
  

 

 

 

NORMAL FREQUENCIES OF A STRING VIBRATING AT LARGE AMPLITUDES 

 

 

by 

David C. Ripplinger 

 

 

A senior thesis submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

 

Bachelor of Science 

 

 

Department of Physics and Astronomy 

Brigham Young University 

August 2009 



  

 

 

 

 

 

 

 

 

Copyright © 2009 David C. Ripplinger 

All Rights Reserved 





  

 

 

ABSTRACT 

 

NORMAL FREQUENCIES OF A STRING VIBRATING AT LARGE AMPLITUDES 

 

 

David C. Ripplinger 

Department of Physics and Astronomy 

Bachelor of Science 

 

Large displacement amplitudes in a freely vibrating string require that one con-

sider the dynamic tension of the string to determine the normal frequencies in-

stead of the commonly used equilibrium tension approximation. Large amplitudes 

can cause these frequencies to be significantly sharper. A theoretical model is pre-

sented to provide a more accurate approximation of the tension, which includes a 

correction term that is proportional to the total energy in the string. Experiments 

have been performed using a repeatable plucking mechanism on a monochord 

string apparatus. The motion of the plucked string was recorded for both vertical 

and horizontal displacements using a high speed camera. The instantaneous total 

energy in the string was then calculated as the string’s motion decayed, using the 

instantaneous frequency method and a narrow band-pass Bessel filter. A compari-

son is made between the model and the experimental results of the total energy in 

the string as a function of time. The data show that when a string is plucked at 

large displacement amplitudes the partial frequencies can be as much as 83 cents 

sharp relative to their stable frequency values. 
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I. Introduction 

In the field of musical acoustics, the study of string vibrations is a major area of interest, 

since many musical instruments employ strings. The low-amplitude displacement solu-

tion to a freely vibrating string fixed at both ends is well known and straightforward (see 

Section II). However, when the string’s displacement amplitudes become larger, the 

commonly used low-amplitude approximation is insufficient to accurately describe the 

normal modes of the string and their corresponding partial frequencies.  

Fletcher developed a theoretical expression to predict the partial frequencies of a pi-

ano string by including a fourth-order stiffness term in the differential equations of mo-

tion,
1
 but this correction was for low-amplitude displacement and is unrelated to the 

large-amplitude problem. Anderson and Strong determined the effect of Fletcher’s in-

harmonicity on the pitch of piano tones,
2
 but their work did not address large-amplitude 

displacements either. Other previous research has focused on studying nonlinear effects 

in the motion of a string. Morse and Ingard derived coupled differential equations that 

govern the motion of a string in three dimensions at large amplitudes.
3
 Anand then solved 

these equations (with damping) for the specific case of sinusoidal motion and demon-

strated that any point on the string traces a slowly decaying elliptical path at a frequency 

proportional to a given nonlinearity parameter.
4
 Bilbao, on the other hand, developed a 

numerical method to solve the equations that uses conservation of energy to achieve 

global stability for the algorithm.
5
 He also mentioned that the most noticeable nonlinear 

effect was an increase in gross propagation speed (directly related to the observed partial 

frequencies); however, he did not quantify this in terms of known values, such as energy. 

To date, nothing known to the author has been published that describes how the pitch, or 

the normal frequencies (or partials) of a string may be affected by larger amplitudes.   
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This work presents a theoretical model, adapted from Morse and Ingard, which de-

scribes the partial frequency correction due to large amplitudes. It then presents an ex-

periment to test the accuracy of the theory. The model is based on the idea that when the 

dynamic tension is approximated as a constant, it is more accurate to take the time and 

spatial averages instead of the more widely used equilibrium tension, which is its mini-

mum value over all space and time. This new approximation yields a correction term to 

the partial frequencies that is proportional to the total energy in the string. It will be 

shown in Section V that even moderate initial amplitudes in a vibrating string, commonly 

seen in musical performance, indeed lead to a deviation of several cents (hundredths of a 

semitone) from the low-amplitude partial frequencies. 

