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ABSTRACT

Acoustic and high speed video analysis of exploding gas filled balloons

Michael B Muhlestein
Department of Physics and Astronomy

Bachelor of Science

Exploding gas-filled balloons are common chemistry demonstrations. They provide an enter-
taining and educational means to experimentally verify nonlinear acoustical theory as described
by the Earnshaw solution to the lossless Burgers equation and weak-shock theory. This paper de-
scribes the theory, the demonstration, and the results of a propagation experiment carried out to
provide typical results. Data analysis shows that an acetylene-oxygen balloon produces an acous-
tic shock whose evolution agrees well with weak-shock theory. On the other hand, the pressure
wave generated by a hydrogen-oxygen balloon also propagates nonlinearly, but does not approach
N-wave-like, weak-shock formation over the propagation distance. High-speed video of these ex-
plosions provide discussion material on directionality of propagating acoustic shocks. Overall,
the experiment shows that popular demonstrations of chemical reactions can be extended from
chemistry classrooms to a pedagogical tool for the student of advanced physical acoustics.
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Chapter 1

Acoustic Exploding Balloon Model

The field of nonlinear acoustics is intense in every sense of the word. This field is the study of

sound when the small signal approximation breaks down. Many problems in nonlinear acoustics,

unlike linear acoustics, do not have analytic solutions. Even numeric schemes are often cumber-

some or incomplete. Experimental acousticians also face the challenge of dealing with extremely

loud sound from powerful sources. Thus it is particularly challenging to find an accessible demon-

stration which will both educate and bring the actuality of nonlinear acoustics to students’ minds.

This thesis presents such a demonstration.

The demonstration presented here is of an exploding gas-filled balloon. This classic chemistry

demonstration turns out to be an extremely loud sound source which can be handled in a typi-

cal college or university. The predicted pressure waves are analytically solvable using nonlinear

acoustical theory. Thus this demonstration becomes useful both for verifying nonlinear theory and

as a pedagogical tool.

The demonstration consists of a balloon filled with a stoichiometric mixture of gaseous acety-

lene and oxygen. When ignited this creates an acoustic shock wave which cannot be described

using linear acoustics. Pressure waveforms recorded with microphones placed at various distances

can be analyzed and compared with theory. This demonstration is particularly useful in that it

1



2 Chapter 1 Acoustic Exploding Balloon Model

explains principles in a more advanced field of physics, such as waveform steepening and weak-

shock theory, for which classroom demonstrations are not abundant. In addition to giving insight,

the entertaining nature of the demonstration can also provide motivation for introductory students

to pursue more advanced studies. The demonstration can be presented along with real-world appli-

cations of acoustic shocks, including sonic booms, [1] military jet aircraft noise, [2] explosions, [3]

Gatling guns, [4] and lithotripsy. [5], [6]

Chapter 1 presents a theoretical analysis of the propagating sound waves, including a discus-

sion of the Earnshaw solution to the lossless Burgers’ equation and weak-shock theory. [7] In

Chapter 2 a detailed description of the demonstration is given. Propagation data obtained for both

the acetylene-oxygen balloon and a hydrogen-oxygen balloon are then analyzed and compared in

Chapter 3. Finally, in Chapter 4 high-speed video of the reaction is presented and discussed.

1.1 Propagation Model

Theory is a wonderful source of homework exercises and a motivation for laboratory work. Through-

out this section fundamental principles of physical acoustics, as they relate to the balloon demon-

stration, are reviewed. Elements of the theoretical development could be given to an advanced

acoustics class as a homework problem.

In order to model the propagation of the transient acoustic pulse generated by a compact explo-

sive source, two models are necessary: a model equation that appropriately describes the evolution

of the pressure waves and a model for the source pressure waveform. The use of the source wave-

form in the propagation model, which relies on the Earnshaw solution to the lossless Burgers’

equation and weak-shock theory, results in theoretical expressions that can be used to compare

with experimental data obtained from the demonstration.



1.1 Propagation Model 3

1.1.1 The Earnshaw Solution to the Burgers’ Equation

This section describes the theory that is used to model the continuous portion of the propagating

transient. As this theory is not original and our development is similar to that of Blackstock et

al., [7] it is largely included for completeness in this pedagogical thesis. In addition, although

our demonstration involves the propagation of finite-amplitude spherical waves, it is easier to de-

velop the plane-wave solution and then convert it into spherical coordinates afterwards, as done by

Blackstock et al. [7]

The model equation used to describe the nonlinear evolution of the acoustic pressure, p, (here-

after just called the pressure), is the lossless, planar Burgers’ equation

∂ p
∂x

=
β

ρ0c3
0

p
∂ p
∂τ

(1.1)

where x is the distance from the source, β is the parameter of nonlinearity (1.201 for air), ρ0 is the

ambient density, co is the small-signal sound speed. The retarded time τ is related to time t via

τ = t− x/c0. The planar Burgers’ equation is valid for continuous waveforms, which means that

once shocks form it no longer describes the entire wave. A physical interpretation of this equation

is that high pressure portions of the waveform (peaks) propagate supersonically while low pressure

portions (troughs) propagate subsonically.

