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ABSTRACT

HOLISTIC SOLUTION METHODS FOR COMPLEX

MULTI-PARTICLE SYSTEMS

Wesley Krueger

Department of Physics and Astronomy

Bachelor of Science

The emergence of self-organized behavior is characteristic of multi-particle

systems in which individual motion is governed by the application of simple

rules of interaction. The resulting dynamic order cannot be understood in

terms of individual particles, but can be elucidated by formulating the system

in terms of an abstract notion of dimensional coupling. We define this notion

and consider two such systems in which the coupling rules are drawn from

classical Newtonian mechanics. First we develop a deterministic flocking model

based on the principles of consensus and frustration and demonstrate that both

rules are required to elicit complex, flock-like behavior from the system. We

then employ a quasi-stationary checkerboard lattice to develop a discretized

damped Heisenberg model and demonstrate the spontaneous onset of magnetic

domains. Finally, we discuss the importance of antagonistic interaction rules

in the onset of complex, coherent dynamics away from equilibrium.
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Chapter 1

The Simple Rules of Complex

Systems

Complexity is clearly ubiquitous throughout nature. From the fractal forms of clouds

and coastlines, to the vast array of shapes, sizes, and colors in living organisms. From

the intricate loops traced out by the driven damped pendulum to the unfathomable

dances of whorls and eddies in a small stream. From the fascinating dynamics of flocks

and schools containing thousands of individuals to the impenetrable interactions of

the millions of neurons that make up the human brain. Complexity is the basis for the

beauty of the natural world, but more enigmatically and certainly more importantly,

complexity gives rise to structure and stability. Even more perplexing is the fact that

the structures that arise from complex systems can seldom be understood by breaking

the system into ever smaller constituent parts, and yet the emergent order is clearly

recognizable and demonstrably subject to the basic laws of physics. Complex systems

can also give rise to dynamic structure: schools of fish, evolutionary adaptation, and

social networks. But what orchestrates this emergence of order? The answer lies in

what we will refer to as dimensional coupling within the system.

1



2 Chapter 1 The Simple Rules of Complex Systems

A complex system is frequently defined as a system for which the whole is greater

than the sum of its parts [10, 18]; that is, the behavior of the system as a whole

cannot be elucidated by simply combining the low-level behaviors of the individual

elements that make up the system. Nature is replete with examples: Quantum me-

chanical interactions tell us very little about the spontaneous formation and structure

of clouds; the chemical and gravitational interactions between atoms and molecules

do not offer completely satisfactory explanations for the formation of stars and galax-

ies; even combining our understanding of gas dynamics with the concept of forces is

unable to shed much light on the details of a flag flapping in the breeze. Because

the emergent behavior or properties of the system generally exhibit some overarching

static or dynamic structure, we refer to the system as self-organizing. It is this self-

organizing behavior that is not immediately apparent from the actions of individual

parts–in fact, frequently the two two levels appear to be governed by completely in-

dependent and unrelated sets of rules or physical laws. In other words, turbulence

does not follow from and cannot be better understood by the underlying quantum

mechanical interactions that govern the fluid molecules; however, turbulence can be

understood (to a degree) by fluid flow equations–in particular the Navier-Stokes equa-

tion. Likewise, the rise and fall of the stock market cannot be predicted based on

the actions of individual shareholders (much to the dismay of Wall Street), but the

boom and bust cycles have been demonstrated to follow power law distributions [3]

and thus exhibit an overall order seemingly unrelated to individual purchases and

sales. However, it is clear that emergent self-organization does depend in some way

on the behavior of individual actors and frequently, once an emergent property has

been understood according to some physical law, it can be shown that the global

behavior is in fact consistent with the laws governing microscopic (compared to the

global scale of the system) behavior. Solé and Goodwin state, “understanding the
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molecular properties of H2O does not allow us to derive the Navier-Stokes equations;

having the Navier-Stokes equations does not give us a prediction and description of

Bénard cells...We make [emergent self-organizing behavior] intelligible by recognizing

how it is consistent with lower-level properties and by finding appropriate mathe-

matical descriptors” [10]. Thus, complex systems do not lend themselves well to the

reductionist techniques that have defined science for centuries; nevertheless, complex-

ity does not spell the end of reductionism. The study of complex systems requires a

holistic approach open to emergent phenomena and prepared to qualify and quantify

self-organized behavior and reconcile this observed behavior with underlying physical

laws, perhaps developing new insights into those laws as a result. Statistical mechan-

ics and chaos theory provide some of the most common tools used in this holistic

approach.

While strict reductionist techniques are not useful in attempting to understand

complex systems, it is frequently helpful to divide such systems into several dimen-

sions related to the degrees of freedom present within the system, thereby defining

a type of phase space for the system. For example, a single gas molecule might

have 6 independent dimensions related to its vector displacement and velocity; by

extension, the phase space for a gas containing N molecules can be understood as a

6N dimensional system. In a similar manner, a multi-dimensional phase space can

be defined for nearly any system, based on the physical properties of the system in

question. This phase space turns out to be a very important tool in the analysis of

complex systems, as it is the interaction, or coupling, between these dimensions that

determines the emergent properties of the system.

While all complex systems can be viewed as multi-dimensional, not all multi-

dimensional systems exhibit complex behavior. One obvious example is a low-density

gas at equilibrium. As mentioned above, the phase space of such a gas will consist of
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a vector position and velocity for each gas particle; however, these dimensions will, in

general, remain essentially uncoupled across the gas–that is, in a dilute gas, particle-

particle interactions are relatively infrequent and only occur during a brief moment

of interaction. Thus the trajectory of each individual molecule evolves independently

of the trajectories of the surrounding molecules, and any random interaction is even-

tually “undone” by another random interaction, due to the brevity and infrequent

nature of the interactions. Since there is no dimensional coupling, there is no emer-

gent behavior. This view is consistent with our physical understanding of a dilute

gas at equilibrium: in such a gas, particle movement is essentially random–governed

mostly by the temperature (and thus the kinetic energy) of the individual molecules.

While molecule-molecule interactions do occur, they are, by and large, statistically

irrelevant to the overall behavior of the gas.

As stated above, the key to complex behavior in a given system is the coupling

between dimensions–self organization and emergent behavior can only arise where

dimensional coupling is present. This coupling is most easily expressed in terms

of rules defining how each dimension depends on the others. The rules themselves

need not be complex–in fact, very simple rules often give rise to easily and elegantly

described systems that exhibit highly complex emergent properties–but they must

be non-linear. Returning to the dilute gas example, we find that even if the brief

interactions between molecules are taken as a coupling between dimensions (perhaps

we increase the density of the gas so that interactions become more frequent), these

interactions will be governed by non-relativistic conservation of momentum, which is

a linear relationship. This means that the particle-particle interactions do not serve

to drive the system toward emergent behavior, but rather average out to a net zero

effect on the global dynamics of the system. Thus the behavior of many molecules in

a short time is essentially identical (from a statistical point of view) to the behavior
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of one molecule over a proportionately longer time period–given enough time, a single

gas molecule will visit every nook and cranny in a room; likewise, a gas containing

1023 particles will fill every nook and cranny of the room in 1/1023 of the time. In this

case, the global behavior of the gas offers no more information than the dynamics of

a single, non-interacting molecule, which is a result of the linearity inherent to the

system.

Non-linear rules can frequently be expressed in simple English statements, but

they provide the mathematical basis for developing a computer model of the system.

Computer models are a crucial component of the study of complex systems, as even

the simplest non-linear rules become completely intractable when applied over the

tens or hundreds of dimensions in the phase space of the system; computer models,

however, allow us to qualitatively observe the evolution of the system and thereby

develop quantitative descriptions of its emergent dynamic properties. Furthermore,

building a model of a complex system based on simple rules, even if those rules

are obviously contrived or patently unrealistic, may give rise to qualitatively correct

behavior when compared to a real system, thus allowing us to gain possible novel

insights into the inner workings of the real system or confirm new observations of the

system.

The use of coupling rules also provides a convenient way to represent interactions

between the system and its environment. A closed complex system may exhibit self-

organization, but frequently the emergent behavior is uniform and merely suggests

the qualitative properties of the natural system in question, rather than offering

compelling insights into the system. This is because, with no external influence,

the system will eventually reach a uniform equilibrium state that may exhibit some

sort of order, but is not generally understood as a “complex” system. The emergent

order that characterizes complex systems, on the other hand, generally occurs away
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from equilibrium, the result of an antagonistic “tug-of-war” between the coupling

rules driving the system toward an equilibrium state and the external influences

that, in general, oppose such a state, by imposing some sort of physical or energetic

constraint. In a sense then, the external influences tend to prevent the system from

reaching equilibrium by “stirring it up”, so to speak. Thus, by inserting rules whereby

the system is allowed to interact with the environment as well as rules for internal

coupling, we can ensure the non-equilibrium conditions that characterize the onset of

emergent behavior.

In this paper, we will develop two models of very different physical systems based

on simple rules drawn from classical Newtonian mechanics and show that these models

exhibit the expected qualitative emergent behavior. In Chapter 2 we develop a flock-

ing model that exhibits spontaneous grouping of initially randomly oriented “boids”

based on two rules of interaction we have termed “consensus” and “frustration”. We

show that consensus only will lead to two types of uniform motion, and that the ad-

dition of frustration gives rise to a spectacular range of highly complex motion that

qualitatively resembles flocking. In Chapter 3 we develop a Heisenberg model based

on spin-spin interactions described by the Gilbert relaxation equation and demon-

strate the spontaneous onset of magnetic domains and other emergent properties in

a damped ferromagnetic model away from equilibrium. Finally, in Chapter 4, we

discuss the dimensional coupling present in each system and how this coupling con-

tributes to the emergent properties described in the corresponding chapters. We also

discuss antagonistic rules provided by interaction with the environment and explore

their role in symmetry breaking and the onset of structure and coherence.



Chapter 2

Boids

A Flocking Model

Flocking, schooling, and swarming offer possibly some of the most fascinating ex-

amples of complexity in the natural world, and have been a source of inspiration

since ancient times [13]. How the “lowly” creatures are able to twist and dodge much

faster than the eye can follow, while simultaneously avoiding dangerous and even fatal

collisions with flockmates sometimes only inches away is a feat that modern traffic

controllers have yet to reproduce; and yet small birds, fishes, and even insects are able

to carry out complex maneuvers in three dimensions with seemingly little thought at

all. In fact, the concepts of “group think”, “crowd sourcing”, and “swarm intelligence”

have sought to take advantage of the lowly creatures’ ability to form highly cohesive,

swiftly-moving groups able to make complex decisions about predator evasion, food

sources, and shelter that benefit both the individual members and the group as a

whole–all without following the lead of any particular individual. Thus, the study

of flocking and swarming may even be essential to human progress, as we learn to

utilize the decision-making capacities of large collections of individuals for the ben-

7
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efit of humankind [8]. Len Fisher states that “One of the most important emergent

properties a group can have is swarm intelligence, which allows a group to tackle

and solve problems in a way that its individual members cannot” [8]. Flocking and

swarming could have application in many areas involving large interacting groups of

people including traffic and crowd control, the spread of epidemics, marketing and

economics, and social networking. Aside from clear practical implications, flocking

and swarming is a fascinating problem in its own right and will provide many insights

into the adaptability and evolution of large groups of independent individuals.