In conducting the experiment, the instantaneous frequency (IF) method is employed 

in order to track transient partial frequencies of the plucked string, since standard fast 

Fourier transform techniques yield insufficient frequency resolution over one period of 

the fundamental frequency. One of the first publications that introduced the concept of IF 

was authored by Carson and Fry in 1937.
6 

Several modifications were made in subse-

quent publications, leading to the various definitions of IF today. The definition used in 

this work was introduced by Ville.
7
 Boashash provided a comprehensive study on the na-

ture of the IF method, its historical development and its applications.
8,9

 Suzuki et. al. 

demonstrated the use of the IF method on frequency-modulated and amplitude-modulated 

sinusoids, from an analytical perspective.
10

 They also calculated the error introduced by 

the IF method at the onset of a finite sinusoidal signal, where the known frequency is 

over estimated by a factor of two. The IF method was further employed by Rossi and Gi-

rolami to study musical phenomena of piano tones, such as beats caused by two closely 

spaced partials.
11

 They used a narrow-band Gaussian filter over the partial frequency of 

interest, offering little explanation for this choice. There is no standard method of filter-

ing a signal before using the IF method; however, the experiments conducted in this work 

demonstrated that a Bessel filter used before computing the IF produced the most reliable 

results, accurately estimating known frequencies over almost the entire range of a signal, 
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including the critically important beginning portion (the attack). 

The prediction and high-resolution measurement of frequency drift is extremely use-

ful in better understanding the musical aspect of stringed instruments when plucked or 

struck hard, as well as in improving the science of tuning musical instruments.  
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II. Theoretical model 

Consider a freely vibrating string of length l , fixed at both ends. The forces that act on 

the string can be determined by analyzing Fig. 1, which shows a very small portion of the 

string with the opposing tensions acting on it. The net force may be expressed in terms of 

the Cartesian components x  and y , 

( ) θθθθ dTTdTFy ≈−+= sinsin ,       (1) 

    ( ) 0coscos ≈−+= θθθ TdTFx ,       (2) 

where T  is the tension, θ  is the angle between the tension vector and the horizontal axis 

on the left side of the string, and θθ d+  is the angle between the tension vector and the 

horizontal axis on the right side of the string. The tension is a function of x  and time ,t  

but for relatively low amplitudes, the oscillations in this function are small enough that it 

may be approximated as a constant value. It is well known that Eq. (1) leads to the linear 

wave equation, 

    
2

2
2

2

2

x

y
c

t

y

∂

∂
=

∂

∂
,           (3) 

where y  is the vertical displacement of the string, µTc =  is the transverse wave 

speed and µ  is the linear mass density of the string.
12

 The general solution to Eq. (3), 

along with the boundary conditions ( ) ( ) 0,,0 == tlyty , may be expressed as 
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FIG. 1.  Forces acting on a small section of a freely vibrating string. 

 

where n  is the index number of each normal mode and  na  and nφ  represent the ampli-

tude and phase, respectively. The latter are determined by initial conditions. The partial 

frequencies corresponding to the normal modes are then 

    
µ

ν
T

l

n

l

nc
n

22
== .          (5) 

Morse and Ingard
3
 claim that the dynamic tension is given by 

    ( ) 







−

∂

∂
+= 1, 0

x
QATtxT

R
,        (6) 

where 0T  is the equilibrium tension when the string is not in motion, Q  is the Young's 

modulus for the string material, A  is the cross-sectional area of the string, and R  is the 

position vector from the origin to the point on the string which was at ( )0 ,0 ,x  in equilib-

rium. This formula is generalized to three dimensions. It can be verified by geometrical 

arguments and application of Hooke's law for an ideal spring (see Appendix A). The con-

ventional solution to Eq. (3) approximates Eq. (6) by its zeroth order term 0T . However, 

the dynamic tension consists of small oscillations in x  and t  with a minimum value of 

0T . It is more precise to approximate Eq. (6) by its time and spatial averages. To calculate 
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the averages, we first approximate x∂∂R  to first order, assuming that longitudinal dis-

placement is much less than transverse displacement. Let ( )txx x ,reR += , where r  is 

the displacement vector from equilibrium, denoted as ( ) ( ) ( )
yx txtxtx eer ,,, ηξ +=  

( ) ztx e,ζ+ . Then 
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so that 
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and the averages are 
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where the double angular brackets indicate both time and spatial averages. It turns out 

that 

           

 

(10) 
 

where yE  and zE  are the energies for the respective dimensions of motion and E  is the 

total energy in the string (see Appendix B), so that 

 

,
0

22

lT

E

Tl

E

Tl

EE

xx

zy

xtxt

≈=

+
=









∂

∂
+









∂

∂ ζη



 

7 

 

 

























+=

lT

E

T

QA
TT

00

0
2

1
1 .        (11) 

Using Eq. (11) in Eq. (5), we find that large amplitudes cause the partial frequencies nν  

to deviate from their stable values )0(

nν  by the ratio 

    ε
ν

ν
+= 1

)0(

n

n ,           (12) 

where the correction parameter ( )( )lTETQA 002
1=ε  is proportional to the total energy in 

the string. 

