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ABSTRACT

Impact of Late Universe Constraints on Early Universe Measurements of Hubble

Garrett Suggs
Department of Physics and Astronomy, BYU

Bachelor of Science

Early universe measurements of the Hubble constant usually find the best-fit value for H0
given a specific data set and a particular cosmological model. Planck’s all-sky survey of the
Cosmic Microwave Background is a common choice for this data, and is often supplemented with
additional constraints from other measurements of cosmological phenomena. For example, the
SH0ES collaboration’s measurement of H0 from local type Ia supernovae is a common constraint
to include, in the hope of reconciling the tension between late and early universe measurements.
We attempt to quantify the effect of this constraint on early universe measurements of H0. We
obtain values for H0 from several cosmological models—ΛCDM, CPL dark energy, and exponential
acoustic dark energy—under two sets of constraints: only CMB data, and CMB data as well as
the SH0ES measurement. We compare these results to each other and find that, for these models,
constraining the H0 measurement with SH0ES’ measurement generally reduces the Hubble tension
by ∼ 0.5σ . Given the limited scope of this study, our results are probably not generalizable to
models other than the ones we examined.

Keywords: cosmology, Hubble, SH0ES, Planck





ACKNOWLEDGMENTS

Many thanks to Rubén Arjona, Steven Clark, William Black, and Nikolai Wallin for providing

significant assistance with the various pieces of software I have used in this thesis.

I would also like to express my gratitude to my advisor, Dr. Chris Verhaaren, and to Dr. Karine

Chesnel and Dr. Benjamin Boizelle for serving on my thesis committee. Their feedback and support

has greatly elevated the quality of this thesis.

Thanks as well to the BYU Office of Research Computing for providing computational resources,

as well as frequent assistance with troubleshooting.

I also thank the BYU College of Computational, Mathematical, and Physical sciences for

providing the funding that enabled me to invest myself so deeply in this project.

Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science

mission with instruments and contributions directly funded by ESA Member States, NASA, and

Canada.

http://www.esa.int/Planck




Contents

Table of Contents vii

List of Figures ix

List of Tables ix

1 Introduction 1

2 MCMC analysis of dynamical dark energy models 7
2.1 ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 CPL dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 EADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Results 19
3.1 ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 CPL dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 EADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Discussion and conclusion 25

Appendix A SH0ES: distance ladder measurements 31
A.1 Distance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Appendix B Constraining cosmological models using the CMB 35
B.1 ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Constraints from the CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 41

Index 45

vii





List of Figures

1.1 H0 measurements over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The growing tension between H0 measurements . . . . . . . . . . . . . . . . . . . 4

2.1 CMB temperature deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 CMB temperature power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Schematic illustration of MCMC process . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Equation of state for CPL dark energy . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Equation of state for EADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Corner plot for ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Corner plot for CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Corner plot for EADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



x LIST OF FIGURES



List of Tables

3.1 Results for each model/constraint pair . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 EADE best fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii LIST OF TABLES



Chapter 1

Introduction

The primary goal of cosmology is to describe the origins, present state, and eventual fate of the

universe. For something like a star, we might approach this by asking questions about its properties:

how much mass does it have? How large is its radius? How hot is it? Similarly, the universe has

some macro-scale properties that we can describe that help us understand its evolution.

One such property is its current expansion rate, called the Hubble constant. The universe’s ex-

pansion was first predicted theoretically in the early 1920s by Alexander Friedmann [1]. Cosmology

uses the quantity a, called the scale factor, to describe the size of the universe. The present scale

factor is a0 = 1, and as we go further back in time, a → 0. Friedmann showed that the scale factor

evolves according to (
ȧ
a

)2

=
8πG
3c2 ρ(t)− κc2

R2
0a2 +

Λ

3
(1.1)

in a homogeneous and isotropic universe, with spatially uniform density. Here, G is the gravitational

constant, c is the speed of light, ρ is the energy density of the universe, κ encodes the direction of

the universe’s curvature (closed, open, or flat), and R0 is the radius of curvature [2].

The Λ term did not appear in Friedmann’s original derivation; it was added later to account for

the possibility of the expansion accelerating positively and is related to the energy density of dark

1



2 Chapter 1 Introduction

energy [2]. Dark energy is a cosmological component with negative pressure, thus encouraging the

expansion of the universe rather than its collapse like “normal” matter and energy do. This negative

pressure is usually described by way of an equation of state:

w =
P
ρ
, (1.2)

where P is the pressure due to some cosmological component, ρ is the energy density of said

component, and w is equivalently called the equation of state or the equation of state parameter [2].

Since a negative density would be unphysical, w being negative implies a negative pressure. As Λ is

usually thought of as being constant, wΛ is also a constant −1 [2].

The Friedmann equation does not explicitly require expansion, but it certainly allows it. Obser-

vational evidence for expansion came a bit later, most notably from Edwin Hubble (for whom the

Hubble constant is named) in 1929 [3]. Since then, the Hubble constant—which is just the present

value of the Hubble parameter H(t) ≡ ȧ/a, and usually denoted H0—has been measured many

times with increasing accuracy. Ref. [4] summarizes many of these measurements, and the recent

history of measurements is illustrated graphically in figure 1.1. Recent evidence strongly indicates

that the expansion rate is positively accelerating, [5] so dark energy has become an important feature

of modern cosmological models, often taking the form of the constant dark energy described by Λ.

There are many techniques for measuring H0, but every measurement can be broadly categorized

as a "late universe" or "early universe" measurement [4]. Late measurements are based on data from

a ∼ 1, like measurements of galaxies’ distances and recessional velocities; and early measurements

are based on data from a ≲ 0.001, like the cosmic microwave background (CMB) [4]. Historically

these types of measurements were in agreement with each other due to their relatively large

uncertainties; however, with the arrival of data from the Planck satellite in 2013, a tension started to

grow, as seen in figure 1.2. The Planck collaboration—using all-sky CMB data from the Planck

satellite—finds H0 = 67.4±0.5 km s−1 Mpc−1 [7]. In contrast, the most precise late measurement

comes primarily from Hubble Space Telescope data by way of the SH0ES (Supernova H0 for the
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Figure 1.1 H0 measurements since the early 1900s. The first measurement actually comes
from Georges Lemaître, who published a value for H0 based on Hubble’s data before
Hubble himself did. From ref. [6]

.

Equation of State) collaboration, and gives H0 = 73.04±1.04 km s−1 Mpc−1 [8].

