization results
at 22 degrees Celsius for model trained with one channel versus three channels using base
model 2. The transfer learning model is a result of applying transfer learning with 22 ◦C
data on base model 2. One and three channel results were within at least 4% of each
other. Average generalized testing MAPE results decreased by about 10% for one and
three channels after transfer learning showing improvement.

Channels
Ave.

Gen MAPE

Best

Gen MAPE

Ave.

Val MAPE

After TL

Best

Val MAPE

After TL

Ave.

Gen MAPE

After TL

Best

Gen MAPE

After TL

1 26.56 ± 6.21 20.31 14.56 ± 2.2 12.5 19.88 ± 2.54 16.09

3 25.98 ± 6.15 18.98 12.61 ± 2.85 8.76 17.44 ± 2.34 14.55

Table 3.5 24 degree transfer learning results. MAPE validation and generalization results
at 24 degrees Celsius for model trained with one channel versus three channels using base
model 2. The transfer learning model is a result of applying transfer learning with 24 ◦C
data on base model 2. One and three channel results were within at least 13% of each other.
Average generalized testing MAPE results decreased by about 15% after transfer learning
for three channels. Results decreased by about 30% after transfer learning for one channel.

Channels
Ave.

Gen MAPE

Best

Gen MAPE

Ave.

Val MAPE

After TL

Best

Val MAPE

After TL

Ave.

Gen MAPE

After TL

Best

Gen MAPE

After TL

1 43.84 ± 13.69 33.19 14.65 ± 2.37 13.05 16.92 ± 1.26 15.02

3 30.09 ± 7.97 20.61 12.81 ± 4.2 7.58 15.47 ± 3.89 9.2

10% and 30%, better than the generalized testing MAPE results before transfer learning for the

models with one and three channels. The average generalized testing MAPE values have improved

for the four rows after transfer learning. These values are not more than 4% off from the standard

generalized testing values for three channels and one channel shown in Table 3.2, 17.91% and

20.63%.



Chapter 4

Conclusion

The purpose of this thesis was to evaluate the effectiveness of transfer learning as a deep learning

method for handling ocean variability in source localization. The objective was to determine

whether transfer learning could produce a more robust model than previously trained deep learning

models. Transfer learning is particularly advantageous in real-world applications because it requires

only a small amount of newly labeled data. The results corroborate the effectiveness of transfer

learning, showing a 10 to 30% decrease in MAPE values for generalized testing after applying

transfer learning.

4.1 Overview

In this thesis, machine learning models were trained on measured data collected in an acrylic tank.

Temperature variations were introduced and smaller datasets were used to train transfer learning

models. This study detailed the equipment, laboratory setup, and signal processing techniques used.

In addition, the network architecture parameters and the performance evaluation methods were

discussed.

To assess the effectiveness of transfer learning, results from the base model are compared with
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results after applying transfer learning to the base model. The results indicate that the transfer

learning model consistently outperformed the base model, demonstrating lower MAPE values when

tested on novel data.

4.2 Discussion

The data demonstrates that transfer learning methods outperformed conventional deep learning

methods for source localization in a laboratory tank with varying temperatures. These findings

agree with previous research on dolphin sound recognition [11], where transfer learning also yielded

superior results compared to existing models. However, while the dolphin sound recognition study

employed a classification model (recording average accuracy), this thesis used a regression model

(recording MAPE), making direct comparisons challenging.

Putting the MAPE values of this thesis into perspective involves comparing the results with the

Wang et al. [9] and Huang et al. [8] studies mentioned in Chapter 1. Both of these studies did not

apply transfer learning with variation in their data; they simply trained and tested a model for source

localization using deep learning. A wavelength to water depth ratio is used to better compare the

results between studies by relating scenarios. Table 4.1 details the comparisons of the three acoustic

environments: this thesis, Wang et al., and Huang et al. Because both papers used a vertical line

array of hydrophones, the water depth is the center water depth of the vertical line array. The table

shows the setup in Wang et al. in terms of minimum and maximum source receiver ranges is more

similar to this thesis.

The model developed in Huang et al. was used to predict significantly larger ranges in terms

of wavelength ratio compared to this thesis. Their validation testing MAPE results were about 1%

while their generalized testing MAPE results were about 5%. This model used a 30 hydrophone ver-

tical line array, while the model in this thesis only uses 1 or 3 hydrophones, so poorer performance
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for this thesis would be expected. In the data for this project without variation, validation testing

MAPE results were about 13% and generalized testing MAPE results were about 19% (average

MAPE values between 1 and 3 hydrophones).

The testing values and ranges relative to the wavelength ratio presented in this thesis are more

closely aligned with the results in Wang et al. Wang et al. used a 21 hydrophone vertical line

array. However, similar to this thesis, Wang et al. used spectral values as the model input. Their

generalized testing MAPE values ranged between about 10% and 14% which is much closer to the

19% recorded in this thesis. This comparison shows that this thesis got close MAPE values to a

similarly scaled problem using only 1 and 3 hydrophones at one depth rather than 21 hydrophones

across depth.

