
Towards Improving Binary Black Hole Simulations Using Compact Finite Differences

James Bleazard

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Eric Hirschmann, Advisor

Department of Physics and Astronomy

Brigham Young University

Copyright © 2025 James Bleazard

All Rights Reserved

ABSTRACT

Towards Improving Binary Black Hole Simulations Using Compact Finite Differences

James Bleazard
Department of Physics and Astronomy, BYU

Bachelor of Science

Binary black hole simulations will need increased waveform accuracy in the next few years
as next generation gravitational wave observatories come online. Current accuracy of numerical
relativity codes is sufficient for today’s gravitational wave detections. But observatories such as
LISA may require an increase in accuracy of up to two orders of magnitude. Compact Finite
Differences (CFDs) have been used increasingly in a variety of engineering applications with a
corresponding increase in accuracy. We are working to incorporate compact finite differencing
methods in evolution codes for general relativity. Merger simulations with large mass ratios,
spins, eccentricities and charges require significantly more computational resources than current
evolutions can manage. By using CFDs, we hope to decrease computational times while improving
the accuracy. These methods are ultimately implicit schemes but do not dramatically increase
computational cost because we can precalculate matrix elements. We have developed a means
for calculating these operators based on the order of the derivative, the order of accuracy, and the
nature of the banded matrix. An issue that has recently drawn attention is ensuring that the resulting
operators are stable. We report on our efforts to find stable, highly accurate schemes of first and
second derivatives.

Keywords: Accuracy, Binary Black Hole, Mergers, Compact Finite Differencing, Dendro-GR,
Numerical Modeling, Numerical Stability

ACKNOWLEDGMENTS

I would like to gratefully acknowledge funding from the National Science Foundation through

grant NSF PHY-2207615. I would also like to thank Dr. Eric Hirschmann, Dr. David Nielsen and

Dr. William Black for their mentorship and guidance throughout this project. Lastly, I would like

to thank Brigham Young University and the College of Computation, Physical and Mathematical

Sciences for making this project possible, alongside my group members Nathanael Garey and Luke

Papenfuss for their support.

Contents

Table of Contents iv

List of Figures vi

List of Tables vi

1 Introduction 1
1.1 Future Black Hole Binary Models . 1
1.2 Compact Finite Differencing . 4

2 Methods 6
2.1 Analytic CFD Operators . 6

2.1.1 Explicit vs. Implicit Schemes . 7
2.1.2 Interior Scheme Coefficients . 8
2.1.3 Boundary Scheme Coefficients . 10
2.1.4 Matrix Representations . 12

2.2 Spectral Function . 13
2.3 Filtering . 15
2.4 Generating Operators . 19

2.4.1 User Input . 19
2.4.2 Setting up Matrices . 20
2.4.3 Solving for Coefficients . 20
2.4.4 Output . 21

3 Results 24
3.1 Accuracy . 24
3.2 Stability . 26

3.2.1 Eigenvalue Spectra . 26
3.3 CFDs and Filtering Solving Maxwell’s Equations 30

4 Discussion and Conclusions 33

iv

CONTENTS v

Appendix A Analytic Matrix Inverses 35
A.1 No Boundary Condition . 36
A.2 Schemes with Two Boundaries . 37
A.3 Determinants of Partial Matrices . 46

Bibliography 49

Index 51

List of Figures

1.1 Sensitivity of Future Gravitational Wave Detectors 3

2.1 Need for Boundary Closure Schemes . 11

2.2 Eighth-Order Interior Pentadiagonal Spectral Function Example 15

3.1 Fourth-Order Error Comparison between Derivative Schemes 25

3.2 Error When Evolving the 3D Maxwell Equations 27

3.3 Sixth-Order Error Comparison Between Different Schemes 28

3.4 Example Eigenvalue Spectra . 29

3.5 Comparison of Error Across Filtered and Non-Filtered Schemes using 3D Maxwell

Equations . 31

vi

List of Tables

2.1 Example Coefficients for First Derivative Scheme 22

vii

Chapter 1

Introduction

As gravitational wave detectors advance, a better understanding of the sources of these gravitational

waves is required. Current numerical models provide enough information about these sources

for current detectors, but future detectors are estimated to observe more complex systems which

are very computationally expensive to model. We explore the possibility of using compact finite

differencing to improve these simulations.

1.1 Future Black Hole Binary Models

When two massive and compact objects collide, they bend the fabric of spacetime so significantly,

they create a gravitational wave that we can measure [1]. These compact objects are most commonly

black holes, but they can also involve similarly dense objects like neutron stars. From these

gravitational waves, we can learn about many of the properties of the colliding objects with

gravitational wave detectors. Over the next few decades, multiple gravitational wave detectors will

be built. These detectors will observe at lower and higher frequencies than current detectors and

will be more precise.

1

1.1 Future Black Hole Binary Models 2

In order to understand the gravitational wave signals received, researchers require template

signals to compare against [2]. These example signals are generated using numerical relativity

codes. These codes simulate the events that cause gravitational waves with a variety of different

physical conditions in order to provide a range of gravitational waves to compare against.

The first successful simulation of a binary black hole system using numerical relativity was

created multiple decades ago. There have been more complex simulations made ever since then [3].

These simulations seek to calculate accurate waveforms of the gravitational waves the binary black

hole mergers create. Libraries of template waveforms have been generated, covering much of the

parameter space. However, there are gaps in this coverage. These gaps include more complex

systems that will be potentially observable using new detectors [2].

Binary black hole systems with a high mass ratio have presented difficulties for simulations

in the past and continue to do so. A few models have been created where the black holes have a

mass ratio of up to 128 : 1, and one head on collision with a mass ratio of 1024 : 1 [4]. However,

many more are needed to even begin to cover the parameter space. These models require very

high resolution to resolve the smaller black hole on the grid, and to therefore produce an accurate

waveform [2]. These models are important as they represent a source of low frequency signals

detectable by future detectors such as LISA.

Other factors can increase the complexity of binary black hole models [2]. Systems with

high spin require more complicated initial data, and have higher resolution requirements. Large

eccentricity in the orbits of the black holes adds another dimension to the parameter space, and leads

to increased complexity of the orbits. Lastly, effects like charged black holes and accretion disks add

more parameters to the parameter space, and require more complex equations to simulate. Various

attempts to simulate all these effects have been done. However, attempting to simultaneously

implement several of these effects requires substantial computational resources and will ultimately

require more accurate and efficient simulation techniques.

1.1 Future Black Hole Binary Models 3

Figure 1.1 Sensitivity of future gravitational wave detectors from [5]. This plot depicts the
designed power spectrum density of each gravitational wave detector. These are predicted
values of the sensitivity of each detector based on frequency. Each line depicts the power
spectrum density of a different detector, which each use interferometer technology to detect
gravitational waves. Much of the current gravitational wave data comes from Advanced
LIGO (aLIGO). The Einstein Telescope (ET) and Cosmic Explorer (CE) are planned
detectors, with a predicted increase in sensitivity of more than an order of accuracy across
the frequency spectrum.

Lastly, future detectors will be more sensitive, as shown in Figure 1.1. This means incoming

data will have signal to noise ratios in the thousands with multiple simultaneous signals. Current

simulations do not yet provide sufficient accuracy in their calculated waveforms to match these

sensitivity levels [6]. More accurate waveforms will allow for better comparison with these signals,

and easier decoupling of simultaneous signals.

If the numerical relativity community can increase the accuracy of numerical relativity models

without dramatically increasing the computational cost, more complex models and higher accuracy

can be achieved. One possible technique that may help us reach this goal may be using Compact

Finite Differences.

1.2 Compact Finite Differencing 4

1.2 Compact Finite Differencing

Currently, our numerical relativity group at Brigham Young University uses Dendro-GR to simulate

binary black hole mergers and collect the waveforms they generate [7]. Dendro-GR employs many

techniques to decrease the high numerical cost of binary black hole simulations without sacrificing

accuracy. Namely, Wavelet Adaptive Mesh Refinement is used to dynamically change the resolution

across the space [8]. This requires the use of many smaller grid sections, and therefore boundary

closures, that can form a larger grid for simulation. We are working towards the goal of using

Compact Finite Difference (CFD) techniques to increase the accuracy of these simulations without

increasing the required resolution of the grid [9].

