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ABSTRACT

AN OBJECT-ORIENTED FRAMEWORK FOR EXPERIMENTAL CONTROL

IN THE COLTON SPIN DYNAMICS LABORATORY

Stephen H. Brown

Department of Physics and Astronomy

Bachelor of Science

This project describes computer software that helps perform spin dynamics

experiments by automating data collection and instrument control in the lab-

oratory. In this report, we review several types of spin dynamics experiments

and outline their needs for computer automation. We rewrote an existing data

collection application of about 15,000 lines of code using an object-oriented

programming paradigm. We developed object class abstractions and interfaces

that together form a uni�ed framework for laboratory instrument automation.

The new object-oriented implementation is intended to make the application

more expandable, robust, and e�cient. It enables new types of experiments to

be performed that were not possible with the previous version of the software.
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Chapter 1

Background

1.1 Introduction

The burgeoning �eld of spintronics promises to vastly improve our computer and

communication systems by exploiting the spin properties of the electron. However,

great challenges remain to control, maintain, and measure the spin states of spintronic

systems. Much research is devoted to �nding ever better ways to maintain coherence

of spin states and reliably control and probe the spin states of these systems. Due

to the short timescales involved in spin-state manipulation and the fragility of the

spintronic system, precise computer control of equipment is crucial for successful

research.

The Colton Lab performs spintronics experiments on semiconductors such as gal-

lium arsenide (GaAs), and these experiments fall into several basic categories. One

type of experiment, photoluminescence, excites the electrons in the semiconductor to

reveal optical transitions. Another experiment, electron spin resonance, induces tran-

sitions that reveal the lifetime of spin states as well as the semiconductor's g-factor.

Further, pump-probe experiments alternately inject and detect spin states, which can

1



2 Chapter 1 Background

also reveal the lifetime of the spin states in the semiconductor. What follows is a brief

description of the theory and practice of each of these experiments.

1.2 Experiments

1.2.1 Photoluminescence

In a photoluminescence experiment, a laser beam shines on a semiconductor sample

to induce its valence band1 electrons to transition to a higher energy level in

its conduction band. The electrons will eventually transition back down to the

valence band, emitting photons with energies that make up for the di�erence between

the two energy levels. By collecting and studying this photoluminescence, one

can deduce the energy states within the material.

A spectrometer uses a di�raction grating to separate the photoluminescence into

its constituent wavelength bands. Then, by varying which wavelength reaches the

output of the spectrometer, and recording the light intensity at that output with a

detector, one can create a graph of the spectrum of the emitted light.

A computer can automate this experiment by controlling a spectrometer's wave-

length while collecting data from the detector, which could be, for example, a pho-

todiode connected to a lock-in ampli�er or a photomultiplier tube connected to a

photon counter.

1Throughout this document, terms in small caps are de�ned in the Glossary on page 67.
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1.2.2 Electron Spin Resonance / Optically Detected Magnetic

Resonance

Electrons and photons carry quantized units of angular momentum called spin; quan-

tum mechanics restricts these quanta to ± half-integer units for electrons, and ±1

unit for photons. A photon's spin determines whether its optical circular polarization

is right-handed or left-handed. Since nature requires that all interactions conserve

angular momentum, if we know the spin state of a system before an electron-photon

interaction, we can determine its spin state afterward as well.

In most bulk III-V semiconductors, such as GaAs, electrons in the top of the

valence band have spins of −3
2
, −1

2
, 1

2
, or 3

2
. Conversely, electrons in the bottom of

the conduction band have spins of −1
2
or 1

2
.2 These available spin states determine

the possible transitions. For example, when a photon with spin +1 excites an electron

in the the −3
2V B

state, the electron can go to the −1
2CB

state; if the electron is in the

−1
2V B

state, it can go to the 1
2CB

state.

One might think that the electrons �ll in the −1
2CB

and 1
2CB

states in equal

amounts. However, due to the nature of the material, the −3
2V B
7→ −1

2CB
transition

is much more likely than the −1
2V B

7→ 1
2CB

transition by a 3:1 ratio (see �gure

1.1a). By exciting the material in this way, one can create an excess population of

electrons in the −1
2CB

state. When many of a material's electrons are in the same

spin state, we call it spin-polarized (not to be confused with optical polarization

of light).

In the reverse case, when an electron drops down from the conduction to the

valence band, it emits a photon with spin -1 or +1, which is right- or left-circularly

polarized light (see �gure 1.1b). The same 3:1 ratio applies, so electrons in the −1
2CB

2It is assumed for the sake of discussion that − 1
2CB

is a lower energy state than 1
2CB

, although

in some materials the reverse is true.
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state will be more likely to drop down to the −3
2V B

state (emitting a +1 photon)

than to the 1
2V B

state (emitting a -1 photon). Thus, this photoluminescence

polarization indicates the spin states of the excited electrons.

Normally, electrons in di�erent spin states have identical degenerate energies.

However, when a paramagnetic material (like GaAs) is placed in a uniform magnetic

�eld, the energies of its electrons' spin states split into distinct levels. The Zeeman

e�ect describes the energy di�erence E between these spin states:

E = gµBB (1.1)

where g (the �g-factor�) is a constant that depends on the material, µB is the Bohr

magneton, and B is the applied magnetic �eld's strength.

At typical laboratory �elds (1 T) the energy levels for GaAs di�er by f =

E
h
≈ 6 GHz, which is in the microwave band. The basis of an electron spin res-

onance (ESR) experiment is to excite electrons into the conduction band, induce

transitions between conduction band spin states by applying the requisite microwave

energy, and to observe the e�ects (see �gure 1.1c). This enables a scientist to control

and study the spin states of the material [1].

1.2.2.1 Initialization

The materials being studied contain extra (�doped�) electrons, so that there are elec-

trons in or near the CB even in the absence of light. The �rst step in the experiment

is to initialize all (or, in practice, just an observable fraction) of the doped electrons

into the same spin state in the conduction band. There are two ways to do this. The

�rst is through optical pumping with a circularly polarized laser. The laser can

induce transitions from the valence band to the conduction band and populates elec-

trons in the −1
2CB

state (see �gure 1.1a). If an appreciable number of spin-polarized
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CB

+3/2

+1/2
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A
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B
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C

Figure 1.1 Electron spin state transitions in GaAs. A magnetic �eld splits
the valence band (VB) and conduction band (CB) into spin-related energy
levels.
(a) Photons at optical frequencies can excite electrons from the VB into the
CB. In GaAs, the −3

2V B
7→ −1

2CB
transition is preferred when photons with

spin +1 are used.
(b) CB electrons drop down to the VB, emitting optical photons with spin +1
or -1. If electrons are spin-polarized in the −1

2CB
state, only two transitions

are possible. In GaAs, the −1
2CB
7→ −3

2V B
transition is preferred.

(c) Photons at microwave frequencies induce transitions between CB spin
states.
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electrons are optically injected into the CB, they interact with and spin-polarize the

doped electrons via �spin exchange.�

The second method to initialize the spin states is through thermal effects.

When the material is cooled down to very low temperatures (≈1.5 K) and placed in a

strong enough magnetic �eld (≥1 T for GaAs), ambient thermal energy (kBT ) in the

material is small enough that it is comparable to the spin splitting energy (gµBB).

Under these conditions, electrons already in the conduction band begin to accumulate

in the −1
2CB

state. While optical pumping can be used to populate electrons into

either CB spin state, thermal e�ects can only be used to initialize the electrons into

the lower energy state.

1.2.2.2 Spin Resonance

After the spin states have been initialized to have an excess population in the desired

spin state, application of microwave energy (at the correct resonant frequency) will

induce transitions between the two spin states and cause the spin populations to even

out (see �gure 1.1c).