 In musical acoustics, frequency deviations are often expressed in cents C  (100 cents 

is equal to a semitone interval in an equally tempered 12-tone scale). The shifted fre-

quencies differ from the stable values, in cents, according to 

               

 

(13) 

 

To get an idea of how significant a change can happen in practice due to ,ε  let us take a 

look at what it would take to produce a deviation of an entire semitone from the stable 

partial frequencies: 

    
( )

.12246.012

,1log600100

61

2

≈−=

+==

ε

εC
        (14) 

For piano strings, 5000 =TQA  is a typical value and the factor 4

0 104492.2 −×=lTE  is 

still rather small. If only the first partial is present, its amplitude would equal la 01.01 =  

(this is calculated using Eq. (B.4), in Appendix B). Thus, a significant, sometimes dra-
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matic, effect in many applied cases can be expected, such as is the case for several musi-

cal instruments. 
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III. Instantaneous frequency method 

If it were possible to have a freely vibrating string continue with the same amplitudes in-

definitely, we could simply observe the acoustic signal or the vibration of the string over 

a long period of time and obtain very high accuracy in the frequency domain, using a fast 

Fourier transform (FFT), for some known constant energy. But every real freely vibrating 

string is subject to damping forces, so the amplitudes must decrease over time. Therefore, 

in order to experimentally measure how the partials of a freely vibrating string depend on 

its total energy, it is necessary to track these partials with high resolution in both the time 

and frequency domains as the string decays. It is fundamentally impossible to obtain per-

fect resolution with 100% reliability in both domains simultaneously, due to the time-

frequency uncertainty principle. However, several methods in signal processing may be 

used to minimize this uncertainty for specific kinds of signals, or in order to extract a 

specific piece of information. 

 Conventionally, if one needed to measure the frequencies incorporated in a given 

signal, one would utilize the standard Fourier transform to convert the time data into the 

frequency domain. However, the Fourier transform itself has many limitations, especially 

for finite and digital signals. For example, using a discrete Fourier transform (DFT) or 

FFT, the frequency resolution, or bin width, is inversely proportional to the total length of 

the time record being processed. Specifically, 

    
T

1
=∆ν  ,            (15) 

where T  is the length of the record (in seconds) and ν∆  is the frequency bin width (in 

hertz). For example, if one needed to track a signal by taking the FFT every tenth of a 

second, frequency bins would be 10 Hz wide with an uncertainty of 10±  Hz. This makes 
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it very difficult to see how a transient signal shifts in frequencies over a short period of 

time. One may misunderstand that this bin width is the fundamental limit to the resolu-

tion one may obtain, due to the uncertainty principle, but it is a specific limit imposed by 

the nature of the algorithm. Other transformations or signal analyses can potentially ob-

tain higher resolution. Some variations of the FFT have been proposed, which attempt to 

better minimize uncertainty in the case of processing harmonic or musical signals. Piele-

meier and Wakefield introduced a modal distribution that has worked quite successfully 

on musical signals, which improves on the Wigner distribution by minimizing bias intro-

duced by unwanted cross products in the computation, thus enormously increasing the 

reliability of the method.
13

 However, the modal distribution still does not yield enough 

resolution for our purposes. On the other hand, the instantaneous frequency (IF) method 

inherently yields near-perfect resolution in time and frequency, yet may be highly suscep-

tible to bias errors from several sources, especially noise. We found that for our experi-

ment these biases could be controlled well enough to achieve good reliability along with 

the high resolution. 