To compute the magnitude of this tension, we treat each measurement as a normal distribution,

with the standard deviations given by their respective uncertainties. We then consider the distribution

of differences between measurements. The mean of such a distribution is given by the difference of

the means, and the standard deviation is given by the square root of the sum of the squares of the

uncertainties. Mathematically, we represent this as

N1(m1,σ1)−N2(m2,σ2) = N3

(
m1 −m2,

√
σ2

1 +σ2
2

)
. (1.3)

Here, N1,2 represent the distributions of the respective measurements, N3 is the distribution of

differences, and mi and σi are the uncertainties. This means we can compute a disagreement of nσ

as

nσ =
|m1 −m2|√

σ2
1 +σ2

2

σ , (1.4)

and we can interpret the result as telling us the difference between measurements 1 and 2 is n
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Figure 1.2 H0 measurements since 2000, showing the growing tension. Not all mea-
surements are illustrated here of course—these are just the most precise ones. Note that
while there is definitely a tension by the time of the first Planck measurement (P13), there
was already some discrepancy by the last few WMAP (Wilkinson Microwave Anisotropy
Probe, Planck’s predecessor) measurements. From ref. [9].

standard deviations away from zero [10]. When we compute the tension between the Planck and

SH0ES measurements of H0, we find they disagree by approximately 5σ . This disagreement is

known as the Hubble tension, and is one of the most significant problems in modern cosmology, as

evidenced by the more than 300 publications on the subject posted to arXiv since December 2023.

One of the main interpretations of the Hubble tension is that the Planck value for H0 is too

low—that it should be more similar to the SH0ES value. There is ample reason to believe this:

the Planck collaboration’s methods are highly sensitive to the underlying physics, so choosing a

different cosmological model can change predicted parameter values fairly easily. The parameter

values published by Planck are based on the standard cosmological model, called ΛCDM. This

model derives its name from the Λ term in equation 1.1, as it uses dark energy with w=−1, and cold

dark matter (CDM). Proposed solutions to the Hubble tension often take the form of modifications to

one of these components. These modifications can be quite varied in nature and include giving dark
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energy time-varying behavior or adding self-interacting dark matter components. Solutions also

occasionally introduce modifications to other components of ΛCDM, like modified gravitational

models instead of general relativity. Ref. [4] reviews some of these modifications, and finds that

models which can alleviate the Hubble tension include time dependent dark energy models (where

w is not constant), as well as some modified gravities. Testing these modified cosmologies gives us

a fantastic way to probe new fundamental physics: if they predict an H0 value in better agreement

with the SH0ES value, they may be good candidates to replace ΛCDM.

We can obtain a prediction for H0 from each of these modified cosmologies by using the same

methods the Planck collaboration employed. There are three primary elements to Planck’s approach:

a cosmological theory code, a “likelihood” from some data (such as the CMB) which puts constraints

on allowed values for certain parameters, and a Markov Chain Monte Carlo (MCMC) sampler [11].

Besides the Planck CMB data, further constraints from other datasets can be imposed by utilizing

other likelihoods. One common choice is using the SH0ES measurement as a simple Gaussian

prior constraint on H0. We might hope that this will bring the predicted value of H0 closer to the

SH0ES value and speed up runtimes since the allowed portion of the parameter space will be smaller.

Further, H0 may be poorly constrained by the CMB alone in the context of some chosen cosmology,

so adding extra constraints could lead to tighter uncertainties. However, one might naively expect

that if a new cosmological model were to resolve the Hubble tension, it would be able to do so with

no additional constraints beyond the CMB.

This work attempts to address this last point. We aim to examine the impact of using this

likelihood from SH0ES when optimizing modified cosmologies and elucidate why it may be useful.

Our framework for this will be to do MCMC runs on a variety of cosmological models, both with

and without the SH0ES constraint. We will compare the H0 predictions from each of these runs

and try to identify any patterns that may present themselves. Besides Planck likelihoods to encode

the CMB data, we restrict ourselves to using the SH0ES likelihood so we can try to isolate its
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impact on an H0 measurement. We will do base ΛCDM runs for the purpose of comparison. All

of the modified models we will use will be dynamical dark energy models for simplicity. These

have a time-varying equation of state for the dark energy component, as opposed to ΛCDM’s

constant equation of state. In particular, we will focus on Chevallier-Polarski-Linder (CPL) dark

energy [12, 13] and so-called exponential acoustic dark energy (EADE) [14], as they are fairly

mathematically simple and therefore easier to get started with.

In the next chapter, we will discuss our methods in greater detail, focusing on the process used

to go from CMB data and a cosmological model to a measurement of H0. We will also discuss

some details of the implementation of cosmological models into computer code. In the final chapter,

we will discuss our results. While we will not discuss the details of the SH0ES measurement of

H0 further in the main body of this paper, it is valuable information, so the interested reader can

find a brief overview in appendix A. Similarly, additional background information on the Planck

measurement of H0 can be found in appendix B.



Chapter 2

MCMC analysis of dynamical dark energy

models

In order to examine the use of the SH0ES likelihood, we will focus on early universe measurements

of H0 from the CMB. We defer a more detailed explanation of the CMB’s formation to appendix B;

here, we merely note that the CMB formed during a period known as recombination. The CMB has

an average temperature of about 2.7255 K [2]. While this temperature is very close to uniform, it is

not entirely so. It has random deviations on the scale of a few hundred µK; these can be seen in

figure 2.1, which is the Planck collaboration’s all-sky temperature map of the CMB.

We can mathematically define these deviations from the average temperature as

δT
T

(θ ,φ) =
T (θ ,φ)−⟨T ⟩

⟨T ⟩
, (2.1)

where ⟨T ⟩ is the average temperature and T (θ ,φ) gives the temperature at some arbitrary position

on the sky. Note that this quantity is dimensionless. It is convenient to express these deviations as

an expansion in spherical harmonics:

δT
T

(θ ,φ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ ,φ). (2.2)

7
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Figure 2.1 All-sky temperature map of the CMB, from the Planck collaboration [15]. The
average temperature has been subtracted off, so that we are only looking at the deviations.
Blue spots are colder, red spots are warmer. The maximum deviation is 300 µK.

Here, δT/T is the same quantity defined above, and Ylm(θ ,φ) ∝ Plm(cosθ)eimφ are the spherical

harmonic functions with the Plm being the associated Legendre polynomials. The number l is called

the “multipole”, and encodes an angular scale—larger l means a smaller angular scale [2].