Since this resonant frequency depends on the magnetic �eld B, resonance can be

attained by either varying the frequency while holding the magnetic �eld constant, or

varying the �eld while holding the frequency constant. Typically the latter method is

preferred, as resonant microwave cavities are frequently employed to strengthen the

microwave �eld for one particular frequency.

Detecting and comparing the spin populations at the initialization and resonance

phases will indicate if the resonance condition has been achieved.
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1.2.2.3 Detection Through Kerr Rotation

The magneto-optical Kerr e�ect describes the change in optical polarization of a re-

�ected beam of light when it re�ects from a magnetized material's surface. Because

the spin-polarization of a material behaves like a magnetization, the Kerr e�ect en-

ables one to detect the spin states of a material [2].

In this detection scheme, a probe laser beam, linearly polarized, re�ects from the

sample while the magnetic �eld is varied, and a detector notes the beam's changing

polarization due to the Kerr e�ect. The change in the laser's optical polarization

indicates a change in the surface magnetization, and hence spin-polarization, of the

material.

In an example experimental setup, the microwave energy turns on and o� at a

�xed interval to provide a reference signal. The re�ected laser beam passes through

a polarizing beam splitter, and a balanced detector compares its polarization compo-

nents. A lock-in ampli�er, referenced to the �chopped� microwave signal, then takes

data from this detector.

Reference [3] describes an experiment that used thermal polarization and Kerr

rotation detection to perform electron spin resonance.

1.2.2.4 Detection Through Photoluminescence Polarization

As described above, if a laser optically injects spin-polarized electrons into the CB,

the doped electrons become spin-polarized via spin exchange. Then, the electrons will

emit circularly polarized light as they drop down to lower VB states (see �gure 1.1b).

However, after the electrons are spin-polarized into one state, the microwave energy

causes resonance that destroys this spin-polarization. Thus the spin-polarization

of the material can be monitored by measuring the photoluminescence polarization

produced in response to a probe beam [1].
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In this experiment, a circularly polarized laser beam (at a �xed wavelength) ex-

cites the material while the magnetic �eld is varied, and a detector measures the

polarization of light emitted from the material. Any decrease in photoluminescence

polarization indicates spin resonance has been achieved.

In both detection methods, a computer can automate the magnetic �eld sweep

while collecting data from the detector, typically a photon counter acting synchronously

with an optical retarder.

References [5] and [6] describe experiments that used optical pumping and pho-

toluminescence polarization to perform electron spin resonance.

1.2.2.5 Analysis

Two quantities of interest to research are immediately evident from a graph of relative

spin-polarization versus magnetic �eld strength (see �gure 1.2). The magnetic �eld

at the peak on this graph indicates the material's g-factor:

g =
hνmicrowave

µBBresonant

(1.2)

The energy-time uncertainty principle, ∆E∆t ≥ ~
2
, implies that the half-width of

this peak (at half-maximum) limits the relative lifetime �T ∗
2 � of the spin states [5]:

(T ∗
2 )−1 ≤ gµB4Bhwhm

~
(1.3)

1.2.3 Pump-Probe Spin Lifetime Measurements

1.2.3.1 Photoluminescence Polarization

There are many ways to measure the lifetime of a system of spin-polarized electrons.

In this experiment, a semiconductor sample is cooled down to liquid helium temper-

atures and placed in a �xed magnetic �eld so its spin states split into two distinct

energy levels.
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Figure 1.2 GaAs electron spin resonance detected via Kerr rotation, from
reference [3]. Two materials are shown: a quantum well (QW) sample and
a bulk GaAs semiconductor. The optically-detected magnetic resonance
(ODMR) signal indicates the relative spin-polarization as a function of mag-
netic �eld and the denoted microwave frequency. The di�ering resonant peaks
demonstrate the di�erent g-factors of the two materials.

B Field

BA

Figure 1.3 Bloch spheres, with an external magnetic �eld pointing up.
(a) Spin aligned parallel to �eld. (b) Spin aligned perpendicular to �eld.

Figure 1.4 Pump-probe laser beam, from reference [4].
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A circularly polarized laser, pulsed at speci�c intervals, alternately injects and

detects spin-polarization in the material. A �pump� laser pulse �rst spin-polarizes

the doped electrons parallel to the magnetic �eld (see �gure 1.3a).

Then another �probe� pulse excites the electrons, after which they drop down

and emit circularly polarized light. These pulses are produced electronically from

a single laser beam (using, e.g., an optical modulator) so that the spacing between

pulses can be on the order of microseconds (see �gure 1.4). Since some electrons lose

their spin-polarization during the delay between the pump and probe pulses, one can

increase this delay until the probe pulse detects little remaining spin-polarization.

This technique can reveal the longitudinal lifetime �T1� of the spin states.

In this experiment, the delay between pump and probe pulses is varied and a

detector records the emissions. As explained in section 1.2.2.4, the emitted light indi-

cates the spin-polarization of the material; how much remains reveals the spin decay

lifetime of the material. A computer can automate this experiment by controlling the

laser pulses while recording data from a detector.

1.2.3.2 Time-Resolved Kerr Rotation

Another pump-probe experiment is time-resolved Kerr rotation. In this ex-

periment, again the sample is cooled and placed in a �xed magnetic �eld. This time,

a circularly polarized pump pulse aligns the spins perpendicular to the magnetic �eld

(see �gure 1.3b). In this way, the electrons are not in eigenstates, and instead their

spins precess about the axis of the magnetic �eld.

In this method, a single pulsed laser beam is used, split into two unequal halves.

The �rst beam pumps the material with circularly polarized light pulses. Since pulsed

lasers typically cannot have arbitrary pulse intervals, a mechanical �translation stage�

forces the second pulse to travel a longer distance, and thus it arrives at the sample
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after the �rst pulse. In this way, one can obtain arbitrary pump-probe delay times

on the order of nanoseconds.

The second beam probes the spin-polarization with linearly polarized light pulses.

This enables detection of the transverse spin states by the same method of Kerr

rotation as described above. Again, with a longer pump-probe pulse interval, more

electrons lose their spin-polarization.

In this experiment, the translation stage moves to vary the pulse interval while a

detector records the re�ected probe pulse's change in optical polarization due to Kerr

rotation. This indicates the spin-polarization left in the material. A computer can

automate the movement of the translation stage while recording the polarization of

the re�ected laser beam.

Correlating the pump-probe delay with this relative spin-polarization produces an

oscillating graph that exponentially decays. The period of oscillation indicates the

material's g-factor, and the time constant of the decay curve envelope indicates the

transverse lifetime �T ∗
2 � of its spin states.

1.3 Computer Control

BYU's spin dynamics research laboratory, under the direction of Dr. John Colton,

employs a LabVIEW application platform to collect data from multiple sources and

automate control of laboratory instruments during the aforementioned experiments.

This software, called the Colton Lab Scan Software, comprises the equivalent

of over 15,000 lines of source code and is a critical tool in the study of spin dynamics.
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1.3.1 What is the Problem?

The platform has undergone many iterations and bug �xes since its creation in 2005.

The �rst version of the software was intended to monitor a photon counter while

sweeping over a magnetic �eld. It was very limited in scope and intended for tempo-

rary use.

This code gradually expanded beyond its original purpose to perform many other

types of experiments as the need arose. New code was added over the years in an

ad-hoc manner without addressing its design. The code base gradually entered a state

of �spaghetti code� since it was being adapted far beyond its original intent.

The design of the original code base had become so cluttered that it became harder

and harder to add features. In particular, the original software had no capability to

perform time-resolved Kerr rotation (section 1.2.3.2), and the search for a way to

seamlessly integrate this type of experiment revealed that rewriting the code base

was the only feasible way to proceed.