An often used solution to the lossless Burgers’ equation (derived in Appendix A) was developed

by Earnshaw [7] and may be written as [7]

p = f (φ) (1.2)

φ = τ +
βxp
ρ0c3

0
= τ +

βx
ρ0c3

0
f (φ) (1.3)

where f (φ) when x = 0 is the source pressure as a function of time. The variable is the nonlinearly

distorted time scale and is called the Earnshaw phase variable by Blackstock et al. [7] In addition to

facilitating analytical solutions, the Earnshaw solution is very convenient for numerical solutions
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of the Burgers’ equation [8] [9] [2] as the initial waveform values do not change, but only the

time at which they occur changes. Physically, the pressure-dependent distortion of the Earnshaw

solution in Eq. (1.3) describes how the compressions travel faster than rarefactions in the waveform

steepening process prior to shock formation.

The Earnshaw solution can be used as a pedagogical tool or as part of a homework exercise

where students can use the solution to distort a discretely sampled waveform. For example, the

Earnshaw solution can be used as an alternative to (or comparison with) the Fubini series solu-

tion [10] for a monofrequency source described by f (φ) = p0 sin(ωτ), where ω is the angular

frequency, so by Eq. (1.3) φ = ωτ +β p0ωxsin(φ)/ρ0c3
0. Plotting the solution to the pressure as

a function of the nondimensional distance σ = β p0ωx/ρ0c3
0 is instructive. The results for four

values of τ are displayed in Fig. 1.1.

Notice in Fig. 1.1 that the waveform becomes perfectly vertical at σ = 1, thus forming the first

shock. For this reason σ = 1 is referred to as the shock formation distance, and σ the distance

relative to the shock formation distance. Having students plot the solution for σ > 1 can be used

to motivate a discussion of weak-shock theory and the equal-area rule. [7] An example has been

included in Fig. 1.1 for σ = 2, with the vertical line denoting the location of the shock.

1.1.2 Weak-Shock Theory

For distances such that σ > 1, the continuous Earnshaw solution cannot be used in the multivalued

regions. Weak-shock theory is instead required. Weak-shock theory is based on three assumptions.

First, shocks are "weak", which is described further below. Second, losses are only considered

at the shocks (i.e. the propagation of the continuous portion of the waveform may be considered

lossless). Third, shocks are discontinuities.

Using these assumptions with the Rankine-Hugoniot shock relations, [11] one finds that shocks
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Figure 1.1 Nonlinear propagation of an initially sinusoidal wave of frequency ω accord-
ing to the Earnshaw solution to the planar, lossless Burgers’ equation. The variable σ

is dimensionless distance where σ < 1 represents the preshock region. The multivalued-
ness of the Earnshaw-derived pressure for σ > 1 can be used to motivate a discussion of
weak-shock theory. The amplitude has been normalized (p/p0).
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propagate at a velocity of

vsh =−
β

ρ0c0

(pa + pb)

2
(1.4)

where vsh is the velocity of the shock, and pa and pb are the pressure ahead of the shock and

behind the shock, respectively. Note that this means that shocks propagate at speeds different from

the continuous portions of the waveform surrounding the shock. In order to find the location of a

shock the relation for the retarded speed of the shock

∂τsh

∂x
=− β

ρ0c3
0

(pa + pb)

2
(1.5)

is a more useful form of Eq. (1.4), where τsh is the retarded time of arrival of the shock. In order

to use Eq. (1.5), pa and pb are found using the Earnshaw solution, Eqs. (1.2) and (1.3).

pa = f (φa), φa = τ + βxpa
ρ0c3

0

pb = f (φb), φb = τ + βxpb
ρ0c3

0

. (1.6)

Implicit in the use of Eq. (1.6) is the use of the equal area rule, a consequence of weak shock

theory. This rule is that the shock separates equal areas as defined by the Earnshaw solution (as

can be seen in Fig. 1.1). Equations (1.2,1.3,1.6) are an adequate model set of equations to describe

the finite-amplitude pressure wave propagation.

As with any model, it is important to understand the limitations of weak-shock theory. One

of the three assumptions discussed above is that shocks are "weak." Temkin [12] studied errors

associated with the weak-shock approximation in the expression for the entropy change across

shocks in planar sawtooth waves at sea level. Used as the figure of merit was the shock strength,

defined as

δ =
pb− pa

pb + pamb
, (1.7)

where pamb is the ambient pressure. The upper bound of acceptable errors was found to be δ = 0.1,

which corresponds to an rms sound pressure level of 165 dB re 20 µPa. Note that Blackstock [13]

used a different criterion in his examination of weak-shock theory limits. He employed the peak
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acoustic Mach number, M = u0/c0, where u0 is the peak particle velocity, with "weak" being

defined as M < 0.1. This yields an upper bound for planar sawtooth waves of 174 dB re 20 µPa

(δ = 0.329). [14]

Regardless of the criterion used to obtain the weak-shock theory upper bound, neither result ap-

plies strictly to the waveform of an exploding gas-filled balloon. One cause is geometric spreading,

which serves to rapidly reduce the peak pressure for the same propagation range. This would effec-

tively increase the upper bound of weak-shock theory. Another cause is the nature of the waveform

itself, which is an asymmetric transient rather than a symmetric, stationary signal. To the authors’

knowledge, the theoretical upper limits of weak-shock theory for a spherically propagating tran-

sient impulse have not been determined as has been done for the planar sawtooth wave. Therefore,

the appropriateness of the weak-shock theory model for this case is established empirically by the

level of agreement between predictions and experiment.

