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ABSTRACT

SPATIAL DISTRIBUTION OF LASER LIGHT ABSORPTION BY

SMALL SPHERES UNDERGOING MIE SCATTERING

David Black

Department of Physics and Astronomy

Bachelor of Science

Our group has made a variety of observations regarding how small opaque

particles can be levitated in a focused CW laser beam. The phenomenon

relies on a radiometric effect, where the particle is heated by the laser and

interacts with surrounding air molecules. Intuitively, one would expect opaque

particles to heat up more on the sunny side and thus be propelled out of

the beam. Thus, the mechanism by which some particles become trapped in

the beam remains a mystery. The distribution of energy absorption within

tiny, absorbing spheres (∼10 wavelengths across) is investigated to try to gain

insight into the levitation of small particles. This is computed using standard

Mie scattering analysis as outlined in the textbook Principles of Light and

Optics by Born and Wolf. [1] In our analysis, we concentrate on the internal

fields rather than the scattered fields that are usually the subject of such

analyses. We investigate whether there can be “shady-side heating,” where



more energy is absorbed on the side of the particle opposite the direction of the

beam propagation, which could potentially explain the trapping mechanism.

It is found that there is no such effect.
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Chapter 1

Introduction

1.1 Radiometric Levitation of Small Particles

A number of researchers have reported on the interaction between light and small

dust particles. Microscopic particles have been observed doing interesting motion in

a continuous laser beam. [4] Sometimes small (∼1-10 µm) particles become caught

indefinitely in the focus. A number of researchers have reported this phenomenon.

[3, 5, 6, 7] The particles observed are made of various materials, such as graphite,

tungsten, and black liquor (a biproduct in the process of making paper). Many

different shapes of particles have been trapped. The trapped particles are observed

to light up brightly in the beam as they scatter light (see Fig. 1.1). When a laser

beam is moved around, the particles typically remain trapped in the beam and follow

its movement.

There have been various explanations proposed as the responsible mechanism for

this phenomenon. These will be discussed and in many cases dismissed in the sections

that follow. We should note that the phenomenon described here is not a standard

“optical tweezers” effect. Standard optical tweezers utilizes transparent particles,

1



2 Chapter 1 Introduction

Figure 1.1 An example of a levitated particle

which act as a sort of lens on the beam that goes through it, deflecting the direction

of the light as it tries to leave the focus. As the light’s direction is changed, so is its

momentum, which places a restoring force on the particle.

The behavior in the trapping of opaque particles in a laser is counterintuitive when

considering an exchange of momentum with the light field, since one would expect

the photon pressure to “push” the particles out of the beam.

1.2 Influence of Ambient Pressure, Gravity, and

Beam Roughness

BYU undergraduates studying the levitation of small, opaque particles have done

much experimental work. They have observed particles that stay in the beam for up

to eight hours (at which point the laser was turned off). In various experiments [8,9],

it has been shown that a surrounding gas such as air is required. Levitation has been

observed at pressures varying from a few torr to several atmospheres. The requirement

of a surrounding gas indicates that the phenomenon is due to a radiometric effect,

where the particle becomes heated and interacts with the surrounding air.
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The phenomenon has been observed to be independent of gravity. This prin-

ciple was confirmed in an experiment carried out on a NASA DC9 jet, where zero-

gravity conditions were created for approximately 30 seconds at a time. [10] Particles

were still observed to become and stay trapped. This gravity-independence rules out

buoyancy of locally heated air as being responsible for the trapping.

Since opaque particles seem like they should be intensity-fleeing, it has been pro-

posed that roughness of the laser beam could cause small pockets of low intensity that

might coral an intensity-fleeing particle within a laser beam. However, an experiment

was carried out in which the beam has been made sufficiently smooth to rule out this

explanation as well. [11]

Thus, buoyancy and small pockets of low intensity have been ruled out as a mech-

anism for the stable trapping of opaque particles. Also, trapping works regardless of

which way the laser is pointed, and gravity plays little or no role.

1.3 Overview

It is somewhat of a puzzle as to how the particle can become stably trapped in

the laser focus. Ambient gas pressure is required, so it appears that the heating of

the particle imparts energy to the surrounding gas molecules, and the recoil of many

molecules apparently provides the force needed for levitation. One would expect the

“sunny” side to become hotter, and therefore added recoil of molecules from that side

would propel the particle out of the laser beam.

The basis for my thesis project is to investigate a hypothesis, which we call “shady-

side heating.” The basic question is whether there could be more heating on the side

of the particle opposite the direction of the beam. In other words, could there be

more light energy absorbed on the “shady side” of tiny particles? If so, the heating
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from this excess absorbed energy could provide a mechanism for the stable trapping

of small particles.

To test this hypothesis, we make the simplifying assumption that the trapped

particles are spherical. The generally used and accepted theory for calculating elec-

tromagnetic fields incident on a spherical particle is Mie theory, developed by Gustav

Mie in 1908 [12] and independently by others, including Lorenz. It is more general

than the widely-known Rayleigh scattering in that all possible ratios of diameter to

wavelength are treated. The solution is developed by splitting the waves into compo-

nents with a radial electric component but no radial magnetic component (an electric

wave) and vice versa (a magnetic wave). Maxwell’s equations are put into spherical

coordinates, and boundary conditions are applied at the sphere’s surface. In this

way, the equations for the electric and magnetic wave vectors can be found. Debye

potentials are used as a way to derive these vector fields from a scalar potential.