1.3.2 Goals

The purpose of this project was to �clean up� the code base using a planned design

and widely accepted programming conventions. The process aimed to create com-

ponent abstractions (such as generic handlers for arbitrary instruments), develop a

framework, and rewrite the entire code base on top of this framework. It was also

necessary to avoid major changes all at once so as not to disrupt daily operations.

Carefully rewriting the code base had three major bene�ts. Largely motivating

this project was its ability to enable experiments not possible with the original soft-

ware, such as time-resolved Kerr rotation (section 1.2.3.2), as well as many others. It

enabled the addition of many new features and conveniences (section 3.2). Hopefully,
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it will also ensure the software remains maintainable and expandable for many more

years.

1.3.3 LabVIEW

LabVIEW is a commercial C-like programming language coupled with a rapid ap-

plication development environment. Its graphical �G� programming language and

intuitive integrated development environment let novice programmers quickly begin

developing software. Its internal compiler performs comparably to C and can target

many architectures, including desktops, mobile devices, and FPGAs.

LabVIEW is widely used in science and engineering for data acquisition and in-

strument automation, using interfaces such as IEEE-488 �GPIB� that are standard on

most industrial laboratory equipment. Scienti�c equipment vendors commonly sup-

ply LabVIEW drivers with their equipment � and perhaps only LabVIEW drivers.

LabVIEW is also surrounded by a healthy online community of enthusiasts and li-

braries.

LabVIEW has existed in some form since its 1986 debut on the Apple Macintosh.

Its compiler remains backwards-compatible with all prior versions of the suite, and

so a wealth of �ancient� applications and libraries can run essentially unmodi�ed. In

2006, LabVIEW gained support for object-oriented code, and, in 2009, support for

recursive function calls. These new features give more credibility to LabVIEW's claim

to be a general purpose programming language. They also enable serious software

development using widely accepted programming practices, which is the intent of this

project.



14 Chapter 1 Background



Chapter 2

Primer

Computers are extremely complex machines, and managing this complexity is the

key to creating reliable systems. Several solutions exist to clean up and organize

programming code, and one powerful method is object orientation. Object orientation

can simplify the design and increase the reliability of a program, and is well-suited

for application to this software.

Many proposed enhancements (chapter 3) involve object orientation of the existing

code, so a review of some basic concepts from object-orientation theory is described

in the following pages. For a more thorough explanation, please consult any good

computer science textbook; some references are given in [7�9].

2.1 Object

An object is an imaginary representation of data inside a computer program. A car,

a bike, or a scooter could be an object. A computer program can use these objects

through theirmethods - functions of code that manipulate an object's data. Depend-

ing on its type, an object might have a method called car.drive(), bike.pedal(),

15
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Member Fields

Car.color Car.model

Car.year Car.mileage

Car.make Car.speed

Private Methods Public Methods (Interface)

Car::ignition() Car::driveTo(Address)

Car::shiftGears() Car::stop()

Figure 2.1 Car class de�nition. A Car class contains several member �elds
and methods. Outsiders may call public methods to accomplish tasks, while
private methods, for internal use only, take care of the details.

or scooter.scoot(). A whole �eet of Car objects could be stored inside an array,

and a program could drive them all at once.

2.2 Class

A class de�nes an object in abstract terms. The class is the object's abstract

de�nition, and the object is the data in memory (instance) that �ts the de�nition.

A Car class de�nes fields � properties of all Cars, e.g. their color, year, make, and

model � as well as the object's methods (see �gure 2.1).

For example, a Car object stored in the variable alice's_car is a White 1998

Saturn SL1, and a di�erent Car object in the variable bob's_car is a Grey 2001 Ford

Escort. These two objects are both instances of the Car class. Note that only object

instances have physical presence in the computer's memory � classes only exist in

theory to de�ne the objects.

Internal to the computer, data structures de�ne class �elds, and structured

memory holds the objects for use. In LabVIEW, a data structure is a "cluster" data

type; thus, a class is a speci�c type of cluster, and object instances "live inside" those

clusters.
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2.3 Interface

An interface de�nes the way a class can interact with other classes. Speci�cally,

the interface consists of the class's public methods: all the methods a class allows

others to use.

The class may contain other private methods that outsiders may not call �

these may cause unpredictable behavior and are marked for internal use only (see

�gure 2.1). Generally, class �elds are also marked as private. The distinction between

public and private methods to create interfaces is a type of encapsulation: a way

of hiding internal complexity to make software components more robust and easier

to integrate.

There are generic interfaces and speci�c interfaces. One class may have its own

specific interface for its own specialized purpose. As an analogy, the jumble of

wires running from a breadboard to an experiment de�nes a custom interface; the

experimenter will know what these wires are for, but others will not.

A generic interface can be used by more than one class as long as each class

implements the same public methods. An analogy is the standard AC electrical

socket, which contains hot, neutral, and ground wires. Any appliance with this in-

terface can use the wall's power supply. Generic interfaces are powerful because they

make programs modular: one can snap in and out components at will, because their

interfaces "�t" all the same. Imagine if houses did not have standardized power plugs

� what a mess that would be!

For example, in the course of rewriting the Colton Lab Scan Software, we invented

the Instrument interface, which de�nes behavior common to all instruments in the

lab. When other classes implement this interface's methods, they too become an

Instrument, and can be used anywhere in the program that an Instrument can. The
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Instrument interface has these methods, outlined in detail in section 4.2:

Check Status Init Instrument

Control Panel Read Name

Destroy Setup UI

To ready the software to use a new piece of equipment, one needs only to create a

new Instrument object by de�ning these methods (see section 4.8). Few other parts

of the software need modi�cation.

2.4 Child Classes

Classes may have child classes that de�ne new and additional behavior. For

example, a Vehicle class may have these children classes: Car, Bike, Scooter. The

Vehicle class de�nes the methods common to all types of vehicles, while child classes

de�ne behavior speci�c to their own kind. For example, a car could honk its horn,

but a Bike and Scooter would ring a bell, and the Vehicle class could not generalize

this behavior.

In LabVIEW, to implement an interface, one must de�ne a child class of that

interface.

2.5 Inheritance / Overriding

If a child class so desires, it may override its parent's default methods to de�ne

new behavior. For example, a Vehicle class may honk a generic horn, but a Car class

could override this to sound a speci�c car's horn, while a Bike class could override this

to sound a bell. Child classes can modify and adapt an existing class by overriding

instead of permanently changing the parent class's methods.

Inheritance is just the opposite of overriding. If a child class does not override
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its parent's methods to specify di�erent behavior, the compiler automatically reuses

the parent's default methods.1 This property lends itself to reduction of duplicate

code: many common blocks of code can be consolidated into a single parent class

method, with idiosyncrasies handled by overrides within child classes.

Coupled together, inheritance and overriding from parent classes allow one to

quickly re-purpose existing code for new situations, as well as cut down on duplicate

code that is di�cult to maintain.

2.6 Polymorphism / Dynamic Dispatch

A program may contain many blocks of code like this, which discerns the type of an

object in order to choose the appropriate task:

i f ( instrument == 1) {

instrumentOneFunction ( ) ; //do something

} e l s e i f ( instrument == 2) {

instrumentTwoFunction ( ) ; //do something e l s e

} e l s e i f ( instrument == 3) {

. . .

In case the user wants to add a new instrument, s/he must locate every section of

the code that looks like this and update it accordingly. This is di�cult to maintain,

often gets overlooked or forgotten, and causes many bugs.

Polymorphism is a compiler construct that automatically chooses the method

appropriate for the object when the program runs. Polymorphism can eliminate the

1Compare the 10th Amendment to the U.S. Constitution: �The powers not delegated to the

United States by the Constitution, nor prohibited by it to the States, are reserved to the States

respectively, or to the people.�
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above problem by turning it into the following. Notice that this code does not need

to be updated to handle new classes:

instrument . f unc t i on ( ) ; //a polymorphic method

A method called at run-time in this fashion is sometimes called a dynamically

dispatched method.