1.2 Explosion Model

A commonly used model for an acoustic impulse created by an explosion is the modified Friedlan-

der equation11, written as

p(t) = p+s (1− t/T+)e−bt/T+
, (1.8)

where p+s is the peak shock pressure value, T+ is duration for which the pressure value is positive

and b is a fitting parameter. However, this equation is not as well suited for analytical analysis as

a shock followed by an exponentially decaying tail, which is sufficient to illustrate the features of

interest. Thus,

f (t) =

p0e−t/t0 t > 0

0 t < 0
, (1.9)

where p0 is the initial amplitude of the shock and t0 is the initial e-1 decay time of the tail. Note that

τ = t for x = 0. The problem of solving Eqs. (1.2 - 1.6) with Eq. (1.9) as the source was previously
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solved with a finite-difference formulation by Rogers. [15] Blackstock [16] approached it by an

analytical formulation and found expressions for many key elements though he did not provide

a solution for the entire pressure waveform. The present formulation is included for educational

value, as it solves the problem completely from the Earnshaw solution and weak-shock theory

perspective.

There are two semi-infinite portions of the wave that are continuous: before the shock and after

the shock. Because p = 0, the Earnshaw phase variable is simply φ = τ before the shock. For the

portion behind the shock, the Earnshaw solution yields

p = p0e−(τ+Cxp)/t0. (1.10)

where the substitution of C = β/ρ0c3
0 is made. Equation (1.10) can be rewritten as

zez =
p0

t0
Cxe−τ/t0 (1.11)

where z =Cxp/t0. The solution to Eq. (1.11) is

z =W
(

p0

t0
Cxe−τ/t0

)
, (1.12)

where W is the Lambert W function. [17] Equation (1.12) in conjunction with Eq. (1.9) implies

that

p(x,τ) =


t0W

(
p0
t0

Cxe−τ/t0
)

Cx τ > τsh

0 τ < τsh

, (1.13)

As mentioned above, Eq. (1.13), which is derived from the Earnshaw solution, is only valid

for continuous portions of the waveform, and weak-shock theory is necessary to find τsh in terms

of x. This requires that Eqs. (1.5) through (1.6) be solved. The source waveform allows one to

immediately see that pa = 0. This means that the peak pressure of the shock (psh) is identical to

pb. Solving for psh in a functional form is more difficult (and is likely worthy of a graduate-level

homework exercise; see Appendix B) but Blackstock [16] found it to be

psh =

√
1+2p0Cx/t0−1

Cx/t0
. (1.14)
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Once psh is found, Eqs. (1.2) and (1.3) evaluated at φsh allow τsh to be found:

τsh = t0− t0
√

1+2p0Cx/t0− t0 ln

(√
1+2p0Cx/t0−1

p0Cx/t0

)
. (1.15)

Figure 1 illustrates how the waveform spreads as it propagates as Eqs. (13) through (15) pre-

dict. Because the Lambert W function can not be written in terms of elementary functions, an

approximation is necessary. Rogers [15] used Newton’s method to find an approximation for the

pressure wave in terms of elementary functions. To generate the results in Fig. 2, the MATLABr

lambertw.m25 function was used.

Figure 1.2 Theoretical evolution of a propagating planar shock with exponential tail. In
this case, t0 is approximately 0.2 ms and p0 = 30 kPa. The choice of p0 is derived from
the acetylene-oxygen balloon experiment.

Equations (1.13) and (1.14) provide a full profile of the pressure evolution of this plane-wave

model. In order to convert this result into spherical coordinates, Eq. (1.13) is multiplied by r0/r

and in Eqs. (1.13) and (1.15) x is replaced with r0 ln(r/r0), where r0 is the reference radius at which
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p0 and t0 are known and r is the radius from the source. Thus the expressions for p(x,τ) and τsh in

spherical coordinates are

p(r,τ) =


r0 p0

r
t0W(η ln(r/r0)e−τ/t0)

η ln(r/r0)
τ > τsh

0 τ < τsh

, (1.16)

tsh = t0− t0
√

1+2η ln(r/r0)− t0 ln

(√
1+2η ln(r/r0)−1

η ln(r/r0)

)
, (1.17)

η =
p0

t0

β r0

ρ0c3
0
, (1.18)

where τ is now defined as t− (r− r0)/c0.

Also of interest is the peak pressure value in spherical coordinates, obtained by transforming

Eq. (1.14) as described above. The peak pressure (psh) is given by

psh =
r0 p0

r

√
1+2η ln(r/r0)−1

η ln(r/r0)
. (1.19)

Figure 2 illustrates how the waveform spreads as it propagates as Eqs. (1.16) through (1.19) predict.