Usually, Mie theory is used to find information about the scattered wave (see

e.g. [12,13,14]). It is used extensively in meteorology when discussing such things as

liquid droplets and dust in the air. Astronomers also use it in analyzing clouds of

dust through which light shines (e.g. [15]). It also can be used in the characterization

of particles, but once again it is the scattered wave that is typically of interest. There

has been interesting work done by Dieter Bauer (to whom we are endebted for his help

with Mie theory and coding) et al. in using Mie theory to discuss laser-illuminated

electron bunches. [2]

Our approach is somewhat off the beaten path, in that we are interested in the

absorbed field rather than the scattered field. There has been some work done in this

vein (e.g. [16, 17]). It is important to note that a mechanism similar to that which

we call shady-side heating has been proposed before. In a 1983 paper by Pluchino on

opaque particle levitation [3], he proposed and analyzed such a mechanism involving
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Figure 1.2 Schematic representation of mechanism responsible for trapping

a particle. Fig. 10 from Pluchino (1983).

the Poynting vector. The basic idea of his proposed mechanism is that the particle

causes currents in the Poynting vector that cause it to have a higher value on the

back side of the particle. The energy flow characterized by the Poynting vector has

areas where it flows back towards the particle. Pluchino states, “The photons do

not have to be directed back toward the source; it is only important that the rear

half absorb more energy. Removal of this energy by the surrounding gas molecules

imparts a force on the particle which is considerably greater than that due to photon

momentum and is directed normal to the surface.” A diagram of his proposed method

is included in Fig. 1.2.

Our approach is thus to find expressions for the fields using Mie theory. In this

thesis, I describe the Mie solutions inside a particle and present simulations of field

distributions for particles ranging in size from less than a wavelength to 20 wave-

lengths. The results show that the notion of “shady-side” heating is not a plausible

mechanism for describing radiometric particle levitation in an intense laser focus. The

intuitive notion that the “sunny side” of the small sphere experiences a much stronger

field and therefore higher absorption is correct.





Chapter 2

Calculations of Internal Mie Fields

2.1 Equations for the Internal Fields

The derivation of fields in the Mie regime is done in accordance with Born and

Wolf [1] and is summarized in Appendix A. Treatments may also be found elsewhere,

e.g. [13, 14, 18]. We consider the diffraction of a linearly polarized, monochromatic

plane wave by a sphere of radius a, immersed in a homogeneous, isotropic medium,

which for our purposes will ultimately be set to an index of one. Both the particle

and the medium are assumed to be nonmagnetic. A schematic of the problem can be

seen in Fig. 2.1. The internal electric field is given by:

E
(w)
r = 1

k(II)
2

cosϕ
r2

∑∞
l=1 l (l + 1) eAlψl

(
k(II)r

)
P

(1)
l (cos θ) (a)

E
(w)
θ = − 1

k(II)
cosϕ
r

∑∞
l=1

[
eAlψl

′ (
k(II)r

)
P

(1)
l

′

(cos θ) sin θ

−i mAlζ(1)l

(
k(I)r

)
P

(1)
l (cos θ) 1

sin θ

]
(b)

E
(w)
ϕ = − 1

k(II)
sinϕ
r

∑∞
l=1

[
eAlψl

′ (
k(II)r

)
P

(1)
l (cos θ) 1

sin θ

−i mAlψl
(
k(II)r

)
P

(1)
l

′

(cos θ) sin θ

]
(c)

(2.1)

Here, ψl and ζl
(1) are Riccati-Bessel functions, which are discussed further in the

next section. The Pl
(1) are the associated Legendre polynomials of order one. k(II) is

7
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Figure 2.1 Notation for the Mathematical Solution of the Mie Problem

the usual wave number inside the sphere defined by k = nω
c

=
√
−k1k2 where k1 ≡ iωn

c

and k2 ≡ iω
c

. n is the complex index of refraction n = nre + iκ. The superscript (II)

denotes quantities associated with fields inside the sphere, while the superscript (I)

(which will appear later) denotes the region surrounding the sphere.