Polymorphism is subtly distinct from overriding. The speci�c distinctions are

beyond the scope of this document, but su�ce it to say that polymorphism's internal

compiler constructs allow one to refer to a group of objects in a generic way, while

still maintaining their idiosyncrasies. Overriding alone does not permit reference to

many objects in a generic way.
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Methodology

�Cleaning up� a software project leaves much to interpretation. Here are some of

the speci�c techniques used to redesign the software. These techniques are common

practice in software engineering; some references are given in [7�9].

3.1 Object Orientation

The Colton Lab Scan Software performs a vast array of instrument automation and

data collection functions. Many of its routines are strongly intertwined and di�cult

to debug. Object orientation can help solve this problem by decomposing the pro-

gram into independent parts and giving those parts well-de�ned roles as objects with

methods.

Object orientation is the process of designing a program's functionality in terms

of objects. This necessitates describing exactly what a program is supposed to do,

then breaking that purpose down into components that help accomplish the goal.

The program's components can often be constructed from one or more objects, which

carry out the actual tasks of the program. This process, called a top-down decom-

21
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position, reveals the requisite objects and what functionality each of them needs.

The Colton Lab Scan Software is designed to control one or more instruments and

automate data collection, as described in section 1.2. The following pages describe

the components that accomplish this task, which were invented during the course of

this project.

3.1.1 Scanner and Reader Classes

The primary application of the Colton Lab Scan Software is the Scan Driver. Since

the Scan Driver ultimately produces an x-y graph, it makes sense to de�ne two

components responsible for the x and y parts. We will call the controller for the x

(�independent�) variable a Scanner. We will call the controller for the y (�dependent�)

variable a Reader.

Scanners are responsible to set the independent variable, e.g. a magnetic �eld

or spectrometer as outlined in section 1.2. Readers are responsible to read in the

dependent variable from a data source, such as a photon counter or lock-in ampli�er.

Preprocessing of the data (such as computation of spin-polarization from the two

channels of the photon counter) generates an additional data source not handled by

the Reader. We will delegate an additional class called Aux Data Source responsible

for these tasks. This class is analogous to stream operators in other languages.

The full implementation details of these classes are given in sections 4.5 and 4.6.

3.1.2 Instrument Classes

Scanners and Readers are simply abstract representations of the experiment. They

need to interact with equipment to perform their task. It makes sense to classify

laboratory equipment in generic terms so that Scanners and Readers may interact
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with all equipment.

The simplest class is Instrument, which provides functionality common to all

computer-controlled equipment. Obviously, this limits the class to very few tasks,

like the universal Check Power On and generic functions like Get Status.

Some Instruments can be grouped into subclasses. If an Instrument is designed

to change position, we will call it Scannable. Scannable objects include a spectrom-

eter, electromagnet, pulse generator, laser power controller, cryostat temperature

controller, microwave function generator, etc.

Similarly, if an Instrument is primarily a data source, we will call it Readable.

Readable objects include a Photon counter, Lock-in ampli�er, A-D converter, etc.

Some instruments do not �t into either category (such as an LCD retarder), and

remain Instruments. Moreover, some instruments �t into both categories (such as a

temperature controller). To classify an Instrument as both Scannable and Readable

requires multiple inheritance, a feature which LabVIEW does not support as

of this writing. In this case, one must create both a Scannable and Readable

Instrument for the same physical piece of equipment.

These classes were chosen to dovetail nicely with the Scanner and Reader classes

described above. Routines within the main application that control Readable Instruments

are Readers, and routines that control Scannable Instruments are Scanners. The

full details of the Scannable and Readable classes are given in section 4.4 and 4.3.
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3.1.3 Framework

To summarize, all elements of the system �t into one of the following abstraction

layers:

1. Main application launcher/dashboard

2. Scan Driver program; other applications such as Etch-A-Sketch (sections

3.1.1, 5.1, and 5.2)

3. Scanner, Reader, Aux Data Source objects classes (section 3.1.1)

4. Object-oriented (�molecular�) Instrument classes (section 3.1.2)

5. Static (�atomic�) instrument drivers (section 3.2.3)

6. Low-level bus communication (section 3.2.3)

7. Hardware (section 3.2.3)

Together these abstraction layers comprise a framework. In this framework, code

at one abstraction layer can only communicate with code one layer above and one

layer below it. This is called strong layering.

One bene�t of the aforementioned object classes is reusability � they can serve

multiple purposes. Speci�cally, the Instrument classes and subclasses are not limited

to use in a Scan Driver application (section 5.2); they can be instantly reused to

build other applications as well. A well-designed class hierarchy will permit this

�exibility and enable future growth.

An example of reusability in action is that multiple applications can use Instrument

objects. Etch-A-Sketch (section 5.1) is a program that reads a data source and plots

it on the screen in real time, much like an oscilloscope. It can use the Readable

objects that Scan Driver uses without modi�cation.
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3.1.4 De�ne Interfaces

The previous application platform was very strongly coupled: changing one system

of the program would a�ect many unrelated systems. For example, one routine for

the pulse/pattern generator called an internal function of the photon counter drivers.

This coupling is poor design.

The object classes de�ned above have public and private methods (see section

2.3), prohibiting interaction between objects except at prede�ned interfaces. This

keeps the objects independent of each other and ensures they have well-de�ned roles.

3.1.5 Implement Polymorphism

Polymorphism, outlined in section 2.6, eliminates bugs by using a compiler construct

to automatically call the appropriate function for a given object. We have imple-

mented polymorphism in our object hierarchy.

The previous software had six duplicate copies of its internal scan loop, for many

combinations of instrument con�gurations. The software did not allow the user to

�exibly con�gure instruments at the start; the loop for each speci�c instrument com-

bination was hard-coded into the program. This unnecessary duplication of code

created bugs, because changing one variant of the loop did not update the other

copies.

Polymorphism eliminates the six duplicated scan loops and combines them all

into a single loop, while allowing the user to con�gure equipment dynamically. This

enables the application to perform the time-resolved Kerr rotation experiment (section

1.2.3.2), which was impossible in the previous version of the software. Moreover, it is

not limited to preconceived experiments: polymorphism enables the user to quickly

con�gure any combination of equipment for an experiment, without any modi�cation
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to the software.

3.2 Other New Features

3.2.1 Resource Control

LabVIEW is an inherently parallel language, and sometimes threads in the scan

software inadvertently compete for access to peripheral equipment. When two parts

of the software attempt to access the same equipment at the same time, this creates

bus contention errors.

In the process of abstracting equipment drivers into a class hierarchy, this project

implemented mutex (mutual exclusion) resource locks on shared equipment, such

that one thread cannot access the equipment until another thread releases its lock.

A mutex is like a key to the restroom: only one person can have the key at a time.

3.2.2 Load/Save Functionality

In science, it is critical to be able repeat an experiment exactly as before. Careful

records and auditing assist in this goal. Adding load/save functionality protects the

integrity of results; it also enables the software to call up a previous scan and repeat

it later using the same settings.

The previous application platform used a large global hash table to store instru-

ment settings. This was di�cult to write to disk and load from a saved �le, since the

�le writer and parser needed to handle each entry in the hash table. Structured data

within object classes make load/save capabilities easier to manage.

Since object classes include member �elds, it makes sense to store instrument

settings inside the member �elds. One object can use another, and even store an-
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other object inside its member �elds. For example, a Scanner object may store the

Scannable instrument with which it is associated for easy access. This hierarchy

of objects within member �elds creates a nested data structure which groups

settings logically, instead of storing them all inside a large hash table.

A tree like this is easy to serialize, or write from memory to disk. Data

structures facilitate an easy way to load and save scan settings to and from disk.