From here, we can compute the two-point correlation function C(θ), which describes how

similar the temperatures at points separated by angle θ are. This is given by

C(θ) =

〈
δT
T

(n̂)
δT
T

(n̂′)
〉

n̂·n̂′=cosθ

. (2.3)

Here, n̂ and n̂′ give the directions to two separate temperature fluctuations. We are taking the

product of these two fluctuations, and averaging over all points separated by angle θ [2]. With the

temperature deviations in spherical harmonics, the correlation function is usually expressed as

C(θ) =
1

4π

∞

∑
l=0

(2l +1)ClPl(cosθ), (2.4)

where the Pl are the Legendre polynomials and are related to the associated Legendre polynomials

as Pl,m=0 = Pl [2]. The coefficients Cl , often scaled by some convenient factor, are known as the
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Figure 2.2 The power spectrum of CMB temperature fluctuations as measured by the
Planck satellite—roughly, the magnitude of the deviation from average as a function of
angular scale. Note that the fluctuations are roughly constant up to about 10◦, at which
point we enter a series of peaks and valleys. The shapes of these peaks and the overall
shape of the spectrum are correlated with various cosmological parameters, which is what
enables us to derive parameter values from the CMB. From ref. [16].

temperature power spectrum of the CMB and are proportional to the average over m of a2
lm, as we

can see from equation 2.3. This power spectrum is plotted in figure 2.2.

Additional power spectra can be generated by considering the amount of CMB light that is

polarized [4]. These power spectra also provide constraints on cosmological parameters, and are

defined similarly to the temperature power spectrum except that they only consider polarized light.

The CMB was first detected in 1964 by Arno Penzias and Robert Wilson, using a ground-based

radio antenna [2]. One of the earliest measurements of its temperature power spectrum came with

the launch of the COBE satellite in 1989; [17] COBE was followed by the WMAP satellite in the
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early 2000s [2] and the Planck satellite in the early 2010s [18]. We will make use of Planck’s data,

as it is the most precise all-sky data to date, and its use is standard in the type of analysis we will

conduct. This analysis can be thought of simply as fitting a model to some data—the model being

ΛCDM or some other cosmological model, and the data being the CMB power spectrum. The

typical parameters used in the fit for ΛCDM are Ωbh2, Ωch2, 100θs, τ , ns, and ln
(
1010As

)
[7]. We

explain 100θs in more detail in appendix B; the other parameters are less important to measuring

H0 so we will only give them brief attention there. For now, we only state their names and observe

that 100θs is a good probe for the value of H0.

We primarily follow the methodology established in [11] to derive values for H0 from a variety

of cosmological models. This process relies on three computational components: a cosmological

theory code such as CLASS [19], an MCMC sampler—in our case, Cobaya [20,21]—to test a variety

of values for the fit parameters, and one or more likelihoods (bundled with Cobaya) to constrain

parameter values. Cobaya picks a set of values for the fit parameters and passes those to CLASS,

which computes the CMB temperature power spectrum from them. CLASS passes this computed

spectrum back to Cobaya, which compares it with the actual power spectrum measured by the

Planck satellite using the likelihood(s). This process usually runs several times in parallel. Over

thousands of iterations, a posterior probability distribution for each input parameter is created. The

simulation runs until a chosen convergence criterion is reached. Our chosen criterion is R−1, which

measures how similar the mean values for each of the parallel runs are. Lower values are better, so

we set the runs to terminate when R−1 < 0.01. The mean value of a given posterior distribution is

then taken as the prediction for that parameter. We have illustrated this process schematically in

figure 2.3.

We should note that there are several algorithms we could use within the theory code. CLASS

offers HyRec and RECFAST as two options for computing recombination processes, and HALOFIT

and HMcode for computing matter distribution. HyRec assumes a dark energy equation of state of



11

-proposes values for 
cosmological 
parameters

-checks computed 
CMB against data

-builds distribution of 
values for parameters

passes proposed parameters to -computes CMB from 
proposed parameters

-if you modify the 
theory, that will 
modify the computed 
CMB

Theory code (e.g. CLASS)Sampler (e.g. Cobaya)

passes computed CMB to

-constrains 
parameter values

Likelihood (CMB data, SH0ES value)

Figure 2.3 Schematic illustration of the computational process for finding cosmological
parameter values. For each computational component, we have listed some examples of
software/data that could be used in that role.

the form of equation 2.6, while RECFAST is more generic. As the dark energy equation of state for

one of our models is significantly different from equation 2.6, we use RECFAST for that model and

HyRec for the other two. We have also chosen to use HALOFIT, as we had trouble getting HMcode to

parallelize correctly.

As noted earlier, we can use likelihood distributions from a variety of sources to constrain the

fit parameters. The minimal case is to use only Planck likelihoods; this includes likelihoods for

the temperature power spectrum, as well as for the polarization power spectra. These likelihoods

can constrain the standard six fit parameters well. Further, we could incorporate likelihoods

from any number of other sources. Common choices include Baryon Acoustic Oscillations, Type

Ia supernovae surveys, and the SH0ES measurement of H0 [4]. Each likelihood will constrain

something different; in particular, the SH0ES likelihood only directly constrains H0. Our goal is to

examine the impact of this constraint from SH0ES on measured values of H0.
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We will analyze three models twice each: ΛCDM as a baseline, CPL dark energy, [12, 13]

and exponential acoustic dark energy (EADE) [14]. We will conduct MCMC runs on each model

both with and without the SH0ES constraint, and compare the results to see if we can identify any

patterns. We will discuss each model individually.

2.1 ΛCDM

We give more background on ΛCDM in appendix B, but it has several defining features we will

discuss briefly here. First, dark energy is modeled as a cosmological constant. This is the Λ in the

model’s name. By cosmological constant, we mean that its energy density does not dilute as the

universe expands, like one might expect for something like matter. This is mathematically modeled

by setting its equation of state to a constant; in this case,

w(a) =−1, (2.5)

where a is the cosmological scale factor (often used as a proxy for cosmic time). Second, dark

matter is modeled as cold dark matter (the CDM in the name). Cold dark matter only interacts with

itself and normal matter gravitationally, and is not relativistic. (This latter criterion must be true;

else structures smaller than galactic clusters would have difficulty forming and would be newer in

the universe’s evolutionary history than they actually are [2].) Finally, we use general relativity as

the gravitational model [18].