The characterizing A coefficients are:
eAl = il−1 2l+1

l(l+1)

ψl
′
(k(I)a)ζ(1)l (k(I)a)−ψl(k(I)a)ζ(1)l

′
(k(I)a)

k(I)

k(II)
ψl

′(k(II)a)ζ(1)l (k(I)a)−
k
(I)
2

k
(II)
2

ψl(k(II)a)ζ(1)l

′
(k(I)a)

(a)

mAl = il−1 2l+1
l(l+1)

ψl
′
(k(I)a)ζ(1)l (k(I)a)−ψl(k(I)a)ζ(1)l

′
(k(I)a)

k
(I)
2

k
(II)
2

ψl
′(k(II)a)ζ(1)l (k(I)a)− k(I)

k(II)
ψl(k(II)a)ζ(1)l

′
(k(I)a)

(b)

(2.2)

These come from the relations:

eBl
1
k(I)

ζ
(1)
l

′ (
k(I)a

)
+ 1

k(I)
il−1 (2l+1)

l(l+1)
ψl

′ (
k(I)a

)
= 1

k(II)
eAlψl

′ (
k(II)a

)
(a)

mBl
1

k
(I)
2

ζ
(1)
l

′ (
k(I)a

)
+ 1

k
(I)
2

il−1 (2l+1)
l(l+1)

ψl
′ (
k(I)a

)
= 1

k
(II)
2

mAlψl
′ (
k(II)a

)
(b)

eBl
1

k
(I)
2

ζ
(1)
l

(
k(I)a

)
+ 1

k
(I)
2

il−1 (2l+1)
l(l+1)

ψl
(
k(I)a

)
= 1

k
(II)
2

eAlψl
(
k(II)a

)
(c)

mBl
1
k(I)

ζ
(1)
l

(
k(I)a

)
+ 1

k(I)
il−1 (2l+1)

l(l+1)
ψl
(
k(I)a

)
= 1

k(II)
mAlψl

(
k(II)a

)
(d)

(2.3)

which come directly from detailed boundary conditions, (see Appendix A)

From an inspection of Eq. (2.1), one might think that there is a problem with the

1
r

dependence at the origin, but the limit as r → 0 is well-defined.
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2.2 The Riccati-Bessel Functions and the Legen-

dre Polynomials

In the expressions for the internal field, Eqs. (2.1)–(2.2), we may see that we must

have relations for the Riccati-Bessel functions ψl and ζl
(1), the Legendre polynomials

of the first order Pl
(1) and their derivatives. The primes indicate differentiation with

respect to the arguments.

The definitions of ψl and ζl
(1) are as follows: (see Appendix A):

ψl (ρ) =
√

πρ
2
Jl+ 1

2
(ρ) , ζl

(1) (ρ) =
√

πρ
2
Hl+ 1

2
(ρ) (2.4)

For the Riccati-Bessel functions, the following relation concerning derivatives of

all types of Bessel functions is useful. Here, η can represent any of these (J , N , or

H):

η
′

l (ρ) =
1

2
[ηl−1 (ρ)− ηl+1 (ρ)] (2.5)

This implies:

ψ
′

l (ρ) =
1

2

{√
πρ

2

[
Jl−1/2 (ρ)− Jl+3/2 (ρ)

]
+

√
π

2ρ
Jl+1/2 (ρ)

}
(2.6)

ζ
(1)
l

′

(ρ) =
1

2

{√
πρ

2

[
Hl−1/2 (ρ)−Hl+3/2 (ρ)

]
+

√
π

2ρ
Hl+1/2 (ρ)

}
(2.7)

As for the derivative of the associated Legendre polynomials, we use the following

relation: (
x2 − 1

)
Pm
l

′
(x) = lxPm

l (x)− (l +m)Pm
l−1 (x) (2.8)

In our case of m = 1, we have:

P
(1)
l

′

(x) =
1

(x2 − 1)

[
lxP

(1)
l (x)− (l + 1)P

(1)
l−1 (x)

]
(2.9)

This obviously has a singularity when x = 1. Since, in our equations, x = cos θ, this

problem occurs at the poles as defined in spherical coordinates. However, the limit
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of the expression as cos θ → 0 is well-defined, but must be treated carefully in the

numerics.

Fortunately, MATLAB has functions for Bessel and Hankel functions (besselj

and besselh) as well as Legendre polynomials (legendre).

2.3 Computation

The computation of the Mie fields are done using MATLAB. I have written

a program that evaluates these fields at each point interior to the sphere near the

surface. Additional information regarding my program and subroutines are provided

in Appendix B. The infinite summations obviously must be truncated at some point.

In accordance with Bohren and Huffman [14], we take the number of terms as:

lmax = s+ 4s
1
3 + 2 (2.10)

where s is the size parameter s ≡ k(I)a. One may see how this converges and how

appropriate this is by looking at the values of the absorption parameters (the A’s)

as l increases, which is done in Fig. 2.2 for an aluminum sphere with radius 10 times

the wavelength. In this case, lmax = 81.

Once the components of the complex field have been computed, the MATLAB code

I developed computes the magnitude of
−→
E
∗
·
−→
E . This quantity is proportional to the

time-averaged intensity and, for simplicity, will hereafter be referred to as intensity.

Since the absorbed energy is directly related to intensity, we may characterize the

energy absorption distribution by characterizing this intensity distribution.
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Figure 2.2 Values of the absorption parameters eAl and eAl for an aluminum

sphere with a = 10λ (lmax = 81)





Chapter 3

Results

3.1 Fields within a Mie Sphere

In this chapter we examine the energy absorption distributions in various spheres.

Because many materials of interest have small skin depth at our wavelength, we

concentrate on the regions inside the sphere near the surface.

It is obviously essential to specify the optical constants of the materials in question.