3.2.3 Rewrite Instrument Drivers

The main program's object classes call static instrument drivers (abstraction level 5

from section 3.1.3) which communicate directly with the instruments. These drivers

are simple functions designed to send one speci�c GPIB command. They use lower-

level system routines (abstraction level 6) to communicate with the instruments (ab-

straction level 7).

Many of these drivers needed revision. These drivers were either provided by

manufacturers or written by students from technical documentation. Many were un-

reliable and in some cases did not follow the equipment manufacturers' speci�cations.

Each instrument now has two sets of drivers. First, static drivers � those that do

not store any state � contain the simple �atomic� commands, e.g. �Set Wavelength

to XX nm.� These perform one task and do it well.

Second, Object-oriented drivers combine �atomic� commands to perform larger

�molecular� instrument tasks, e.g. set up for scan, that can be handled in a generic

way common to every instrument. The Object-oriented drivers all implement an

interface common to all instruments. In this way, generic scan programs can call the

class-based drivers, which call the deeper atomic commands.

Separating the objects from the static drivers gives the bene�ts of polymorphism

and interfaces (unique to objects) while retaining the simple architecture of static
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drivers. This also separates the instrument driver code from the code speci�c to

our lab, making it possible for others to reuse the static instrument drivers we have

written.

3.3 Publish Code

3.3.1 Revision Control Software

Revision control, a system that backs up all prior versions of a �le, is an absolute

necessity for large code bases. Previously, a script backed up the source code by

copying the source tree to folders named by the current date.

The industry standard Subversion revision control system is the system of choice.

It stores data e�ciently, includes a change log, and is more �exible than scripted

backups. We created a way to integrate Subversion revision control with the Lab-

VIEW development environment. Then we overlayed the Subversion system onto the

source code tree and trained the students in the lab to use it properly.

3.3.2 Website

This project is intended to be as generic and re-usable as possible. For example, even

though it required extra work, we provided two sets of instrument drivers, one for

internal use and one for redistribution. In addition, the class abstractions enable the

software to be quickly repurposed for new experiments, with few modi�cations. Thus

the design and many of its components have de�nite value to the outside world and

can be easily reused by other groups.

Subversion software, combined with a well-known license, makes it a trivial task

to o�er the code to others. This lets others bene�t from the existing work, and gives
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our e�orts the maximum impact. Publishing software to the open Internet also boosts

BYU's worldwide reputation and visibility, especially among programming circles.

This work has been published as Open Source software, under the GNU General

Public License (version 3) so that others are free to re-use and modify it for their

own needs. As of this writing, all code is available on the Google Code website,

http://coltonlab.googlecode.com, under this license.
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Chapter 4

Interfaces

This section outlines the speci�cations for the public methods of the major object

classes described above, current as of this writing. As with all software projects,

the canonical speci�cation of the object classes is the code itself. The following

documentation is for reference purposes only. As of this writing, the latest code is

available online at http://coltonlab.googlecode.com.

4.1 Class Hierarchy

The full class hierarchy is as follows. Indentation indicates subclass dependence.

• class InstrumentPointer // a wrapper class used to put Instrument objects on

the heap

• class Instrument //generic interface; implements init(), controlPanel(), reset(),

checkOn()

� class LCDRetarder

� class Readable //generic Instrument interface; implements read()

31
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∗ class DAQmxAnalog

∗ class FunctionGenerator

∗ class LockinSR830

∗ class PhotonCounter

∗ class ReadableUtility //pseudo-classes not associated with a physical

instrument

· class Collection //container class: an array of Readables

· class Dummy //inert Readable Instrument for testing

· class Minus //displays the di�erence between two channels of a

Readable

· class StdDev //calculates time-averaged standard deviation of this

source

· class Timer // read the experiment's elapsed time as a source

� class Scannable //generic Instrument interface; implements getScanner()

∗ class Magnet

∗ class Microwave

∗ class PulseGenerator

∗ class Spectrometer

∗ class Stepper

• class FileIO // File & disk routines, laboratory database access, object serial-

ization routines.

• class ScanDriver // a generic, instrument-agnostic data collector that operates

on Objects.
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• class Scanner //generic Scannable iterator, with methods getFirst(), getNext(),

hasNext()

� class B�eldScan // scans over the Scannable::Magnet at speci�ed �eld

points

� class B�eldScanContinuous // scans over Scannable::Magnet at a contin-

uous interval

� class RFScan //scans over Function & Microwave generators, sweeping

�elds

� class PulseWidthScan //scans over PulseGenerator, varying width of pulses

� class WaitTimeScan // scans over PulseGenerator, varying inter-pulse de-

lay

� class WavelengthScan //scans over an interval on the Spectrometer

� class PulseGenScan //varies the pulse width or pulse delay of the Pulse

Generator

� class TranslationStage //steps a translation stage object

� class VarianMagnet //sweeps the �eld of a Varian magnet

• class Reader //used to read data sources during a scan, and control peripheral

equipment.

� class ReadableReader //reads data from a Readable object

� class PCReader //reads from the Photon Counter, and links its gating to

a Scanner

� class LCDReader //reads from another Reader while controlling the LCD

retarder
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4.2 Instrument Interface

The most generic interface class describing laboratory instruments.

We use this class to address all lab equipment from a uni�ed interface. This is

not a parent class in the truest "is-a" convention, but since LabVIEW 8.6 does not

include C++-style multiple inheritance nor Java-style interfaces, we simply de�ne

this "interface class" and set it as the parent of all classes that implement it.

Member �elds contain a name and a VISA resource for communicating with the

Instrument - use this class's VISA Get and VISA Save to access it. Useful dynamic

methods include Check Status and Control Panel. These methods should be universal

to all laboratory equipment.

Known subinterfaces include Scannable and Readable.

4.2.1 Instrument.lvclass:_Destroy.vi

Superclass destructor: close all handles to and release all resources associated with

this Instrument, then deallocate it.

IMPORTANT: when destroying a class that inherits from Instrument, destroy

your subclass �rst, and call the parent Instrument::_Destroy.vi LAST. This ensures

your subclass destructor operates on a valid Instrument while it releases its resources.

4.2.2 Instrument.lvclass:_InitInstrument.vi

(Protected) Superclass constructor. Associate a name, and optionally a VISA Re-

source, with this Instrument. If Channel is speci�ed, this constructor will append

Channel to the Instrument's Name.
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Call this superclass constructor as the beginning of your subclass constructor.

This will ensure you always operate on a valid Instrument. To ensure your subclass

constructor produces objects of the correct type, ALWAYS connect your subclass

constant to "Instrument in" on this superclass constructor.

4.2.3 Instrument.lvclass:_Refresh.vi

Reconstruct the object, if needed, after deserializing it from a �le. Refresh any stale

resource handles. One way to accomplish this is to delete and reconstruct the object.

4.2.4 Instrument.lvclass:Check Status.vi

(Dynamic) Check if the instrument is powered on and update its member �elds with

the instrument's current status. Optionally return a text status message.

4.2.5 Instrument.lvclass:Control Panel.vi

(Dynamic) A user-level application that simulates the physical front panel of the

Instrument. Provide the user with buttons to manually control features of the instru-

ment, and provide indicators of its current state.
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4.2.6 Instrument.lvclass:Read Name.vi

Return this Instrument's name from its member �eld.

4.2.7 Instrument.lvclass:Scan Setup.vi

(Dynamic) Send commands to con�gure the instrument according to the class member

�elds.

4.2.8 Instrument.lvclass:Setup UI.vi

Setup UI constructs an object � populates its member �elds � from a front panel the

user can see. The VI should be as simple as possible so that a UI loop can poll it

continuously for updates.

The VI is designed to be used as a subPanel within another VI. Wire true to "Set

UI to input" only on the �rst call, just after inserting this VI into a subPanel, to

populate its controls with the class's current values.