It is important to remember that Eqs. (1.16) through (1.19) only describe the evolution of the

shock with decaying exponential tail under conditions that satisfy weak-shock theory. In addition

to the "weak" requirement described previously, for a real fluid there are many factors that can lead

to discrepancy between experiment and theory. Molecular relaxation and thermoviscous absorp-

tion will cause the shock rise to no longer be discontinuous. [18], [19] Furthermore, as distance

increases, the absorptive processes will result in ordinary losses affecting the entire waveform. [20]

In addition, dispersion will also be an important consideration over large distances. [21]
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Figure 1.3 Theoretical evolution of a spherically propagating shock with exponential tail.
In this case, t0 is approximately 0.2 ms, p0 = 30 kPa and r0 = 1 m.
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Chapter 2

Experiment

This section discusses the basic chemistry associated with the exploding balloon demonstration,

describes how the demonstration is carried out and then provides details of the experiment to

compare with the theory described in the previous section.

2.1 Explosion Chemistry Overview

Nonlinearly propagating pressure waves can be generated by chemical reactions in the combustion

of two easily obtainable fuels: hydrogen (H2) and acetylene (C2H2). In any chemical reaction,

reactant species experience a rearrangement of atoms or ions to make new product species. During

chemical reactions, bonds between atoms are broken, with new bonds then formed to generate

product species. The total energy change for the reaction is the difference between the energy

required to break bonds and the amount of energy released in the formation of new bonds. In the

case of the combustion reactions described here, one important result of the reaction is a net release

of energy; more energy is released in the forming of new more stable bonds than was required to

initially break the bonds between reactant species.

One measure for the amount of energy released in a reaction is enthalpy change (∆H◦); enthalpy

13



14 Chapter 2 Experiment

is a measure of the heat energy in a reaction. The heat energy released in a reaction will heat the

reaction gases which will increase the velocity of the gas molecules generating a pressure wave at

the site of the explosion. The following reactions outline the combustion reactions for the fuels we

used:
2H2+O2→ 2H2O (l) ∆H◦ =−285.8 kJ mol−1

2C2H2 (g)→ 4CO2 (g)+2H2O (l) ∆H◦ =−1301.1 kJ mol−1
(2.1)

The enthalpy values are negative to indicate that heat energy is released from the reaction.

Note that even though the same numbers of fuel moles are used in each of the two reactions,

there is a significant difference in the enthalpy change in these two gases. The reason for this is

not that more bonds are formed than are broken. In fact, the same numbers of bonds are broken

as are formed in each case. The disparity in energy between the two reactions in Eq. (2.1) arises

from differences in the types of bonds which are formed. About twice as much energy is released

in the formation of a carbon-oxygen bond as in a hydrogen-oxygen bond. While considerations of

enthalpy alone do not account for differences in reaction rate, it is important to consider the energy

differences between these two reactions. However, a complete discussion of the reaction kinetics

of these two reactions is beyond the scope of this article.

2.2 Demonstration Description

2.2.1 Balloon Preparation

For preparation the balloons, the reactions (2.1) were used to determine the appropriate amount

of oxygen (O2) for a complete burn of the fuel. For combusting hydrogen (H2), 0.370 moles of

hydrogen with 0.185 moles of oxygen was used (with total balloon diameter of 31.1 cm). For

acetylene combustion, 0.057 moles of acetylene with 0.143 moles of oxygen was used (with total

balloon diameter of 22.1 cm). The amount of fuel used in these experiments was a matter of con-
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venience; however, accurate delivery of gases is difficult. In practice, the volume of gas required

was converted to the diameter of a sphere. Because balloon shape could affect the combustion

process and the shape of the acoustic impulse, we used latex balloons which were manufactured to

be more spherical than typical tear-drop shaped party balloons. Plastic tubing was shaped to form

a ring of the diameter required for a certain volume calculated by the ideal gas law. Balloons were

then filled directly from compressed gas cylinders until the balloon walls just touched the inside

diameter of the plastic ring. Two plastic tubing rings were prepared: a smaller ring to ensure the

proper amount of fuel, and a second larger ring to indicate the amount of oxygen to be added to

the initial amount of fuel to create the appropriate mixture.

In order to prevent the initial acoustic impulse and reflections from overlapping in time, the

distance from the explosion to any hard surfaces should be greater than 30 cm. This distance

is calculated from the measured A durations (duration of initial overpressure from impulses) of

the explosions at the 3.46 m microphone. This will allow for clear analysis from an experiment

conducted in a regular classroom (not just in an anechoic chamber, as used in this experiment).

2.2.2 Safety Precautions

Once the mixture is prepared, precautions should be observed: (1) Double hearing protection

should be worn once the mixture is ready. (2) Eye protection should be worn to protect the pre-

senter and nearby viewers from flying bits of balloons. Whatever mechanism is used to anchor

the balloon should be secured so that it will not become a projectile. The fireball created by the

explosion is approximately 80 cm in diameter (see Fig. 2.2). Fire hazards should be considered;

do not ignite the balloon within 2 m of flammable surfaces.

Balloons are ignited by using a homemade device consisting of surgical tubing attached to

a 1 m hollow stainless steel rod. The surgical tubing is then connected to a natural gas supply

and the device is used as a "flame wand" to ignite the balloon. When initiating the reaction,
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presenters should hold the flame wand with an outstretched arm to maintain a 6’ distance from the

explosion. Also, as a practical note, acetylene balloons should be used within about 20 minutes

after preparation as the acetylene diffuses through the latex balloon wall at a sufficiently fast rate

that reproducibility and balloon volume are reduced.