In this chapter we will approach the problem of flocking from a physical and

mathematical standpoint, developing a model based on simple mathematical rules of

movement and interaction. We will demonstrate that the model exhibits rich dynamic

behavior that qualitatively resembles the flocking and swarming behavior observed in

birds and insects. We will also discuss how the tools of statistical mechanics may be

used to quantify some of the emergent properties of the virtual flock.

As suggested above, perhaps one of the most compelling and perplexing charac-

teristics of flocks, schools, and swarms (which will be hereinafter grouped together

generically as “flocks”, while the phenomena of flocking, schooling, and swarming will

be collectively referred to as “flocking”), is the fact that most large flocks do not ap-

pear to be organized by the actions of a particular individual or leader. This has been

demonstrated in multiple studies, which have also revealed that each individual acts

as both a “leader” and a “follower” [6]. A similar result was demonstrated by Potts

in his studies of flocks of Dunlin (Calidris alpina). He states: “Birds were considered

initiators [of a given manoeuvre] when they began the manoeuvre before the rest of

the flock” [19]. But how can a flock remain cohesive if each individual is free to follow

the lead of any other individual and also free to “initiate” any given manoeuvre? And

what determines who should follow whom? As with all complex systems, there are
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certain rules of interaction governing the actions of each individual, and, as we will

demonstrate with our own flocking model, it is precisely these rules that lead to the

emergence of the coherent behaviors observed.

A basic flocking model consists of several individuals all moving with some speed

v0 in a given direction, which we can specify by an angle θ. Clearly there will be no

emergent behavior if v0 and θ either remain constant or are allowed to vary in random

ways–the model will simply represent a gas of non-interacting particles that is easily

understood through basic statistical analysis. The rules that give rise to the onset of

ordered behavior are the rules of interaction between individuals. This concept was

first applied to a flocking model by Reynolds, who described three rules of interaction

for cohesive flocking [20]:

1. Collision Avoidance: avoid collisions with nearby flockmates.

2. Velocity Matching: attempt to match velocity with nearby flockmates.

3. Flock Centering: attempt to stay close to nearby flockmates.

Reynolds’ model creates a self-organizing flock of “boids” (a contraction of the term

“bird-oid”, coined by Reynolds to describe the “virtual birds” that made up his flocking

model [20]) that exhibits high cohesion between individuals and, upon slight modifica-

tion of rule 1–avoid collisions with nearby flockmates and external objects–exhibits a

very interesting ability to encounter and successfully navigate around obstacles with-

out permanent disruption of flock cohesion. One important note is that each of these

rules acts on both v0 and θ–that is, each boid may alter its speed and direction in

order to fulfill the three rules of interaction–and thus, while quite realistic, this model

may still be too complex for careful physical analysis.

The essence of this model was captured (independently) by Tamás Vicsek and his

colleagues in a highly simplified model of self-driven particles. Vicsek’s model is based
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on a collection of particles governed by a single rule of interaction: “at each time step a

given particle driven with a constant absolute velocity assumes the average direction of

motion of the particles in its neighborhood of radius r with some perturbation added”

[24]. The coherent motion in this model depends, in large measure, on the size of the

perturbation or “noise level” and also on the size of the radius of interaction. Motion

ranges from very small only slightly cohesive groupings for large perturbations and

small values of r, to smaller, more tightly bound groups moving in random directions

for larger values of r and less noise, to nearly uniform, linear motion for all particles in

the simulation for large r and very small levels of noise [24]. The resulting motion is

emergent, arising from an initial randomly distributed group of particles with random

initial orientations, and the direction of coherent motion, especially in the uniform

case, is selected by the group in a spontaneous fashion that is entirely dependent

on the interactions between particles [24]. Because it is based on individuals with

constant speed and applies only a single rule to modify the direction of each flock

member, this model offers ample opportunities for mathematical interpretation and

the authors provide insights into the statistical and physical properties of the model–

in particular, they discuss the presence of phase transitions from ordered to disordered

behavior in the flock and draw an analogy between their model and the models of

ferromagnetism. Furthermore, a complete mathematical analysis of Vicsek’s model

was performed by Toner and Tu [22].

Like Vicsek’s model, our flocking model is based on a two-dimensional array of

initially randomly oriented self-driven boids, each moving at a constant speed within

an infinite space, simulated by the use of periodic boundary conditions; however,

rather than adopting a single rule of interaction, we employ two simple rules that

we have termed “consensus” and “frustration”, which will be described in more detail

below. Furthermore, we make the additional simplification of removing the “noise”
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factor included in Vicsek’s model. This has the advantage of establishing a completely

deterministic model, facilitating the description of the resulting emergent behavior,

and given the complex behavior of the system, this is not a limitation: Chaotic

fluctuations are bound to appear with no need to include a random feature explicitly.

In our model, each boid is assumed to spontaneously acquire the energy necessary to

maintain its constant absolute velocity for as long as required and independently of

the interactions–that is, our model represents an open system of self-propelled boids.

The equations of motion for each individual take the form of two sets of Hamilton-like

coupled equations derived from Newton’s laws. These are the rules that describe the

dimensional coupling for the system; the phase space consists of the direction and

velocity of each boid, and the details regarding how each boid maintains its speed

or alters its direction is irrelevant to the onset of large-scale order, as discussed in

Chapter 1. Thus, the velocity vector of each boid is updated as a function of its

relationship with the other members of the flock, and the corresponding position

is subsequently modified based on this new velocity. Mathematically, this can be

expressed as follows:

Let vi(n) be the two-dimensional velocity vector for boid i at time step n. The

velocity vector at time step n+ 1 will then be

vi(n+ 1) = v0Fi(v̂(n)), (2.1)

where v0 represents the fixed speed of each boid and Fi is a specific averaging function

that updates the orientation of the ith boid based on a set of velocity orientations

{v̂} using the rules of consensus and frustration described below. It is the function Fi

then, that specifies the interaction between boids (that is, the dimensional coupling).

Note that Fi is constructed so as to preserve the magnitude of the original velocity

vector v0 of each boid. The two-dimensional positions of each individual are then
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updated as:

ri(n+ 1) = ri(n) + vi(n+ 1)∆t (2.2)

for a discrete time step ∆t, which is generally set to 1 in the simulation runs.

By calculating the resulting positions in this way, we create a difference equation

map. It is important to point out that the map itself is the model, and not merely a

representation or approximation of an underlying set of differential equations. Using

a map, rather than a differential equation, allows for the onset of complex motion,

as demonstrated by May [17] in his paper on the logistic map. At least three differ-

ential equations would be required for the onset of complex dynamics, while only a

single difference equation is needed to achieve a similar effect [9]. Thus the difference

equation itself is the basis for this model, and is not simply an approximation of an

underlying differential equation.

Consensus

In its general form given in Eq. 2.1, the interaction function Fi could take practically

any form. In fact, designing Fi to align the direction of the ith boid with the average

direction of the velocities of the set of neighbors within a radius r reproduces Vicsek’s

model described above. However, rather than specify a given radius of interaction

for each boid, as was done by both Reynolds and Vicsek, we have adopted a non-

reciprocal topological interaction in which each boid aligns its direction of motion with

the average direction of motion of a fixed number of flockmates, regardless of distance.

We feel that the topological interaction is critical to the onset of the emergent behavior

observed in our model–a fact born out by recent field studies [4]–and also addresses

a particular weakness in the nearest neighbor model with regard to the physical

aspects of flocking; that is, the nearest neighbors interaction paradigm allows each
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boid to interact only with other boids within a set radius–individuals outside this

radius are effectively invisible to the boid in question. Reynolds acknowledges this

particular shortcoming: “The flock model presented here is actually a better model

of a school or herd than a flock. Fish in murky water (and land animals with their

inability to see past their herdmates) have a limited, short-range perception of their

environment” [20]. He further states, “Birds, especially those on the outside of a flock,

have excellent long-range ‘visual perception’. Presumably this allows widely separated

flocks to join together. If the flock centering urge was completely localized, when two

flocks go a certain distance apart they would ignore each other” [20]. In addition,

studies carried out by Wayne Potts have suggested that long-range interaction may

be crucial in a flock’s ability to react nearly instantaneously to a perceived threat.

He proposes a “chorus-line” hypothesis, wherein any individual may instigate a given

manoeuvre and demonstrates that the resulting “manoeuvre wave” will then propagate

through the flock three times faster on average than would be possible if the birds

were simply reacting to the movement of their nearest neighbors alone [19]. Recent

research by Ballerini et al. also indicates that strong cohesion is better obtained

through a topological rather than a metric interaction paradigm and demonstrates

that flocks of starlings (Sturnus vulgaris) do seem to interact based on topological

distance rather than metric distance [4]. They state:

Why a topological, and not a metric, interaction? Animal collective

behavior is staged in a troubled natural environment. Hence, the inter-

action mechanism shaped by evolution must keep cohesion in the face of

strong perturbations, of which predation is the most relevant. We believe

that topological interaction is the only mechanism granting such robust

cohesion and, therefore, higher biological fitness. A metric interaction

is inadequate to cope with this problem: Whenever the interindividual
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distance became larger than the metric range, interaction would vanish,

cohesion would be lost, and stragglers would “evaporate” from the ag-

gregation. A topological interaction, in contrast, is very robust, because

its strength is the same at different densities. By interacting within a

fixed number of individuals the aggregation can be either dense or sparse,

change shape, fluctuate and even split, yet maintain the same degree of

cohesion [4].

There is then, much theoretical and experimental evidence in favor of a topological

interaction paradigm.

In addition to a novel topology of influence, our interaction function is also char-

acterized by a non-reciprocal interaction structure, in which the ith boid is randomly

assigned a parametrized, fixed number of topological neighbors, but those neigh-

bors do not necessarily follow boid i directly; rather, they align themselves with

an identical number of other topological neighbors. That is, for a flock of boids

{a...z} with velocity vectors {va...vz}, if boid i aligns its velocity vector with veloci-

ties {vj, vk, vl, vm, vn}, then boid j may align itself with {vk, vl, vm, vn, vo} or any other

randomly assigned set of velocities, excluding vi. However, vi may be included in one

or more alignment arrays for boids not included in the alignment array for boid i (for

example, boid f may align with the set of velocities {vg, vh, vi, vj, vk}). Due to the

randomized nature of the initial configuration, this is most easily achieved in practice

by assigning each boid to align itself with the M subsequent velocity vectors, taken

in order from the full array, as described above. This paradigm is best illustrated

graphically. Fig. 2.1 illustrates the non-reciprocity of our interaction topology and

compares it to a nearest neighbors model for the same configuration.

The rule of consensus, then, dictates that each boid align its velocity vector in

the average direction of its topological neighbors before updating its position. This
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Figure 2.1 Diagram of the non-reciprocal interaction topology used in our
flocking model. In this case, each member of a flock of N individuals follows
M topological neighbors. (a) Diagram showing non-reciprocal interaction
between a fixed number of flockmates. Note in particular that although
boid n follows m, m does not directly follow n. (b) Diagram of a similar
arrangement of boids showing nearest neighbor interaction for comparison.
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average direction v̄ is calculated as follows:

v̄ =

M∑
k=1

vk∣∣∣∣∣
M∑
k=1

vk

∣∣∣∣∣
, (2.3)

where each sum is taken over the M topological neighbors for the boid in question,

assigned as described above and shown in Fig. 2.1. It is the normalization of v̄ in

Eq. 2.3 that introduces the non-linearity that is so crucial to the emergent behavior

of the model. The averaging function Fi given in Eq. 2.1 is then simply:

Fi(v̂) = v̄i, (2.4)

where v̄i is the average direction of the topological neighbors for boid i, calculated

using Eq. 2.3. Note that |Fi| = 1, as required to conserve the absolute speed of each

boid.