These have been obtained from Palik [19]. Calculations are carried out for aluminum,

graphite, silver, and tungsten, which have all been observed to levitate in a laser in

our laboratory. The values of the complex index of refraction for λ = 532nm, where

nre is the real part and κ is the imaginary part (i.e. the absorption coefficient), are

provided in Table 3.1.

13
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nre κ

Aluminum 0.912 6.55

Graphite (e) 2.03 0.64

Graphite (o) 2.67 1.34

Silver 0.129 3.25

Tungsten 3.50 2.72

Table 3.1 Complex Indices

We plot the surface of the sphere showing the amount of absorbed energy just inside

of the sphere. We use fifty points on the surface of the sphere for our plots of the

absorption. We also plot the entire field, inside and out, for a two-dimensional cross

section in the x-z plane. Twenty-five grid points are used for each spatial unit of the

sphere’s radius a in our plots of the complete field.

3.2 Absorption within a Mie Sphere

Fig. 3.1 shows plots of the intensity for a graphite particle in a laser field. Our

plots of the internal intensity show first the “shady” side of the sphere, and then the

“sunny” side, as dictated by our choice of the positive z-direction as the direction of

the light propagation. We run calculations for a = 5λ, which with our wavelength

of 532 nm, corresponds to a ∼5 µm diameter particle. The only things that matter

in the calculations are the ratio of particle radius to wavelength and the refractive

index at the pertinent wavelength. From this plot, we may see that there is not any

shady-side heating under these conditions.

To further understand what is happening, we have plotted the complete field in

Fig. 3.2. This necessitates calculation of the incident and scattered fields, details of

which can be found in Appendix A. These plots, which begin on the next page, show
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the
−→
E
∗
·
−→
E intensity. All plots are shown in units of the sphere’s radius, a.
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3.2.1 a = 5λ

Figure 3.1 Internal absorption at the surface of a sphere with a = 5λ. The

beam propagates from bottom to top.

Figure 3.2 Complete field for a ∼5 µm diameter particle (a = 5λ). The

beam propagates from left to right.
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From our calculations, we see no counterintuitive effects. It seems that the parti-

cles gets “blasted” on the sunny side, and that the shady side receives little intensity

at all. There is a “void” cleared out behind the particle as well, so there is no striking

curling of fields behind the particle that could cause an increase of absorption on that

side, as posited by Pluchino. [3]

3.3 Size Dependence

For a larger particle (with a = 10λ), as seen in Figs. 3.3 and 3.4, we can see

that the field gets even weaker on the back side. The results for smaller particles are

shown beginning in Figs. 3.5–3.14. Even for submicron particles, there is very little

shady-side heating. It seems that all of the particles receive a lot more intensity on

the side of the particle facing the beam.
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3.3.1 a = 10λ

Figure 3.3 Internal absorption at the surface of a sphere with a = 10λ.

The beam propagates from bottom to top.

Figure 3.4 Complete field for a = 10λ. The beam propagates from left to

right.
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3.3.2 a = 2λ

Figure 3.5 Internal absorption at the surface of a sphere with a = 2λ. The

beam propagates from bottom to top.

Figure 3.6 Complete field for a a = 2λ. The beam propagates from left to

right.
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3.3.3 a = λ

Figure 3.7 Internal absorption at the surface of a sphere with a = λ. The

beam propagates from bottom to top.

Figure 3.8 Complete field for a = λ. The beam propagates from left to

right.
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3.3.4 a = λ/2

Figure 3.9 Internal absorption at the surface of a sphere with a = λ/2.

The beam propagates from bottom to top.

Figure 3.10 Complete field for a = λ/2. The beam propagates from left to

right.
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3.3.5 a = λ/5

Figure 3.11 Internal absorption at the surface of a sphere with a = λ/5.

The beam propagates from bottom to top.

Figure 3.12 Complete field for a = λ/5. The beam propagates from left to

right.
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3.3.6 a = λ/10

Figure 3.13 Internal absorption at the surface of a sphere with a = λ/10.

The beam propagates from bottom to top.

Figure 3.14 Complete field for a = λ/10. The beam propagates from left

to right.
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3.4 Investigation of Possible Resonances

The particle sizes we have investigated so far do not experience shady-side heat-

ing. However, in observing the internal intensity distributions for the particle sizes

a = λ (corresponding to a ∼1 µm diameter particle), a = λ/2 (532nm=.532 µm

diameter), a = λ/5 (.2 µm diameter), and a = λ/10 (∼.05 µm diameter), an effect is

noticed which merits further investigation.

(a) a = λ (b) a = λ/2

(c) a = λ/5 (d) a = λ/10

Figure 3.15 Internal absorption with possible hints of resonances.

In Fig. 3.15, the magnitude of the intensity is represented by height. When a = λ,

the absorption on the sunny side is much more than that on the shady side (it’s



3.4 Investigation of Possible Resonances 25

“higher” on the sunny side than on the shady side). When a = 2λ, the difference in

height between front and back is not as much. In fact, there are pockets of higher

absorption on the shady side corresponding to places where the external field regions

of high intensity “curl around” to the shady side, as can be seen from Fig. 3.10. When

a = 5λ, there is even more curling (See Fig. 3.12), and there are places in the middle

of the sphere where the height is greater than corresponding x-values closer to the

sunny side. This “bump”, which can be seen in Fig. 3.15(c), is gone at a = λ/10.