 The IF method inherently has high resolution because of its very nature. It is mis-

leading to think of IF as a decomposition of a signal into its various sinusoids, as with the 

Fourier transform. To understand the difference, we remember that any signal ( )tf  may 

be expressed in analytic form as 

    ( ) ( ) ( )tietAtf φ= ,           (16) 

where A  and φ  are both functions of the independent variable (time in this case). The 

instantaneous frequency of ( )tf  is defined to be the time derivative of the phase φ  (di-

vided by ,2π  if expressed in Hz instead of radians). Thus, a FFT of a digital signal pro-

duces an output corresponding to the entire time of the signal and over a wide range of 

frequencies, with a resolution limited by the time length of the signal, whereas the IF of a 

digital signal produces a single output corresponding to each sample of the signal. There-

fore, the main disadvantage (for our purposes) of IF is that no matter how complex a sig-

nal may be, we can only read one “frequency” that depends on all the frequency content, 
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since IF gives the time derivative of the overall phase. This means that to successfully 

implement IF we must carefully employ an appropriate band-pass filter over the partial of 

interest in order to obtain a nearly sinusoidal signal. 

 The basic steps of obtaining the IF of a real digital signal, as given by Boashash,
8
 

are: 

1. Compute the Fourier transform of the signal. 

2. Set the negative and DC components equal to zero in order to make the sig-

nal analytic. 

3. Apply an appropriate band-pass filter, as necessary, in order to analyze a 

band-limited signal. 

4. Apply the inverse Fourier transform to the analytic frequency domain signal. 

5. Obtain the instantaneous phase from its real and imaginary components. 

6. Differentiate the instantaneous phase with respect to time and divide by .2π  

The only ambiguous step here is applying the band-pass filter. Rossi and Girolami ana-

lyzed the evolution of the amplitude and frequency of the different partials of decaying 

piano tones using IF.
11

 They proposed a Gaussian filter over the partial of interest, noting 

that it does produce artifacts in the attack portion of the signal. 

 Because we are especially interested in the attack portion of the recorded signal, we 

use a Bessel band-pass filter with the IF method to preserve the waveform of the band-

limited signal and increase reliability over the attack phase at the beginning of the signal, 

since this portion contains the greatest energy correction to the frequency. To determine 

the Bessel filter's reliability, a finite digital sinusoid was generated with a frequency of 

26.234 Hz, for a 10 second duration and sampled at 44.1 kHz. The IF of the same signal, 

but with the application of rectangular (in the frequency domain), Gaussian, and 5
th

 order 

Bessel filters, respectively, appear in Figs. 2 through 4. The cutoff frequencies are chosen 

to include nearly the entire width of the signal in the frequency domain. The rectangular 
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filter is included to see how susceptible the IF method can be to any distortion of the 

waveform. It is easily seen from Fig. 2 that the filter choice is critical to the accuracy of 

the IF. Over most of the time window, both the Gaussian filter and the Bessel filter pro-

vide extremely accurate IFs. However, the Bessel filter maintains its accuracy during the 

entire initial portion, whereas the Gaussian filter introduces a large bias for the first few 

tenths of a second. The Bessel filter introduces much more bias during the last second 

than does the Gaussian, but for decaying tones this portion can be ignored. 

 

 

FIG. 2.  The instantaneous frequency of a sinusoid (26.234 Hz), using a rectangular filter (in the frequency 

domain). The dashed line marks 26.234 Hz. 
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FIG. 3.  The instantaneous frequency of a sinusoid (26.234 Hz), using a Gaussian filter. The dashed line 

marks 26.234 Hz. 

 

 

FIG. 4.  The instantaneous frequency of a sinusoid (26.234 Hz), using a Bessel filter. The dashed line 

marks 26.234 Hz.  
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IV. Experiment 

It is not necessary to measure the displacement of a freely vibrating string across its en-

tire length in order to determine its total energy. The following mathematical argument 

shows that only the velocity and slope of a single point on the string is sufficient (though 

to obtain the slope, one must observe the neighboring points), as long as the decay is not 

extremely rapid. Morse and Ingard show that the total energy in the string E , due to its 

vertical motion, is given by
3
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Since we know the solution ( )txy , , we can evaluate Eq. (17) as follows: 
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Before evaluating the integral in Eq. (17) further, we assume that the energy density (giv-

en by the integrand) is the same over one period of oscillation as over any other period of 

oscillation. This assumption is also valid for the case of a slowly decaying signal, such as 

those measured in the experiment presented in this section, since the energy is approxi-

mately constant over the range of a few oscillations. This permits us to take a time aver-

age over the integrand. Time averaging over the cross terms in Eqs. (18) and (19) 

amounts to zero, and over the squared cosines it yields .21  Remembering that 

,2 µTc =  we find that 
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and 

     