Starting from an array of randomly placed boids with random initial orientations

and iterating Eqs. 2.1 and 2.2 over time, the model quickly reaches an equilibrium

state of coherent motion. However, unlike the nearest neighbors models, which exhibit

only uniform linear motion at equilibrium, the non-reciprocal topological interaction

paradigm appears to introduce two additional forms of coherence: clockwise circular

motion and counter-clockwise circular motion, in addition to the uniform linear mo-

tion observed in the nearest neighbors model. This circular motion is unique in the

sense that the positions of each boid remain randomly scattered over the simulation

space, but the motion of each individual becomes phase locked in a circular pattern,

as shown in Fig. 2.2. These are dynamic phases of motion and very difficult to discern

from snapshots of the simulation, as can be appreciated in Fig. 2.2. We have therefore

included the paths of select numbers of boids to emphasize the motion taking place.
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Despite the fact that the resulting motion is completely coherent and easily classi-

fied, these dynamics do exhibit the characteristics of complex phenomena. Although

the overall motion of the “flock” is uniform, there are variations that arise from simu-

lation to simulation, depending on the initial conditions. In the case of uniform linear

motion, the final direction of motion is spontaneously determined by scaled long-range

interactions among flockmates; likewise, the radii of the circles executed by the flock,

while identical from boid to boid, will also vary based on the initial conditions and

arise spontaneously from the interactions. Thus the states of motion are determined

by the initial conditions and arise spontaneously from the scaling interactions into

large-scale order. These states or phases of motion can be considered true “states” or

“phases” in the thermodynamic sense, as we have found that by introducing a “noise”

factor, similar to that used by Vicsek [24], the system exhibits first-order transitions

from completely random motion to one of the ordered phases, and furthermore can

also transition from linear to circular motion and vice versa as the noise factor is

adjusted (analogous to the change in temperature that characterizes solid/liquid/gas

phase transitions). A similar analysis in terms of phase transitions for our flocking

model is given in Appendix A. The states of motion exhibited by our model are

shown in Fig. 2.2, together with a completely random, non-interacting case (M = 0)

for comparison.

Frustration

The uniform states of motion arising from the consensus-only model are of physical

and mathematical interest, as they represent self-organizing behavior that is far richer

than models based on nearest-neighbors interactions; however, while the model does

demonstrate coherence, it does not exhibit the complex dynamics of true flocking
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Figure 2.2 Motion obtained from a consensus-only map for N = 300 and
v0 = 0.1. The variations in the steady state behavior (direction of linear mo-
tion, radius of circular motion) are determined by the number of topological
neighbors and the initial configuration of boids. Graph (a) shows the uni-
form linear motion obtained by our model and the nearest neighbors model.
Graphs (b) and (c) show the clockwise and counter-clockwise circular motion
unique to our model. Graph (d) shows the non-interacting case.
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behavior–in short, it lacks variability, and thus lacks adaptability, both of which are

required for flocking to be useful to the creatures that make up a flock, and are also

characteristic of true complex systems [18].

Surprisingly, this variability can be obtained by the addition of a single, very

simple rule, that we have termed frustration, as it places barriers on (frustrates)

the flock’s tendency toward uniform motion. In fact, frustration is critical to the

non-uniform, cohesive behavior observed in our model.

The simplest way to add frustration to the consensus model described above is

to remove the periodic boundary conditions and place the boids in a circular, re-

flective boundary. Upon reaching the boundary, each boid is “reflected” by altering

the direction of its velocity vector so as to prohibit crossing the boundary. Thus the

frustration rule can be contained within the interaction function Fi and overrides

interaction with flockmates in the event the boundary is reached. Thus Fi can now

be expressed as:

Fi(v̂) =


v̄i away from the boundary,

f(vold) at the boundary,
(2.5)

where v̄i is calculated using Eq. 2.3 as before, vold is the velocity vector of boid i

upon reaching the boundary, and f(v) is a function defined to act individually on

each boid’s velocity vector as it reaches the boundary.

The boundary function f has a highly significant effect on the dynamics of the

flock. While there are countless ways to define how each boid should interact with the

boundary, one simple yet very interesting interaction is to cause each boid to reflect

by π at the boundary, thus

f(v) = −v.
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That is, each boid executes a “U-turn” upon encountering the boundary, returning

back in the same direction it came. While this may seem somewhat unrealistic for

birds, fish do seem to exhibit this type of behavior [5]. In any case, this particular

boundary function appears to “maximize” the frustration in some sense.

The result of combining this frustration rule with the consensus rule described

above is spectacularly unexpected and fully unexplainable in terms of the interac-

tions that give rise to the emergent behavior. The combination of the boid-boid

interactions and frustration at the boundary gives rise to a rich variety of coherent

behavior that is non-uniform and yet surprisingly robust. Furthermore, the resulting

dynamics exhibit the ability to vary in structure without destroying the coherence of

the flock and during a single run may expand to occupy the entire perimeter of the

simulation space only to later collapse into a very small cluster that moves as a single

entity around the space. Possibly the most interesting characteristic of this “u-turn”

boundary rule is the fact that it gives rise to very dense clustering, especially with

large numbers of neighbors, and the resulting motion is very diverse: clustering at the

boundary, rebounding as a tightly bound group, expanding and contracting, swirling,

and seething as the flock traverses the simulation space and forming ever new and

fascinating formations as the flock interacts among neighbors and at the boundary.

Naturally, the initial conditions play an important role in the structures that ulti-

mately form from these interactions, but the onset and evolution of such structures

is determined almost entirely from the two simple rules of consensus and frustration.

It is clearly impossible to adequately represent the fascinating dynamics of the

full flocking model in a static medium such as the printed page. However, in Fig. 2.3

we present a sequence of snapshots showing the evolution of one of the structures

arising from our model. Then, in Fig. 2.4, we present a sampling of the wide variety

of dynamic structures that form based on the modification of the parameters (number
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Figure 2.3 A sequence of 4 snapshots, 25 time steps apart, showing the time
evolution of a single dynamic structure formed by the consensus-frustration
model for a flock of 750 boids each following 13 topographical neighbors. The
sequence begins with the upper leftmost image and progresses horizontally,
left to right, ending with the bottom rightmost image.

of neighbors, density of boids).

As explained above, the behavior of the consensus-only model can be easily under-

stood in terms of phase transitions. Physical analysis of the full consensus-frustration

model is somewhat more difficult and is currently an ongoing project. Perhaps one

of the most remarkable characteristics of the full consensus-frustration model is the

tendency of the boids to become concentrated into a group much smaller than the

total area of the simulation space, rather than becoming dispersed across it. However,
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Figure 2.4 A sample of the dynamic structures produced by the consensus-
frustration flocking model. (a) A flock of 500 boids, each following 4 topo-
graphical neighbors. (b) A flock of 800 boids, each with 25 topographical
neighbors. (c) A flock of 500 boids, each with 10 topographical neighbors.
(d) A flock of 650 boids, each with 10 topographical neighbors.
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the enormous variety of behaviors exhibited by the model defies any simple thermo-

dynamic explanation. Simulations comparing initial conditions differing only by the

position of a single boid suggest that the tools of chaos theory may be useful in char-

acterizing the motion observed in this model. The reflection by π at the boundary and

the asymmetry in the boid-boid interactions that tend to induce rotational motion

at both the individual and group levels suggest that an order parameter analogous to

angular momentum may also be useful in understanding the overall behavior of the

flock. In any event, the complex behavior exhibited by this model certainly warrants

further study.
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Chapter 3

The Heisenberg Model

The Heisenberg model is another system that exhibits complex dynamics and emer-

gent properties. In essence, the Heisenberg model can be understood as a logical

continuation of the boids model–that is, a flock of regularly spaced boids with ini-

tially random orientations and a very small velocity that align themselves according

to the total alignment of a set of defined neighbors. The critical difference is in the

interaction itself–rather than simply align each particle in the average direction of its

neighbors, in the Heisenberg model we must account for the 3-dimensional precession

of each spin about its local field, which is in turn determined by the orientation of its

neighbors.

The Heisenberg model is the quintessential model of ferromagnetism or antifer-

romagnetism in materials. The model is based on the fact that a ferromagnetic (or

antiferromagnetic) material can be understood as a conglomeration of tiny magnetic

dipoles (spins) that are transversely fixed in a lattice structure, but free to rotate and

orient themselves parallel or antiparallel to an influencing magnetic field. The indi-

vidual magnetic fields of these spins then combine to create the macroscopic magnetic

properties of the lattice as a whole.

25
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In the presence of a very large external magnetic field, each spin will precess about

a local axis pointing in the direction of the external field, with little influence from

its neighbors. The solution in this case is straightforward and exhibits no complex or

emergent properties and we will mention it only briefly. However, self-organization

and other emergent phenomena do arise when each spin is allowed to interact with

its nearest neighbors. The interaction arises because the each spin sees a local field

that is the sum of the dipole moments of its six nearest neighbors (in the case of

a 3-dimensional lattice); however, this local field does not remain stationary, as the

nearest neighbors are also precessing about their local fields, which are the result of

their nearest neighbors and so forth. This is a complex interaction that could easily

prove a source of complex dynamics, and we will indeed demonstrate the emergence

of macroscopic order that is characteristic of complex systems. The Heisenberg model

has proven to be a highly successful model for ferromagnetism and has also been used

with good success as a model for spin glasses. We expect that the use of novel neigh-

bor topologies and frustration paradigms to explore the onset of unique macroscopic

phenomena could further extend the applicability of the model, as in the case of the

Ising model.

Single Spin Dynamics

Because the basic unit for the Heisenberg model is the single spin, it is important

to develop the dynamics of a single spin before attempting to describe spin-spin

interactions across an entire 3-dimensional lattice.

Left to itself, a single spin will tend to align with its local magnetic field. However,

given energy, the spin will tend to precess about an axis parallel to the local field at

an angle that depends on the amount of energy contained in the spin. This precession
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Figure 3.1 Torque on a spherical pendulum in a gravitational field.

is analogous to that undergone by a spherical pendulum in a gravitational field: with

no energy, the pendulum will simply hang motionless downward; if given energy, the

pendulum will precess about an axis parallel to the local gravitational field, as shown

in Fig. 3.1. This precession is caused by torque according to the equation

k = r× F,

where k is the torque and F is the force acting on r [12]. Thus the precession of a single

spin can be understood as a generalization of the torque on a spherical pendulum (see

Fig. 3.2). We can now exploit the torque equation to write down a classical equation

of motion for a single spin in the presence of a local magnetic field:

dS

dt
= −H× S, (3.1)

where S represents the spin vector and H represents the local field. As with the

spherical pendulum, the energy of the system is closely related to the angular orien-

tation of S with respect to H; that is, higher energy simply means that S will point
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Figure 3.2 A spin S precessing about a local field H, as given by Eq. 3.1.

more antiparallel to H. In this equation (and throughout this work), the energy of a

spin system will be determined by the initial value of S.

It is also important to note that Eq. 3.1 conserves spin length, which represents the

magnitude of the dipole moment of the spin, as required for a physical ferromagnetic

or antiferromagnetic system; thus, the spin may only take values lying on a sphere

with radius |S|, centered at the origin of S.