Compact Finite Differencing schemes (CFDs) have been used in a variety of engineering

applications to increase the accuracy of these simulations [10]. Primarily, CFDs have been used

to improve computational aeroacoustics codes [11]. They have also shown success in stable, high-

order, nonlinear pressure waves [12]. These models showed both increased accuracy and stability

without a corresponding increase in grid refinement. By using the same resolution, these codes keep

a consistent computational cost, whilst also increasing the accuracy of the simulation. We hope that

these results can be replicated when applied to binary black hole models.

Most current numerical relativity codes, including Dendro-GR, use explicit schemes to approxi-

mate derivatives and solutions to differential equations. These schemes calculate the derivative at a

single point using the function value at nearby points. CFDs are implicit schemes, using nearby

function and nearby derivative values to approximate the derivative at a point. This differs from

traditional explicit schemes which only use nearby function points to approximate the derivative.

Such implicit schemes require matrix calculations, and traditionally a matrix inversion would need

to be performed at every time-step. Using CFDs, this matrix evolution can be performed once

and reused, allowing computational costs to remain constant with resolution [9]. The use of these

derivative values allows for an increase in order of accuracy without needing higher resolution.

1.2 Compact Finite Differencing 5

This higher order of accuracy also extends to the boundaries of the spatial volume. By better

representing derivatives on the boundary, CFDs can potentially achieve orders of magnitude im-

provement in accuracy as compared to explicit schemes. Dendro-GR relies on the use of many

boundary closures across the domain, as each of the borders between smaller grids require bound-

aries, as well as the boundaries at the edges of the simulation. An increase in accuracy here would

allow for a large increase in overall accuracy of the simulation. This is why we believe CFDs

present an exciting possibility for improving Dendro-GR.

Lastly, we hope to also replicate similar findings to those found by Kim [11] and Sharan, Brady

and Livescu [13] to further increase stability and accuracy of these schemes. They use different

optimization techniques to improve on the standard schemes.

Chapter 2

Methods

We can approximate a derivative based on its function value using CFDs. Doing so produces systems

of equations relating the function values to their derivatives at discrete points. By calculating the

coefficients for each term we can set an order of accuracy for these systems and use them to make

approximations. We cover how to calculate these coefficients and a Mathematica script we made to

automate the process.

2.1 Analytic CFD Operators

One approach to numerical differentiation is to use finite difference schemes to approximate the

derivative of a function across a grid. Different schemes provide different levels of accuracy and

stability depending on the number of points across the domain. Compact finite differencing employs

the use of implicit schemes, as opposed to the explicit schemes traditionally used, in an attempt to

increase accuracy without increasing the required number of points across the domain. We explore

how to set up these schemes. Much of this work can be found in the excellent thesis by Tyler [9].

6

2.1 Analytic CFD Operators 7

2.1.1 Explicit vs. Implicit Schemes

A traditional explicit scheme uses the function value from nearby points to approximate a derivative,

often at a central point. It estimates the derivative value at the central point by finding the slope of a

line made from the nearby points. The following scheme is a centered difference scheme with order

of accuracy O(h2), or second order. This means that the error can be approximated by the spacing

between the grid points, h, squared.

φ
′
i =

1
2h

(φi+1 −φi−1)+O(h2) (2.1)

In contrast, an implicit scheme also uses derivative values at surrounding points to perform

the approximation. Implicit schemes thus create a system of equations which can be solved to

approximate the derivative value at every point. The following implicit scheme is known as a

tridiagonal scheme, as the left hand side only has three terms.

1
4

φ
′
i+1 +φ

′
i +

1
4

φ
′
i−1 =

3
4h

(φi+1 −φi−1)+O(h4) (2.2)

Importantly, the above scheme uses values from the same number of points as the scheme in

Equation 2.1, but is fourth order, rather than second order.

Implicit schemes can be created for any derivative order. Still, our main focus is first and second

derivatives, as those make up the derivatives within the Einstein equations that we use to simulate

binary black hole mergers. The Einstein equations define spacetime within general relativity. The

following equation is an example of a possible second derivative scheme:

1
3

φ
′′
i+1 +φ

′′
i +

1
3

φ
′′
i−1 =

14
9h2 (φi+1 −2φi +φi−1)+

1
81h2 (φi+2 −2φi +φi−2)+O(h6) (2.3)

2.1 Analytic CFD Operators 8

2.1.2 Interior Scheme Coefficients

The schemes discussed in Sections 2.1.1 are known as interior schemes as they do not work to

approximate the derivative on the boundary. The boundary will be discussed more in 2.1.3. An

example of a pentadiagonal, eighth-order scheme is as follows:

βφ
′
i+2 +αφ

′
i+1 +φ

′
i +αφ

′
i−1 −βφ

′
i+2 =

a1

2h
(φi+1 −φi−1)+

a2

4h
(φi+2 −φi−2)+

a3

6h
(φi+3 −φi−3)

(2.4)

Where β , α , a1, a2, and a3 are arbitrary coefficients that we will calculate.

To calculate each of the coefficients in this scheme, we Taylor expand each function and

derivative, then group in powers of the spacing, h, creating a system of equations. The Taylor

expansion for the derivatives are as follows:

φ
′
i−2 = φ

′
i −2hφ

′′
i +

22h2

2!
φ
′′′
i − 23h3

3!
φ
′′′
i + · · · (2.5)

φ
′
i−1 = φ

′
i −hφ

′′
i +

h2

2!
φ
′′′
i − h3

3!
φ
′′′
i + · · · (2.6)

φ
′
i = φ

′
i (2.7)

φ
′
i+1 = φ

′
i +hφ

′′
i +

h2

2!
φ
′′′
i +

h3

3!
φ
′′′
i + · · · (2.8)

φ
′
i+2 = φ

′
i +2hφ

′′
i +

22h2

2!
φ
′′′
i +

23h3

3!
φ
′′′
i + · · · (2.9)

2.1 Analytic CFD Operators 9

The Taylor expansion for the function values are as follows:

φi−3 =φi −3hφ
′
i +

32h2

2!
φ
′′
i − 33h3

3!
φ
′′′
i + · · · (2.10)

φi−2 =φi −2hφ
′
i +

22h2

2!
φ
′′
i − 23h3

3!
φ
′′′
i + · · · (2.11)

φi−1 =φi −hφ
′
i +

h2

2!
φ
′′
i − h3

3!
φ
′′′
i + · · · (2.12)

φi+1 =φi +hφ
′
i +

h2

2!
φ
′′
i +

h3

3!
φ
′′′
i + · · · (2.13)

φi+2 =φi +2hφ
′
i +

22h2

2!
φ
′′
i +

23h3

3!
φ
′′′
i + · · · (2.14)

φi+3 =φi +3hφ
′
i +

32h2

2!
φ
′′
i +

33h3

3!
φ
′′′
i + · · · (2.15)

By plugging all of these Taylor expansions into Equation 2.4 and isolating terms with the same

order of derivative, we can create the system of equations. These can then be solved to calculate

each of the coefficients, which can then be plugged back into the original scheme. This system of

equations is as follows:

2(α +β)+1 =a1 +a2 +a3 O(h2) (2.16)

2
3!
2!
(α +22

β) =a1 +22a2 +32a3 O(h4) (2.17)

2
5!
4!
(α +24

β) =a1 +24a2 +34a3 O(h6) (2.18)

2
7!
6!
(α +26

β) =a1 +26a2 +36a3 O(h8) (2.19)

2
9!
8!
(α +28

β) =a1 +28a2 +38a3 O(h10) (2.20)

... (2.21)

We can generate an infinite number of equations with this method, but can only use five to solve

for the coefficients in the above scheme. Solving the five equations above would net a tenth-order

2.1 Analytic CFD Operators 10

interior scheme with five coefficients. However we could choose to solve only three of the equations

above, generating a fourth-order scheme with two arbitrary parameters we can optimize over. We

call these arbitrary parameters free parameters, as they are left unconstrained by the above equations.

Also, more equations can be solved to create a scheme with a higher order of accuracy, but then the

scheme must be expanded to include more coefficients such that the system is not overdetermined.

The reader can do this calculation, but an automated method of doing this calculation for arbitrary

schemes is discussed in Section 2.4.

2.1.3 Boundary Scheme Coefficients

As Figure 2.1 displays, a different scheme must be used to approximate derivatives on and near

boundaries. These schemes are called boundary closure schemes. Due to the lack of points on one

side of the boundary, it is impossible to use a centered derivative scheme. To compensate for the

lack of points to one side, more points are used to accurately approximate the derivative.