Setup UI is distinct from the class constructor. Class constructors are not poly-

morphic, yet con�gure dialogs need to con�gure objects without knowing their type

� and polymorphism is the necessary solution. Thus, Setup UI is a polymorphic class

constructor. This continuously polled "Setup UI" concept is a kludge: a better idea

would be an XControl, but those require a steeper learning curve.
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4.2.9 Instrument.lvclass:VISA Get Session.vi

(Dynamic) Access the VISA session constructed for this Instrument. (Use this to

send commands to the Instrument). Override this method if the Instrument has

communication idiosyncrasies.

4.2.10 Instrument.lvclass:VISA Read Async.vi

(Dynamic) Read from this Instrument using an asynchronous VISA call. Override

this method if the Instrument has communication idiosyncrasies.

4.2.11 Instrument.lvclass:VISA Save Session.vi

(Dynamic) Save the VISA session constructed for this Instrument. (Use this after

sending commands to the Instrument). Override this method if the Instrument has

communication idiosyncrasies.
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4.2.12 Instrument.lvclass:VISA Write Async.vi

(Dynamic) Write to this Instrument using an asynchronous VISA call. Override this

method if the Instrument has communication idiosyncrasies.

4.3 Readable Interface

Subinterface of Instrument that represents a piece of equipment whose purpose is to

perform a measurement. This class de�nes the Y-axis of a completed scan graph.

Examples include a lock-in ampli�er or a voltmeter.

This class has one substantive (protected) method - _Read.vi. Use "Read Data.vi"

which is the public interface to this method.

This interface class is not necessarily independent of Scannable.lvclass - it might

be useful to read the current position of a Scannable. However, since it is impossible

to perform multiple inheritance in LabVIEW 8.6, making Scannables also Readables

requires making Scannable a subclass of Readable � which leaves a mess. Just some-

thing to think about for the future.

4.3.1 Readable.lvclass:_Read.vi

(Protected, Dynamic, Pure Virtual/Abstract) Perform a measurement and return

one or more channels of data. Outsiders should not call this method, but instead the

public "Read Data.vi".
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4.3.2 Readable.lvclass:Graph.vi

(Dynamic) Take a data point, then append it to an internal history bu�er. Return

the history bu�er as a waveform array con�gured for graphing.

4.3.3 Readable.lvclass:Read Channel Info.vi

(Dynamic) Return information about the readable data channels this object provides,

e.g., the name of each data source and its unit.

4.3.4 Readable.lvclass:Read Data.vi

Perform a measurement and return one or more channels of data. Public interface to

"_Read.vi." (Use this one!)

4.3.5 Readable.lvclass:Read Prep.vi

(Dynamic) Prepare to read. This is in case the Readable object needs to change

some settings before the time delay occurs. One example: if the photon counter
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needs to start counting, call this method and then wait until the count is complete.

The "_Read" method will then stop counting and return the total counts.

4.4 Scannable Interface

Subinterface of Instrument that describes an instrument whose purpose is to control a

variable over the course of an experiment. This class de�nes the X-axis of a completed

scan graph. Examples include a magnetic �eld, a spectrometer, or a pulse generator.

This subinterface class de�nes only one method - Get Scanner.vi. This is by

design, since Scannable is modeled after Iterable from the Java language.

4.4.1 Scannable.lvclass:Get Scanner.vi

(Dynamic) Returns the default Scanner object that scans over this Scannable. (Note

that a Scannable may have multiple Scanners associated with it). A Scanner is an

analogue to an Iterator class in other languages.

4.5 Reader Interface

The Reader class serves to decouple Scan Driver logic from the generic Instrument

hierarchy. It extends the capabilities of Readable objects with scan-speci�c features,

such as a "dwell time" to wait between Read Prep and Read. Besides that, it is

mostly a wrapper around the Readable class.
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4.5.1 Reader.lvclass:Reader.vi

Construct a new Reader instance.

4.5.2 Reader.lvclass:_Destroy.vi

Release resources from and deallocate this Reader instance.

4.5.3 Reader.lvclass:Dwell Time Delay.vi

(Protected, Dynamic) Delay a predetermined time before taking a data point.

4.5.4 Reader.lvclass:Read Dwell Time.vi

Return the pre-set dwell time inside this Reader instance.

4.5.5 Reader.lvclass:Read Readable.vi

(Protected) Return the Readable object associated with this Reader instance, to allow

direct manipulation of that Instrument.
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4.5.6 Reader.lvclass:Read.vi

Prepare for read, wait the time delay, and take data from up to 4 channels.

4.5.7 Reader.lvclass:Scan Setup.vi

(Dynamic) Send commands to con�gure the instrument based on the class member

�elds.

4.5.8 Reader.lvclass:Setup UI.vi

Setup UI constructs an object � populates its member �elds � from a front panel the

user can see. The VI should be as simple as possible so that a UI loop can poll it

continuously for updates.

The VI is designed to be used as a subPanel within another VI. Wire true to "Set

UI to input" only on the �rst call, just after inserting this VI into a subPanel, to

populate its controls with the class's current values.

Setup UI is distinct from the class constructor. Class constructors are not poly-

morphic, yet con�gure dialogs need to con�gure objects without knowing their type

� and polymorphism is the necessary solution. Thus, Setup UI is a polymorphic class

constructor. This continuously polled "Setup UI" concept is a kludge: a better idea

would be an XControl, but those require a steeper learning curve.
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4.5.9 Reader.lvclass:Write Dwell Time.vi

Set the Dwell Time of this Reader instance.

4.5.10 Reader.lvclass:Write Readable.vi

(Protected) Update the Readable inside this Reader instance, after it has been ac-

cessed with "Read Readable.vi".

4.6 Scanner Interface

An object that manipulates a Scannable over the course of an experiment. Sets a

range over which to scan, and controls its position at the demand of a host applica-

tion. Scanner and Scannable are modeled after Iterator and Iterable from the Java

language.

Note that a given Scannable may have one or more Scanners. Examples include

a pulse generator with Scanners to vary either the pulse width, pulse height, or pulse

delay; a magnetic �eld that can sweep either continuously or at discrete steps; and a

spectrometer that can vary its wavelength or slit width.

4.6.1 Why Scanner and Scannable?

It probably seems silly to have two separate classes, Scannable and Scanner, espe-

cially since the former de�nes a single method. The reasons for this design decision

are threefold:
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1. Maximum �exibility in using instruments.

Some instruments have more than one possible way to �scan� over them. For

example, one can vary a Magnetic Field either continuously or by careful steps.

Two di�erent objects are needed here.

2. Decouple application from interface.

Scanner is an internal class meant exclusively for the Scan Driver application.

It probably cannot be used well in other applications. The Instrument interface

is intended for use in more than one application.

3. Follow pattern of other languages.

Scanners are meant to correspond to Iterators in other programming lan-

guages, while Scannables correspond to an Iterable Collection. Someday,

hopefully Scanners will be generic enough to use outside of Scan Driver.

4.6.2 Scanner.lvclass:_Destroy.vi

Release resources from and deallocate this Scanner instance.

4.6.3 Scanner.lvclass:_Refresh.vi

Reconstruct the object, if needed, after deserializing it from a �le. Refresh any stale

resource handles. One way to accomplish this is to delete and reconstruct the object.
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4.6.4 Scanner.lvclass:Create ArrayVarying.vi

Generate an internal array of independent variables from the Range. You do not

need to use this array if it makes no sense for your subclass; it is merely provided for

convenience.

4.6.5 Scanner.lvclass:Finish Scan.vi

(Dynamic) Perform any cleanup after the last step. Restore the instrument to its

initial pre-scan state if "Return to Start" is true.