Proof:

The length of the spin can be represented by

S2 = S · S.

Then by the product rule for differentiation

dS2

dt
= S · dS

dt
+
dS

dt
· S = 2S · dS

dt
,
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since the dot product is commutative.

Now using Eq. 3.1
dS2

dt
= −2S · (H× S) = 0,

and thus spin length remains constant in time, as required.

Eq. 3.1 is a linear equation in S, and is easily solved analytically. Since we are

working in a 3-dimensional space, the cross product can be written as the product of

a skew-symmetric matrix and a vector in the following way:

Consider two vectors A and B, with components [ Ax Ay Az] and [ Bx By Bz] .

The cross product A×B is then

A×B =

∣∣∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣∣
= ı̂(AyBz − AzBy) + ̂(AzBx − AxBz) + k̂(AxBy − AyBx).

Setting up an equivalent matrix multiplication gives

M(A)


Bx

By

Bz

 =


AyBz − AzBy

AzBx − AxBz

AxBy − AyBx

 ,

where M(A) is a matrix constructed using the components of A such that, when

multiplied by B, it yields the equivalent of A × B. It is then clear that the matrix

operator M(A) must then be:

A× .
=


0 −Az Ay

Az 0 −Ax

−Ay Ax 0

 . (3.2)

So, the equation of motion becomes:

dS

dt
= −HS, (3.3)
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(a) (b) (c)

Figure 3.3 Trajectories for several spins with different initial energies. The
local field H is indicated by the red arrow, while the spin vector S (at a
given instant) is given by the green arrow. (a) Low energy case. (b) Medium
energy case. (c) High energy case.

where H is the skew symmetric matrix given by Eq. 3.2. Eq. 3.3 is a simple first-order

vector differential equation, which can be easily solved in an analogous manner to the

scalar equation dx/dt = −λx. Thus the solution to Eq. 3.3 is:

S(t) = e−(t−t0)HS(t0), (3.4)

where e−(t−t0)H represents the exponential of the matrix −(t − t0)H, which is well

defined. Proof that this represents a rotation about the axis of H is given by Tsai, et

al [23].

For computational purposes, it is also convenient to develop an iterative solution

to Eq. 3.3, as this will allow us to model the evolution of the spin in time steps of τ :

S(t+ τ) = e−τHS(t). (3.5)

The trajectories of several spins with high, medium, and low initial energies are shown

in Fig. 3.3.

While the dynamics of the completely conservative single spin system is of interest

in its own right, there is little to be had in terms of complexity, as complexity in

general requires a non-linear system, and the equation of motion for a single spin
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is clearly linear. As in the boids case developed in Chapter 2, one obvious way of

injecting non-linearity into the system is to consider several coupled particles, thereby

introducing a non-linear dimensional coupling. However, before discussing methods

for placing several dynamic spins in a lattice, it is convenient to analyze the addition of

damping in the single spin case, because, as alluded to in Chapter 1 and demonstrated

by concrete example in Chapter 2, the inclusion of an antagonistic element is also

critical to the onset of large-scale order; and as we will demonstrate, allowing energy

to dissipate out of the system entirely provides a sufficient “frustration” factor for the

emergence of very interesting phenomena in the Heisenberg model.

Dissipation is typically added to a dynamical spin system upon the addition of

the so-called Gilbert relaxation term, which modifies Eq. 3.1 as follows:

dS

dt
= −H× S− λS× (S×H), (3.6)

where λ represents the relative strength of the relaxation (the so-called “damping

factor”). As in the conservative case, it is critical that the damping term preserve

spin length. Proof that the Gilbert relaxation term does in fact fulfill this requirement

is very similar to the proof that spin length is conserved for the non-dissipative case

above. This time using Eq. 3.6, we have

dS2

dt
= 2S · [S×H− λS× (S×H)] = 2S · (S×H)− 2λS · [S× (S×H)] .

The first term is zero as in the undamped case, and the second term must also be

zero, since S× (S×H) is perpendicular to S. Thus

dS2

dt
= 0,

and spin length remains constant in time, as required.

Eq. 3.6 is a non-linear vector equation that can in fact be solved analytically if

the local field H is taken to be constant. While an analytic solution can be found in
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Cartesian coordinates, as shown in Appendix B, the solution obtained is rather awk-

ward to use if H is allowed to change direction, as it requires several computationally

intensive coordinate transformations. A much more elegant solution was proposed by

Lakshmanan and Nakamura [15], who demonstrate that the stereographic projection

onto the the plane perpendicular to the direction of the local field reduces the damp-

ing term λS×(S×H) to a simple constant rescaling of the time-step in the trajectory

equation (Eq. 3.5). For the Heisenberg model involving many interacting spins we

need a generalization of their result. Lakshmanan and Nakamura derive their solution

by stereographic projection into the complex plane; however, appealing to the Möbius

transformation, it is a simple matter to derive a basis independent vector solution,

which has the additional advantage of eliminating the complex conjugate present in

Lakshmanan and Nakamura’s solution [15].

We start with the Möbius transformation

ω =
az + b

cz + d
, (3.7)

where z is the complex number to be transformed, ω is the transformation of z, and

a, b, c, and d are complex constants. Taking c 6= 0, equation 3.7 can be rewritten as

ω = A+
1

Bz + C
, (3.8)

where A, B, and C are combinations of the constants a, b, c, and d above. Now B is

a complex number of the form

B = |B| eiφ. (3.9)

For our specific case we do not require the rotation given by the eiφ factor, and we

can take B as a real constant β, so

ω = A+
β

z + C
. (3.10)
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Because there is a one-to-one correspondence between the complex planes represented

by ω and z and a vector in 2-space, we can immediately write

ω = a +
β

r + c
, (3.11)

where ω is a Möbius transformation of an arbitrary vector r, a and c are constant

vectors, and β is a constant scalar. However, because we have eliminated the possi-

bility of a rotation (Eqs. 3.9 and 3.10), Eq. 3.11 is also true for vectors in any number

of dimensions; in particular Eq. 3.11 now allows us to map three-dimensional vectors

from one sphere onto another, based on the constants a, c, and β. To determine

the appropriate values for a, c, and β, we can consider a unit sphere centered at an

origin O and an infinite plane centered at a different origin O′. For a stereographic

projection, the following conditions must hold:

1. if r = −n̂ then ω =∞;

2. if r = n̂ then ω = 0;

3. if r = 0 then ω = n̂′;

where n̂ is a unit vector pointing from an origin O to the edge of the unit sphere

centered at O, and n̂′ is a unit vector perpendicular to the plane centered at origin

O′.

Applying these conditions to Eq. 3.11 and letting n̂′ = n̂ (that is, letting the plane

described by n̂′ be the tangent plane to the sphere at the point described by n̂) gives

values for a, c, and β, yielding the final transformation

ω =
2

r + n̂
− n̂ =

2(r + n̂)

(r + n̂)2
− n̂, (3.12)

where r is an arbitrary vector, ω is the Möbius transformation of r, and n̂ is the unit

vector extending from the center of the unit sphere to the plane tangent to the sphere
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(and therefore n̂ also describes the tangent plane). This is easily shown to meet the

aforementioned conditions, and is thus the required transformation.

The reverse transformation is most easily obtained by using the inverse of a vector

given in Appendix C and solving Eq. 3.12 for r, thus

r =
2

ω + n̂
− n̂. (3.13)

If we restrict our choices of r such that all r lie on the unit sphere tangent to the

plane described by n̂, then Eq. 3.12 represents the stereographic projection of r onto

the plane described by n̂. This is done by letting r = S and defining

S2 = S · S = 1, (3.14)

Sn = S · n̂. (3.15)

We can also define the components of S parallel to and perpendicular to n̂

S‖ = (S · n̂)n̂ = Snn̂, (3.16)

S⊥ = S− S‖. (3.17)

Then

Ω =
2(S + n̂)

(S + n̂)2
− n̂

and, applying the definitions 3.14, 3.15, and 3.17

Ω =
S⊥

Sn + 1
. (3.18)

Thus Ω (the stereographic projection of S) has no component parallel to n̂ and must

therefore lie on the plane described by n̂. As required by the conditions used in

deriving the transformation Eq. 3.12, letting S = n̂ gives Ω = 0 and letting S = −n̂

gives Ω = ∞. Because all other points lying on the unit sphere will map uniquely

to the tangent plane described by n̂, as given by Eq. 3.18, we have developed a
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basis-independent method of calculating the stereographic projection of a spin S in

the plane described by the local field H. Since the length of S is conserved by

the equations of motion, we can take S2 = 1 with no loss in generality. Thus the

stereographic projection of S is given by

Ω =
2(S + n̂)

(S + n̂)2
− n̂ =

S⊥
1 + S · n̂

, (3.19)

where S is the spin vector, Ω is the stereographic projection of S, and n̂ is the unit

vector in the direction of H. For simulation purposes, it is useful to have the reverse

transformation, from stereographic coordinates into Cartesian space. Taking Eq. 3.13

and again letting r = S and ω = Ω, we have (after some simplification)

S =
2(Ω + n̂)

1 + Ω2
− n̂, (3.20)

where we have used the planar condition Ω · n̂ = 0. We can now use the stereographic

projection to solve Eq. 3.6. Starting with

S = S⊥ + S‖,

where S⊥ and S‖ are the components of S perpendicular to and parallel to H respec-

tively, applying Eq. 3.19 and definition 3.16, and taking a time derivative gives (using

dot notation for clarity):

Ṡ = ṠnΩ + (1 + Sn)Ω̇ + Ṡnn̂. (3.21)

From Eq. 3.6, we have

Ṡ = −H× S + λ(H− SnHS). (3.22)

Now taking the dot product of n̂ with Eq. 3.6, we obtain, after some simplification,

Ṡn = λH − λHS2
n = λH(1− S2

n). (3.23)
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Now substituting Eqs. 3.22 and 3.23 into Eq. 3.21, we have

−H× S + λ(H− SnHS) = λH(1− S2
n)Ω + (1 + Sn)Ω̇ + λH(1− S2

n)n̂.

After some simplification and deft application of definitions 3.16 and 3.17 and Eq. 3.19,

we can eliminate all instances of S and solve for Ω̇, yielding

Ω̇ = −H×Ω− λHΩ, (3.24)

which is the stereographic differential equation of motion for spin precession with

damping. Rewriting Eq. 3.24 as

Ω̇ = −(λH +H)Ω, (3.25)

where H is the equivalent cross-product matrix defined in Eq. 3.3, we see that Eq. 3.6

has been reduced to a first order linear equation in the stereographic plane. Eq. 3.25

can be solved in an identical manner to Eq. 3.3, thus the trajectory of the spin vector

in stereographic coordinates is a modified version of Eq. 3.5

Ω(t+ τ) = e−λ|H|τ e−τHΩ(t), (3.26)

where λ is the damping factor.

The stereographic projection offers a number of elegant geometric insights. First,

the decay becomes exponential, which is typically observed in many damped or de-

caying systems, and by simply changing the sign of λ, we can model the dissipation

(λ < 0) or injection (λ > 0) of energy, both of which give rise to an exponential change

in the stereographic trajectory as shown in Figs. 3.4 and 3.5. Conversely, careful ob-

servation of the three-dimensional Cartesian trajectories illustrated in Fig. 3.6 show

that this exponential decay is not at all obvious, and in fact does not even exist

for the unit sphere. In addition, the two-dimensional stereographic view of the spin

trajectory shows that dissipation of energy will bring the system to a zero point,



37

Figure 3.4 Plot showing the trajectory of a spin with damping in the stere-
ographic plane. In the stereographic projection, the spin length decays ex-
ponentially, giving rise to a spiral trajectory.