Different schemes must be used for each point near the boundary. Depending on the order of

accuracy and the format of the interior scheme, different near-boundary points will require different

boundary closure schemes. In principle, these boundary closure schemes can also have different

orders of accuracy, can rely on different numbers of points, and can be used to accommodate

physical boundary conditions so there is considerable possible arbitrariness.

For these schemes, we will be using a grid of N +1 points, starting at point 0 to point N, with

spacing h. In these schemes, we use γ to represent arbitrary coefficients, with their subscripts

denoting where in the final coefficient matrix they belong. An example of a scheme expressed using

the coefficient matrices is found in Section 2.1.4. A possible set of schemes for points around the

boundary are given below.

2.1 Analytic CFD Operators 11

Figure 2.1 Need for Boundary Closure Schemes. Our basic requirement is to solve for the
derivative at every point in the domain. As such. in the interior of our domain of interest
schemes tend to be be centered around each point. This becomes problematic when the
points lie on the edge of the domain. The figure depicts the points available to a centered
scheme at each of the points closest to the boundary. The filled in points are available, and
the open points are not. This means we must rely exclusively on points to the right of the
boundary to approximate the derivative, requiring a change to the scheme in the vicinity of
boundaries.

Boundary Point 0 First Derivative:

φ
′
0 + γ01φ

′
1 + γ02φ

′
2 =

1
h

k

∑
i=0

a0iφi (2.22)

Boundary Point 1 First Derivative:

γ10φ
′
0 +φ

′
1 + γ12φ

′
2 + γ13φ

′
3 =

1
h

k

∑
i=0

a1iφi (2.23)

Boundary Point 2 First Derivative:

γ20φ
′
0 + γ21φ

′
1 +φ

′
2 + γ23φ

′
3 + γ24φ

′
4 =

1
h

k

∑
i=0

a2iφi (2.24)

Boundary Point N-2 First Derivative:

2.1 Analytic CFD Operators 12

γ20φ
′
N + γ21φ

′
N−1 +φ

′
N−2 + γ23φ

′
N−3 + γ24φ

′
N−4 =−1

h

k

∑
i=0

a2iφN−i (2.25)

Boundary Point N-1 First Derivative:

γ10φ
′
N +φ

′
N−1 + γ12φ

′
N−2 + γ13φ

′
N−3 =−1

h

k

∑
i=0

a1iφN−i (2.26)

Boundary Point N First Derivative:

φ
′
N + γ01φ

′
N−1 + γ02φ

′
N−2 =−1

h

k

∑
i=0

aNiφN−i (2.27)

In each of the equations above, N denotes the number of intervals contained within the grid, and

k is an integer that takes values between 1 and N. Increasing k can increase the order of accuracy of

each of these schemes, it also increases the number of parameters on the right hand side. These

schemes can be modified to accommodate periodic boundary conditions, or other types of boundary

conditions.

2.1.4 Matrix Representations

Now that we have an equation for each point across the grid, we can set up a system of equations for

each derivative. The following describes the basic setup for the matrix equation for the derivatives.

Pφ
′ = Qφ (2.28)

Where P and Q are coefficient matrices, φ ′ is a vector of the derivative values, and φ is a vector of

the function values.

A full version of the previous equation in terms of components is found in the following matrix

equation. This particular version uses a sixth-order pentadiagonal scheme with two boundary

closure rows.

2.2 Spectral Function 13



1 γ01 γ02 0 0 · · · 0 0

γ10 1 γ12 γ13 0 · · · 0 0

β α 1 α β · · · 0 0
...

...
...

...
...

...

0 0 · · · β α 1 α β

0 0 · · · 0 γ13 γ12 1 γ10

0 0 · · · 0 0 γ02 γ01 1





φ ′
0

φ ′
1

φ ′
2
...

φ ′
N−2

φ ′
N−1

φ ′
N



=



a00 a01 a02 a03 0 · · · 0

a10 a11 a12 a13 0 · · · 0

a2
4h − a1

2h 0 a1
2h

a2
4h · · · 0

...
...

...
...

...

0 · · · a2
4h − a1

2h 0 a1
2h

a2
4h

0 · · · 0 −a13 −a12 −a11 −a10

0 · · · 0 −a03 −a02 −a01 −a00





φ0

φ1

φ2

...

φN−2

φN−1

φN


(2.29)

The above matrices illustrate the difference between the interior schemes and the boundary

schemes. The top and bottom two rows are boundary schemes. We can see that they require

a specific, asymmetric form because there are not enough points to use a central scheme. The

boundary rows are also different schemes from each other, unlike the interior scheme. The interior

scheme is symmetric across the diagonal in both matrices, and follows a consistent form across all

rows.

2.2 Spectral Function

CFD schemes, such as the one expressed Equation 2.4, are inherently approximations. One possible

way to represent this is by adding a term accounting for the order of error of the approximation, O .

This is shown below.

βφ
′
i+2 +αφ

′
i+1 +φ

′
i +αφ

′
i−1 −βφ

′
i+2 =

a1

2h
(φi+1 −φi−1)+

a2

4h
(φi+2 −φi−2)+

a3

6h
(φi+3 −φi−3)+O(h10)

(2.30)

2.2 Spectral Function 14

Just by adding the extra term we don’t get much in the way of additional analysis. Another

method of representing the inherent approximation is to replace the φ ′ terms with φ̄ ′ terms. Here

φ̄ is not the same function as φ , but the new function is introduced to satisfy the equality and will

likely be similar to the original function. The previous scheme with this substitution made becomes:

β φ̄
′
i+2 +αφ̄

′
i+1 + φ̄

′
i +αφ̄

′
i−1 −β φ̄

′
i+2 =

a1

2h
(φi+1 −φi−1)+

a2

4h
(φi+2 −φi−2)+

a3

6h
(φi+3 −φi−3)

(2.31)

Now consider doing a Fourier analysis by taking the Fourier transform of this scheme. A Fourier

transform allows us to move to frequency space. This will allow us to examine the scheme across

wavenumbers which range from 0 to π . Using the following relations, we can perform the Fourier

transform.

φi+s = φ̃i exp
(

2πikhs
L

)
φ̄i+s =

˜̄
φi

2πikh
L

exp
(

2πikhs
L

)
(2.32)

We can plug these relations into our scheme, and simplify to find the following scheme, which

has been converted into Fourier space.

kh · ˜̄
φ(k) [2β cos(2kh)+2α cos(kh)+1] = φ̃(k) ·

[
a1 sin(kh)+

a2

2
sin(2kh)+

a3

3
sin(3kh)

]
.

(2.33)

The equation above can be simplified by first substituting κ for kh, then moving the φ̃ and ˜̄
φ to

the same side. This simplification is shown below.

κ̄(κ)≡ κ ·
˜̄
φ(k)
φ̃(k)

=
a1 sin(κ)+ a2

2 sin(2κ)+ a3
3 sin(3κ)

1+2α cos(κ)+2β cos(2κ)
(2.34)

2.3 Filtering 15

Figure 2.2 Eighth-order interior pentadiagonal spectral function example. This plot shows
the comparison between a linear spectral function and the spectral function in Equation
2.34. The blue line is the linear spectral function we are striving for, whereas the orange
line shows the spectral function of the scheme we’ve been exploring. As we can see,
the orange curve follows the linear curve very well for small wavenumbers, but diverges
at high wavenumbers. We can optimize the parameters in our schemes to better fit our
spectral function, and improve the spectral accuracy.

κ̄ is known as the spectral function, or the transfer function for the scheme in Equation 2.4. This

equation can be used to measure the quality of the approximation we made in Equation 2.31. Figure

2.2 shows an example of this comparison. If κ̄(κ) is linear, then the approximation is exactly the

same as the original function. For first derivatives, this is impossible as the spectral function has the

condition that at κ = π , the spectral function equals zero.

2.3 Filtering

Many CFD schemes are unstable and can cause large errors to appear across a grid as a simulation

proceeds. But, some of these unstable schemes can be made highly accurate and have the potential

to further improve numerical simulations if they can be rendered stable. By filtering the function

2.3 Filtering 16

values after applying a form of the CFD scheme we can apply dissipation, thereby reducing the

noise on the grid. Below is an example of such a filtering scheme:

Rφ̂ = Sφ (2.35)

Where R and S, like the P and Q operators, are coefficient matrices, φ is the vector of function

values, and φ̂ is the filtered function values. Filtering schemes of this form can be applied to

standard CFD schemes as follows.