Another consideration in performing the demonstration is the potential for auditory hazard.

In order to observe nonlinear effects of sound, potentially dangerous levels of sound are needed

that require proper protection for those involved. Recent experiments on the levels generated by

hydrogen-oxygen balloons have been discussed by Gee et al. [22] To reduce the peak levels below

140 dB re 20 µPa for the demonstrator, double hearing protection is worn. This can provide

approximately 50 dB of attenuation for impulse noises. [23] Due to the explosive nature of the

demonstration and the potential for balloon piece projectiles, a lab coat, and eye protection should

also used by the person lighting the balloons.

2.3 Balloon and Microphone Setup

The acetylene-oxygen balloon was used to demonstrate the nonlinear spherical spreading of a

shock with an initially exponential tail. [3] In order to focus on spherical spreading and minimize

other effects due to reflections the experiment was conducted in the large fully anechoic chamber at

Brigham Young University with working dimensions of 8.71 × 5.66 × 5.74 m. It should be noted

that the anechoic chamber has an upper frequency limit (∼20 kHz) for which it is anechoic. This

means that some reflections from the room at the very high frequencies associated with shocks are

unavoidable, but these reflections do not impact the shock characteristics of primary importance to

this thesis (see Section 2.2.1).

As shown in Fig. 2.1, microphones were placed at 1.03 m, 1.18 m, 1.33 m, 1.64 m, 1.94 m, 2.85

m, and 3.46 m from the center of the balloon for the acetylene and oxygen balloon test. For the
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Figure 2.1 Schematic showing microphone locations relative to the acetylene-oxygen
(2C2H2:5O2) and hydrogen-oxygen (2H2:O2) balloons for the results described in this
thesis.

hydrogen and oxygen balloon test, the balloon was 0.305 m (1.00 ft) farther from all of the micro-

phones. As this is not necessarily the exact source location, the value of r0 is a source of potential

error. The microphones were suspended from a network of cotton twine strung between two stands

in order to minimize the number of possible scattering sources. The microphones used were 3.18

mm (1/8 in) G.R.A.S. 40DD microphones, except for the most distant microphone which was a

6.35 mm (1/4 in) G.R.A.S. 40BD microphone. The grid caps of the microphones were removed in

order to remove any shock-induced high-frequency resonances of the cavity between the grid cap

and the microphone diaphragm. [24] Because the microphone orientation has a significant effect

on the measurements of shock amplitude [24], [25], the microphones were placed as near as pos-

sible to grazing incidence. Uncertainty in the orientation and any shadowing and scattering from

upstream microphones is one source of error in the measurement of the shock amplitude.

During the experiments, time waveform data were acquired with a National Instruments PXI-

based system using 24-bit PXI-4462 cards controlled by LabVIEW-based software. The data were

acquired at a rate of 204 800 samples per second (4.9 µs per sample). Post processing of the data

was done using MATLABr.
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Figure 2.2 Before (above) and during (below) pictures of an acetylene-oxygen balloon
explosion. The ruler in the before picture is present for scale. The maximum explosion
radius is about 79 cm.



Chapter 3

Data Analysis

3.1 Experiment Results

Shown in this section are time waveform measurements for both the acetylene-oxygen and hydrogen-

oxygen balloons. Presented in Fig. 3.1 is the acetylene-oxygen balloon waveform aligned at the

zero crossing, which propagates at the ambient speed of sound and thus does not change with re-

gard to the retarded time. The peak pressure, ppk, of the acetylene-oxygen balloon at 1.02 m was

31.03 kPa. This is equivalent to 183.8 dB re 20 µPa, using Lpk = 20log10(ppk/p0), where Lpk is

the peak sound pressure level.

The peak pressure for the hydrogen-oxygen balloon shown in Fig. 3.2, 3.26 kPa (164.2 dB re

20 µPa), is substantially less than that of the acetylene-oxygen balloon at 1.17 m, 23.8 kPa (181.5

dB re 20 µPa), and occurs over a greater time scale. Aligning the initial impulse also aligns the

waveform at the zero crossing, as shown in Fig. 3.2, below. Comparing Fig. 3.2 to Fig. 3.1 shows

that this dual alignment, or lack of time-scale elongation, is a major difference between the two

explosions, as is the lack of a significant shock in Fig. 3.2.
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Figure 3.1 Measured pressure-time waveforms, aligned at the impulse zero crossing, for
an acetylene-oxygen balloon.

3.2 Analysis and Discussion

The results of the above section provide for interesting discussion as to the effects of shocks and

nonlinear propagation appropriate for an advanced acoustics course. It is first important to put the

acetylene-oxygen balloon peak levels in context with the limits of weak-shock theory, given that a

reasonably sized balloon filled with readily available gasses can produce levels exceeding 180 dB

at close range. Calculation of the shock strength in Eq. (1.7) for the acetylene-oxygen balloon at

the closest microphone yields δ = 0.341. This is greater than the upper limit of weak shock theory

(δ = 0.1) suggested by Temkin. [12] However, as mentioned above, these limits are specifically

for periodic, planar waves. Regardless, comparing the data with the weak-shock theory is still a

valuable exercise, as is shown below.