4.6.6 Scanner.lvclass:First Step.vi

(Dynamic) Reset the instrument and prepare to scan. Go to step #0 - the �rst step.

If desired, the scanner may do this in a di�erent way than usual (i.e. by preparing to

move a long distance, or reset to home position).

4.6.7 Scanner.lvclass:Has Next.vi

(Dynamic) Return TRUE if this Scanner has not yet completed all steps in its pre-

con�gured Range.
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4.6.8 Scanner.lvclass:Next Step.vi

(Dynamic) Move to the next precon�gured step of this Scanner, and return the current

position (actual, not intended) of this Scanner. Increment the step counter by one.

4.6.9 Scanner.lvclass:Range.ctl

Store the Range for a Scanner, in the Scanner's natural units.

xi: �rst point

xf: last point

dx: step size between points

Return to start?: if you would like the application to "rewind" the scanner to its

original position when it is �nished

Note that only this range control gets propagated in the Scanner copy constructor

- everything else is reinitialized.

4.6.10 Scanner.lvclass:Read Current Step.vi

(Dynamic) Return the current position (actual, not intended) of this Scanner.
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4.6.11 Scanner.lvclass:Read Independent Variables.vi

Return the internal array of independent variables for this Scanner, e.g., to write out

to a �le. Use this method with extreme caution, since it breaks the encapsulation for

this class. Do not use it to manipulate a Scanner's internal state.

4.6.12 Scanner.lvclass:Read Range.vi

Return the Range of this Scanner.

4.6.13 Scanner.lvclass:Read Scannable.vi

(Protected) Return the Scannable object associated with this Scanner instance, to

allow direct manipulation of that Instrument. Scannables are stored within Scanners,

because LabVIEW does not allow inner classes. If inner classes were possible, it would

be better to de�ne Scanner as an inner class of Scannable.
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4.6.14 Scanner.lvclass:Scan Setup.vi

Con�gure the Instrument based on the class member �elds. This step comes after the

user has closed the "Scan Setup" window and before the actual scan � so instruments

are con�gured with the user's speci�ed settings.

4.6.15 Scanner.lvclass:Scanner.vi

Protected superclass constructor for Scanner. Make sure you wire your class to the

input of this method so it constructs objects with the correct type.

4.6.16 Scanner.lvclass:Setup UI.vi

Scanner::Setup is a constructor that has no parameters and faces the user. The Fac-

tory calls this VI to let the user con�gure this Scanner. It is dynamically dispatched

in order to let the user choose the type as well as the options of the scanner.

4.6.17 Scanner.lvclass:Status.vi

(Dynamic) Return a text status message re�ecting the current state of this Scanner.
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4.6.18 Scanner.lvclass:Write Range UI.vi

A Setup UI method for the superclass "Range" of scanner.

4.6.19 Scanner.lvclass:Write Range.vi

Set the Range of this Scanner to the Range of another Scanner.

4.6.20 Scanner.lvclass:Write Scannable.vi

(Protected) Update the Scannable inside this Scanner instance, after it has been

accessed with "Read Scannable.vi".

4.7 Scan Driver Class

Scan Driver is a simple application that con�gures arbitrary Scannable and Readable

Instruments and then scans over them to generate a graph of data. It interfaces with

all major classes in this project: Instrument, Scannable, Readable, Scanner, Reader,

and File IO.

File IO is a friend of Scan Driver so that it can access member �elds and write

them to a �le.
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4.7.1 Scan Driver.lvclass:_Destroy.vi

Release resources from and deallocate this Scan Driver instance.

4.7.2 Scan Driver.lvclass:Adjust Min-Max.vi

Set the boundaries of the onscreen scan graphs according to the extrema of the data

store.

4.7.3 Scan Driver.lvclass:Build Scan Graph.vi

Build and return the updated scan graph from the data store.

4.7.4 Scan Driver.lvclass:Create Data Store.vi

Initialize the internal Data Store. Call member Scanner instance to do the same.

4.7.5 Scan Driver.lvclass:Estimate Time.vi

Estimate the time needed to complete this Scan Driver instance, using data from

member Scanner and Reader.
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4.7.6 Scan Driver.lvclass:Factory.vi

Construct a new Scan Driver instance using the given parameters, load one from a

�le, or recycle an old one.

4.7.7 Scan Driver.lvclass:Finish Scan.vi

Reset the scan and all Scanners and Readers. Write the data �le. Prepare to scan

again if more than one scan is requested.

4.7.8 Scan Driver.lvclass:Load Scan.vi

Un�attens a Scan Driver instance from the speci�ed XML �le. If an error occurs,

returns the class default object.
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4.7.9 Scan Driver.lvclass:Pre-Scan Check.vi

Call "Scan Setup" on all Instruments contained in this Scan Driver instance. This

will con�gure the Instruments according to their member �elds. Move the Scanner

to the First Step.

4.7.10 Scan Driver.lvclass:Scan Driver (for Setup UI).vi

Constructor. Finish construction of the Scan Driver after running the Setup UI

methods on its component classes.

4.7.11 Scan Driver.lvclass:Scan.vi

Main method for Scan Driver. Scan over the given Scanner, read data points from

the given Readable, generate an onscreen graph, and write a data �le.

4.7.12 Scan Driver.lvclass:Settings Panel.vi

Main method of the Scan Driver class. Construct a new Scan Driver instance from

the given options, or load and deserialize one from an XML �le, or modify the last

run scan. Con�gure the instance. Run the scan, and repeat it if more than one scan

is requested.
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4.7.13 Scan Driver.lvclass:Setup.vi

GUI constructor for new Scan Driver instances. Call the component objects' Setup

UI methods and use their GUIs to construct them too.

4.8 Creating New Objects

To create new objects that are compatible with the existing software, one needs only

to implement these interfaces. Here is the procedure:

1. Open up the Main.lvproj. Stop any running programs.

2. Determine if your new equipment �ts under Scannable or Readable, or as a

generic Instrument.

3. Create a new folder to hold your code �les.

4. Create a new class for your equipment. Refer to the LabVIEW documentation

to see how this is done. (Currently: create a new folder, right-click on it in the

Project Explorer, and select New... Class).

5. Set the class to inherit from the appropriate parent class, e.g. Scannable, Read-

able, etc. Refer to the LabVIEW documentation. (Currently: right-click on the

.lvclass entry in the Project Explorer, select Properties, and select Inheritance).

6. Save the new .lvclass �le.

7. Carefully study the interface (public methods) of this parent class and its doc-

umentation.
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8. Carefully study other existing child classes of this parent class. Study how they

work. Determine where and why child classes overrode default parent methods,

as this may aid you in determining which methods to override in your class.

9. Implement your class's code. Create its own class-speci�c methods and override

default parent methods where appropriate. To override a method, consult the

LabVIEW documentation. (Currently: right-click on the .lvclass in the Project

Explorer and select New... VI for Override).

10. In application programs which use objects, locate code points where the user

selects which object to construct. Add your object to the list as appropriate.

11. See also: the LabVIEW user guide under the �Creating LabVIEW Classes�

topic, or the on-line user guide at http://zone.ni.com/reference/en-XX/help/

371361F-01/lvconcepts/creating_classes/.
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Applications

This chapter describes the culmination of this project: combining and utilizing the

object classes to create applications. We will discuss two such applications, Etch-A-

Sketch and Scan Driver. These applications are freely available, along with all other

code, at http://coltonlab.googlecode.com (as of this writing).

5.1 Etch-A-Sketch

Etch-A-Sketch is a simple application that graphs data onscreen in real-time, much

like a laboratory oscilloscope. Etch-A-Sketch reads data from any Readable Instrument.

Adding new data sources is as easy as creating a new Readable (section 5.2.1).