 

 

(21) 

 

which is constant in x , and can be pulled out of the integral in Eq. (17). Evaluating the 

integral then simply produces an ,l  and the total energy is the same for any value of ,x  

as long as it is time averaged over one period. Therefore, we are able to calculate the en-

ergy, after measuring the slope and displacement of a very small section of the string, ac-

cording to the formula 
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 To measure both the IF and the total energy in a freely vibrating string, Röslau piano 

wire was strung across a monochord apparatus and high speed video was taken of a small 

portion of the string during and after the pluck. An acoustic recording of the plucked 

string sound was made simultaneously during one of the tests. Figure 5 shows a photo-

graph of the experimental setup, and Fig. 6 shows a simple two-dimensional schematic of 

the experimental setup. The camera recorded 7.2 seconds of data at 9000 frames per sec-

ond (fps) for each trial, while it was positioned at about 1/10 the speaking length from the 

left termination point. It had a window of height 12 mm and width 1.5 mm (512 x 64 pix-

els, grayscale). The position scaling of the video frames was determined by the known 

diameter of the string (0.94 mm) in the picture. The plucking mechanism consisted of a 

rod which slid through a tight aperture fastened to the base of the monochord apparatus. 

The rod (1 cm diameter) was positioned so that the string was initially stretched under-

neath the edge of the rod, and then it was pulled out quickly to pluck the string. The high 

speed camera recording was started shortly before the pluck. The string was initially dis-

placed 1 cm (the diameter of the rod) from equilibrium at a point a little beyond 1/6 the 

speaking length from the termination point on the right. 
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FIG. 5.  Experimental setup for a high speed video recording of a plucked piano string on a monochord. 

 

FIG. 6.  Schematic of the experimental setup for a high speed video recording of a plucked piano string on 

a monochord. 

 

 The Röslau piano wire was made of steel with a density of 8 g/cm
3
 and a Young's 

modulus of 206 GPa (as reported by the manufacturer). The diameter was measured to be 

0.94 mm. The string was stretched to a speaking length of 77.5 cm and an equilibrium 

tension of approximately 340 N. This last value was calculated using Eq. (5) and measur-

ing the low-amplitude fundamental frequency at 159.6 Hz. The string was plucked hard 

several times and allowed to settle over a few days in order to stabilize the tension before 

making any recordings or determining the above-mentioned physical quantities. 
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 Six video recordings were made in total, the first four to capture vertical motion and 

the last two to capture horizontal motion (by laying the apparatus on its side). Both axes 

of motion were necessary in calculating the total energy, since some horizontal motion 

was inevitable. Because we could not simultaneously record both axes of motion, we in-

stead determined how repeatable the pluck was, so that a successive pluck could be 

treated as if it were the same, once the apparatus was tilted to get horizontal motion. It 

will be shown later that the repeatability of the pluck was very good for our purposes. 

During the fourth recording (Test 4), an acoustic recording was also made, using a 1/2-

inch condenser ICP microphone positioned within the horizontal plane of the string, at 

approximately a 45° angle to the length of the string, and 1.5 m from the left termination 

point. The environment in which the recording was made was hemi-anechoic, but with 

several other objects in the room that had reflecting surfaces, and with significant back-

ground noise, mostly from the backlights for use with the video recordings. The acoustic 

recording served as a verification that the IFs of the partials were the same, whether it 

was measured acoustically or directly from the video. 

 The video was exported as JPEG images and post-processed in MATLAB. The color 

map was converted from grayscale to jet, for viewing purposes. The slope and position of 

the string in a given frame was calculated by scanning each column for a cutoff color in-

tensity that best described the top and bottom edges of the string. The positions of these 

pixels were then fitted to a line, in the least-squares sense, for both the top and bottom 

edges separately. The displacement of the string was then chosen as the average dis-

placement between the midpoints of the two edges of the string, and the slope was deter-

mined as the average of the edges’ slopes. Because the camera was not perfectly centered 

vertically on the string, it was necessary to calibrate both the slope and displacement to 

equilibrium by using the average values of these over the last 100 oscillations (during 

low-amplitude vibration where the displacement should average to zero). The displace-

ment velocity was then calculated by using the center difference formula for the deriva-

tive of a digitized signal ,y  
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where n  denotes the sample number and t∆  is the sampling period. 