The question this brings up is whether, somewhere in this range of particle sizes,

there might be some kind of resonance that could make it so the magnitude of the

intensities on both sides are equal or even higher on the shady side. This would

give an explanation of the phenomenon of stable particle trapping and would be

consistent with the fact that the particles are self-selecting when they become trapped.

I investigated the solutions from a = λ to a = 10λ in small steps to see if any such

resonances might exist.

To investigate this, I calculated what I call the “Center of Intensity” in the z-

direction.

RI =

∑
znIn∑
In

(3.1)

The closer the center of intensity is to the shady side of the sphere (positive z-

direction), the more of a shady-side heating effect we have. I first plotted this quantity

from a = 10λ (corresponding to λ/a = 0.1 on the figure) to a = λ/10 in increments

of λ/a = 0.1 (see Fig. 3.16(a)).



26 Chapter 3 Results
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Figure 3.16 Center of intensity as a function of particle size. Negative

numbers for RI/a indicate a center of intensity further to the sunny side
than the center of the sphere.

Note that for the sizes of particles we’re interested in, a = 10λ (corresponding to

λ/a = .1) to a = λ (corresponding to λ/a = 1), the center of intensity is well on the

sunny side of the sphere.

To make sure I hadn’t missed any resonances in the sizes where the interesting

effects are happening, I repeated the calculations from a = λ to a = λ/5 in increments

of λ/a = 0.01, with the same result. The furthest toward the shady side that this

center of intensity got was RI = −0.14a at a = λ/4.62. Plots of the intensity

distribution for this particle size are included in Fig. 3.17.
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(a) a = λ/4.6 external

(b) a = λ/4.6 internal (c) a = λ/4.6 internal height

(d) a = λ/4.6 shady side (e) a = λ/4.6 sunny side

Figure 3.17 Intensity distribution for a = λ/4.6, where RI is furthest toward

the shady side.
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One might say that there is a sort of shady-side heating for sub-wavelength-size

particles, but these are much smaller than the ones we have observed to become

trapped in the laser. When the external field “wraps around” to the back side of the

particle, it heats up the sphere on the back side. However, the particle still receives

more intensity on the sunny side, so this mechanism cannot explain the stable particle

trapping.

3.5 Conclusions

Our hypothesis of shady-side heating does not appear to be the mechanism re-

sponsible for the observed small-particle levitation. Our results show that, even

though there are some times when the shady side does absorb, all of the particles

absorb much more on the sunny side, especially when they are larger, such as five or

ten microns. Some other mechanism will need to be proposed in order to explain the

stability of the phenomenon.

Some ideas for responsible mechanisms still include a kind of shady-side heating,

associated with unusual particle geometries, since particles that become trapped are

self-selected as a powder is sprinkled through the laser focus. There could also be

some kind of tumbling effect that causes the heated part of the sphere to rotate

around to the shady side.

Perhaps understanding of the process must be sought through a study of the

molecular flow range dynamics of gases. Since it has been observed that a gaseous

medium is needed for the phenomenon to occur, movement of the gases around the

particle might be the key to explaining the levitation. Investigating such things

as circularly or elliptically polarized light might help us to further understand the

mechanism.
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Appendix A

Solving for Internal Fields of Mie

Particles

A.1 Method

We follow the example of Born and Wolf [1] in considering the diffraction of a

plane, linearly polarized, monochromatic wave by a sphere of radius a, immersed in a

homogeneous, isotropic medium. Both the particle and the medium are nonmagnetic.

We apply Maxwell’s equations in vector form and in spherical coordinates to obtain

six coupled partial differential equations. In order to obtain a complete solution, we

represent the solution of these equations in terms of two linearly independent fields,

one with a radial electric component but no radial magnetic component (an electric

wave) and one with a radial magnetic component but no radial electric component

(a magnetic wave.) We then show that each wave may be derived by a scalar Debye

potential, each of which satisfies the wave equation.

To solve this wave equation, we use separation of variables, which leads us to a

series solution involving Bessel, Neumann, and Hankel functions as well as associ-

31
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Figure A.1 Notation for the Mathematical Solution of the Mie Problem

ated Legendre polynomials. The problem is thus reduced to finding the unknown

coefficients for these series expansions. These are found by applying the boundary

conditions at the surface of the sphere.

A.2 General Equations

The notation used for the solution of this problem will be as follows: We have

rectangular coordinates with the origin at the center of the sphere, the z-direction as

the direction of propagation, and the x-direction as the direction of the wave’s electric

vector (remember that we have a linearly polarized plane wave). A superscript I

denotes quantities relating to the medium surrounding the sphere, while a superscript

II denotes those relating to the sphere itself. See Fig. A.1 for clarification.