The theory of a propagating weak shock with an exponential tail predicts that the peak ampli-
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Figure 3.2 Measured pressure-time waveforms for a hydrogen-oxygen balloon.

tude (psh) rolls off according to Eq. (1.19) and its retarded time of arrival (τsh) evolves according

to Eq. (1.17). Because the zero crossing travels at the ambient sound speed and its retarded time

does not change, it is a useful reference point from which to examine this waveform time-scale

increase. To compare with experiment, Eqs. (1.17) and (1.19) require values for r0, p0, and t0. The

value for r0 used is the distance from the source, approximated as the center of the balloon, to the

first microphone. The values of p0 and t0 are taken directly from the measured data. The peak

pressure of the closest microphone is used as p0 and the time it takes for the pressure to decay to

1/e of the peak value is used for t0.

In Fig. 3.3, the peak pressures from Fig. 3.1 are displayed along with the theoretical nonlinear

prediction of the peak value roll-off over distance from Eq. (1.19). Ordinary spherical spreading is

also included for reference. Inspection of Fig. 3.3 shows that the experimental data diverge quickly

and substantially from the linear theory. This means that in order to get any sort of reasonable
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prediction for the peak pressure value, nonlinear theory must be used. At 3 m from the source, the

excess attenuation of the peak is greater than 6 dB.

Figure 3.3 Measured peak sound pressure levels (Lpk) from the acetylene-oxygen balloon
as a function of distance with theoretical linear (for comparison) and nonlinear curves.

Figure 3.4 shows the measured time waveforms from Fig. 3.3 with respect to retarded time with

the zero crossing as a reference point. Although the experimental psh vs. τsh evolution general

agreement with Eqs. (1.16) through (1.18) is noted, there are differences that were fairly consistent

for all balloon explosions measured. Examination of the time waveforms and comparison with data

shown by Gabrielson et al. [24] suggests that the inexactness in the peak pressure measurement is

primarily due to slight pressure microphone orientation errors.

At the base of the shocks in Fig. 3.4 are pressure oscillations. These are artifacts of the digital

to analog converter used in this experiment and is a consequence of the Gibbs effect. These oscil-

lations may also exist at the top of the shocks as well, which may cause some small overestimation
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of the peak pressure values.

Figure 3.4 Measured waveforms of the acetylene-oxygen balloon compared with the the-
oretical evolution of the shock amplitude and time.

A useful detail that can be gleaned from Fig. 3.4 is the lengthening of the waveform, seen by the

longer time taken from the initial shock to the first zero crossing. The closest microphone shows

that it takes just less than 0.5 ms until the initial crossing, while the farthest microphone takes

about 0.8 ms. As spherical spreading only affects the amplitude of a waveform, this spreading is

best explained by nonlinear propagation theory.

The pedagogical nature of Figs. 3.1 and 3.3 is enhanced when compared with results from the

hydrogen-oxygen balloon. In contrast to the shock that was formed with the acetylene-oxygen

balloon the hydrogen-oxygen balloon has a much more gradual transition from ambient pressure

to the waveform peak. It has been already noted in discussion of Fig. 3.2 that the same time-

scale elongation observed in the acetylene-oxygen explosion is not observed in the hydrogen-
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oxygen explosion. However, one can still use these latter results to observe nonlinear behavior and

distinguish it from the weak shock-like behavior of the acetylene-oxygen balloon.

To more clearly examine the nonlinear evolution of the time waveform for the hydrogen-oxygen

balloon in Fig. 3.2, the waveforms of the closest and farthest microphones were multiplied by the

respective distances from the sources, thereby removing spherical spreading. The positive portions

of the resultant waveforms are shown in Fig. 3.5. Notice the consistency of the location of the zero

crossings before and after the initial compression wave combined with advancement of the greater

amplitude portions forward in time. This clearly shows nonlinear steepening of the hydrogen-

oxygen waveform, but in the preshock region, which is very different nonlinear behavior than the

acetylene-oxygen balloon exhibits. Students could also compare results similar to Fig. 3.5 with

the Earnshaw solution to examine the dependence of nonlinearity on the nature of the geometric

spreading. In this case, the nonlinear distortion of the peak pressure that occurs at approximately

-1.0 ms is about half what it would be if the propagation of the wave were planar rather than

spherical.

Another interesting feature in Fig. 3.5 is the presence of multiple shocks. This demonstrates

that shocks may appear in more locations than just at the head of the propagating wave. It can also

be seen that the distance between these shocks is decreasing as the wave propagates and the larger

shock will eventually overtake the smaller one. This can be used to introduce the concept of shock

coalescence to a class. However, a detailed discussion of shock coalescence is beyond the scope

of this article.