Figure 7 shows the first several frames after excitation for Test 4. As is evident from 

the figure, the faster string movement yields blurrier images, so it is necessary to verify 

the reliability of the calculated edges. A close-up of one of the blurriest frame images is 

shown in Fig. 8, along with the raw extraction data (blue dots) and the linear fits (black 

lines) for the string edges. Two questions arise in considering the reliability of the data 

extraction: (1) how good are the linear fits, and (2) how much do the slopes of the top and 

bottom edges differ? The linear fits are very good over all frames of the 6 tests, with the 

average standard deviation of the data from the fits being 0.02230 pixels and the maxi-

mum being 0.24085, so that the reliability of the linear fits lies well within the limits of 

our 1 pixel resolution. On the other hand, the differences in slope between the top and 

bottom edges are a bit high. We choose 1/64=0.01563 as our resolution limit for the slope 

(since we can count across 64 pixels and up 1, and still detect a slope). The average dif-

ference in slope for all 6 tests is 0.01025, which is within our slope resolution limit, but 

there are many frames with much greater differences, 0.19020 being the highest. See Fig. 

8 for example—not only are the slopes of the edges different, but one edge is distinctly 

positive while the other edge is distinctly negative. For these blurry images, this discrep-

ancy in the two slopes is most likely due to the fact that, just like the displacement, the 

slope is also changing significantly over the period it takes to capture the frame. This is 

why Fig. 8 is blurrier on the left side than on the right, since the right side of the string 

moved a greater distance than the left side over that amount of time. Therefore, it makes 

sense that even with somewhat different slopes for the two edges, their average would be 

representative of the center of the string. Thus, the edge extraction is adequately reliable 

for calculating the velocity and slope of the string from video. 



 

20 

 

 

 

 

FIG. 7.  Frames 6511 to 6530 of Test 4 video at 9000 fps, immediately after excitation of the string. 

 

 

FIG. 8.  Close-up of frame 6514 of Test 4 (a) by itself, and (b) with raw data (blue dots) and linear fits 

(black lines) for the top and bottom edges of the string. 
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V. Results 

Before comparing the experimental measurements of the frequencies to the theoretical 

predictions, it is first necessary to verify the repeatability of the pluck so that we can add 

horizontal and vertical energies together, even though they were measured in different 

recordings. Figures 9 and 10 show the first few oscillations of the vertical and the hori-

zontal displacements versus time for each test, respectively. Figures 11 and 12 then show 

the same respective plots, but approximately one second later. The plots reveal that the 

different tests start out almost exactly the same, but are out of phase later on. However, at 

this later point in time, the vertical tests still hold similar shapes, while the horizontal 

tests do to some degree. Since we are only concerned with the energy (averaged over 

each period) being the same for each test for a given direction of motion, phase mismatch 

should not result in any significant disagreement. 
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FIG. 9.  The first few oscillations of vertical motion of the string for Tests 1-4.  

 

 

FIG. 10.  The first few oscillations of horizontal motion of the string for Tests 5 and 6.  
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FIG. 11.  A few oscillations of vertical motion of the string for Tests 1 through 4 about 1 second after exci-

tation.  

 

 

 

FIG. 12.  A few oscillations of horizontal motion of the string for Tests 5 and 6 about 1 second after excita-

tion.  
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 We can evaluate the energy correlation between the different tests directly. The di-

mensionless parameter lTE 0  is plotted for the several tests in Figs. 13 and 14, for verti-

cal and horizontal motion, respectively. The energy for Test 1 is slightly greater than that 

of Tests 2, 3 and 4, but not enough to be a concern. Tests 5 and 6 are also relatively close. 

To quantify the correlation, we compare standard deviations between the energies of each 

test with the maximum energy observed, 4

0max 101.6 −×=lTE . The maximum difference 

between any two tests of the same direction of motion is found to be 510273.8 −× , and the 

maximum standard deviation is 5

max 10367.1 −×=σ . If Test 1 is thrown out, the maximum 

difference is 510057.6 −×  and the maximum standard deviation 6

max 10536.7 −×=σ . 