H0 has been measured from the CMB using ΛCDM many times, most notably in our case by

the Planck collaboration [7]. Consequently, this particular part of the analysis did not require much

effort: Cobaya comes with a very useful input file generator that gives reasonable initial values for

the standard six fit parameters, and can incorporate the SH0ES constraint. Thus, for our analysis,

we used this input generator to create input files for base ΛCDM and ΛCDM+SH0ES runs [22–26].

The MCMC runs were performed on BYU’s Mary Lou Fulton supercomputer, and we generated
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corner plots of the posterior distributions using GetDist, [27] a Python package built for such

purposes.

2.2 CPL dark energy

Chevallier-Polarski-Linder (CPL) dark energy [12, 13] is a simple dynamical dark energy model. It

differs from ΛCDM in only one respect, which is that it replaces the constant dark energy equation

of state with

w(a) = w0 +wa(1−a). (2.6)

In this equation, w0 is the current value of w(a), and wa defines the evolution of w with a. These

two parameters, in addition to the six mentioned earlier, are the fit parameters for this model. The

equation of state is plotted in figure 2.4. This model is also sometimes known as the w0waCDM

model.

CPL dark energy is already implemented in the current version of CLASS, where it is modeled as

a fluid. CPL dark energy is also well supported by Cobaya, where it is one of the model options in

the input file generator. Thus, we were once again able to simply have Cobaya generate the initial

values and start the runs [22–26]. The only minor complication arose from the fact that when we

ran the code on the supercomputer, it would consistently fail to find a feasible initial point for the

sampling process, and thus fail to run. We are unsure what caused this issue: the same input file

worked with no issues on a personal computer. Thus, we conducted the CPL runs on said personal

computer, though we note that this could in theory make our results less comparable with each other.

Plots were again generated using GetDist.
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0.0 0.2 0.4 0.6 0.8 1.0

-1.00

-0.95

-0.90
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-0.80

a

w
(a
)

Figure 2.4 The equation of state for CPL dark energy as a function of scale factor (eq. 2.6).
Here we have set w0 =−0.8 and wa =−0.2; however, it should be clear that changing the
values of these parameters does not change the general shape of this evolution at all.

2.3 EADE

The final model we will consider is called exponential acoustic dark energy (EADE) [14]. This

model is, in many respects, very similar to CPL dark energy, in that all it changes from ΛCDM is

the dark energy equation of state. It differs slightly from CPL both in the exact form of the equation

of state, and in that we only apply this new equation of state to a fraction of the total dark energy.

The new equation of state is

w(a) = 2(1− ac
2a)−1. (2.7)

Here, ac is a critical scale factor which controls a transition in the behavior of the dark energy, and

is one of the fit parameters for the model. This equation of state is plotted in figure 2.5. Note that as

a → 0, w →−1.
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ac = 0.05

ac = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

a

w
(a
)

Figure 2.5 The equation of state for exponential acoustic dark energy as a function of scale
factor (eq. 2.7). The red line is w(a) with ac = 0.05, while the blue line has ac = 0.4. As
can be seen, increasing ac shifts the epoch of transition towards the present, and makes the
transition happen more slowly. If ac is sufficiently small, the transition happens quickly;
as ac increases the curve becomes more sigmoid in shape.

The other fit parameter we use is the density fraction of this component of dark energy:

Ω0,EADE ≡
ρ0,EADE

ρc,0
, (2.8)

where ρc,0 =
3H2

0
8πG is the critical density at present and the subscript 0 denotes the value of a parameter

at the present time. This differs slightly from the second fit parameter in the original paper, which

uses

fc ≡
ρEADE(ac)

ρtot(ac)
. (2.9)

This difference stems from a difference in theory codes: we are using CLASS, while the original

paper used a code called CAMB [28, 29]. These codes are extremely similar: they both seek to

compute the same things, and share many subroutines. (For instance, both rely on codes like

RECFAST to handle certain computations.) However, at least for models like EADE, CAMB uses the

fc parameter instead of an Ω0 parameter. As far as we know, there is no explicit advantage to one or
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the other; they are merely two ways of looking at the same problem, and should give similar results.

That being said, this difference in implementation slightly limits our ability to compare our results

to the original paper [14].

We should note that ref. [14] does provide an equation to convert from fc to Ω:

ΩEADE(a) = 2 fc
(c2

s +1)2 − (wEADE(a)+1)2

(c2
s +1)2 . (2.10)

However, when we used this equation in CLASS and attempted to sample—using the best-fit values

from [14] to inform the initial point—Cobaya could not find any feasible points. Passing the best fit

parameters directly to CLASS—that is, computing a single point instead of the entire distribution—

produced a value for the Hubble constant of H0 ∼ 20 km s−1 Mpc−1, in contrast to ref. [14]’s

reported value of ∼ 70 km s−1 Mpc−1. As we were unable to determine the cause of the discrepancy,

we have settled for using ΩEADE instead of fc. We will still use equation (2.10) to compare our

results to the original results, but because this equation was not able to produce similar results in the

first place, we are somewhat doubtful as to its applicability.

These nuances aside, this model is straightforward to implement into CLASS : the model can

be approximated as a perfect fluid, and CLASS already supports such models. Thus, creating an

EADE-capable version of CLASS is as simple as locating all of the sections of code that deal with

fluid dark energy and adding an extra logic check and appropriate equations to handle EADE. We

also changed the default recombination code from HyRec to RECFAST, as HyRec assumes that the

dark energy equation of state roughly follows the form of equation 2.6, which is incompatible with

EADE’s equation of state.

The only nontrivial step of implementation required the use of the GNU Scientific Library to

compute the numeric integral

ρEADE(aini) = ρ0,EADE exp
(∫ a0

aini

da 3
1+wEADE(a)

a

)
. (2.11)

Here, aini is CLASS’ approximation to the scale factor at the beginning of the universe. Strictly,
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this should be a = 0, but because of finite precision considerations, is actually a ≪ 1. Thus, this

equation computes the energy density of EADE at very early times, based on the density at the

present.

We used the same maximum range for ac as ref. [14] did, and we based the shape of the prior

distribution on their best-fit value for ac. We loosely based our initial distribution for ΩEADE on the

best-fit value for fc, which produced a small ΩEADE by way of equation 2.10. The MCMC runs for

EADE were performed on BYU’s supercomputer, and plots were generated with GetDist.
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Chapter 3

Results

We now turn our attention to the actual values for H0 we obtained from our analysis. We will

spend some time discussing the results for each model in more particular detail, but our results

are summarized in table 3.1. We also summarize the tension between each of these measurements

and the SH0ES measurement in the same table; as can be seen, the SH0ES constraint consistently

reduced the tension, though not necessarily by a very significant amount.