Figure 3.5 Log plot over time of the stereographic trajectory of a single spin
with damping shown in Fig. 3.4 demonstrating the exponential decay of the
stereographic projection of the spin vector Ω.
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while injection of energy will send the system to infinity, which coincides with our

physical understanding of many other dissipative systems. Finally, the stereographic

projection constitutes a conformal mapping from Cartesian space to stereographic

space, which means that each point on the unit sphere confining the spin trajectory

will be mapped to a unique point in the stereographic plane and the angle between

one spin position and the next will be preserved–thus the two-dimensional projection

contains all the information found in the original three-dimensional problem, but is

much easier to handle mathematically.

Using stereographic projection, the algorithm for calculating the trajectory for a

single spin becomes the following:

1. Start with the local field H for spin S, and define n̂.

2. Use n̂ to calculate S‖ and S⊥: S‖ = (S · n̂)n̂ and S⊥ = S− S‖.

3. Calculate Ω using Eq. 3.19.

4. Iterate Ω for the next time step using Eq. 3.26.

5. Calculate the new S⊥ using Eq. 3.20.

6. Reconstruct S: S = S⊥ + S‖ = S⊥ + (S · n̂)n̂.

The trajectories of a single spin for various initial energies are shown in Fig. 3.6.

Note that in each case, the spin tends to converge toward the direction of the local

magnetic field.

Multiple Spin Dynamics

In theory, calculating the dynamics of several spins in a lattice is as simple as applying

Eq. 3.5 or 3.26 to each spin, and indeed, if the dynamics in the presence of a very large
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(a) (b) (c)

Figure 3.6 Trajectories for several spins with different initial energies. The
local field H about which the spin precesses is indicated by the red arrow, and
the spin vector S (at a given instant) is given by the green arrow. (a) Low
energy case. (b) Medium energy case. (c) High energy case. The number
of time steps in each case varies in order to demonstrate convergence toward
H.

external magnetic field–so large that spin-spin interactions become negligible–is de-

sired, then individual application of the trajectory equations to each spin is sufficient.

However, as can be appreciated in Fig. 3.7, this system offers no more information

than a single isolated spin subject to the same equations: There will be no energy

transfer between individual particles within the system, no transfer of energy into or

out of the system, and certainly no complex behavior. Clearly, a different approach is

required to model true physical systems and explore the complexity typically expected

of such a multi-particle system. As with the boids model described in Chapter 2, the

key to emergent behavior in this model lies in dimensional coupling, and the most

natural way to introduce this coupling is through spin-spin interaction, so the phase

space for a multiple-spin lattice will consist of the orientations of the individual spins.

The dynamics of the Heisenberg model is the result of precession of individual spins

about their local magnetic fields. Up to this point, we have assumed a constant local

field for each spin, but it is evident that by allowing this local field to change in time,

we can alter the dynamics of a multiple spin lattice quite significantly. Furthermore,
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Figure 3.7 Trajectories for a 1D lattice of six non-interacting spins precess-
ing about a constant magnetic field in the vertical direction. Each spin traces
out a circle depending on its energy (compare to Fig. 3.3) and independent
of its neighbors.

because each spin in the lattice is itself a magnetic dipole, each spin will create a small

magnetic field that could affect nearby spins in some way. Therefore, by allowing the

local field for each spin to include contributions from the magnetic fields of neighboring

particles, we can introduce spin-spin interactions into the model without including

additional interaction terms in the basic equations of motion used in the single spin

case above (Eqs. 3.1 and 3.6). The most straightforward way to do this is to let the

local field seen by each individual spin be the vector sum of the dipole moments of

its nearest neighbors, where the nearest neighbors are defined in the typical way: In

three dimensions in a cubic lattice structure, nearest neighbors include the particles

directly above, below, to the left, to the right, in front and behind the particle in

question, but not the particles at the diagonals. For the purposes of this thesis, we

will be ignoring the presence of any external field, as we are focusing on internal

particle coupling interactions, rather than the influence of external agents on the

system–however, an external field could easily be included as an additional term in

the sum of the nearest neighbor dipole moments. The local field for a particle i is
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then given by

Hi =
∑
j

Sj (3.27)

over the j nearest neighbors of i. Furthermore, we will, for the most part, be using

periodic boundary conditions; thus, for spins located at a boundary, nearest neighbors

will include spins at the opposite boundary exactly vertical or horizontal (as the case

may be) with respect to the spin in question.

At this point it is appropriate to introduce an interaction or coupling parameter

J into Eqs. 3.1 and 3.6, which is simply a measure of the “strength” of the interaction

between particles. For our purposes, the actual value of J is less relevant (it is

most frequently used to model experimental results for specific materials [1,23]) than

the sign of J , which will determine whether the system exhibits a tendency toward

uniform alignment (J > 0) among all particles or uniform anti -alignment (J < 0).

Thus the equations of motion become

dS

dt
= −JH× S (3.28)

in the undamped case, and

dS

dt
= −JH× S− λS× (S×H) (3.29)

for a damped system, where H is defined by Eq. 3.27. Even at this level, unexpected

complex behavior is suggested by the introduction of coupling between particles, as

for a single particle, the changing the sign of the coupling parameter merely serves to

reverse the direction of precession–it emphatically does not cause the spin in question

to anti-align with its local field. This is clear upon inspection of Eqs. 3.5 and 3.26–

insertion of a constant parameter J into the exponent will simply cause reversal of

the direction of precession. Thus, Eqs. 3.6 and 3.29 will always cause the spin to

align with its local field, and only multi-particle systems based on this model will
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exhibit anti-alignment, because it is the interaction itself that ultimately determines

the direction of the individual local fields Hi.

Unfortunately, the exact solutions found in the previous section for a single spin

are no longer directly valid in the case of multiple spins, as those solutions assume

a constant local field H, and in Eqs. 3.28 and 3.29, H is a function of time, both in

magnitude and direction, because it depends on the orientation of neighboring spins

(Eq. 3.27), which clearly change with time. Furthermore, in a response [16] to the

letter by Lakshmanan and Nakamura [15], it was demonstrated by Magyari, Thomas,

and Weber that for a variable local field (generally arising from multiple spins), the

stereographic projection that allows the damping factor to be handled as a rescaling

of time is invalid. They state: “...the validity of the rescaling procedure proposed by

Lakshmanan and Nakamura is strictly limited to the trivial case of a single spin in

a constant magnetic field” [16]. However, by combining our basis-independent vector

implementation of the stereographic projection with an integration method proposed

by Tsai, Lee and Landau [23], we have developed an integrator that models the true

dynamics of a damped Heisenberg lattice consisting of an arbitrary number of spins,

and offers interesting insights into the complex behavior of ferromagnetic materials.

The key to performing accurate numerical integration in both the damped and

non-damped cases is the division of the full spin lattice into two or more “quasi-

stationary” sublattices. The concept is most easily illustrated through diagrams of a

small, two-dimensional lattice.

Fig. 3.8 shows a small 2-D lattice of spins, represented by arrows. In this case,

the nearest neighbors for each spin consist of the spins to the left, to the right,

above, and below the spin in question. Periodic boundary conditions apply, so the

corresponding topmost and bottommost spins will be coupled, as will the leftmost

and rightmost spins. This can be illustrated graphically by dividing the lattice into
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Figure 3.8 A small, two-dimensional lattice of randomly-oriented spins.

Figure 3.9 Quasi-stationary sublattices for nearest neighbor interaction with
periodic boundary conditions.

two “checkerboard” sublattices, as shown in Fig. 3.9; thus the local field for each spin

in a white square will be determined by the four adjacent black squares (jumping to

the opposite side if at the boundary) and vice versa. This idea is easily generalized to

three dimensions by adding spins perpendicular to the plane and taking the nearest

neighbors in that direction also. This division into sublattices allows us hold one

sublattice stationary while applying the precession equations to the other. For the

instant in time that this small motion is considered to take place, the equations are

valid because the local field (given by the “stationary” neighbors sublattice) remains

essentially constant for the time step in question. We then switch sublattices and



44 Chapter 3 The Heisenberg Model

precess the second, while holding the first stationary. Thus, each sublattice can be

considered “quasi-stationary”, while the other is allowed to evolve. The details of this

method will be explained in greater detail in the following paragraphs. The distinct

advantage of this method, is that it will conceivably allow for other topographical

coupling schemes with little to no modification of general dynamics algorithm. The

only requirement is that the coupling allow the lattice to be divided into two (or

more) sublattices such that each spin is directly coupled only to spins in the opposite

sublattice so that one sublattice can be held stationary while the other is allowed to

evolve. This is critical to the successful implementation of this particular integration

algorithm.

In the nearest neighbors case, this method fails drastically if the lattice contains an

odd number (larger than one) of spins along any dimension and periodic boundary

conditions are used, because, as illustrated in Fig. 3.10, it is impossible to create

two independent, nearest neighbors sublattices as described above. At the boundary,

there will always be some overlap between the two sublattices, due to the geometry

of the lattice itself. In practice however, this is not as great a limitation as it may

seem. Since the purpose of periodic boundary conditions is to emulate an infinite

lattice, or at least a small volume near the center of an infinite lattice, the use of even

or odd values in any given dimension will have no bearing on the final dynamics. As

in thermodynamic analyses of large systems, the specific states of a complex system

matter less than the overall dynamic behavior. While disregarding odd-valued lattices

will cause us to miss the states specific to those configurations, the overall dynamic

behavior will still be similar to that of the even-valued lattices. Thus the information

we are interested in will still be present in our subset of possible configurations and

we lose nothing by excluding odd-valued lattices.

By dividing the spin lattice into independent sublattices, we can ensure that for
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Figure 3.10 A two-dimensional spin lattice with 7 spins on a side. In this
case division into two checkerboard sublattices (black and white) with peri-
odic boundary conditions requires that, at the boundaries, spins in the black
lattice orient themselves with other spins in the black sublattice (and like-
wise with the white sublattice), violating the quasi-stationary character of
the two sublattices required by the integration algorithm.

a single time step, the local field seen by one sublattice as a result of the others

will remain constant for that time step, and this will be true for every sublattice

that makes up the full spin lattice. In particular, if we divide a spin lattice into two

independent sublattices, A and B, we can define two local field matrices, HA and HB,

which contain the local field cross product matrices, as defined for Eq. 3.3 and its

solution, Eq. 3.5, corresponding to each spin in the appropriate lattice. Eq. 3.5 can

now be written as

S(t+ τ) = e−τ(HA+HB)S(t), (3.30)

where S represents a matrix containing the vectors S for each spin in the lattice and

HA and HB are defined as above and do not commute. The exponential operator

can however be factorized approximately for implementation in a decomposition al-

gorithm [23]. The second order decomposition is equivalent to the Suzuki-Trotter
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decomposition and gives the following result [23]:

e−τ(HA+HB) = e−τ/2HBe−τHAe−τ/2HB +O(τ 3) (3.31)

This symplectic implementation has the virtue of preserving the magnitude of each

spin, as required by our model. It is equivalent to using a unitary approximation in

solving quantum equations.