Comparing this last number to the maximum energy observed, 0124.0maxmax =Eσ , 

which represents very high correlation. 

 

 

 

FIG. 13 The energy in the string (divided by lT0
) versus time for Tests 1-4 (vertical motion).  
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FIG. 14 The energy in the string (divided by lT0
) versus time for Tests 5 and 6 (horizontal motion).  

 

It is reasonable to assume that the IF measured from the acoustic signal is the same 

as that measured directly from the string displacement taken from the video. The primary 

differences would arise from noise. To verify this, we compare the audio and video IF for 

Test 4, partials 1 and 5 in Figs. 15 and 16, respectively. These figures demonstrate that 

the audio signal is much noisier (fan noise from the back lights, etc.), which severely dis-

torts its IF. The video IF clearly represents the same signal, only with very little noise. 

Similar results are observed for other partials. Thus, we use the video IF when comparing 

the measurements to the theoretical model. 
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FIG. 15.  Comparison of audio and video instantaneous frequencies for the fundamental (1st partial).  

 

 

FIG. 16.  Comparison of audio and video instantaneous frequencies for the 5th partial.  
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We now compare the measured IF with the predicted values dependent on the total 

energy in the string (as explained in Section II). To calculate the total energy, we add the 

measured energies of Test 4 (vertical motion) and Test 5 (horizontal motion) and average 

over each 6.26566 ms (approximately one period). To obtain the measured frequency 

drift, we convert the absolute IFs to cents. This requires an estimate of the stable frequen-

cies; however, there was always some amount of energy in the string throughout the test, 

as it was not allowed to vibrate indefinitely until it came to rest during the recording. This 

yields some deviation from the equilibrium frequencies in the theoretical model at low 

amplitudes. Thus, we choose the stable frequencies corresponding to the IFs of the par-

tials for optimal agreement with the model at the tail end of the recorded signal. 

Figure 17 plots partials 1 through 8 in cents next to the theoretical model, using input 

from the energy measurements. The partials deviate from their stable values very simi-

larly to each other. This would be expected since, according to the theory, the deviation 

should not have any dependence on the partial number. At later times in the recording, 

below about 20 cents, the model data agrees very well with the measured partial frequen-

cies, but at higher amplitudes in the attack phase of the signal the model data overshoots 

by as much as 29% of the measured partial frequencies. In order to better see how much 

the model data deviates, Fig. 18 shows the difference in cents between the 1
st
 partial and 

the model’s prediction. Here, we can see that even in the range between about 20 and 40 

cents (from 0.5 to 1 s on the time axis), the model is still only about 5 cents sharp relative 

to the measured values. Thus the model predicts the change in frequency fairly accurately 

except for very large vibration amplitudes. 
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FIG. 17.  The instantaneous frequencies (in cents) of partials 1 through 8 of Test 4 plotted against the 

model prediction based on energies measured from Test 4 (vertical motion) and Test 5 (horizontal motion). 

 

 

FIG. 18.  Difference (in cents) between the instantaneous frequency of the fundamental (1
st
 partial) and the 

model prediction based on energies measured from Test 4 (vertical motion) and Test 5 (horizontal motion). 
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VI. Conclusions 

The theoretical model proposed in this work introduced a correction to the normal fre-

quencies (partials) of a freely vibrating string, derived from the second-order wave equa-

tion, that is proportional to the total energy in the string. The model employed time and 

spatial averages of the dynamic tension, instead of the commonly used equilibrium ten-

sion, and showed that these averages produce a correction term that is proportional to the 

total energy in the string. To test the model, a high speed video recording was made of a 

vibrating string, from which the IFs of the partials were extracted (using a band-pass Bes-

sel filter for each partial) and also the total energy of the string, both as functions of time. 

The Bessel filter was chosen in conjunction with the IF method based on the IF measured 

for a finite sinusoid of known frequency, using the Bessel filter and others for compari-

son. As long as the noise level was low (as was the case for the first several partials ex-

tracted from the video), the IF method with the Bessel filter proved to be very reliable. 