We describe the wave at all points through Maxwell’s equations:

∇ ·
−→
E = 0 (a)

∇×
−→
E = −∂

−→
B
∂t

(b)

∇ ·
−→
B = 0 (c)

∇×
−→
B = µ0ε

∂
−→
E
∂t

+ µ0
−→
J (d)

(A.1)

If we assume standard time independence e−iωt on both vectors, we can express
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the two curl equations as follows: ∇×
−→
B = −k1

−→
E (a)

∇×
−→
E = k2

−→
B (b)

(A.2)

where  k1 = iωn2

c
(a)

k2 = iω
c

(b)
(A.3)

Note that k is the usual wave number and that n (ω) is the complex index so that:

k2 = ω2

c2
(1 + χ) = −k1k2 and n (ω) ≡

√
1 + χ (A.4)

When we express these fields in spherical coordinates, we obtain:

(a)


−k1Er = 1

r2sin θ

[
∂
∂θ

(rBϕsin θ)− ∂
∂ϕ

(rBθ)
]

(α)

−k1Eθ = 1
rsin θ

[
∂
∂ϕ
Br − ∂

∂r
(rBϕsin θ)

]
(β)

−k1Eϕ = 1
r

[
∂
∂r

(rBθ)− ∂
∂θ
Br

]
(γ)

(b)


k2Br = 1

r2sin θ

[
∂
∂θ

(rEϕsin θ)− ∂
∂ϕ

(rEθ)
]

(α)

k2Bθ = 1
rsin θ

[
∂
∂ϕ
Er − ∂

∂r
(rEϕsin θ)

]
(β)

k2Bϕ = 1
r

[
∂
∂r

(rEθ)− ∂
∂θ
Er
]

(γ)

(A.5)

We’ll represent the solution of these equations in terms of two linearly independent

fields as discussed above, which we will name (eE , eB) and (mE , mB), each of which

will satisfy Eq. (A.5) such that:

(a) eEr = Er,
eBr = 0 and (b) mEr = 0, mBr = Br (A.6)

Under these constraints and the two Maxwell equations involving divergence, we

can show that Maxwell’s equations, i.e. Eq. (A.5), may be satisfied by using Debye

potentials. This is an important point. It is analogous to to situation where, in Carte-

sian coordinates, we obtain a vector field from a scalar potential. Debye potentials
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allow one to do the same thing in spherical coordinates. The complete solution to

our set of equations is as follows:

(a)


Er = eEr + mEr = ∂2

∂r2
(reΠ) + k2reΠ (α)

Eθ = eEθ + mEθ = 1
r

∂2

∂r∂θ
(reΠ) + k2

rsin θ
∂
∂ϕ

(rmΠ) (β)

Eϕ = eEϕ + mEϕ = 1
rsin θ

∂2

∂r∂ϕ
(reΠ)− k2

r
∂
∂θ

(rmΠ) (γ)

(b)


Br = mBr + eBr = ∂2

∂r2
(rmΠ) + k2rmΠ (α)

Bθ = mBθ + eBθ = − k1
rsin θ

∂
∂ϕ

(reΠ) + 1
r

∂2

∂r∂θ
(rmΠ) (β)

Bϕ = mBϕ + eBϕ = k1
r

∂
∂θ

(reΠ) + 1
rsin θ

∂2

∂r∂ϕ
(rmΠ) (γ)

(A.7)

where both potentials reΠ and rmΠ are solutions of the wave equation:

∇2Π + k2Π = 0 (A.8)

A.3 Expansion of Solution

The method of separation of variables will be used to solve this partial differential

equation, Eq. (A.8). We take:

Π = R (r) Θ (θ) Φ (ϕ) (A.9)

Upon plugging this into our wave equation, we obtain the following:
∂2

∂r2
(rR) +

(
k2 − α

r2

)
rR = 0 (a)

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ
Θ
)

+
(
α− β

sin2θ

)
Θ = 0 (b)

∂2

∂ϕ2 Φ + βΦ = 0 (c)

(A.10)

The solutions of these three equations are:

rR = clψl (kr) + dlχl (kr) , Θ = Pl
m (cos θ) , Φ = am cos (mφ) + bm sin (mφ)

(A.11)
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ψ and χ are Riccati-Bessel functions, based on the Bessel and Neumann Functions,

respectively, in such a way as to be convenient in later calculations. They come from

the r equation, which is manipulated so as to give a Bessel equation. To be specific:

ψl (ρ) =
√

πρ
2
Jl+ 1

2
(ρ) , χl (ρ) = −

√
πρ
2
Nl+ 1

2
(ρ) (A.12)

It should be noted here that we will also use a linear combination of these functions,

which is itself a Riccati-Bessel function as well as a variation on the Hankel function:

ζl
(1) (ρ) = ψl (ρ)− iχl (ρ) =

√
πρ

2
Hl+ 1

2
(ρ) (A.13)

Combining the solutions to these equations as prescribed by Eq. (A.9) yields the

following series solution:

rΠ =
∞∑
l=0

l∑
m=−l

[(clψl (kr) + dlχl (kr))]
[
P

(m)
l (cos θ)

]
[amcos (mϕ) + bmsin (mϕ)]

(A.14)

with cl, dl, am, and bm being arbitrary constants and m and l being integers.