Thus the spins in sublattice A precess about their corresponding fields inHB, while

the spins in sublattice B precess about the fields in matrix HA, and “because these

operators rotate a spin around its effective field, which is fixed during this rotation,

the scalar products of spins are preserved in each of these operations; therefore the

spin length and the energy are conserved exactly (within machine precision).” [23]

It is clear then, that this method relies on HA and HB remaining constant for the

appropriate time step. If the sublattices were not completely independent, i.e. if

even a single spin were influenced by members of the same sublattice or from both

sublattices, the constant field assumption would break down, we could not ensure that

spin length is conserved, and the integration would fail after only a few iterations.

The dynamics of a lattice of coupled spins can be calculated as follows: Starting

from a lattice (one, two, or three-dimensional) of randomly oriented spins, divide the

lattice into two “checkerboard” sublattices, based on nearest-neighbor interactions as

described above. We will call these sublattices A and B for clarity. For each spin ai

in sublattice A, calculate the corresponding local field from the nearest neighbors in

sublattice B and update the orientation of ai according to Eqs. 3.5 and 3.31; that is,

ai(t+ τ) = e−τ/2Hiai(t), (3.32)

where Hi is the local field cross-product matrix as described in Eq. 3.2. Note the

τ/2 factor from the decomposition, which amounts essentially to half the required

rotation of the spins in sublattice A. After performing this calculation for each spin
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in sublattice A, we perform a similar calculation on each spin in sublattice B using

the local fields created by the now modified sublattice A. Thus for each spin bi in

sublattice B, we calculate the corresponding local field and update its orientation by

bi(t+ τ) = e−τ Hibi(t), (3.33)

which combines Eqs. 3.5 and 3.31 for sublattice B. Note that the rotation is performed

for the full time step τ . Finally, we perform the second half of the rotation for

sublattice A, using Eq. 3.32 as before, but now using the updated sublattice B to

calculate the local fields for the spins in A. This cycle is repeated for as long as

required to observe the dynamics of the system. The enormous advantage of this

particular method is the fact that the time step τ may be made fairly large without

adversely affecting the resulting dynamics [23].

In the non-dissipative case, we would expect that energy be conserved for the

system, and therefore that the total magnetization remain constant throughout time.

Tsai, et al. [23] perform a comprehensive analysis demonstrating that the decompo-

sition algorithms do conserve both spin length and energy to machine precision, and

also show that, on the order of the time steps in the simulation, total magnetization is

not conserved exactly; that is, the algorithm does exhibit both positive and negative

fluctuations in total magnetization at each time step. However, they also demonstrate

that neither the second or fourth-order decomposition algorithms exhibit long-term

drifts in magnetization. This is born out by our own implementation of the Suzuki-

Trotter decomposition for a non-dissipative spin lattice. Fig. 3.11 shows the total

magnetization over time for a three-dimensional 10 × 10 × 10 lattice over 2000 time

steps.

Treating a multiple-spin lattice with dissipation essentially combines the stereo-

graphic projection algorithm given for a single spin with the Suzuki-Trotter decom-
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Figure 3.11 Total magnetization of a 10×10×10 lattice of initially randomly
oriented spins over 2000 time steps (τ = π/25). The short-scale fluctuations
both above and below the initial value are characteristic of the second-order
Suzuki-Trotter decomposition algorithm. Note, however, that there is no
clear upward or downward trend in total magnetization, indicating that the
algorithm is effective for long-term dynamics.
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position algorithm described above. In fine, the initial spin lattice is divided into two

sublattices, as before. However, in this case, before applying Eqs. 3.32 and 3.33, each

spin must be transformed to stereographic coordinates (see page 38 and Appendix B).

After application of the pertinent equation (3.32 or 3.33 appropriately transformed

to stereographic coordinates as in Eq. 3.26), the spin must then be transformed back

to the unit sphere in 3-d Cartesian coordinates before proceeding to the next lattice.

Because it is an open system, the dissipative spin lattice clearly does not conserve

energy and therefore cannot be expected to conserve its initial magnetization, which

it does not. However, it does manifest the expected tendency toward full alignment

or anti-alignment of all members of the lattice, depending on the sign of the coupling

parameter J (see page 41 and Eq. 3.29), as shown in Fig. 3.12.

We now have the mechanism in place to model the true dynamics of lattices

with nearly any type of spin-spin interaction topology: as long as the members of

each sublattice depend only on the orientation of the members of a separate and

independent sublattice or sublattices, this method will give the true dynamics of the

system to within machine precision, both with and without dissipation. While we do

expect exotic interaction topologies to exhibit unique emergent behavior, the nearest

neighbor topology presented in this chapter also fulfills the requirements for a complex

system described in Chapter 1 and does show emergent properties.

Complexity

An extensive analysis of the complex properties of the conservative and dissipative

Heisenberg models is beyond the scope of this project, and indeed remains an open

area of research. In this section, then, we will briefly discuss some of the surprising

emergent properties we have observed in the development of our spin lattice model.
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(a)

(b)

Figure 3.12 Equilibrium states of the dissipative spin lattice showing the
effect of the sign of the coupling parameter J . (a) J = 0.5 for a 1D lattice of
6 spins with random initial orientations after many time steps. (b) J = −0.5
for a 1D lattice of 6 spins with a different random initial orientation than in
(a).
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Figure 3.13 A one-dimensional lattice of 20 spins, of which 19 have zero
energy (aligned) and 1 has non-zero energy (not aligned).

Based solely on the description of the interaction, we would certainly expect the

non-dissipative spin lattice described in the previous section to exhibit complex be-

havior, and this expectation is certainly borne out by one immediately observable

characteristic of such a system: energy transfer. Consider a system of 20 spins in

a one-dimensional lattice, in which initially all spins are exactly aligned except one

(see Fig. 3.13), which points in a different direction and thus has a given amount of

energy with respect to the direction of alignment of the other spins. If we allow this

system to evolve according to the Suzuki-Trotter algorithm developed in the previous

section, it is apparent that the spins will not remain aligned over time. The value

E = 1− S0 · Si(t), (3.34)

where S0 represents the initial orientation of the aligned spin vectors and Si(t) is the

orientation of spin i after time t, can be used as a crude indicator of the energy of each

spin–that is, how far it has deviated from the initial alignment of the aligned spins

(which is taken as zero energy). Plotting this value for the initially unaligned spin

and the middle spin indicates that the deviation from the initial alignment “travels”

through the lattice, so that when spin 10 (which was initially aligned) reaches a

large energy value, spin 20 (which was initially given energy) now has nearly zero

energy. This occurs for all spins in the lattice–some with more energy, some with

less; thus, the initial energy becomes distributed throughout the lattice as expected,
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Figure 3.14 Spin energy calculated using Eq. 3.34 for a 2 × 1 spin lattice.
In this case, the total energy is essentially shuttled back and forth between
the spins. The apparent “violation” of the principle of conservation of energy
is due to the simplistic algorithm used to measure the energy of each spin
(Eq. 3.34).

but also exhibits a tendency to move from one spin to another without becoming

evenly distributed, rather like a coupled spring system. In fact, a system of only two

spins will tend to shift energy between the two spins exactly in the manner of two

spring-coupled masses, as shown in Fig. 3.14. Fig. 3.15 shows energy (calculated using

Eq. 3.34) as a function of time for the middle and last spin in a one-dimensional lattice

of 20 spins (as in Fig. 3.13). If we treat a single spin in the lattice as a system in and of

itself, we have a system in which energy enters and exits according to the rules of the

surrounding “heatbath” (i.e. the rest of the lattice). However, from the perspective of

the single spin, all it sees is essentially a “random” sequence of driving and damping.

In analogy to the driven, damped pendulum, there is a significant possibility that

this “driven-damped” single-spin system also exhibits chaotic behavior, a possibility

that is qualitatively supported by the graph of the trajectory of a single spin in the

undamped spin lattice shown in Fig. 3.16. In addition to suggesting chaotic activity

in the trajectories of individual spins, from a holistic perspective this inter-spin energy
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Figure 3.15 Spin energy calculated using Eq. 3.34 for two spins in a one
dimensional lattice of 20 spins. The red line is for spin 20, which was given
initial energy, while the blue spin is for spin 10, which was initially aligned.
Note the time delay before the energy reaches the middle and note that the
peak energy is generally out of phase for these two spins.

(a) (b)

Figure 3.16 Three dimensional trajectory for a single spin in a 4×4×4 spin
lattice. (a) shows the trajectory after 250 time steps. (b) shows the same
trajectory after 1000 steps.
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transfer is also a strong indication of the presence of spin waves in the lattice. We have

not made systematic efforts to find spin waves in our model, but other researchers

using similar algorithms have demonstrated the presence of spin waves in comparable

models [1, 2, 23].

The most exciting emergent phenomenon exhibited by our model is the sponta-

neous onset of magnetic domains in the dissipative case. As explained in the previous

section, over long periods of time the dissipative spin lattice will eventually reach an

equilibrium state in which all spins are aligned or all spins are anti-aligned. For small

lattices with a random initial configuration, this convergence occurs quite quickly

with few notable emergent features (for J > 0, spin waves appear to form near equi-

librium but quickly die out as the total energy in the system goes to zero). However,

in the case of large lattices with a random initial configuration, the system takes

much longer to reach the equilibrium state, and it is this intermediate, dynamical

state that is of much physical interest. With J > 0, as the system evolves patches

of like spin begin to form, which continue to grow as energy leaves the system (For

J < 0, patches of anti-aligned spins form with similar properties but much faster

convergence). This is easiest to observe by using a two-dimensional lattice and as-

signing colors to specific directions and plotting squares of color corresponding to the

directions of the spin vectors rather than the spin vectors themselves as arrows. For

example, areas containing spins pointing in the ẑ direction could be colored red, while

areas containing spins pointing in the −ẑ direction could be colored blue. Areas with

spins pointing somewhere between these two directions should be colored so as to

indicate their proximity to the two extremes, as shown in Fig. 3.17. The result is

the clear emergence of regions of color corresponding to regions of like spin, bounded

by regions of intermediate spins, which can be qualitatively understood as emergent

magnetic domains in a meta-stable state (see Fig. 3.18).
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(a) (b) (c)

Figure 3.17 Example of mapping spin orientations to colors: (a) Spaces
containing spins pointing in the +ẑ direction may be colored red. (b) Spaces
for spins pointing in the−ẑ direction may be colored blue. (c) Spaces for spins
pointing between the two extremes can be represented by an intermediate
color.