The fact that removing spherical spreading effectively normalizes the waveforms in Fig. 3.5

is also evidence that the peak pressure roll-off is not affected by nonlinearity in the pre-shock

region, as predicted by the Earnshaw solution. This is further confirmed in Fig. 3.6, where the

measured peak pressure closely aligns with linear, spherical geometric spreading theory based on

the measured peak pressure at the closest microphone and an assumed source location at the center
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Figure 3.5 Measured waveform of a hydrogen-oxygen balloon from Fig. 3.2 at the closest
and farthest microphones with spherical spreading removed.

of the balloon.
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Figure 3.6 Peak measured pressure levels (Lpk) of the hydrogen-oxygen balloon with
linear theory, confirming data were taken in the pre-shock region.



Chapter 4

High-Speed Video

High speed video was taken of the explosions described in the previous chapter. The camera that

was used was a Photron FASTCAM SA2. For the acetylene-oxygen balloon (Fig. 4.1) the frame

rate was 15,000 frames per second (fps) and 10,000 fps for the hydrogen-oxygen balloon (Fig.

4.2). The exposure time per frame for both balloons was 1/500,000 s.

There are a few insights that can be gleaned from these videos. Notice that the acetylene and

oxygen balloon’s reaction is so rapid and explosive that the explosion bursts the back end of the

balloon. This allows for a much more uniform spherical impulse. Compare this with the hydrogen-

oxygen balloon: the explosion is guided by the unwrapping of the balloon (albeit sped up by the

explosion). These features lead one to the conclusion that the acetylene and oxygen balloon’s

impulse would be quite spherically symmetric while the hydrogen and oxygen balloon’s would

be cylindrically symmetric. The symmetry of both of these balloons has been verified by Gee, et

al. [22]
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t = 0µs t = 260µs t = 530µs 

t = 800µs t = 930µs t = 1000µs 

t = 1070µs t = 1130µs t = 1200µs 

t = 1270µs t = 1530µs t = 1800µs 

Figure 4.1 Highlights of high-speed video of the acetylene-oxygen balloon explosion.
The frame rate is 15,000 fps.
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t = 0µs t = 400µs t = 800µs 

t = 1200µs t = 1600µs t = 2000µs 

t = 2400µs t = 2800µs t = 3200µs 

t = 3600µs t = 4000µs t = 4400µs 

Figure 4.2 Highlights of high-speed video of the hydrogen-oxygen balloon explosion.
The frame rate is 10,000 fps.
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Chapter 5

Conclusion

This thesis has shown that the explosion from a balloon filled with acetylene and oxygen is a clear

demonstration of important nonlinear phenomena, namely dissipation at shocks and waveform

spreading. Use of the Earnshaw solution to the lossless Burgers’ equation and weak-shock theory

allows for a reasonable quantitative prediction of the evolution of waveform characteristics. It

has also been shown for comparison that using the explosion from a balloon filled with hydrogen

and oxygen is another example where nonlinear theory aids the analysis of the wave propagation

through showing waveform steepening. Examination of high speed video yields a qualitative feel

for directionality of these finite amplitude impulses as well as for entertainment. Appropriate use

of this demonstration should provide the advanced student in physical acoustics an engaging active

learning experience in the mathematics of nonlinear phenomena.
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Appendix A

Derivation of the Earnshaw Solution

The lossless Burgers’ equation can be written as

∂ p
∂x

= η p
∂ p
∂τ

. (A.1)

where η = β/ρ0c3
0. Let φ = τ +ηxp and z = x. Then we have

∂φ

∂x
= η p+ηx

∂ p
∂x

, (A.2)

∂φ

∂τ
= 1+ηx

∂ p
∂τ

, (A.3)

∂ z
∂x

= 1, (A.4)

∂ z
∂τ

= 0. (A.5)

Changing the variables requires that the derivatives be modified:

∂

∂x
=

∂φ

∂x
∂

∂φ
+

∂ z
∂x

∂

∂ z
, (A.6)

∂

∂τ
=

∂φ

∂τ

∂

∂φ
+

∂ z
∂τ

∂

∂ z
. (A.7)

Combining Eqs. (A.2)-(A.5) with Eqs. (A.6) and (A.7) yields

∂ p
∂x

=
∂φ

∂x
∂ p
∂φ

+
∂ z
∂x

∂ p
∂ z

= η

(
p+ x

∂ p
∂x

)
∂ p
∂ p

+
∂φ

∂ z
(A.8)
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⇒ ∂ p
∂x

(
1−ηx

∂ p
∂φ

= η p
∂ p
∂φ

)
+

∂ p
∂ z

(A.9)

⇒ ∂ p
∂x

=
η p ∂ p

∂φ
+ ∂ p

∂ z

1−ηx ∂ p
∂φ

=
η p ∂ p

∂φ

1−ηz ∂ p
∂φ

+

∂ p
∂ z

1−ηz ∂ p
∂φ

, (A.10)

and
∂ p
∂τ

=
∂φ

∂τ

∂ p
∂φ

+
∂ z
∂τ

∂ p
∂ z

=

(
1+ηx

∂ p
∂τ

)
∂ p
∂φ

(A.11)

⇒ ∂ p
∂τ

(
1−ηx

∂ p
∂φ

)
=

∂ p
∂φ

(A.12)

⇒ ∂ p
∂τ

=

∂ p
∂φ

1−ηx ∂ p
∂φ

=

∂ p
∂φ

1−ηz ∂ p
∂φ

. (A.13)

Inserting Eqs. (A.10) and (A.13) into the Burgers’ equation yields

η p ∂ p
∂φ

1−ηz ∂ p
∂φ

+

∂ p
∂ z

1−ηz ∂ p
∂φ

=
η p ∂ p

∂φ

1−ηz ∂ p
∂φ

(A.14)

⇒
∂ p
∂ z

1−ηz ∂ p
∂φ

= 0 (A.15)

⇒ ∂ p
∂ z

= 0 (A.16)

⇒ p = f (φ) , (A.17)

which is the Earnshaw solution.