3.1 ΛCDM

Our ΛCDM value, when constrained only by the CMB, is H0 = 67.20±0.48 km s−1 Mpc−1. This

closely matches the value obtained by the Planck collaboration (67.4±0.5 km s−1 Mpc−1), and

provides a good baseline for verifying that we have CLASS and Cobaya functioning properly. When

we constrain ΛCDM additionally with SH0ES, the H0 value is closer to the SH0ES value, as

expected. However, the difference is not particularly large—only about 0.8 km s−1 Mpc−1, for a

total change in tension of 0.64σ .

A corner plot for the six fit parameters (plus H0), showing both runs, can be found in figure

3.1. With only a couple of exceptions, the distributions are noticeably different between runs; most
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Model Constraints H0 Tension with SH0ES χ2 R−1

——— SH0ES 73.04±1.04 ———— — ——

ΛCDM
CMB 67.20±0.48 5.10σ 10984.2 0.008865

CMB+SH0ES 67.97±0.46 4.46σ 11003.2 0.009309

CPL
CMB 90.92±17.99 0.99σ 10983.3 0.009372

CMB+SH0ES 73.27±1.31 0.14σ 10984 0.009936

EADE
CMB 66.27±0.95 4.81σ 10985.6 0.009029

CMB+SH0ES 67.78±0.50 4.56σ 11004.6 0.006816

Table 3.1 H0 predictions and statistical tensions with the SH0ES measurement (H0 =
73.04±1.04 km s−1 Mpc−1 [8]) for each cosmological model and constraint combination.
The CMB constraints come from Planck; CMB+SH0ES combines that data with the
SH0ES distance ladder measurement of H0. All H0 values are reported in the standard
units of km s−1 Mpc−1, and the given uncertainties are the 68% confidence level intervals
from the fit. The tensions are computed as described in equation 1.4. Additionally, we
report goodness-of-fit as determined by the χ2 statistic for each run—lower values are
better, so for our results CPL is the best fit to the data. Finally, we report the R− 1
convergence statistic for each run; this is essentially a measure of whether the MCMC
algorithm is done. Values closer to zero are better. We set each run to finish when R−1
became less than 0.1. Initial R−1 values are typically about 10, so these runs are well
converged.

importantly, H0 is consistently shifted to higher values.

3.2 CPL dark energy

H0 is poorly constrained by only CMB data in the CPL model: we found H0 = 90.92±17.99 km

s−1 Mpc−1. Because the error bars are so large, the tension with SH0ES is remarkably small, at

just under 1σ . When we add the SH0ES constraint, the precision of the fit improves considerably

to H0 = 73.27± 1.31 km s−1 Mpc−1, giving us a reduction in tension of 0.85σ . Both of these
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Figure 3.1 Corner plot showing both ΛCDM runs. The run without the SH0ES constraint
is in red, and the run with the constraint is in blue. Distributions are clearly slightly
different (for most parameters) with the constraint. We are of course most interested in the
distributions for H0, which can be found on the bottom row.
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Figure 3.2 Corner plot showing both CPL runs. The run without the SH0ES constraint
is in red, and the run with the constraint is in blue. Distributions are mostly unaffected
by the addition of the constraint, except for the two model parameters (w0 and wa) and
for H0. We note that the scale provided for the H0 distributions is much greater, relatively
speaking, than the scale for the other parameters. This is due to the large error bars on H0
in the CMB only run.

results are consistent with e.g. ref. [30]—which similarly finds that H0 in CPL is almost entirely

unconstrained by the CMB alone, but very tightly constrained when also constrained by SH0ES’ H0

value—so we are not concerned by the dramatic improvement.

A corner plot illustrating our results is given in figure 3.2. We note that the base parameter

distributions are essentially unaffected by the addition of the SH0ES constraint; the posteriors are

only significantly updated for the model parameters (w0 and wa) and for H0.
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3.3 EADE

In the EADE+CMB picture, we found H0 = 66.27±0.95 km s−1 Mpc−1. This is noticeably lower

than the value found in ref. [14], and is in similar disagreement with SH0ES as ΛCDM is. Adding

the SH0ES constraint betters the situation only slightly, bringing us up to H0 = 67.78±0.50 km

s−1 Mpc−1, for a reduction in tension of 0.25σ . In contrast, ref. [14] found H0 = 70.06+1.13
−1.09 km

s−1 Mpc−1—much closer agreement with SH0ES.

A corner plot illustrating our results can be found in figure 3.3. As with ΛCDM, most parameters

are noticeably affected by the addition of the SH0ES constraint. We note that the posteriors for the

two model parameters appear to have been insufficiently explored; we will discuss this in more

detail shortly.



24 Chapter 3 Results

3.00 3.04 3.08

log(1010As)

64

66

68

H
0

0.04

0.06

0.08

re
io

0.117

0.120

0.123

ch
2

0.0220

0.0225

bh
2

1.0410

1.0415

1.0420

1.0425

10
0

s

0.95

0.96

0.97

n s

0.0005

0.0010

0.0015

EA
DE

3.0
2.5
2.0
1.5

lo
g(

a c
)

3.0 2.5 2.0 1.5

log(ac)
0.0004 0.0010 0.0016

EADE

0.95 0.96 0.97

ns

1.0415 1.0425

100 s

0.0220 0.0225

bh2
0.117 0.120 0.123

ch2
0.04 0.06 0.08

reio

64 66 68

H0

EADE
EADE+SH0ES

Figure 3.3 Corner plot showing both EADE runs. The run without the SH0ES constraint
is in red, and the run with the constraint is in blue. We note that the posteriors for both
logac and ΩEADE seem to be insufficiently explored; we will discuss this more later. As
with ΛCDM, adding the SH0ES constraint consistently shifts the H0 distributions to higher
values.
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Discussion and conclusion

Early universe measurements of H0 most often use CMB data to constrain parameter values, with

Planck being the most common choice of source for that data. However, extra constraints such as

the SH0ES measurement of H0 are also common. In this work, we have attempted to shed some

light on the impact of this extra constraint on early universe measurements of H0. We have done so

by analyzing three different models—base ΛCDM, and two dynamical dark energy modifications

of ΛCDM—using both Planck CMB data and a combination of Planck CMB data and the SH0ES

measurement. We have followed the standard procedure for deriving H0 values from the CMB,

using the code CLASS to compute the CMB from proposed parameter values, and the code Cobaya

to compare those computed values to real world data and generate distributions for each parameter.