A.4 Boundary Conditions

The basic idea of the boundary conditions for this problem are that we have fields

outside the sphere and inside the sphere, and that these fields must be continuous at

the surface of the sphere. We have an incoming wave
−→
E

(i)
,
−→
B

(i)
which we normalize

to unity, i.e.

∣∣∣∣−→E (i)
∣∣∣∣ =

∣∣∣eik(I)z∣∣∣ = 1. There is a field within the sphere which we

shall denote
−→
E

(w)
,
−→
B

(w)
and a scattered field which we shall denote

−→
E

(s)
,
−→
B

(s)
.

Considering these fields, we may say
−→
E =

−→
E

(i)
+
−→
E

(s)
outside the sphere

=
−→
E

(w)
inside the sphere

(A.15)
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For our boundary conditions, we require that the tangential components of the

field to be continuous at the surface of the sphere. In spherical coordinates, this

means that when r = a:  Eθ
(I) = Eθ

(II) , Eϕ
(I) = Eϕ

(II)

Bθ
(I) = Bθ

(II) , Bϕ
(I) = Bϕ

(II)
(A.16)

When we look at Eq. (A.7), we can see that our boundary conditions may be suffi-

ciently expressed by saying that four quantities remain continuous over the surface.

Fully expressed, these are:

∂
∂r

[
r
(
eΠ(i) + eΠ(s)

)]∣∣
r=a

= ∂
∂r

[
reΠ(w)

]∣∣
r=a

(a)

∂
∂r

[
r
(
mΠ(i) + mΠ(s)

)]∣∣
r=a

= ∂
∂r

[
rmΠ(w)

]∣∣
r=a

(b)

k
(I)
1

[
r
(
eΠ(i) + eΠ(s)

)]∣∣∣
r=a

= k
(II)
1

[
reΠ(w)

]∣∣∣
r=a

(c)

k
(I)
2

[
r
(
mΠ(i) + mΠ(s)

)]∣∣∣
r=a

= k
(II)
2

[
rmΠ(w)

]∣∣∣
r=a

(d)

(A.17)

A.5 Analysis of Potentials

In observing our series solution, Eq. (A.14), we can come to an expansion for

the the wave within the sphere as well as the incident and scattered waves. Basically,

we determine the unknown coefficients based on the boundary conditions.

The first step is to find the expansion for the incident wave, as we need this

information to solve for the other fields. We put our field in spherical coordinates,

then use identites involving the exponential function, the most important of which is

Bauer’s formula:

exp
[
ik(I)rcos θ

]
=
∞∑
l=0

il (2l + 1)
1

k(I)r
ψl
(
k(I)r

)
Pl (cos θ) (A.18)

Doing this leads to the following solution for the incoming potential: reΠ(i) = 1

k(I)
2

∑∞
l=1 i

l−1 (2l+1)
l(l+1)

ψl
(
k(I)r

)
P

(1)
l (cos θ) cosϕ (a)

rmΠ(i) = 1

k(I)
2

∑∞
l=1 i

l k(I)

k2
(I)

(2l+1)
l(l+1)

ψl
(
k(I)r

)
P

(1)
l (cos θ) sinϕ (b)

(A.19)
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We use a similar method for the wave within. Since this is our concern in the

present problem, I will go over it in more detail. We once again want a solution in

the form of our series solution, Eq. (A.14). Note that because the Neumann functions

have singularities at the origin, we only include the ψ functions. From our analysis of

the incoming wave, we know that our equations can only be satisfied for the unknown

potentials for which m = 1 and if a1 = 0 for the magnetic potential and b1 = 0 for

the electric potential. This gives:
reΠ(w) = 1

k(II)
2

∑∞
l=1

eAlψl
(
k(II)r

)
P

(1)
l (cos θ) cosϕ (a)

rmΠ(w) = i

k(II)k
(II)
2

∑∞
l=1

mAlψl
(
k(II)r

)
P

(1)
l (cos θ) sinϕ (b)

(A.20)

For the scattered wave, we obtain:
reΠ(s) = 1

k(I)
2

∑∞
l=1

eBlζ
(1)
l

(
k(I)r

)
P

(1)
l (cos θ) cosϕ (a)

rmΠ(s) = i

k(I)k
(I)
2

∑∞
l=1

mBlζ
(1)
l

(
k(I)r

)
P

(1)
l (cos θ) sinϕ (b)

(A.21)

A.6 Solving for Internal Fields

The final boundary conditions, Eq. (A.17), and our series expansions for the in-

cident, scattered, and interior potentials, Eqs. (A.19)–(A.21), lead us to the following

linear relations between the unknown coefficients:

eBl
1
k(I)

ζ
(1)
l

′ (
k(I)a

)
+ 1

k(I)
il−1 (2l+1)

l(l+1)
ψl

′ (
k(I)a

)
= 1

k(II)
eAlψl

′ (
k(II)a

)
(a)

mBl
1

k
(I)
2

ζ
(1)
l

′ (
k(I)a

)
+ 1

k
(I)
2

il−1 (2l+1)
l(l+1)