The graphs in Fig. 3.18 were made by taking advantage of Matlab’s pcolor com-

mand, which automatically assigns a color gradient to a given numerical range. How-

ever, in order to view domain formation in three dimensions, additional care must be

taken to allow the true three dimensional nature of the domains to be visualized cor-

rectly. We did this by assigning a transparency level to the unit volumes containing

the intermediate spins, in addition to an intermediate color, according to the equation

α = |z|x ,

where α is a fraction representing the desired opacity level (0 representing full trans-

parency to 1 representing full opacity), z is the spin direction contained within the

volume to be drawn, and x is an adjustable parameter that determines how quickly

volumes containing small values of z will become opaque (higher values result in

smaller, but more visible domains throughout the three dimensional lattice). Based

on this idea, we developed a pcolors3D function that is analogous to Matlab’s na-

tive pcolor function, but creates a three-dimensional pseudocolor volume plot with a

specified transparency falloff. The code for this function is given in Appendix D. The

results obtained are very similar to those observed in the two-dimensional case, but

with magnetic domains extending into three dimensions, as shown in Fig. 3.19.
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(a) (b)

(c) (d)

Figure 3.18 Sequence of figures showing emergence and evolution of mag-
netic domains in a 50 × 50 × 1 damped spin lattice during 1000 time steps.
Dark blue and dark red represent spin vectors pointing very near perpendic-
ular to the plane of the page in opposite directions. Note the coalescence and
growth of the red spin domains as time advances. (a) Initial random state
t = 0. (b) After 500 time steps, domains are clearly visible. (c) t = 750. (d)
t = 999.
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The emergence of magnetic domains in the damped Heisenberg model is a demon-

stration of the complexity inherent in the system: a lattice of non-linearly coupled

particles with a non-linear dissipation factor that inhibits the free exchange of energy

between particles.
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(a) (b)

(c) (d)

Figure 3.19 Sequence of figures showing the emergence and evolution of
magnetic domains in three dimensions for a damped 15 × 15 × 15 lattice
for 500 time steps. Dark red and dark blue cubes represent spins pointing
nearly vertically up or down (ẑ direction), while lighter shades represent
some deviation from that orientation. The empty space corresponds to the
yellow and green areas in Fig. 3.18; however, in this case the corresponding
spaces were left transparent to reveal the true three-dimensional nature of
the domains formed by the red and blue regions. (a) The original random
configuration. (b) After 250 time steps domains are clearly evident. (c) After
380 time steps. (d) After 500 time steps.
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Conclusion

Emergent properties are one of the hallmarks of a complex, dynamical system, and

frequently represent the macroscopic, physically observable characteristics of the sys-

tem. While the emergence of these properties is clearly due to the “first principles”

laws that govern the observable universe, in a complex system the link between these

basic laws and the observed emergent order may be impossible to find, especially in

light of the fact that this order may be dynamic in nature and may occur far from the

equilibrium state of the system. Frequently, however, such emergent properties can

be explained through the coupling of dimensions in a multi-dimensional representa-

tion of the system–that is, it is possible to define a set of dynamical rules (based on

a physical understanding of the system) that determines how the system will evolve

in a certain dimension based on the effects and influence of the others. The number

and nature of the dimensions into which a system can be divided depends strongly

on the physical nature of the system, as well as the rules for dimensional coupling.

For example, referring to the flocking model presented in Chapter 2, each boid can

be considered a representation of two dimensions (vi, θi) of the entire 2N-dimensional

flock. This is convenient because there is a clear physical interpretation for dimen-

59
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sional coupling: each boid interacts in some way with its surrounding flockmates. In

the absence of any dimensional coupling (each boid flies in a straight line regardless

of the direction or proximity of any other members of the flock), the dynamics of

the flock as a whole become essentially random, even though individual motions are

easily understood and interpreted. In a sense, this decoupling of the phase space

reduces the flocking model to a dilute gas, as discussed in Chapter 1. The inclusion

of dimensional coupling, however, can give rise to emergent dynamic order in the

flock, where the exact details of such order are highly dependent on the strength of

the coupling (number of neighbors in the flocking case) and on the initial conditions

(see Fig. 2.4).

As discussed in Chapter 1, emergent behavior will only occur if the dimensional

couplings in the system inject some sort of non-linearity into the dynamics of the

system. These non-linearities, in a sense, “drive” the system toward emergence rather

than averaging out across multiple dimensions as would occur with linear interactions.

In our boids model, the non-linearity that produces the emergent behavior is subtle,

but drives the onset of the various phases of equilibrium motion shown in Fig. 2.2

and is critical to the vast range of emergent behavior that arises in the presence of

frustration, as shown in Figs. 2.3 and 2.4. This non-linearity appears as a “violation”

of conservation of energy (which will occur in any open system) resulting from the

fact that each boid moves at a constant speed, as implied by Eq. 2.1 and shown

explicitly in equation 2.3. Nevertheless, despite the non-linearity of the dimensional

coupling, the consensus-only boids model is only capable of uniform motion (albeit

three types), which is quantified in Appendix A.

In the Heisenberg model discussed in Chapter 3, dimensional coupling is given by

the spin-spin interaction explained in the section on multiple spin dynamics begin-

ning on page 38, and mathematically quantified in Eq. 3.27. As with the boids model,
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there is a clear physical interpretation associated with the dimensional coupling–in

fact, the nearest neighbors interaction is very well known in spin dynamics and the di-

mensional coupling is essentially a recasting of a well-understood interaction in terms

of complexity theory. Unlike the boids model however, in the absence of damping,

this coupling is not sufficient to give rise to complex or emergent behavior. This lack

of emergent behavior suggests uniformity in the phase space of the model, which is

clearly illustrated by the plot of total magnetization over time, shown in Fig. 3.11. In

spite of the fact that energy is transferred from spin to spin throughout the system,

the undamped Heisenberg model cannot exhibit emergence–the interactions tend to

average out over time resulting in constant magnetization.

Both the consensus-only boids model and the undamped Heisenberg model are of

significant physical interest, especially from the perspective of statistical mechanics.

However, they gain additional importance as complex systems with the addition of

an antagonistic factor that tends to amplify the non-linearity of both the boids model

and the Heisenberg model. In both cases, this antagonistic factor is critical to the

onset of the emergent properties shown in Figs. 2.3, 2.4, 3.18, and 3.19.

In the case of the boids model, it is the boundary that provides the antagonistic

“frustration” as it was termed in Chapter 2 and prevents the boids from reaching

any of the more uniform coherent states shown in Fig. 2.2. Furthermore, it seems

that the reflection by π at the boundary serves to further amplify the non-linearity

inherent to the system, thus providing an additional angular momentum “kick” to the

entire system each time a boid reaches the boundary. The resulting dynamics are

cohesive and highly resistant to the continuous perturbations to the flock imposed

by the boundary–that is, although the boundary tends to break the flock’s tendency

toward complete coherence, it is unable to destroy the cohesiveness of the flock and

serves to alter the physical shape and dynamics of the flock as a whole.
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In the Heisenberg model, as alluded to in Chapter 3, the Gilbert damping term

provides a sufficiently strong non-linear antagonistic factor to allow the onset of emer-

gent phenomena. It is the damping term that injects the required extra non-linearity

into the system. As in all complex systems, it is the non-linearity that drives the sys-

tem toward emergence, where in this case, we observe the emergence of meta-stable

magnetic domains as energy is continually drained from the system. Whether other

emergent phenomena will arise if alternate interaction topologies are used (potentially

amplifying the non-linearity introduced by the damping term or injecting additional

non-linear factors) remains an open question.

Emergent phenomena in complex systems depend critically on the presence of

non-linear dimensional coupling within the system. As illustrated by both the non-

interacting boids model and the Heisenberg model in the presence of a very strong

external field, if the dimensions of the system are decoupled, the dynamics of the

entire system can be easily represented by a single set of dimensions. In other words,

nothing is gained by observing the dynamics of N boids in 2N dimensions since

only 2 of those dimensions are unique and the remaining dimensions are statistically

identical. Likewise, an array of N spins with random energies precessing about a

very strong external magnetic field offers no information that could not be had by

allowing a single spin to precess about an identical field at various energies. Only by

coupling the dimensions in each system do the dynamics occurring in each dimension

become unique, but related so as to induce emergent phenomena on a system-wide

scale. The additional presence of an antagonistic factor that prevents the non-linearity

from driving the system to a uniform equilibrium state will tend to enhance the

emergent dynamics, which are generally most interesting and least tractable far from

any equilibrium state.

While such emergent phenomena frequently defy analysis by traditional reduction-
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ist methods, the imposition of additional layers of abstraction in terms of non-linearly

coupled dimensions and antagonistic factors may allows us to create sets of rules gov-

erning the onset of many types of emergent order. Only such a holistic approach will

allow us to come to a deeper understanding of the complex, macroscopic phenom-

ena that have so frequently eluded sequestration by simple physical laws, and may

possibly lead us to ever greater insights into the fundamental laws that govern the

Universe.
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Appendix A

Phase Transitions in a Dynamic

Flocking Model

One convenient method for quantifying the various types of coherent motion observed

in our topological flocking model with periodic boundary conditions (Chapter 2) can

be found in the concept of phase transitions and order parameters [5, 7, 11, 22, 24].

Fig. 2.2 shows the various types or phases of coherent motion exhibited by the model.

As described in the chapter, these phases arise entirely due to the initial random

configuration of boids and represent a dynamic equilibrium state of the system from

that particular configuration. However, by introducing a small random element based

on a control parameter η into the equations of motion, it is possible to destabilize

the equilibrium so as to induce transitions from one phase of motion to another by

adjusting η, analogous to inducing a change of state in a material by adjusting the

temperature.

A practical way to do this is by adding a random angle ∆θ to the average velocity

v̄ calculated in Eq. 2.3. Thus

v̄′ = v̄ + cos(∆θ)̂ı+ sin(∆θ)̂,
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where ∆θ is a random number calculated with uniform probability on the interval

[−η/2, η/2], v̄ is calculated according to equation 2.3 and v̄′ is appropriately normal-

ized in keeping with the constant speed required by the model. Our simulations have

shown that this random element is in fact analogous to temperature-induced noise in

a system of free particles and allows the system of boids to transition from one phase

of motion to another.

In order to determine computationally whether a phase transition has occurred, it

is necessary to establish a mathematical description of each phase of motion, known

as an order parameter [14, 21]. In general, an adequate order parameter will have

a range in the interval [0, 1], where 1 represents complete order within the system,

and 0 indicates that the order described by the order parameter is not present in

the system. It should be noted that a value of zero does not necessarily indicate

disorder in the system–it only indicates the absence of the ordered state described by

the order parameter. A different order parameter could demonstrate the presence of

a completely different ordered state–a fact we will take advantage of in our analysis

of our flocking model.

The aligned phase of our flocking model (Fig. 2.2) can be physically described as

coherent linear motion among all members of the flock. Mathematically, an appro-

priate order parameter to describe this phase of motion is given by the absolute value

of the average, normalized velocity of all the boids [24], which can be calculated by

〈v〉 =
1

Nv0

∣∣∣∣∣
N∑
i=1

vi

∣∣∣∣∣ , (A.1)

where N is the total number of boids and v0 is the speed of the boids (constant in our

model). As expected, this value is very close to zero for completely random motion,

and it is also zero for both of the circular phases shown in Fig. 2.2, as it is based on the

vector sum of the boid velocities. Accordingly, it approaches one in the completely



71

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5�0.0

0.2

0.4

0.6

0.8

1.0

v a

Figure A.1 Graph showing a phase transition from aligned, linear motion
to essentially random motion as noise parameter η is increased

aligned phase (that is, when η = 0) is reached. By plotting 〈v〉 against increasing

noise η for a fixed number of boids, we can observe the transition from fully aligned

motion to nearly random motion, as shown in Fig. A.1.

While Eq. A.1 does account for aligned motion, it does not differentiate between

the random phase and the two circular phases of motion, as the vector sum over all

boids tends to vanish for each of these phases (as is clear by inspection of a snapshot

of these phases of motion, see Fig. 2.2). Therefore, using this order parameter alone

renders the circular phases indistinguishable from the random phase.