Appendix B

Peak Shock Pressure and Location

The derivation below follows the method Blackstock used. [16]

Begin with the planar Earnshaw solution to the lossless Burgers’ equation (Eqs. (1.1,1.2,1.3)).

The Burgers’ equation is given here for reference:

∂ p
∂x

=
β

ρ0c3
0

p
∂ p
∂τ

, (B.1)

with pressure p, distance x, parameter of nonlinearity β , the ambient air density ρ0, small signal

sound speed c0, and retarded time τ = t− x/c0, with time t. For simplification, the pressure is

nondimensionalized, and the Earnshaw solution is written as

V ≡ p
p0

= f (φ), (B.2)

φ = τ +
β p0x
ρ0c3

0
V. (B.3)

See Appendix A for details.

In terms of the nondimensional pressure weak shock theory gives the following relation:

∂τsh

∂x
=− β p0

ρ0c3
0

Va +Vb

2
, (B.4)
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where Va is the normalized pressure just ahead of the shock, Vb is the normalized pressure just

behind the shock, and τsh is the retarded time of arrival of the shock. Fortunately, the pressure just

ahead of the shock is identically zero, as stated above, so Va can be ignored.

To simplify this discussion, the substitution of α = β p0/ρ0c3
0 is made.

In order to solve Eqs. (B.2 - B.4) simultaneously, differentiate Eq. (B.3) with respect to x and

evaluate at τsh, then reorganize as follows:

∂φsh

∂x
=

∂τsh

∂x
+α

(
Vsh + x

Vsh

2

)
, (B.5)

⇒ ∂τsh

∂x
=

∂φsh

∂x
−α

(
Vsh + x

Vsh

2

)
, (B.6)

where φsh = φ |τ=τsh and Vsh =Vb is the peak pressure of the shock. Equate Eq. (B.5) with Eq. (B.4):

∂φsh

∂x
−α

(
Vsh + x

Vsh

2

)
=−α

Vsh

2
. (B.7)

Now multiply Eq. (B.7) by ∂x/∂φsh and by 2Vsh, simplify, reorganize, and then integrate:

1−Vshα
∂x

∂φsh
− xα

∂Vsh

∂φsh
=−α

Vsh

2
∂x

∂φsh
, (B.8)

2Vsh−2αV 2
sh

∂x
dφsh

−2xαVsh
∂Vsh

∂φsh
=−αV 2

sh
∂x

∂φsh
, (B.9)

α

(
V 2

sh
∂x

∂φsh
+2xVsh

∂Vsh

∂φsh

)
= 2Vsh, (B.10)

xαV 2
sh =

∫
2Vshdφsh = 2

∫
φsh

0
f (φ)dφ . (B.11)

The exponential tail is given by f (t) = exp(−t/t0). Inserting this relation into Eq. (B.11) yields

xαV 2
sh = 2

∫
φsh

0
e−φ/t0φ = 2t0

(
1− e−φsh/t0

)
= 2t0 (1−Vsh) . (B.12)

This can be solved for Vsh via the quadratic equation:

xαV 2
sh +2t0Vsh−2t0 = 0, (B.13)
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⇒Vsh =
−2t0±

√
4t2

0 p2
0 +8xαt0

2xα
=
±
√

1+2bx−1
bx

, (B.14)

where the substitution of b = α/t0 = β p0/t0ρ0c3
0 is implemented.

The physical interpretation of the plus or minus sign is the direction of propagation. The plus

implies outgoing (positive) propagation and the minus incoming (negative) propagation. Only

outgoing propagation is considered here, so only the positive case is dealt with below. Then the

peak shock pressure as a function of distance is

psh = pb = p0

√
1+2bx−1

bx
. (B.15)

Expanding b in Eq. (B.15) yields Eq. (1.14):

psh =

√
1+2p0Cx/t0−1

Cx/t0
. (B.16)

(Recall that C = β/ρ0c3
0 = b · t0/p0.)

Once psh is found, Eqs. (1.2, 1.3) evaluated at φsh allow τsh to be found:

p = p0e−φ/t0 ⇒ φ =−t0 ln(p/p0), (B.17)

τ = φ − t0bxp/p0 =−t0 [ln(p/p0)+bxp/p0] , (B.18)

τsh =−t0 [ln(psh/p0)+bxp/p0] =−t0 ln
(√

1+2bx−1
bx/p0

)
− t0
√

1+2bx+ t0. (B.19)

Equation (B.19) expands to Eq. (1.15):

τsh = t0− t0
√

1+2p0Cx/t0− t0 ln

(√
1+2p0Cx/t0−1

p0Cx/t0

)
. (B.20)
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