In all cases, we found that the goodness-of-fit χ2 parameter worsened with the addition of the

SH0ES constraint. However, we do not believe that this indicates that adding a SH0ES constraint is

a poor decision; rather, the addition of the SH0ES constraint also adds a degree of freedom to the

χ2 distribution, therefore producing a larger total χ2.

Our value for H0 in the ΛCDM+CMB case was 67.20± 0.48 km s−1 Mpc−1; this agrees

well with the value found by the Planck collaboration, showing that our overall pipeline is set up

reasonably and there are no obvious errors with software installation or execution. If we compute
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the statistical tension between our measurement and Planck’s measurement in the usual way, we

find a difference of 0.29σ , which is well within a standard deviation. At any rate, some minor

variation from Planck’s results is not entirely implausible, since we are using random sampling

extensively in our analysis.

We found that further constraining ΛCDM with the SH0ES measurement of H0 gave H0 =

67.97±0.46 km s−1 Mpc−1, producing a slight reduction in the tension with SH0ES of 0.64σ . Note

that equation 1.4 can be made smaller either by reducing the difference between two measurements

or by increasing the uncertainties on a measurement; since the uncertainties became smaller in this

case, this reduction in tension can be attributed entirely to a shift in the central value.

H0 is extremely poorly constrained by CPL+CMB: our measured value is H0 = 90.92±17.99

km s−1 Mpc−1. In this case, the central value agrees with neither Planck nor SH0ES, though the

error bars are large enough to encompass both measurements. In fact, the uncertainty here is on the

order of 20%. We note that this is consistent with previously published results for CPL dark energy;

see for instance ref. [30]. More recent results for CPL with additional constraints from the Dark

Energy Spectroscopic Instrument and other datasets are also generally in agreement with our results

for w0 and wa [31].

Adding a constraint from SH0ES produces much better results: H0 = 73.27± 1.31 km s−1

Mpc−1, in tension with SH0ES at only 0.14σ . This is once again in agreement with results from

ref. [30]. However, given that the unconstrained measurement from CPL fully encompassed the

SH0ES measurement, we have not learned very much from this result. The addition of the SH0ES

constraint essentially selected the SH0ES H0 from the initial wider range. This should not be

entirely surprising, but it also does not provide much new information.

We should note some interesting features of our EADE results compared to the original paper

[14]. They found H0 = 68.21+0.95
−2.72, with logac =−3.46+0.29

−0.22. In contrast, we found H0 = 66.27±

0.95, with logac =−1.35±0.33. Qualitatively, this higher value for the critical scale factor implies
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a later transition in the behavior of the EADE component, which apparently leads to a lower value

for H0. Further, we found ΩEADE = 0.000234±0.000275, corresponding to fc = 0.000711 by way

of equation 2.10; whereas ref. [14] found fc = 0.062+0.028
−0.031. We reemphasize that equation 2.10 has

been problematic for us in the past, so we are unsure if this is a good comparison to be making;

however, it is the only one we can easily make. These parameter comparisons are summarized in

table 4.1.

Parameter CMB CMB+SH0ES

H0

68.21+0.95
−2.72 70.06+1.13

−1.09

(66.27±0.95) (67.78±0.50)

logac

−3.46+0.29
−0.22 −3.46+0.28

−0.22

(−1.35±0.33) (−1.40±0.39)

ΩEADE

0.00267 0.00272

(0.000234±0.000275) (0.0000503±0.0000622)

fc

0.062+0.028
−0.031 0.063+0.027

−0.030

(0.000711) (0.000160)

Table 4.1 Best fit EADE parameter values from ref. [14] and this work; our values are
given in parentheses. H0 is reported in units of km s−1 Mpc−1, and all other parameters are
unitless. Our values for fc and ref. [14]’s values for ΩEADE are computed using equation
2.10. There are no clear connections between the two sets of values; notably, logac,
ΩEADE, and fc differ between our work and ref. [14] by at least an order of magnitude.

It is unclear if the differences between our results and those of ref. [14] are merely due to the

use of different code, or something more significant. One potential cause stems from a numeric

approximation called PPF that CLASS defaults to for models of this type; our assumption was that

since PPF is the default approach in CLASS it would be acceptable to use here, but it is possible

we were mistaken. That being said, this implementation difference cannot be the only issue, as

it should not affect Cobaya’s ability to find a feasible initial point—and yet, when we otherwise
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followed ref. [14]’s implementation, Cobaya could not find an initial point.

Not everything is in disagreement, however. The distribution for H0, in the lower right corner,

has a distinctly long lower tail. This same tail can be seen in the results of ref. [14], though it

occurs at slightly different values. The distribution taking on a similar shape leads us to believe the

different values could potentially be due to something more subtle in how CLASS works relative to

CAMB.

We note that our posteriors for both logac and ΩEADE are clearly not well explored. We attribute

this at least partially to the relatively different parameter values we found. We based our prior

distributions on the best fit values from ref. [14], which only overlap with our best fits in the tails.

We also employed the same maximum and minimum values as ref. [14], but the maximum value in

particular appears to be truncating our posterior distribution fairly significantly. Thus, another set

of runs, with the priors centered more around the best fit values we found here and with a higher

maximum value, is probably necessary before drawing any significant conclusions. We also note

that given the relative scale of the ΩEADE parameter, it would probably be wise to sample that

parameter logarithmically, as with ac.

As with ΛCDM, adding a SH0ES constraint does slightly alleviate the tension, going from

4.81σ to 4.56σ . However, this reduction is not as significant as that found by ref. [14]. Again, we

are unsure exactly why this is, but some sort of difference between CLASS and CAMB seems most

likely. Otherwise, the distributions for the two model parameters exhibit the same issues as in the

unconstrained fit.

Broadly, we can see that adding a constraint on H0 from SH0ES does generally decrease the

Hubble tension. However, the causes for this decrease are not necessarily uniform: for ΛCDM

and EADE, the predicted H0 value shifted slightly; whereas for CPL, there was merely an increase

in precision. Further, it is clear from figures 3.1 and 3.3 that in cases where H0 is already well

constrained by the CMB alone, adding a SH0ES constraint merely skews the predicted value slightly
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higher, and never very far from the unconstrained value. It does not change the prediction very

meaningfully.