Pφ
′ = Q(R−1S)φ (2.36)

The following is an example of an interior filtering scheme that complements the first derivative

schemes discussed throughout Section 2.1.2.

β f φ̂i−2 +α f φ̂i−1 + φ̂i +α f φ̂i+1 +β f φ̂i+2 =
M

∑
k=0

ak

2
(φi+k +φi−k) (2.37)

Where M corresponds with the order of the filter being generated. In practice, most filters used are

at least two orders higher than the CFD scheme they are coupled with.

In order to solve for the coefficients in this scheme, we need a series of constraint equations

similar to those used when generating the CFD schemes. The first constraint we can use comes

from the spectral function of this scheme, shown below.

κ̄(κ) =
∑

M
k=0 ak cos(kκ)

1+2α f cos(κ)+2β f cos(2κ)
(2.38)

We need this spectral function to match the interior spectral functions of the compact schemes,

meaning that at wavenumber π , we need the spectral function to become zero. This results in the

following constraint equation.

2.3 Filtering 17

M

∑
k=0

(−1)kak = 0 (2.39)

The rest of the required constraint equations can be derived from the Taylor series expansion

of the scheme. This is slightly more complex than the traditional scheme as the φ̂ terms are not

derivatives, rather they are filtered values of the original function. Therefore their Taylor expansion

is different, and given below

φ̂i+k = φi + khφ
′
i +

k2h2

2!
φ
′′+ · · ·+ knhn

n!

(
∂ nφ

∂xn

)
i
+Rn(x) (2.40)

where

Rn(x) =
kn+1hn+1

(n+1)!

(
∂ n+1φ

∂xn+1

)
i+ξ

(2.41)

We then plug this expansion into the previous scheme, alongside the traditional Taylor expansion

for all of the φ terms, and isolate new equations for each power of h. This allows us to generate the

rest of the constraint equations for the desired order of accuracy. The first five of these equations

are shown below.

M

∑
k=0

ak = 2α f +2β f +1 (2.42)

M

∑
k=1

k2ak = 2α f +23
β f (2.43)

M

∑
k=1

k4ak = 2α f +25
β f (2.44)

M

∑
k=1

k6ak = 2α f +27
β f (2.45)

M

∑
k=1

k8ak = 2α f +29
β f (2.46)

2.3 Filtering 18

Now, we have all the tools required to solve for each coefficient in the filtering schemes.

Traditionally though, we choose to leave α f and β f general so that they can be optimized later to

best improve whichever scheme the filter is being applied to. But, these values are limited by the

spectral function in Equation 2.38. As the following appears in the denominator of the spectral

function, it must be greater than zero when κ is between 0 and π .

1+2α f cos(κ)+2β f cos(2κ)> 0 (2.47)

This means that for tridiagonal filters, where β f is zero, α f can range from −0.5 to 0.5. But, as

should be clear, the pentadiagonal case is more complicated.

Just like the CFD schemes, the filtering schemes also require special attention on the boundaries.

This requires shifted stencils to account for the lack of points to maintain a centered scheme, like in

Figure 2.1. The specific boundary schemes for these filters are simpler than those for traditional

CFD schemes. Below are the schemes for the first four boundary nodes. As the order of accuracy

increases, M will increase, adding more parameters.

φ̂1 +α f φ̂2 +β f φ̂3 =
M+1

∑
k=1

akφk (2.48)

α f φ̂1 + φ̂2 +α f φ̂3 +β f φ̂4 =
M+1

∑
k=1

akφk (2.49)

β f φ̂1 +α f φ̂2 + φ̂3 +α f φ̂4 +β f φ̂5 =
M+1

∑
k=1

akφk (2.50)

β f φ̂2 +α f φ̂3 + φ̂4 +α f φ̂5 +β f φ̂6 =
M+1

∑
k=1

akφk (2.51)

Similarly, the following equations are the boundary schemes for the last four nodes, nodes N−3

through N.

2.4 Generating Operators 19

β f φ̂N−1 +α f φ̂N−2 + φ̂N−3 +α f φ̂N−4 +β f φ̂N−5 =
N

∑
k=N−M

akφk (2.52)

β f φ̂N +α f φ̂N−1 + φ̂N−2 +α f φ̂N−3 +β f φ̂N−4 =
N

∑
k=N−M

akφk (2.53)

α f φ̂N + φ̂N−1 +α f φ̂N−2 +β f φ̂N−3 =
N

∑
k=N−M

akφk (2.54)

φ̂N +α f φ̂N−1 +β f φ̂N−2 =
N

∑
k=N−M

akφk (2.55)

To find the coefficients for these schemes, one can use the spectral function and the Taylor

expansion in the same process as the interior scheme. Importantly, the α f and β f values in these

boundary schemes are the same values as those in the interior scheme.

2.4 Generating Operators

We have developed a Mathematica script to automate the process for determining and solving for

the coefficients using the structure outlined by Tyler [9], and found in our Section 2.1. This script

takes user input to determine the parameters associated with the particular scheme we want to derive.

It then sets up the matrices corresponding to these properties, creates a system of equations for the

matrix coefficients, solves this system, and outputs the coefficients in the final scheme. This process

takes a few seconds before outputting values for these matrices.

2.4.1 User Input

When using the script to develop operators, users can choose between many options to suit their

needs. First and foremost, the user can select between first or second derivative, the desired order of

accuracy, and the structure of the matrix. Specifically, the matrices output can use either tridiagonal

or pentadiagonal interior schemes. Then users can choose the order of accuracy on the boundaries.

2.4 Generating Operators 20

Alongside these choices, the user can choose to expand the number of boundary rows or expand the

stencil size, adding extra terms to each equation. Each of these coefficients can then be chosen to be

fixed or free. Fixed coefficients are solved for normally and will output as a number or equation in

terms of free parameters. Free parameters stay symbolic throughout the solve, allowing the user to

vary them later to hopefully increase accuracy or stability. Input may be given through dialog boxes

that open throughout runtime, or a parameter file loaded in prior to the code being run.

2.4.2 Setting up Matrices

Once the user has made the necessary selections, the script generates symbolic versions of the

operators whose coefficients will be found. These are stored for later use, and to provide context for

the equations being solved. One example of code being used to generate these symbolic matrices,

and its output is below. It depicts the construction of a tridiagonal matrix with no boundary closures

as demonstration. The matrix is generated at runtime, and a user could easily change its size.

We set an adjustable size for the matrices being developed in order to adapt to all necessary

parameters, and easily display the full structure of the matrix. In particular, at least three interior

rows are shown to ensure the full boundary closure scheme is visible in the output, and the interior

scheme can be contextualized in place within the operator.

2.4.3 Solving for Coefficients

Once the matrices are generated, the script collects all the parameters to be solved for into individual

lists. These lists delineate coefficients that can be solved for by a specific set of equations. They also

differentiate which coefficients will go into solving for the boundary closures, or the interior region

of the operator. Lastly, they collect the coefficients that have been chosen to be free parameters to

ensure every other coefficient has the correct dependence on them.

2.4 Generating Operators 21

We calculated the requisite Taylor series for each derivative, as in Section 2.1, such that they

can be separated into enough equations for each order of accuracy, and the number of coefficients to

be solved for. We set a minimum order of accuracy, as the lower orders have less general systems of

equations, but the dialog boxes communicate this minimum order, ensuring users are aware of it.

Beyond this minimum order, all equations are determined automatically by leveraging patterns that

appear. Finally, Mathematica’s built in Solve function is used to solve each of these systems for

their required variables and store the expressions produced.

2.4.4 Output

Upon completing the earlier steps, the Mathematica script outputs the information stored throughout

the runtime. Starting with the symbolic versions of both matrices so that the user is very aware

of the structure of the final operators. Then lists are output of free parameters within both the

interior and boundary closures. These lists allow the user to set these parameters en masse when

later implementing the operators. Finally, the script outputs code in a variety of coding languages

and formats, setting each parameter to the calculated value. These final values are always fractions

to preserve the precision, and automatically set as doubles. Their names also match those in the

output matrices to minimize confusion. The user must then set up these operators within their own

environment and plug in the coefficients. This is important so that the user can determine the data

structure used to create the operators to fully optimize their code.

Below is an example output of the Mathematica code with the corresponding scheme in equations

2.56 through 2.59, and final coefficients in Table 2.1.