The rotational phases can be quantified using a new order parameter inspired by

the concept of angular momentum. We can thus define a rotational order parameter

L by using the antisymmetrized product of the velocity vectors (the wedge product

∧) taken at two consecutive time steps and averaging both over time and over the

entire flock:

L =
1

N

N∑
i=1

1

z

z∑
n=1

vi(n) ∧ vi(n+ 1)

v20
, (A.2)
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Figure A.2 Graph illustrating a phase transition from rotational motion to
random motion as noise parameter η is increased.

where z represents a sufficiently large number of iterations to ensure an accurate time

average and thus make an accurate determination of the true dynamic coherence.

As in the case of 〈v〉, Eq. A.2 will go to zero in the case of random motion. It also

goes to zero for aligned motion. However, if the system enters a rotational phase,

L will approach a positive or negative non-zero value depending on the direction of

rotation. Because L depends on the time required to execute a loop (or at least a

distinguishable portion thereof), it will most likely not approach unity as η goes to

zero; however, it will reach sufficiently large positive or negative values (often with an

absolute value much greater than 1) to distinguish between both rotational phases and

to distinguish the rotational phases from linear and random motion. Fig. A.2 shows

a plot of Eq. A.2 against η, illustrating the phase transition from counter-clockwise

rotational motion to random motion.

Using Eqs. A.1 and A.2, we have demonstrated that our non-bounded flocking

model exhibits phase transitions between the various types of ordered motion shown
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in Fig. 2.2 and random motion (also shown in Fig. 2.2). However, and possibly

of more physical interest, is the fact that this model also exhibits phase transitions

between the aligned and rotational phases. That is, the model will frequently undergo

a spontaneous shift from the aligned phase to a rotational phase and vice versa with

only a small change in η. This is typically difficult to see in the animations directly,

as it frequently occurs for larger values of η (η > 2.5), and the phase shift is drowned

out visually by noise-induced random motion. However, the phase transition is very

clear in plots of the order parameters 〈v〉 and L. Fig. A.3 shows plots of 〈v〉 and L

for a phase transition directly from aligned motion to rotational motion.

Our topological flocking model exhibits richer motion than typical nearest-neighbor

models. By defining the appropriate order parameters, we can demonstrate the exis-

tence of dynamic phase transitions in our model, thus providing a method of direct,

quantifiable comparison between our model and other models. Furthermore, we also

lay the groundwork for a statistical mechanical analysis of the much richer motion

exhibited by the addition of frustration as explained in the main body of this text.
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Figure A.3 Graphs showing a phase transition directly from rotational mo-
tion to linear motion as noise parameter η is increased. (a) Plot of average
velocity 〈v〉 showing phase change near η = 1.15. (b) Plot of Eq. A.2 for
the same configuration as in (a) showing the onset of rotational motion near
η = 1.15.



Appendix B

An Analytic Solution to the Gilbert

Damping Equation

Even though Eq. 3.6 is non-linear, it can in fact be solved analytically, for a constant

local field H and a fixed reference frame, as a set of coupled differential equations in

Cartesian space. Taking the full vector construction of the Gilbert relaxation equation

(Eq. 3.6) and using Eq. 3.2 to expand the cross product in the first term, we have

∂

∂t


Sx

Sy

Sz

 = −


0 −Hz Hy

Hz 0 −Hx

−Hy Hx 0




Sx

Sy

Sz

+

λ(S · S)H− λ(S ·H)


Sx

Sy

Sz

 . (B.1)

This equation can be separated into its x, y, and z components, forming three coupled

differential equations

∂Sx(t)

∂t
= HzSy(t)−HySz(t)− λ (H · S(t))Sx(t) + λ (S(t) · S(t))Hx, (B.2a)
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∂Sy(t)

∂t
= −HzSx(t) +HxSz(t)− λ (H · S(t))Sy(t) + λ (S(t) · S(t))Hy, (B.2b)

∂Sz(t)

∂t
= HySx(t)−HxSy(t)− λ (H · S(t))Sz(t) + λ (S(t) · S(t))Hz. (B.2c)

If we consider a constant magnetic field and take the ẑ direction to be the direction

of that field, the foregoing equations reduce to

∂Sx(t)

∂t
= HzSy(t)− λHzSx(t)Sz(t), (B.3a)

∂Sy(t)

∂t
= −HzSx(t)− λHzSy(t)Sz(t), (B.3b)

∂Sz(t)

∂t
= −λHzSz(t)

2 + λHz(S · S). (B.3c)

Since Eq. B.3c depends only on the z component of S, and since S ·S = S2 is assumed

to be constant, based on the physical understanding of the model (see proofs in

Chapter 3), Eq. B.3c can be solved independently of the other two and this solution

can be substituted in for Sz in Eqs. B.3a and B.3b. These two equations can then be

solved by defining a complex variable η = Sx + i Sy, which reduces the set of coupled

differential equations to a single equation in η, which can be solved by the traditional

methods. A similar approach was used by Lakshmanan and Nakamura [15], who

obtained the following solution

Sx =
2 (Sx0 cos(Ht) + Sy0 sin(Ht)) e−λHt

(1 + Sz0)2 + (S2
x0 + S2

y0)e
−2λBt , (B.4a)

Sy =
2 (Sy0 cos(Ht)− Sx0 sin(Ht)) e−λHt

(1 + Sz0)2 + (S2
x0 + S2

y0)e
−2λBt , (B.4b)

Sz =
(1 + Sz0)

2 − (S2
x0 + S2

y0)e
−2λHt

(1 + Sz0)2 + (S2
x0 + S2

y0)e
−2λHt . (B.4c)

This solution is easily shown to be a true analytic solution to Eqs. B.2a, B.2b, and B.2c

in Cartesian space.



Appendix C

Alternate Derivation of the

Stereographic Projection

We begin by defining the inverse of a vector under the assumption that such an

inverse can be defined and that a multiplication allowing such an inverse can also be

defined. Geometrically, we can understand the inverse of a vector by analogy from

the one-dimensional case on the number line. Fig. C.1 shows a geometric diagram of

the inverse of such a scalar value. Note that the inverse of 1 is 1, and the inverse of a

scalar simply represents a one-dimensional reflection about 1. We now consider many

such number lines pointing radially outward from the origin, thus any given distance

from the origin forms a sphere centered at the origin. The inverse of a vector can now

be geometrically represented as a reflection across the unit sphere analogous to the

Figure C.1 Inverse of a scalar shown geometrically. Notice that the inverse
maps the range 1 < a < inf to the range 0 < a−1 < 1 and vice versa by
reflection about 1.
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Figure C.2 Inverse of a vector shown geometrically by analogy to the one
dimensional case. Consider a number line along the direction of vector A.
Then A−1 is simply a reflection across the unit sphere, shown here in yel-
low. The green arrows represent the regular Cartesian coordinate system.
Compare with Fig. C.1.

one dimensional case, as shown in Fig. C.2. Again, in analogy to the one-dimensional

case, we take the inverse of a unit vector n̂ to be n̂, so we have

A−1 = (An̂)−1,

but A is just a scalar while, by definition, n̂−1 = n̂, thus

A−1 =
1

A
n̂ =

A

A2
. (C.1)

To develop our conformal transformation from Cartesian to stereographic coordinates,

consider a series of geometric transformations, including the vector inverse defined

above: Taking a vector r sharing the same origin with a normal vector n̂ describing

the stereographic projection plane, we then translate these vectors by n̂. Thus

r′ = r + n̂.
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We now project the resulting vector r′ onto a different sphere using the vector inverse.

So

r′′ =
1

r′
=

1

r + n̂
.

Translation by n̂/2 and multiplication by 2 complete the transformation, so that ω,

the transformation of r, is given by

ω = 2

(
1

r + n̂
− n̂

2

)
=

2(r + n̂)

(r + n̂)2
− n̂, (C.2)

which is identical to the Möbius transformation given in Chapter 3, and the rest of

the derivation proceeds as from Eq. 3.12.
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Appendix D

Code for pcolors3D

The following code listing is the Matlab code used for the pcolors3D function we

developed to visualize magnetic domains in large three dimensional lattices.

f unc t i on pcolors3D (X, Y, Z , z , t ransparency )

c l a

% se t up v e r t i c e s f o r the c o l o r cubes

ve r t = [ 0 0 0 ; 0 0 1 ; 0 1 0 ; . . .

0 1 1 ; 1 0 0 ; 1 0 1 ; . . .

1 1 0 ; 1 1 1 ] ;

% s e t up matr i ce s to a l low each cube

% to be e a s i l y s h i f t e d to i t s p lace

% in the l a t t i c e

s h i f t x = [1 0 0 ; 1 0 0 ; 1 0 0 ; . . .

1 0 0 ; 1 0 0 ; 1 0 0 ; . . .

1 0 0 ; 1 0 0 ] ;
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s h i f t y = [0 1 0 ; 0 1 0 ; 0 1 0 ; . . .

0 1 0 ; 0 1 0 ; 0 1 0 ; . . .

0 1 0 ; 0 1 0 ] ;

s h i f t z = [ 0 0 1 ; 0 0 1 ; 0 0 1 ; . . .

0 0 1 ; 0 0 1 ; 0 0 1 ; . . .

0 0 1 ; 0 0 1 ] ;

% This matrix t e l l s patch how to connect

% the v e r t i c e s

f a c e = [1 5 7 3 ; 1 5 6 2 ; . . .

1 3 4 2 ; 3 4 8 7 ; . . .

2 4 8 6 ; 5 7 8 6 ] ;

% Don ’ t draw cubes that w i l l be t ransparent

% Use a number g r e a t e r than zero to sk ip

% cubes that w i l l be t ransparent anyway , f o r speed .

% Using zero w i l l cause the code to draw a l l

% cubes , even i f they are t ransparent .

pmask = abs ( z )>0;

pindex = get_index (pmask ) ;

% Set up l i g h t i n g f o r cubes

l i g h t i n g gouraud ;

mate r i a l sh iny ;

% Loop through cubes to be drawn and draw
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% with c o l o r and transparency s p e c i f i e d by

% z coord ina te

f o r i=pindex

patch ( ’ Ver t i c e s ’ , . . .

v e r t+X( i )∗ s h i f t x+Y( i )∗ s h i f t y+Z( i )∗ s h i f t z , . . .

’ Faces ’ , face , ’ FaceVertexCData ’ , . . .

z ( i ) , ’ FaceColor ’ , ’ f l a t ’ , . . .

’ EdgeColor ’ , ’ none ’ , ’ FaceAlpha ’ , . . .

abs ( z ( i ))^ transparency ) ;

c ax i s ([−1 , 1 ] )

end

% Make the p l o t look n i c e on sc r e en

s e t ( gca , ’ Pro j ec t i on ’ , ’ p e r spec t i v e ’ ) ;

view ( [ 4 0 , 2 8 ] ) ;

ax i s equal t i g h t o f f v i s3d ;

s e t ( gcf , ’ Color ’ , ’w ’ ) ;

end

% This func t i on r e tu rn s a vec to r conta in ing the p o s i t i o n s o f

% non−zero va lue s o f the vec to r r ep r e s en t a t i on o f a g iven

% mult id imens iona l matrix , m

func t i on index = get_index (m)

s = numel (m) ;

sz = reshape (m, 1 , s ) ;

sz = sum( sz ) ;
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ind = ze ro s (1 , sz ) ;

next = 1 ;

f o r i =1: s

i f m( i )>0

ind ( next ) = i ;

next = next+1;

end

end

index = ind ;

end
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