Thus, we might conclude that it is most useful to add the SH0ES constraint in cases where H0

is poorly constrained by the CMB alone, as with CPL. However, we argue that even in this case

the addition of the constraint does not provide very much information: we start with a prediction

so broad that it completely encompasses the SH0ES value, so adding the constraint serves only to

select that specific value from the previous prediction. While this technically reduces the tension,

we might as well look at the CMB only H0 value and see that SH0ES is in good agreement with it

and leave the matter there.

We therefore conclude that it is unclear what advantage adding the SH0ES constraint provides,

at least on its own. In every case here, adding the constraint essentially told us exactly what we

would expect, and did not add any new information. It is possible that employing this constraint in

conjunction with data from e.g. baryon acoustic oscillations would be more informative.

We emphasize, however, that these results are probably not extensive enough to generalize to all

extensions of ΛCDM. Conducting a similar analysis with even more cosmological models would be

useful follow up work; it is possible that there are models where adding the constraint from SH0ES

would provide meaningful information. Another interesting avenue for future research would be

conducting this same analysis with different extra constraints and combinations of constraints. Other

common constraint choices include baryon acoustic oscillations, supernova surveys, and large scale

structure surveys [4]. It would be instructive to quantify the impact of these constraints as well,

since they are also in common use.
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Appendix A

SH0ES: distance ladder measurements

In this appendix we will outline the distance ladder measurement of H0, paying specific attention

to the methods used by the SH0ES collaboration. We note that there are many other late universe

measurements, and even other distance ladder measurements. (See, for example, [32].)

At a very high level, the goal with distance ladder measurements of H0 is to measure both

distances to and recessional velocities of a large number of galaxies. Plotting recessional velocity

versus distance shows a nice linear trend; fitting a line and taking the slope gives H0 [33]. The most

difficult element of this measurement is the distance measurements; the bulk of this appendix will

explain how astronomers approach those.

A.1 Distance measurements

Until extremely recently, if astronomers wanted to study something in space, they needed to use

light to do it. Now there are gravitational wave observatories and neutrino detectors, but both of

those technologies are still relatively new. Thus, with few exceptions, anything we want to know

about an object has to be able to be determined from the light we get from it. This includes distances.

When we observe a distant object and measure how bright it is, we are measuring a quantity
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called flux. Flux has dimensions of power per area. Mathematically, it is defined thus:

F =
L

4πR2
L
. (A.1)

Here, F represents the flux and L denotes the intrinsic power output of the source, which is called

luminosity. RL is the “luminosity distance” from the observer to the source, which we treat here as

the radius of a sphere centered on the source [33]. Thus, if we know one of flux or luminosity and

can measure the other, we can use this equation to determine the distance. Typically, flux is what

we measure, so we need to already know luminosity. This is where standard candles come in.

Standard candles are astronomical objects whose brightness is tied to some property that we

can observe from very far away. For instance, one type of standard candle is a class of stars called

Cepheid variables. These stars grow brighter and then dimmer with time, in a periodic manner. There

is a convenient relationship between the length of a Cepheid’s period and its average luminosity.

Consequently, we only need measure a Cepheid’s period—giving us its average luminosity—and its

average flux, and we can compute a distance to the Cepheid [33]. The difficulty in this process arises

from the need to calibrate such measurements: we have no intrinsic knowledge of the relationship

between Cepheids’ periods and luminosities.

This leaves us needing some sort of way to measure distances independent of an object’s

brightness. The usual approach is to use parallax. Parallax is a trigonometric technique that allows

us to measure distances to celestial objects without knowing anything about how bright they are. The

idea is to construct a triangle with the object you are observing at one vertex, and two observations

that you make at the other vertices. You can measure the distance between your two observations,

giving you the length of one side of the triangle. Because we perceive distant things as moving less

than near things, we can measure the projected angular motion of e.g. a star against the background

of further stars. Then, since we have an angle and a side length, we can determine another side

length—the distance to the star [33]. Because this technique requires us to be able to resolve

individual stars, we are limited in how far we can measure using it.
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Parallax is the first step in what astronomers call the distance ladder. We can use parallax to

measure distances to many Cepheids, giving us a way to calibrate Cepheids as a standard candle.

Cepheids are not bright enough to measure distances to very many galaxies, so we can then use many

Cepheid distance measurements to calibrate other standard candles—typically type Ia supernovae—

and use those to measure distances to a large number of galaxies. This finally gives us enough data

points to compute the Hubble constant [8, 33].

These three types of measurements—parallax, Cepheids, and supernovae—are the steps in

the distance ladder employed by the SH0ES collaboration [8]. Other steps are possible, however.

Parallax is usually the first step, but a common replacement for the Cepheid step is something

called the Tip of the Red Giant Branch (TRGB). Stars of a certain mass and age will share the same

brightness, so we can use a known class of star as a standard candle. This method employs one

such class, which is easily identified due to a rapid transition when stars start burning helium. This

rapid transition creates a distinct “tip” in parameter space [33]. One distance ladder measurement

of H0 made using TRGB distances can be found in [32]. As can be seen in that paper and in

ref. [4], these TRGB measurements often fall between the CMB and Cepheid-based distance ladder

measurements.

A.2 Velocity measurements

We still need to address how we obtain distance measurements for all of these galaxies we have

measured distances to. The key element here is the Doppler equation, which for nearby objects

looks like

v =
∆λ

λ0
c. (A.2)

Here c is the speed of light, λ0 is some expected wavelength of light, and ∆λ is the difference

between the wavelength we observe and what we expect. c is known, and it is relatively easy
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to determine the wavelength of light we are receiving from a distant galaxy. Thus, if we could

determine what wavelength of light the galaxy is emitting, we could calculate a velocity [33].

The primary tool astronomers use to overcome this difficulty is atomic spectra. Galaxies often

have features in their spectra that are identifiable as being associated with some particular element;

the true wavelengths of these features are known. So we can determine a galaxy’s velocity by

observing its spectrum and figuring out how much it is shifted by [33].

A.3 Summary

This is a very high level description of distance ladder measurements, but we feel it is sufficient for

our purposes here. In reality, some of the analysis required can be very technical, especially for the

distance ladder calibrations [8]. It is in these calibrations that most of the potential for error in the

SH0ES measurement lies. However, since we are not focusing on the SH0ES measurement, we do

not feel the need to explain in further depth.



Appendix B

Constraining cosmological models using the

CMB

In this appendix we give a more conceptual overview of the Planck measurement of H0. We

especially focus on how the CMB can constrain cosmological parameters. We begin with a brief

description of ΛCDM cosmology, and then focus on connecting that model’s features to the CMB.