Interior:

αφ
′
i+1 +φ

′
i +αφ

′
i−1 =

a1

2h
(φi+1 −φi−1)+

a2

4h
(φi+2 −φi−2) (2.56)

2.4 Generating Operators 22

First Boundary Row:

φ
′
0 + γ01φ

′
1 =

3

∑
i=0

a0iφi (2.57)

Second Boundary Row:

γ10φ
′
0 +φ

′
1 + γ12φ

′
2 =

3

∑
i=0

a1iφi (2.58)

Matrix Representation:

1 γ01 0 0 · · · 0 0

γ10 1 γ12 0 · · · 0 0

0 α 1 α · · · 0 0
...

...
...

...
...

0 0 · · · α 1 α 0

0 0 · · · 0 γ12 1 γ10

0 0 · · · 0 0 γ01 1



φ ′ =



a00 a01 a02 a03 0 · · · 0

a10 a11 a12 a13 0 · · · 0

a2
4h − a1

2h 0 a1
2h

a2
4h · · · 0

...
...

...
...

...

0 · · · a2
4h − a1

2h 0 a1
2h

a2
4h

0 · · · 0 −a13 −a12 −a11 −a10

0 · · · 0 −a03 −a02 −a01 −a00



φ

(2.59)

a1 a2 a00 a01 a02 a03 a10 a11 a12 a13 γ01 γ10 γ12 α

14.0
9.0

1.0
9.0 −17.0

6.0
3.0
2.0

3.0
2.0 −1.0

6.0 −5.0
9.0 −1.0

2.0 1.0 1.0
18.0 3.0 1.0

6.0
1.0
2.0

1.0
3.0

Table 2.1 Example coefficients for first derivative sixth-order interior and fourth-order
boundary scheme. Scheme represented in equations 2.56 through 2.59. This scheme has
two boundary rows, which is the minimum number for this order of accuracy, but more
may be added.

2.4 Generating Operators 23

This Mathematica script allows us to calculate these schemes for first and second derivatives,

and in principle, to any order of accuracy. By applying these to discrete function values, we can

approximate the spatial derivative of a function. These schemes must be stable and accurate so that

when taking many derivatives across a simulation, the final model will be accurate.

Chapter 3

Results

In order for the CFD derivative schemes developed in Chapter 2 to be used for binary black hole

simulations, they need to be stable and accurate. We can show, through a number of methods,

that we can construct CFD operators that are both accurate and stable. If enough operators can be

found that fit these conditions, then they show promise when applied to the numerical relativity

simulations.

3.1 Accuracy

As we are now able to generate derivative operators and filters quickly, we are able to test their

accuracy compared to known derivative solutions. By applying the generated operators to discretized

functions, then comparing them to the analytic derivatives, we can measure the error across the

domain.

Figures 3.1 and 3.3 depict comparisons between explicit and CFD schemes when computing

a derivative. We can see in both cases, that a standard compact scheme exhibits an improvement

in accuracy of about an order of magnitude in the central region of the domain. Also, as seen on

the farthest points to the left and right in Figure 3.1, the error on the boundaries is many orders

24

3.1 Accuracy 25

of magnitude less than the explicit schemes. This reduction in error shows that CFDs have the

possibility to achieve the increase in accuracy desired.

Figure 3.1 depicts more improvement in accuracy using the boundary closure scheme and

optimization techniques outlined by Kim [11]. The error at the boundary closures is about an order

of accuracy better than the standard CFD schemes. The interior points use the optimization to

further drive error down, preceding below machine precision for the machine used to calculate the

derivative.

Figure 3.1 Fourth-order error comparison between derivative schemes. We took the
derivative of sin(πx) using three differentiation schemes, then subtracted from the analytic
derivative. This plot describes the difference between the analytic derivative and the
numeric derivatives. The explicit scheme is a traditional way of taking derivatives, and
clearly has a high amount of error on the boundaries. Using a standard compact scheme,
the error on the boundaries falls by over four orders of magnitude, and around one order in
the center. Finally, optimization techniques, such as those used by Kim [11] to generate
the final operator, can decrease the error further without increasing the required number of
function points.

3.2 Stability 26

3.2 Stability

It is important that the derivative schemes we use are also stable, not just accurate. We can use

the solution to PDEs solved analytically to find the error over time created when solving the same

equations with CFDs, providing a measure of stability for a given operator. Doing this for general

relativity codes is difficult due to the complex and nonlinear nature of the Einstein equations. So we

use simpler models when testing for stability, such as electromagnetic radiation.

Sharan, Brady and Livescu optimized their schemes for stability [13]. Figure 3.2 depicts the

use of one of their CFD schemes compared to an explicit scheme currently in use. Each scheme

depicted in the figure is stable, as the error quickly damps to a consistent value. The CFD schemes

show slightly different behavior at larger times, but ultimately the oscillations in their error are

smaller than those of the explicit schemes. More importantly, they maintain higher accuracy using

the same resolution and remain stable.

We can see in Figure 3.3, the operators generated by Sharan, Brady and Livescu [13] are

closer in accuracy to the standard Kim [11] scheme. Specifically, due to Dendro-GR having a high

dependence on accurate boundaries, we hope to find a mix between the two schemes. The operators

generated by Sharan, Brady and Livescu [13], though they are stable, do not have the accuracy

improvement on the boundaries necessary for use in Dendro-GR.

3.2.1 Eigenvalue Spectra

One way of testing stability without performing long and costly simulations is to find the eigenvalues

of the P−1Q matrix. This is called the eigenvalue spectra. Most of the eigenvalues are complex, and

analyzing the real portions of these values provides a method of testing stability. As in Figure 3.4, if

the real part of all the eigenvalues are negative, the CFD scheme is likely stable. This provides a

3.2 Stability 27

relatively simple way to test the possible stability of these operators. Then they can be tested by

running numerical simulations with known solutions.

Figure 3.2 Error when evolving the 3D Maxwell equations. Both an explicit derivative
scheme and a compact derivative scheme are used to approximate the solution of a standing
wave in a box using Maxwell’s equations, then subtracted from the analytic solution to
find the error. The CFDs were generated by Nek, Brady, and Livescu [13]. Each scheme is
sixth order accurate. Explicit scheme 1 and compact scheme 1 use the same number of
grid points to approximate the solution, each of the following schemes increase in points
together. As the error on none of the curves diverges exponentially, we can conclude that
they are all stable for this equation. The error in the compact schemes are consistently
more than two orders of magnitude lower than the explicit scheme with the same number
of points. This shows promise that CFDs will provide increased accuracy when solving
other PDEs, without being more unstable than the explicit schemes.

3.2 Stability 28

Figure 3.3 Sixth-order error comparison between different schemes. The derivative of
sin(πx) was taken using three differentiation schemes, then subtracted from the analytic
derivative. This plot describes the difference between the analytic derivative and the
numeric derivatives. The explicit scheme is a traditional way of taking derivatives, and
clearly has a high amount of error on the boundaries. Using a standard compact scheme,
the error on the boundaries falls by over four orders of magnitude, and around one order
in the center. Using optimization techniques, Nek, Brady, and Livescu [13] were able
to increase the stability of their operator. This optimization sacrificed accuracy on the
boundaries for greater stability. Combining their methods with other methods to increase
accuracy might allow for overall improvements in the CFD schemes.

3.2 Stability 29

Figure 3.4 Example Eigenvalue Spectra from Tyler [9]. This figure depicts the eigenvalue
spectra of P−1Q for the same scheme of different domain sizes N. As N represents the
number of points across the grid, it must be positive and real. The resolution of the grid
across which the derivative is approximated increases as N increases. Stability of an
operator is likely if the real part of each eigenvalue is negative. The imaginary part of each
eigenvalue is does not provide any information about stability, but correctly calculated
eigenvalue spectra are symmetrical across the real-axis.

3.3 CFDs and Filtering Solving Maxwell’s Equations 30

3.3 CFDs and Filtering Solving Maxwell’s Equations

We have applied the filtering schemes discussed in Section 2.3 to first derivative schemes we

generated, and used them to solve the 3D Maxwell equations using Dendro-GR. Specifically,

we solved for a propagating magnetic dipole. Using a Wavelet Adaptive Multi-Resolution grid

with boundaries at ±20 in all three directions, a wavelet tolerance of 10−5 and a grid spacing of

0.2083333 in the highest resolution areas. This gave us a test bed within which to compare filtered

and non-filtered CFDs to explicit schemes. As illustrated in Figure 3.5, we have shown that filtering

the operators has the potential to consistently decrease the L2 error across multiple fields in a system

of coupled partial differential equations.