The user selects which graphs to display from a list of precon�gured objects on

the front panel (�gure 5.1), or can easily add another to the list by modifying the

block diagram (�gure 5.2). The main read loop in Etch-A-Sketch (�gure 5.3) uses a

precise timer to evenly demarcate read commands. The data then scrolls across the

screen in real-time. This application is useful to align optics, trace signal paths, and

verify that detectors are functioning correctly.
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Figure 5.1 Etch-A-Sketch front panel.

The Readable class extends itself easily to the �pseudo-Instruments� Minus and

StdDev. These two classes take Readables as parameters, and output di�erence and

standard deviation signals, respectively. This allows extremely �exible con�gurations

of data sources within the program, as demonstrated in �gure 5.2.

5.2 Scan Driver

Scan Driver is the main application program of the Colton Lab Scan Software. Its

purpose is to control multiple instruments to perform an experiment, and generate

an x-y graph of the results. Scan Driver is discussed in sections 3.1.1 and 4.7.

The user begins by constructing new scan objects using the drop-down menus

(�gure 5.4). The items listed correspond to Scanner and Reader objects described

earlier.

The user may also choose to load a saved scan �le. Saved scan �les are simply the

member �elds of all the various objects serialized into XML format (see section 3.2.2).

LabVIEW internally handles the ABI versioning and dynamic serialization/deserial-

ization (�gure 5.5).
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Figure 5.2 Constructing Objects in Etch-A-Sketch. Two �pseudo-
Instruments� are present: StdDev and Minus.

Figure 5.3 Main read loop in Etch-A-Sketch.
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Figure 5.4 Scan Driver constructor front panel.

Figure 5.5 Scan Driver constructor block diagram.

Figure 5.6 Scan Driver setup UI front panel.
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Figure 5.7 Setup UI block diagram.

Once a new scan is constructed, it is passed to the Setup UI method (�gure 5.6).

This allows the user to con�gure the vast array of scan settings. The recessed areas

on the front panel represent �sub panels,� a way to snap in user interfaces into the

same window. These interfaces are also called Setup UI and each object de�nes its

own Setup UI method. This is simpler than implementing event handler callbacks

through LabVIEW's XControl facility. The following code (�gure 5.7) enables the

front panel to dynamically snap-in these interfaces.

Once the user con�gures all settings, the scan begins. The front panel displays

progress and and displays the collected data (�gure 5.8).

The main loop does the following:

1. Calls Get Next Step on the Scanner

2. Reads the data from the Reader

3. Post-processes and displays the data
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Figure 5.8 Scan method front panel.

4. Calls Has Next on the Scanner

After the scan is complete, the user returns to the constructor menu and may scan

again using the same settings if desired.

5.2.1 How to Expand Scan Driver

Scan Driver can easily expand to use new equipment through the creation of new

object classes.

To create a new Readable object, simply de�ne the object class and override its

_Read method. Then modify menus where appropriate to allow the user to choose

and construct your new object.

To create a new Scanner:

1. Create a Scannable Instrument object, and its own directory. Set the object

to inherit from Scannable.lvclass as outlined in section 4.8.

2. Create member �elds in this object that deals with instrument settings, e.g.

current position, display data in meters or feet, sample rate, etc.
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Figure 5.9 Scan method main loop block diagram.

3. Override methods for generic instrument behavior, e.g. Check Status.

4. Implement a Control Panel method if desired. Override the Control Panel

from the parent Instrument class as outlined in section 4.8.

5. Create a Scanner object, and its own directory. Set the object to inherit from

Scanner.lvclass. Again, follow the procedure from section 4.8.

6. Create member �elds in the Scanner object that deals with user scan settings,

e.g. scan rate, scan up or scan down, pulse output during scan.

7. Review the methods in the Scanner class's interface. Study their behavior.

8. Override methods from the parent Scanner class where you do not wish to use

the default behavior. Implement your own methods. Commonly overridden

methods include: First Step, Next Step, Scan Setup, Finish Scan.

9. Modify menus where appropriate to allow the user to select and construct your

new Scanner object.
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Chapter 6

Conclusion

Many of the bene�ts of the object-oriented system have already been realized:

• Source code revision control (section 3.3.1) made possible this project's sweeping

changes without disrupting daily research.

• New features and conveniences are now possible. In particular, the load/save se-

rialization feature (section 3.2.2) has already proven useful to create �template�

experiment sessions where common parameters are already set.

• The object-oriented framework has enabled rapid development of new types of

experiments, such as time-resolved Kerr rotation (section 1.2.3.2), that were not

possible with the previous version of the software.

• Other labs at BYU have been able to reuse our software, and because the code

is freely available, a few Open Source �aggregator� web sites have already begun

to redistribute the code as of this writing.

The true evaluation for any project is the test of time. Not all requirements are

known beforehand and not every problem can be foreseen. All designs are iterative,
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and this project is simply one of many steps to follow. There are inevitably known

and unknown bugs in this implementation, and someday it too will be thrown out.

The author hopes that this design is �exible and robust enough to continue to

meet the needs of the laboratory for many years into the future. And when it again

comes time to redesign, the author hopes that the lessons learned from this design

can in�uence the next.
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Glossary

abstraction layers hierarchical groupings of a completed framework, page 24

child classes de�ne new and additional behavior from a parent class

using inheritance and overriding, page 18

class de�nes an object in abstract terms; the object is its

physical representation (instance), page 16

Colton Lab Scan Software main software application that is the focus of this project,

used to study spin dynamics, page 11

conduction band the lowest energy band in a solid which is normally com-

pletely empty at room temperatures, page 2

data structure a computer's internal representation of an object, page 16

decomposition method of planning a software project by splitting goals

into tasks and subtasks, page 22

degenerate di�erent electron states that have the same energy, page 4

dynamically dispatched a polymorphic method; see polymorphism, page 20

electron spin resonance experiment to induce transitions between spin states

by applying microwave energy at a resonant frequency,
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page 4

encapsulation a way of hiding internal complexity to make software

components more robust and easier to integrate, page 17

�eld data stored inside an object, page 16

framework collection of interfaces and interchangeable components

that enables �exible application development, page 24

implement to write code that performs a pre-speci�ed behavior, e.g.

to write an interface's required methods, page 17

inheritance a child class will automatically re-use its parent's meth-

ods unless it overrides them, page 18

instance an object; the data in memory that corresponds to a

class, page 16

interface allows a program to use multiple classes interchangeably

as long as each de�nes the same methods, page 17

method function of code that manipulates an object, page 15

multiple inheritance ability to use more than one interface, page 23

mutex mutual exclusion lock; a key to the restroom: only one

person can have the key at a time, page 26

object an imaginary representation of data inside a computer

program, page 15

optical pumping can spin-polarize a material into either CB spin state,

page 4
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override to rede�ne a parent class's methods with new behavior,

page 18

photoluminescence photons emitted from a semiconductor material when

its electrons transition from an excited state, page 2

polymorphism compiler construct that automatically chooses the method

appropriate for the object when the program runs, page 19

population number of electrons in one spin state relative to another

state, page 3

private methods methods that outsiders may not call; only for the class's

internal use, page 17

public methods methods that a class allows others to use, page 17

serialize to turn structured data into sequential data, e.g. for

writing objects to disk, page 27

speci�c interface methods de�ned for a class's own specialized purpose,

page 17

spin angular momentum of an electron or photon, page 3

spin-polarized most of a material's electrons are in the same spin state,

page 3

strong layering one layer may only interface with its neighbors above

and below, page 24

thermal e�ects can spin-polarize a material if the spin-splitting energy

is comparable to ambient thermal energy, page 6
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time-resolved Kerr rotation experiment to measure the transverse lifetime T ∗
2 of a

material's spin states, page 10

tree hierarchical data structure, page 27

valence band the highest energy band in a solid which is normally

completely �lled at room temperatures, page 2