ψl
′ (
k(I)a

)
= 1

k
(II)
2

mAlψl
′ (
k(II)a

)
(b)

eBl
1

k
(I)
2

ζ
(1)
l

(
k(I)a

)
+ 1

k
(I)
2

il−1 (2l+1)
l(l+1)

ψl
(
k(I)a

)
= 1

k
(II)
2

eAlψl
(
k(II)a

)
(c)

mBl
1
k(I)

ζ
(1)
l

(
k(I)a
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Note that the addition of a prime to the functions ψl, ζl
(1), and later Pl

(1) denotes

differentiation with respect to their arguments.
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We are interested with the internal field, characterized by eAl and mAl. These

coefficients may be solved for by eliminating eBl and mBl. (This is where our solution

diverges from Born and Wolf, who solve for the B coefficients that characterize the

scattered field). Doing this, we obtain:
eAl = il−1 2l+1

l(l+1)

ψl
′
(k(I)a)ζ(1)l (k(I)a)−ψl(k(I)a)ζ(1)l

′
(k(I)a)

k(I)

k(II)
ψl

′(k(II)a)ζ(1)l (k(I)a)−
k
(I)
2

k
(II)
2

ψl(k(II)a)ζ(1)l

′
(k(I)a)

(a)
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′
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(k(I)a)

(b)
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We may now obtain the fields by substituting our solutions for the potentials, Eqs.

(A.19)–(A.21), into Eq. (A.7), which ends up giving us:
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A.7 External Fields

Since I used them for my plots of the fields, I thought it appropriate to put in

the equations for the incident and scattered fields, as well as the characterizing B
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coefficients for the scattered fields. These are as follows:


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
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where
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Appendix B

Procedure for Coding in MATLAB

The computation of the Mie fields are done using MATLAB. The main program

(mie.m) calls a subfunction EAbsorbed for each point in the plot. The EAbsorbed

function takes as parameters the x, y, and z values of the point as well as the number

of terms to be taken in the sum, i.e. it’s called with EAbsorbed(x,y,z,numTerms).

EAbsorbed returns the (complex) components of the electric field vector at the spec-

ified point as determined by Eq. (2.1). Once the main program has received the

components of the complex field, it computes the magnitude of
−→
E
∗
·
−→
E This quantity

is proportional to the time-averaged intensity which, for simplicity, will hereafter be

referred to as intensity. Since the absorbed energy is directly related to this inten-

sity, we may characterize the energy absorption distribution by characterizing this

intensity distribution.

The equations for Mie scattering depend on the absorbtion coefficients eAl and

mAl, and also depend, as do the absorption coefficients, on the Ricatti-Bessel func-

tions. They also depend on the associated Legendre polynomials of order 1. Thus,

subfunctions were created for each of these, with the absorption coefficients as a

function of l, and the Ricatti-Bessel functions and associated Legendre polynomi-

41
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als as functions of l and their argument, i.e. they are called with eA(l), mA(l),

legP1(l,rho), dlegP1(l,rho), ppsi(l,rho), dpsi(l,rho), zzeta(l,rho), dzeta(l,rho).

I used “ppsi” and “zzeta” to avoid confusion with already-existing MATLAB func-

tions. The subfunctions for the associated Legendre polynomials and the Ricatti-

Bessel functions, as well as their derivatives, are calculated in accordance with the

relations in Section 2.2.
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Absorption, 3–5, 7–10, 13–28, 31, 32, 35–
38, 41

Associated Legendre Polynomials, see Leg-
endre Polynomials

Bauer’s Formula, 36
Bessel Functions, see Riccati-Bessel Func-
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Boundary Conditions, 4, 8, 32, 35–37
Buoyancy, 3

Code, vi, 10, 41–42
Coefficients

Series, 37
Complex Index of Refraction, 8, 13, 14,

33

Debye Potentials, 4, 31, 33, 34, 36–38

Electric Wave, 4, 31

Field, 10
Incident, see Incident Wave
Scattered, see Scattered Wave
Within, see Absorption

Gravity, 2, 3

Hankel Functions, see Riccati-Bessel Func-
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Incident Field, see Incident Wave
Incident Wave, 4, 14, 35–38
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Light Momentum, see Photon Pressure
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Maxwell’s Equations, 4, 31–33
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Notation, 8, 32

Optical Tweezers, 1

Particles
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Photon Pressure, 2
Plane Wave, 7, 31, 32
Polarization, 7, 28, 31, 32
Potential, see Debye Potentials
Pressure, 2, 3

Rayleigh Scattering, 4
Refractive Index, see Complex Index of

Refraction
Resonance, 24–28
Riccati-Bessel Functions, 7, 9–10, 31, 35,

41, 42
Derivatives of, 9, 37, 42

Scattered Field, see Scattered Wave
Scattered Wave, 4, 14, 35–39

Wave
Absorbed, see Absorption
Electric, see Electric Wave
Incident, see Incident Wave
Magnetic, see Magnetic Wave
Plane, see Plane Wave
Scattered, see Scattered Wave
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