In Figure 3.5, there are three figures each examining the error from solving the three dimensional

Maxwell’s equations using different schemes. This error was found by subtracting our solution from

the exact analytic solution. The three plots are for the error in the x component of the magnetic and

electric fields, and for the divergence of the magnetic field. In each case we see a similar reduction

of error between the unfiltered CFD schemes and the filtered CFD schemes.

It is clear that the measure of error reduction changes depending on which CFD scheme is used

together with the particular filtering scheme. This likely means that filtering operators and CFD

operators can be optimized in tandem to maximize their combined efforts for both stability, and

error reduction. This is work that needs to be explored in the future.

The top left figure in Figure 3.5 shows the L2 error in the magnetic field throughout the

simulation. We can see that the KIMBYU_1, a fourth-order scheme developed at BYU, has lower

error across much of the simulation than both the explicit fourth-order (E4) and explicit sixth-order

(E6) schemes. We can see within differently optimized CFDs difference in the error amounts. Note

that KIMBYU_4, without filtering, has a larger error content than KIMBYU_1. When applying

filtering to both of the CFD scheme, we note that the the error drops significantly. In particular,

3.3 CFDs and Filtering Solving Maxwell’s Equations 31

the KIMBYU_4 scheme operates at the level of the KIMBYU_1 both filtered and unfiltered. Both

Filter_KIMBYU_1 and Filter_KIMBYU_4 use a sixth-order tridiagonal filter with α f being 0.4.

Figure 3.5 Comparison of Error Across Filtered and Non-Filtered Schemes using 3D
Maxwell Equations. These plots represent the L2 error of multiple solves of the 3D
Maxwell Equation using different operators. The blue and orange dotted curves represent
the error when using a fourth-order (E4) and a sixth-order (E6) explicit scheme respectively.
The red and green curves represent the error when using two different optimized fourth-
order CFD schemes we generated at BYU (KIMBYU_1, KIMBYU_4). The red and green
dashed lines represent these same operators, with filtering applied (Filter_KIMBYU_1,
Filter_KIMBYU_4). The filter was a sixth-order tridiagonal form of the filters discussed
in Section 2.3, with an α f value of 0.4.

The top right figure depicts the L2 error in the electric field, and the bottom filter shows the L2

error in the divergence of the magnetic field. The same effects observed in the error in the magnetic

3.3 CFDs and Filtering Solving Maxwell’s Equations 32

field are mostly also observed in the other fields. This suggests that the individual operators do not

interact with the different fields in wildly different ways. The effects in the three plots shown are

mirrored in all the other fields that are evolved.

Overall, the figure shows that filtering can have an appreciable effect on lowering the error when

using CFD schemes to solve partial differential equations. KIMBYU_4, the scheme with high error,

and KIMBYU_1 both had their L2 error lowered. In this case, KIMBYU_4 had its error lowered

much more, suggesting that specific filters can have much larger effects when paired with certain

operators.

Chapter 4

Discussion and Conclusions

Binary black hole mergers are the sources for most of the observable gravitational waves in the

universe. They can thus be used to probe deep into the past of our universe. Studying these objects

requires in-depth models to generate waveforms to compare against observations. These models

can struggle to encapsulate the highest energy and largest mass ratio systems [4]. We hope that by

using CFDs, the computational costs may be lowered enough to explore these systems, without

significant accuracy loss. This requires us to find stable, accurate schemes to be used.

Using new compact schemes, rather than existing explicit schemes, we have calculated families

of CFDs that can be used to approximate derivatives. We have used the Taylor series expansion

at each point to calculate these coefficients and ensure each operator correctly and accurately

approximates solutions to PDEs. We have created a Mathematica script to automate this process

and provide a starting place for further work improving accuracy and stability.

As shown in Section 3, we have found evidence that CFDs can be stable and accurate over

long time periods while approximating solutions to nonlinear differential equations. We hope we

can extend these test cases to more complicated problems, and eventually to black hole mergers.

However, more work must be done to explore a larger variety of stable second derivative operators

to prepare for these more complex test cases.

33

34

Overall, we have shown that CFDs are more accurate than excplicit schemes across the entire

domain, but especially on the boundary. This increase in accuracy does not correspond to an increase

in required function points, therefore allowing similar computational time for an increased accuracy.

We have both first and second derivative schemes that have shown this increased accuracy, and with

optimization techniques we will be able to further drive down error.

Current work only includes stable tridiagonal second derivatives with simple boundary closure

schemes. More work will need to be done to explore other stable operators due to Dendro-GR’s

requirements for multiple boundaries across the entire grid. The results we have achieved provide

evidence that these more complex schemes exist and will likely continue being more accurate than

explicit differentiation schemes.

In the future we hope to test techniques of filtering and test new operators to check for stability.

As we have developed multiple numeric models that use CFDs, we are able to expedite this process

and continue working to find these operators. Though more work needs to be done, these operators

present a chance to significantly improve the capabilities of current binary black hole simulations.

Compact finite differencing is a method of estimating derivatives that has been used in engi-

neering applications but has not been explored in the domain of physics up until this point. We

hope that using CFDs will increase the performance of current binary black hole simulations.

This comes from an increase in accuracy without an increase in computational cost, allowing for

more complex systems to be analyzed. Future implementations of this strategy promise better

gravitational waveforms for comparison with data gathered from next generation gravitational wave

detectors.

Appendix A

Analytic Matrix Inverses

One way to further decrease the computational cost of compact finite differencing is to improve

algorithms for taking the inverse of the left hand side of the schemes. Due to the mostly uniform

structure of each of these matrices, in early work on CFDs, we attempted to find analytic methods

of taking the inverse of each of these. This involves finding the determinants of the matrices, then

their cofactor expansions. We have also reparameterized these determinants to make them easier to

work with. Our work reviewing this approach is reported below.

35

A.1 No Boundary Condition 36

A.1 No Boundary Condition

First we consider a tridiagonal scheme with no set boundary conditions. Consider the following

k× k tridiagonal matrix:

M =



D 1 0 0 · · · 0 0 0 0

1 D 1 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 1 D 1

0 0 0 0 · · · 0 0 1 D



(A.1)

where D is a constant on the main diagonal and k ≥ 1.

The term Mk is the determinant of the basic tridiagonal matrix of order k, given by:

Mk =
1
η

1
2k+1

[
(D+η)k+1 − (D−η)k+1

]
(A.2)

where η =
√

D2 −4.

Reparameterizing D in this case, we find that:

D =


−2coshλ if D ≤−2

2cosλ if |D|< 2

2coshλ if D ≥ 2

(A.3)

Plugging this into our determinant Mk we find the following:

Mk =



(−1)k sinh
(
(k+1)λ

)
sinhλ

if D ≤−2

sin
(
(k+1)λ

)
sinλ

if |D|< 2

sinh
(
(k+1)λ

)
sinhλ

if D ≥ 2

(A.4)

A.2 Schemes with Two Boundaries 37

We now put these pieces together and explore the cofactors of M. We can find several patterns

in its cofactor matrix, c. Using these patterns, we can find that the cofactor matrix is as follows:

ci j = (−1)i+ jMi−1Mk− j i ≤ j (A.5)

The cofactor matrix is symmetric across the diagonal, so this equation can still be used to solve

for the entire matrix not just the top half. But, since we now have they cofactor matrix equation, we

can use it and the determinant to find the analytic inverse of M, which is as follows:

(M−1)i j =


−cosh[(k+1−| j−i|λ)]−cosh[(k+1− j−1)λ]

2sinhλ sinh[(k+1)λ] if D ≤−2

(−1)i+ j+1 cos[(k+1−| j−i|)λ]−cos[(k+1− j−i)λ]
2sinλ sin[(k+1)λ] if |D|< 2

(−1)i+ j cosh[(k+1−| j−i|λ)]−cosh[(k+1− j−i)λ]
2sinhλ sinh[(k+1)λ] if D ≥ 2

(A.6)

A.2 Schemes with Two Boundaries

We start by exploring a tridiagonal scheme with a single boundary row on each side. Consider the

following k× k matrix for a compact finite difference scheme on the boundaries:

M̂ =



D β γ 0 · · · 0 0 0 0

1 D 1 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 1 D 1

0 0 0 0 · · · 0 γ β D



(A.7)

where D is a constant on the main diagonal, β and γ are parameters found by solving the scheme to

the desired order, and k ≥ 3.