This connection is what allows us to make parameter measurements from the CMB, and therefore

what allows us to measure H0 from the CMB.

B.1 ΛCDM

The main points of ΛCDM are summarized by the Planck collaboration [18] thus:

1. Physics is the same throughout the universe

2. General relativity is an adequate description of gravity

3. On large scales the universe is statistically the same everywhere
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4. The universe was once much hotter and denser and has been expanding since early times

5. There are five cosmological constituents:

(a) Dark energy which functions like vacuum energy

(b) Pressureless dark matter which interacts with normal matter only gravitationally

(c) Regular atomic matter

(d) The CMB photons

(e) Nearly massless neutrinos which are relativistic and non-interacting at the time of CMB

formation

6. The curvature of space is very small

7. Density variations were set at early times and are Gaussian, adiabatic, and scale invariant—

they are proportional in all constituents of the universe and have similar amplitudes as a

function of scale

8. The observable universe has trivial topology

Several of these points may seem fairly obvious; for instance, general relativity is easily the

best-tested theory of gravitation we have, so using anything else to describe gravity would not make

much sense. Other points are not particularly relevant to our discussion: the topology of the universe

has minimal effect on discussions of its expansion rate. We provide all of these points merely to

give an accurate picture of where we start with ΛCDM, especially since many proposed solutions to

the Hubble tension are cosmological models that modify one or more of these points. (For example,

there are many models that tweak the model of gravitation slightly, but leave everything else the

same.)

Many of these components of ΛCDM have one or more parameters that are associated with

them: dark energy is strongly governed by its equation of state, the statistical distribution of matter
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(often described with a power spectrum) is important to the formation of structure and curvature,

the history of the universe’s expansion is obviously related to the universe’s expansion rate. These

parameters are what allow us to more fully describe our cosmological model; without values for

these parameters we would know for instance that the universe is expanding but not to what extent.

B.2 Constraints from the CMB

We have already provided a visualization of the CMB in figure 2.1. The CMB’s formation is a

complicated subject, but the key thing to know is that it formed when photons no longer consistently

interacted with “normal" baryonic matter [2]. Until this time, which is known as the epoch of

recombination, photons and baryons formed a homogeneous fluid. After the epoch of recombination,

photons no longer consistently interacted with baryons, and were able to stream freely through the

universe. These photons are what we see as the CMB; photons that were in a slight overdensity in

the fluid at recombination will be slightly warmer and will show up as hot spots on the CMB, while

similar effects apply for cooler photons [2].

The power spectrum of the temperature fluctuations (defined in eq. 2.4) can be seen in figure

2.2. This power spectrum can be roughly thought of as the magnitude of temperature deviations as

a function of angular scale. Thus, both hot and cold spots might contribute to the same peak in the

spectrum, if they occur on the same scale and are the same magnitude.

As outlined in chapter 2, this power spectrum is the primary thing being fit to when using MCMC

methods to derive cosmological parameters from the CMB, as well as polarization power spectra.

Thus, we should be able to connect various features in the power spectrum to the cosmological

parameters we desire to constrain. In our case, these parameters are Ωbh2, Ωch2, 100θs, τ , ns, and

ln
(
1010As

)
[7]. The first two parameters are density fractions scaled by h = H0/100 for normal

matter and CDM respectively; we will explain 100θs in a moment; τ is the optical depth of the
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universe at an epoch called reionization; and the final two parameters are related to the distribution

of matter throughout the universe. We note that none of these parameters are H0; however, it is

closely related to 100θs [2]. While H0 is also related to the two density parameters, those are also

degenerate with the pure density fractions Ωb and Ωc, so 100θs is usually used to constrain H0 and

then that value is used to help constrain the density fractions. Thus, we will focus on how the CMB

power spectrum constrains 100θs, and we will not concern ourselves with the other parameters. We

do note that brief explanations of how the other parameters are constrained by the CMB can be

found in refs. [2, 34, 35].

First, let us discuss what 100θs represents. An important concept in cosmology is that of horizon

distances: a horizon distance is the farthest distance some signal could travel given its speed and

how long it had to travel. The current horizon distance around the earth for light is about 14 billion

light-years: since the universe is about 14 billion years old, light cannot have traveled any further

than that. We can also discuss horizon distances for acoustic signals. The pre-CMB photon-baryon

fluid was full of pressure waves; the furthest distance these waves could have traveled between the

Big Bang and recombination is called the sound horizon distance, and is usually denoted ds. θs

is the angular projection of this distance onto the sky, and it is often scaled by a factor of 100 for

computational purposes [2].

The sound horizon distance is primarily constrained by the first peak in the CMB temperature

power spectrum. Prior to recombination, the photon-baryon fluid was primarily influenced by gravi-

tational fields created by dark matter. Slight overdensities in the dark matter caused compression

in the fluid; however, as the fluid compressed its pressure rose. This caused decompression, until

the fluid became diffuse enough to lose pressure and start collapsing inward again. This cycle of

standing waves continued until recombination [2].

At recombination, if a photon was in a compression, it would be slightly hotter than the average

temperature of the CMB—vice versa for photons in decompressions. Photons at one extreme or the
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other contribute to the first peak in the power spectrum. The distance scale associated with these

fluctuations is the sound horizon distance; thus, the angular position of the first peak in the power

spectrum should be similar to θs [2].

Now we must connect θs to H0. We can relate angular scales to actual scales like

θs =
ds

d
, (B.1)

where d is the distance to the thing whose scale we are concerned with. θs is constrained by the CMB

of course, and ds can be computed by determining the speed of sound in the photon-baryon fluid

(about c/
√

3), since the amount of time prior to recombination is more or less known. Consequently,

we can use this relationship to obtain d—the distance from us to the CMB. For a higher expansion

rate, H0, we would expect d to be larger; and for a lower H0, we would expect it to be smaller. Thus,

the angular position of the first peak constrains H0 [2].

Computationally, this works by CLASS using a specified value for θs to infer the corresponding

H0 value. These values (for θs and H0) are passed back to Cobaya which checks them against the

Planck likelihood, which directly constrains θs, and the SH0ES likelihood, which directly constrains

H0.

We reiterate that all of the other parameters are similarly constrained by the CMB; however,

we will not go into detail here. We also note that the precise physics constraining θs and H0 are

of course more technical than the description we have provided here; we merely hoped to give the

reader a conceptual understanding of how the CMB can constrain cosmological parameters.
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