The total energy was calculated by extracting the slope and velocity of a small portion of 

the string, giving the total energy density at that point, which was then averaged over 

each period of oscillation. This time averaged energy density produced a uniform value 

over the entire length of the string. This method of measuring the energy made it possible 

to get high resolution on a very small portion of the string, rather than capturing video of 

the entire length of the string. 

 The comparison of results showed that the partial frequencies indeed are much 

sharper at higher displacement amplitudes, and the theoretical model accurately predicts 

this correction up to about 40 cents. Beyond this, the model overshoots somewhat signifi-

cantly. The measured IFs of the partials deviated as much as 83 cents at the beginning of 

the pluck, almost an entire semitone, where the string was initially displaced by only 

about 1 cm at the position of the plucker. Smaller initial displacements can cause a 
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string’s partial frequencies to deviate by a few cents, which is detectable by the human 

ear and can significantly affect the tuning of musical instruments. 

More rigorous methods for extracting the energy in the string may be necessary in 

order to more accurately form the theoretical model. Further research into the problem of 

a string vibrating at large amplitudes may look into the effect the dynamic tension has on 

the differential equation when it is not approximated as a constant. Also, including 

Fletcher’s fourth-order term in the differential equation may produce a more accurate 

model. These investigations could lead to higher-order corrections to the frequencies that 

are valid at very large amplitudes. Finally, further research into the effect of mode cou-

pling and multiple-string coupling on normal frequencies may prove to be useful in ap-

plication to real musical instruments. 
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Appendix A: Derivation of dynamic tension 

Consider a small portion of a free vibrating string similar to that shown in Fig. 1. Hooke's 

law states that the tension is 

    l
dl

QA
T ∆=

0

,            (A.1) 

where Q  is Young’s modulus, A  is the cross-sectional area of the wire, 0dl  is the natural 

string length under zero tension and l∆  is the change in length under tension ,T  assum-

ing any change in A  is negligible. Let the piece of string have length dx  under equilib-

rium tension .0T  Then 
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from which we find that 
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When in motion, the two ends of the piece of string are now located at ( )ζηξ   p ,,1 += x  

and ( )ζζηηξξ ddddxx +++++=   p ,,2 , and its length is given by 
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where ( )
zyxtx eeer ζηξ ++=,  is the three-dimensional displacement vector from equilib-

rium. The length dl  can also be expressed in terms of the position vector 
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( ) ( )txxtx x ,, reR += , 
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,            (A.5) 

Substituting Eq. (A.5) into Eq. (A.1), and making use of Eq. (A.3), the dynamic tension is 
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In practice, QAT <<0 , and Morse and Ingard’s formula
3
 is confirmed: 
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Appendix B: Introducing energy into the tension formula 

Eq. (10) claims that 
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for a given transverse dimension ,y  where E  is the energy (kinetic plus potential) in the 

string due to that dimension, T  is the tension, l  is the string length and the angular 

brackets denote time and spatial averages. This result is obtained by simply performing 

operations on the solution to the wave equation: 
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In Eq. (B.2), the first sum consists of the squared terms and the double sum consists of 

the cross terms. Taking the average with respect to time and space amounts to zero for 

the cross terms (since they are products of orthogonal functions) and each cosine squared 

in the first sum produces a ;21  therefore, 

( )

( )( ) ( ) ( ) ( ) ( )∑∑

∑

∑

∑

∞

=

∞

≠

=

∞

=

∞

=

∞

=

−−+









−
















=









∂

∂









−








=

∂

∂









−








=

1 1

2

1

2

22

1

1

coscoscoscos

coscos

coscos

cossin,

n

nm

m
nl

ctn
ml

ctm
l
xn

l
xm

l

an

l

am

n

n

n

n

n

n

n

n

n

nm

l

ctn

l

xn

l

an

x

y

l

ctn

l

xn

l

an

x

y

l

ctn

l

xn
atxy

φφ

φ
πππ

φ
πππ

φ
ππ

ππππππ



 

36 

 

    ∑
∞

=









=









∂

∂

1

22

2n

n

xt
l

an

x

y π
.        (B.3) 

 On the other hand, the total energy is found by integrating over the kinetic and po-

tential energy densities: 

    ∫ 





















∂

∂
+









∂

∂
=

l

dx
x

y
T

t

y
E

 

 0

22

2

1

2

1
µ . 

This works out to be
3
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Combining Eqs. (B.3) and (B.4), 
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