We will refer to the determinant of this matrix as M̂k. We have found that that M̂k satisfies the

following recursion relation:

A.2 Schemes with Two Boundaries 38

M̂k = D2Mk−2 −2βDMk−3 +(2γD+β
2)Mk−4 −2γβMk−5 + γ

2Mk−6 (A.8)

Through some simplifying, we find M̂k to be as follows:

M̂k =
1
η

1
2k−1

{
D2

[
(D+η)k−1 − (D−η)k−1

]
(A.9)

−4βD
[
(D+η)k−2 − (D−η)k−2

]
(A.10)

+4(β 2 +2γD)
[
(D+η)k−3 − (D−η)k−3

]
(A.11)

−16γβ

[
(D+η)k−4 − (D−η)k−4

]
(A.12)

+16γ
2
[
(D+η)k−5 − (D−η)k−5

]}
(A.13)

where, again, η =
√

D2 −4.

Reparameterizing this case, we find that:

M̂k =



1
sinλ

[
4cos2 λ sin((k−1)λ)−4β cosλ sin((k−2)λ)

+(β 2 +4γ cosλ)sin((k−3)λ)−2γβ sin((k−4)λ)

+γ2 sin((k−5)λ)
] if η2 < 0

1
sinhλ

[
4cosh2

λ sinh((k−1)λ)−4β coshλ sinh((k−2)λ)

+(β 2 +4γ coshλ)sinh((k−3)λ)−2γβ sinh((k−4)λ)

+γ2 sinh((k−5)λ)
] if η2 ≥ 0

(A.14)

A.2 Schemes with Two Boundaries 39

We now put these pieces together and explore the cofactors of M̂. We can find several patterns

in its cofactor matrix, Ĉ. Consider the following matrix:

Ĉ =



x x x x · · · x x y z

w x x x · · · x x y z

z y x x · · · x x y z
...

z y x x · · · x x y z

z y x x · · · x x x w

z y x x · · · x x x x



(A.15)

where,

x = (−1)i+ jT̂i−1−max(0,i− j)T̂k− j−max(0,i− j) (A.16)

y = (−1)i+ j(D− γ)T̂k−i (A.17)

z = (−1)i+ j(β −Dγ)T̂k−i (A.18)

w = (−1)i+ j(β T̂k−2 − γT̂k−3) (A.19)

if j ≤ ⌈k/2⌉, and

x = (−1)i+ jT̂k−i−max(0, j−i)T̂j−1−max(0, j−i) (A.20)

y = (−1)i+ j(D− γ)T̂i−1 (A.21)

z = (−1)i+ j(β −Dγ)T̂i−1 (A.22)

w = (−1)i+ j(β T̂k−2 − γT̂k−3) (A.23)

if j > ⌈k/2⌉. Within these equations, the T̂k terms represent determinants of arbitrarily sized

matrices explored in Section A.3.

A.2 Schemes with Two Boundaries 40

For computational purposes, it is more helpful to only compute the cofactors for j ≤ ⌈k/2⌉. Due

to the matrix’s 180-degree rotational symmetry, the cofactors for j > ⌈k/2⌉ can be found using the

relation

Ĉi, j = Ĉk+1−i,k+1− j. (A.24)

Now we explore an approach similar to Mehra et al. [14], with the following form of the k× k

tridiagonal matrix to represent boundary conditions:

M =



D α 0 0 · · · 0 0 0 0

β D β 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 β D β

0 0 0 0 · · · 0 0 α D



(A.25)

where D is a constant on the main diagonal, α and β are parameters found by solving the scheme to

the desired order, and k ≥ 4.

We will refer to the determinant of this matrix as Mk. We have found that Mk satisfies the

following recursion relation:

Mk = (D4 −2αβD2 +α
2
β

2)Mk−4 +2(αβ
2D−βD3)Mk−5 +(β 2D2)Mk−6 (A.26)

A.2 Schemes with Two Boundaries 41

Through some simplifying, we can express Mk as follows:

Mk =
1
η

1
2k−3

{
(D2 −αβ)2

[
(D+η)k−3 − (D−η)k−3

]
(A.27)

+4Dβ (αβ −D2)
[
(D+η)k−4 − (D−η)k−4

]
(A.28)

+4D2
β

2
[
(D+η)k−5 − (D−η)k−5

]}
(A.29)

where, again, η =
√

D2 −4.

Reparameterizing this new case, we find that:

Mk =



1
sinλ

[
(4cos2 λ −αβ)2 sin((k−3)λ)

+4β cosλ (αβ −4cos2 λ))sin((k−4)λ)

+4β 2 cos2 λ sin((k−5)λ)
] if η2 < 0

1
sinλ

[
(4cosh2

λ −αβ)2 sinh((k−3)λ)

+4β coshλ (αβ −4cosh2
λ))sinh((k−4)λ)

+4β 2 cosh2
λ sinh((k−5)λ)

] if η2 ≥ 0

(A.30)

Now we consider the cofactor expansion of this scheme. We can find several patterns in its

cofactor matrix. Consider the following matrix:

C =



u v v v · · · v′ v′ y′ z′

w x x x · · · x x y z

z y x x · · · x x y z
...

z y x x · · · x x y z

z y x x · · · x x x w

z′ y′ v′ v′ · · · v v v u



(A.31)

A.2 Schemes with Two Boundaries 42

where,

x = (−1)i+ jT i−1−max(0,i− j)T k− j−max(0,i− j) (A.32)

y = (−1)i+ jDβT k−i (A.33)

z = (−1)i+ j
αβT k−i (A.34)

u = (−1)i+ j(DT k−2 −βT k−3) (A.35)

v = (−1)i+ j
βT k− j (A.36)

w = (−1)i+ j
αT k−i (A.37)

v′ = (−1)i+ j
βM j−1 (A.38)

y′ = (−1)i+ jDβ
2 (A.39)

z′ = (−1)i+ j
αβ

2 (A.40)

(A.41)

if j ≤ ⌈k/2⌉. The T k terms represent determinants of matrices explored in Section A.3.

It is worth noting that in the top row of the matrix, v continues on until j = ⌈k/2⌉, and then

j = ⌈k/2⌉+1 is v′. A similar transition occurs on the bottom row of the matrix.

Similar to the previous case, for computational purposes, it is more helpful to only compute

the cofactors for j ≤ ⌈k/2⌉. Due to the matrix’s 180-degree rotational symmetry, the cofactors for

j > ⌈k/2⌉ can be found using the relation

Ci, j =Ck+1−i,k+1− j (A.42)

A.2 Schemes with Two Boundaries 43

Finally, taking an approach similar to Tyler [9], we have the following form of the k × k

tridiagonal matrix to represent boundary conditions:

Ḿ =



D α 0 0 · · · 0 0 0 0

β D γ 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 γ D β

0 0 0 0 · · · 0 0 α D



(A.43)

where D is a constant on the main diagonal, α , β , and γ are parameters found by solving the scheme

to the desired order, and k ≥ 4.

We will refer to the determinant of this matrix as Ḿk. We find that this determinant, Ḿk, satisfies

the following recursion relation:

Ḿk = (D4 −2αβD2 +α
2
β

2)Mk−4 +2(αβγD− γD3)Mk−5 +(γ2D2)Mk−6 (A.44)

Through some simplifying, we can express Ḿk as follows:

Ḿk =
1
η

1
2k−3

{
(D2 −αβ)2

[
(D+η)k−3 − (D−η)k−3

]
(A.45)

+4(Dαβγ − γD3)
[
(D+η)k−4 − (D−η)k−4

]
(A.46)

+4D2
γ

2
[
(D+η)k−5 − (D−η)k−5

]}
(A.47)

where, again, η =
√

D2 −4.