Table 4.1 Comparison of frequency bands, water depths, and source-receiver ranges (in
terms of wavelength) between this work and two reference papers. Putting values in terms
of wavelength allows for more accurate comparison between situations. The setup in Wang
et al. is more similar to this thesis for minimum and maximum source receiver ranges than
Huang et al.

Parameter This Thesis Wang et al. Huang et al.

Frequency Band (Hz) 50k-100k 100-300 50-1000

Wavelengths (m) 0.03-0.015 15-5 30-1.5

Water Depth (in λ ) 16-32 6-20 1-19

Min Source-Receiver Range (in λ ) 5-10 66-200 333-6666

Max Source-Receiver Range (in λ ) 55-110 333-1000 95-19000

In this study, transfer learning models achieved at least a 10% improvement over their base

model results for generalized testing performance on unseen data. Table 4.2 summarizes the transfer

learning results for three channels while Table 4.3 summarizes the transfer learning results for one

channel. These two tables demonstrate that transfer learning improved performance by lowering
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Table 4.2 3 channel transfer learning results. The base model is set at 20 degrees Celsius.
The decreased MAPE values between generalized base testing and generalized testing
after transfer learning show an improvement in model performance after transfer learning
by about 10% and 15%. The resulting MAPE values after transfer learning are similar,
within 2%, to the generalized base testing MAPE value on the 20 degree data.

Water Temperature (C) Base Val MAPE Base Gen MAPE After TL Gen MAPE

20 11.73 ± 1.55 17.91 ± 2.81 —-

22 —- 25.98 ± 6.15 17.44 ± 2.34

24 —- 30.09 ± 7.97 15.47 ± 3.89

Table 4.3 1 channel transfer learning results. The base model is set at 20 degrees Celsius.
The decreased MAPE values between generalized base testing and generalized testing after
transfer learning show an improvement in model performance after transfer learning by
about 7% and 30%. The resulting MAPE values after transfer learning are similar, within
4%, to the generalized base testing MAPE value on the 20 degree data. These results are
similar to transfer learning results on 3 channel data. The generalization testing results
after transfer learning are within 4% of each other.

Water Temperature (C) Base Val MAPE Base Gen MAPE After TL Gen MAPE

20 13.38 ± 1.92 20.63 ± 3.31 —-

22 —- 26.56 ± 6.21 19.88 ± 2.54

24 —- 43.84 ± 13.69 16.92 ± 1.26

MAPE values. The generalized testing MAPE values after transfer learning (rows 2 and 3 of column

4) were within 2% of the base generalization testing for 3 channels and within 4% for 1 channel (row

one of column 3). The generalized testing MAPE values after transfer learning were within about

4% of each other for 1 and 3 channels between Table 4.2 and Table 4.3. Furthermore, modifying

Corey Dobbs’ model with early stopping and bandpass filtering led to a reduction of 2 to 3% in

MAPE values for validation testing on the original models [13].
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Only the temperature varied position data was used to train a transfer learning model. For the x

and z position variation data, along with water height data, the generalized testing results for the

original model differed by no more than 7% from base model 2, indicating that transfer learning

was unnecessary for these variables. Given this minimal change in MAPE, it was determined that

the original model was robust enough to handle these variations.

The fact that transfer learning improved generalized testing performance has important implica-

tions for real-world applications. In practice, one would first train a base model on a large labeled

ocean dataset. A smaller synthetic dataset, designed to represent the specific expected ocean vari-

ability, would then be generated by a sound propagation model. Transfer learning would be applied

to the base model using this specialized dataset. When the month and place of an area of operations

are determined, the model after transfer learning should be prepared to yield better predictions in

the area of interest. The findings of this thesis suggest that this transfer learning approach could

improve the predictions of the source-receiver range under real-world ocean conditions.

Despite its promise, this transfer learning method has several limitations due to the inherent

complexity of ocean environments. These limitations include spatial and temporal variations in

ambient noise, water depth (bathymetry), seafloor composition, and water column sound speed.

Such factors create a highly dynamic environment that presents significant challenges for deep

learning-based source localization. Another limitation is that the MAPE values in this study have

not fallen below approximately 10%, the value the Navy deemed acceptable. This minimum MAPE

threshold is likely due to the remaining reverberation in the tank that is not absorbed by the anechoic

panels.
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4.3 Future Work

The next step is to transform this thesis into a published paper. Following that, future research

should explore the application of transfer learning to additional sources of variability. One potential

extension involves incorporating seafloor material variations. Testing seafloor variations would

require the instillation of different materials on the bottom of the acrylic laboratory tank, such

as plastic, aluminum, sand, or a sloped surface. Furthermore, the current hyperparameters of the

CNN architecture could be further optimized to improve the robustness of the model. Continued

development in the field of source localization in underwater acoustics could lead to advances

in defense and environmental sonar applications, enabling deep learning models to adapt more

effectively to ocean variability.
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