A.2 Schemes with Two Boundaries 44

Reparameterizing Ḿk, we find that:

Ḿk =



1
sinλ

[
(4cos2 λ −αβ)2 sin((k−3)λ)

+4γ cosλ (αβ −4cos2 λ))sin((k−4)λ)

+4γ2 cos2 λ sin((k−5)λ)
] if η2 < 0

1
sinλ

[
(4cosh2

λ −αβ)2 sinh((k−3)λ)

+4γ coshλ (αβ −4cosh2
λ))sinh((k−4)λ)

+4γ2 cosh2
λ sinh((k−5)λ)

] if η2 ≥ 0

(A.48)

We explore cofactor expansion of this scheme below. We can find several patterns in its cofactor

matrix. Consider the following matrix:

Ć =



u v v v · · · v′ v′ y′ z′

w x x x · · · x x y z

z y x x · · · x x y z
...

z y x x · · · x x y z

z y x x · · · x x x w

z′ y′ v′ v′ · · · v v v u



(A.49)

A.2 Schemes with Two Boundaries 45

where,

x = (−1)i+ jT́i−1−max(0,i− j)T́k− j−max(0,i− j) (A.50)

y = (−1)i+ jDγT́k−i (A.51)

z = (−1)i+ j
αγT́k−i (A.52)

u = (−1)i+ j(DT́k−2 − γT́k−3) (A.53)

v = (−1)i+ j
β T́k− j (A.54)

w = (−1)i+ j
αT́k−i (A.55)

v′ = (−1)i+ j
βḾ j−1 (A.56)

y′ = (−1)i+ jDβγ (A.57)

z′ = (−1)i+ j
αβγ (A.58)

(A.59)

if j ≤ ⌈k/2⌉. Where the T́k terms are determinants of general matrices explored in Section A.3.

It is worth noting that in the top row of the matrix, v continues on until j = ⌈k/2⌉, and then

j = ⌈k/2⌉+1 is v′. A similar transition occurs on the bottom row of the matrix.

Similar to the previous case, for computational purposes, it is more helpful to only compute

the cofactors for j ≤ ⌈k/2⌉. Due to the matrix’s 180-degree rotational symmetry, the cofactors for

j > ⌈k/2⌉ can be found using the relation

Ći, j = Ćk+1−i,k+1− j. (A.60)

A.3 Determinants of Partial Matrices 46

A.3 Determinants of Partial Matrices

Consider now the following k× k tridiagonal matrix for a compact finite difference scheme on the

boundaries:

T̂ =



D 1 0 0 · · · 0 0 0 0

1 D 1 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 1 D 1

0 0 0 0 · · · 0 γ β D



(A.61)

where D is a constant on the main diagonal, and β and γ are parameters found by solving the scheme

to the desired order.

We will refer to the determinant of this matrix as T̂k. Similarly to the M̂ case, we can show that

T̂k satisfies the following recursion relation:

T̂k = DMk−1 −βMk−2 + γMk−3 (A.62)

Through some simplifying, we can express T̂k as follows:

T̂k =
1
η

1
2k

{
D
[
(D+η)k − (D−η)k

]
(A.63)

−2β

[
(D+η)k−1 − (D−η)k−1

]
(A.64)

+4γ

[
(D+η)k−2 − (D−η)k−2

]}
(A.65)

where η =
√

D2 −4.

A.3 Determinants of Partial Matrices 47

Consider the following k× k tridiagonal matrix for a compact finite difference scheme on the

boundaries:

T =



D 1 0 0 · · · 0 0 0 0

1 D 1 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 β D β

0 0 0 0 · · · 0 0 α D



(A.66)

where D is a constant on the main diagonal, and α and β are parameters found by solving the

scheme to the desired order.

We will refer to the determinant of this matrix as T k. We find that T k satisfies the following

recursion relation:

T k = (D2 −αβ)Mk−2 −βDMk−3 (A.67)

Through some simplifying, we can express T k as follows:

T k =
1
η

1
2k−1

{
(D2 −αβ)

[
(D+η)k−1 − (D−η)k−1

]
(A.68)

−2βD
[
(D+η)k−2 − (D−η)k−2

]}
(A.69)

where, again, η =
√

D2 −4.

A.3 Determinants of Partial Matrices 48

Lastly, we consider the following k×k tridiagonal matrix for a compact finite difference scheme

on the boundaries:

T́ =



D 1 0 0 · · · 0 0 0 0

1 D 1 0 · · · 0 0 0 0

0 1 D 1 · · · 0 0 0 0
...

0 0 0 0 · · · 1 D 1 0

0 0 0 0 · · · 0 γ D β

0 0 0 0 · · · 0 0 α D



(A.70)

where D is a constant on the main diagonal, and α , β , and γ are parameters found by solving the

scheme to the desired order.

We will refer to the determinant of this matrix as T́k. We find that T́k satisfies the following

recursion relation:

T́k = (D2 −αβ)Mk−2 − γDMk−3 (A.71)

Through some simplifying, we can express T́k as follows:

T́k =
1
η

1
2k−1

{
(D2 −αβ)

[
(D+η)k−1 − (D−η)k−1

]
(A.72)

−2γD
[
(D+η)k−2 − (D−η)k−2

]}
(A.73)

where, again, η =
√

D2 −4.

Bibliography

[1] A. Dirkes, “Gravitational waves — A review on the theoretical foundations of gravitational

radiation,” International Journal of Modern Physics A 33, 1830013 (2018).

[2] T. eLISA Consortium et al., “The Gravitational Universe,”, 2013.

[3] F. Pretorius, “Evolution of Binary Black-Hole Spacetimes,” Physical Review Letters 95 (2005).

[4] J. Healy and C. O. Lousto, “Fourth RIT binary black hole simulations catalog: Extension to

eccentric orbits,” Physical Review D 105 (2022).

[5] T. Regimbau, M. Evans, N. Christensen, E. Katsavounidis, B. Sathyaprakash, and S. Vitale,

“Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-

Produced Stochastic Background,” Physical Review Letters 118 (2017).

[6] D. Ferguson, K. Jani, P. Laguna, and D. Shoemaker, “Assessing the readiness of numerical

relativity for LISA and 3G detectors,” Physical Review D 104 (2021).

[7] M. Fernando, D. Neilsen, Y. Zlochower, E. W. Hirschmann, and H. Sundar, “Massively parallel

simulations of binary black holes with Dendro-GR,”, 2022.

[8] M. Ishii, M. Fernando, K. Saurabh, B. Khara, B. Ganapathysubramanian, and H. Sundar,

“Solving PDEs in space-time: 4D tree-based adaptivity, mesh-free and matrix-free approaches,”

In Proceedings of the International Conference for High Performance Computing, Networking,

49

BIBLIOGRAPHY 50

Storage and Analysis, SC ’19 (Association for Computing Machinery, New York, NY, USA,

2019).

[9] J. G. Tyler, Master’s thesis, Brigham Young University, 2007.

[10] X. Zhao and C. Scalo, “A Compact-Finite-Difference-Based Numerical Framework for

Adaptive-Grid-Refinement Simulations of Vortex-Dominated Flows,” In , (2020).

[11] J. W. Kim, “Optimised boundary compact finite difference schemes for computational aeroa-

coustics,” Journal of Computational Physics 225, 995–1019 (2007).

[12] P. Brady and D. Livescu, “High-order, stable, and conservative boundary schemes for central

and compact finite differences,” Computers Fluids 183, 84–101 (2019).

[13] N. Sharan, P. T. Brady, and D. Livescu, “Time Stability of Strong Boundary Conditions in

Finite-Difference Schemes for Hyperbolic Systems,” SIAM Journal on Numerical Analysis

60, 1331–1362 (2022).

[14] M. Mehra and K. S. Patel, “Algorithm 986: A Suite of Compact Finite Difference Schemes,”

ACM Trans. Math. Softw. 44 (2017).

Index

Boundary Closure Scheme, 10

Compact Finite Difference (CFD), 4

Eigenvalue Spectra, 26
Explicit Scheme, 7

Gravitational Waves, 1

Implicit Scheme, 7
Interior Scheme, 8

Numerical Accuracy, 24
Numerical Stability, 26

Taylor Expansion, 8

51

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Future Black Hole Binary Models
	1.2 Compact Finite Differencing

	2 Methods
	2.1 Analytic CFD Operators
	2.1.1 Explicit vs. Implicit Schemes
	2.1.2 Interior Scheme Coefficients
	2.1.3 Boundary Scheme Coefficients
	2.1.4 Matrix Representations

	2.2 Spectral Function
	2.3 Filtering
	2.4 Generating Operators
	2.4.1 User Input
	2.4.2 Setting up Matrices
	2.4.3 Solving for Coefficients
	2.4.4 Output

	3 Results
	3.1 Accuracy
	3.2 Stability
	3.2.1 Eigenvalue Spectra

	3.3 CFDs and Filtering Solving Maxwell's Equations

	4 Discussion and Conclusions
	Appendix A Analytic Matrix Inverses
	A.1 No Boundary Condition
	A.2 Schemes with Two Boundaries
	A.3 Determinants of Partial Matrices

	Bibliography
	Index

