
 

The superstructure determination of displacive 

distortions via symmetry-mode analysis 

 

 

 

By 

Sean C. Kerman 

 

 

 

 

 

 

 

 

Physics Department 

Brigham Young University 

August 2011 

 

 

  



ii 

 

ABSTRACT 

For any crystal structure that can be viewed as a low-symmetry distortion of some 

higher-symmetry parent structure, one can represent the details of the distorted structure 

in terms of symmetry-adapted distortion modes of the parent structure rather than the 

traditional list of atomic xyz coordinates.  Symmetry-mode analysis (SMA) often 

simplifies the refinement of a distorted structure because most symmetry modes tend to 

be inactive, while a relatively small number of mode amplitudes are dominant in 

producing the observed distortion.  Here, we demonstrate that a symmetry-mode 

refinement against powder-diffraction data, when combined with a global-search 

algorithm, enables one to directly detect the space-group symmetry of the distorted phase, 

which includes both the space-group type and the locations of its symmetry elements 

relative to the parent lattice.  This is an important capability when peak splittings are 

small, superlattice intensities are weak, or systematic absences fail to distinguish between 

candidate symmetries.  Because the symmetry-detection process automatically reveals 

which of the modes belonging to the detected symmetry are active, the subsequent 

determination of the superstructure (i.e. the phasing of the superlattice peaks) is greatly 

simplified 
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BACKGROUND 

Crystallography  

 

Crystallography is a field of material science that deals with the study of the 

arrangement of atoms in a crystal (i.e. crystal structures). A crystal is a solid that can be 

defined relative to a periodic set of points called a lattice.  Fig. 1 shows a 2-D 

representation of a crystal lattice. The repeating unit for the lattice is marked in the figure 

by a square. The square contains one atom (only count the part of the atom that is actually 

inside the box) and is called the unit cell of the crystal.  

 

 
Figure 1: Example of a 2D cubic crystal lattice. The crystal has translational symmetry where the unit cell 

(the repeating unit) is shown by the black box. The crystal also has a 4 fold center of symmetry about the 

black dot in the middle of the unit cell; a line of reflection represented by the solid black line; and a glide 

plane represented by the dotted black line. 

 

Symmetry 

 

One way to describe a crystal is to choose one of the points in the crystal as the 

origin, and define all of the atoms in the crystal in relation to that point. This would 
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correctly depict the location of the atoms in the lattice, but would be very tedious. 

Instead, we can employ symmetry to simplify the description of the crystal. A symmetry 

operator is any systematic operation that can be performed on the crystal that leaves the 

crystal invariant. There are a number of different types of symmetry operators that can be 

possessed by crystals. Take, for example, Fig. 1. If each atom in Fig. 1 is translated to the 

right by a distance a, then each atom will map to an equivalent position in the lattice. 

This type of symmetry is called translational symmetry. A crystal, by definition, is an 

arrangement of atoms that has translational symmetry. In addition to translational 

symmetry, some crystals also have point symmetry. Point symmetry is broken up into two 

categories, rotational symmetry and reflective symmetry. Referring again to Fig. 1, the 

black dot in the center of the figure represents a 4-fold center of symmetry. If the crystal 

is rotated 90,180, 270 or 360 degrees about this point, all atoms will map to equivalent 

positions in the lattice. This is an example of rotational symmetry. The diagonal line 

drawn in the figure represents a plane of reflection. If all the atoms in the crystal are 

reflected across this line, the crystal, again, remains invariant. This is an example of 

reflective symmetry. Crystals can also have symmetry that combines translational 

symmetry and point symmetry, such as a translation followed by a rotation. Such an 

example is also seen in Fig. 1 and is represented by the diagonal dashed line. If the entire 

crystal is translated to the right by ½ a and then up by ½ a, and is then reflected across 

this line, all atoms will map to equivalent positions in the lattice. This type of symmetry 

is called a hybrid symmetry. The complete set of symmetry operators possessed by the 

crystal is called the space group symmetry of the crystal. Space groups are convenient for 

describing crystal structures because the space group, along with a choice of origin and 
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lattice basis, describes exactly how the atoms in a crystal are arranged. The space group 

can also give useful information about the material properties of the crystal, such as 

magnetism and electrical conductivity, because the material properties of the crystal are 

closely related to its symmetry (Stokes 2007).  

 

Diffraction 

 

In crystallography an experimental method called diffraction is used to discover 

the detailed atomic structure of a crystal. In diffraction experiments, subatomic probe 

particles (eg. electrons, x-ray photons, neutrons, etc.) that exhibit wave particle duality 

are fired at a small sample of the crystal (Fig. 2). As the particles scatter from the atoms 

in the crystal, their scattered waves interfere with each other. At most diffraction angles, 

the scattered waves interfere destructively with one another causing them to cancel. At 

certain specific angles, however, the waves interfere constructively with one another to  

 

 
Figure 2: Diagram of diffraction . The black circles represent atoms and the dotted lines represent 

diffracted particles. The Bragg angle, and d spacing are also shown.  

 

produce highly directed emissions. The angles at which particles scatter with constructive 

interference are called Bragg angles and the associated high intensity peaks in the 

diffraction pattern are called Bragg peaks. Bragg angles are related to the wavelength of 
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the scattered particles and the spacing between atoms in the crystal. This relationship is 

expressed in Bragg’s law: 

            

where d is the spacing between planes of atoms for fundamental reflections or some 

integral fraction of the spacing for higher order harmonics, λ is the wavelength of the 

scattered particles, and θ is the Bragg angle. The result of a diffraction experiment is a 

diffraction pattern like that shown in Fig. 3. Since Bragg’s law only allows scattering at 

specific angles, the diffraction pattern for a signal crystal is discrete. 

 

 
Figure 3: Example x-ray diffraction pattern. The calculated, observed, and difference patterns are shown. 

 

The intensity,  ( ⃑ )  of any Bragg peak in reciprocal space can be calculated as: 

 ( ⃑ )  |   ⃑  |
 
 

 ( ⃑ )   ∑       ⃑⃑    

 

 

where    and     are the scattering length and position of the m
th

 atom in the crystal 

respectively, and the structure factor,  ( ⃑ ),  is the Fourier transform of the scattering density 
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of the crystal.  Note that  ( ⃑ ) is a complex valued function with a magnitude and phase. 

Unfortunately, we can only measure  ( ⃑ ) which gives us the magnitude of  ( ⃑ ) but not 

its phase. If the phase information were known, one would merely need to perform the 

inverse Fourier transform to determine the scattering density of the crystal. This lack of 

phase information is one of the central problems of crystallography and is known as the 

phase problem.  

 

Powder diffraction 

Powder diffraction is a method of diffraction used when a single crystal is 

difficult or impossible to synthesize. A powder sample can be thought of as a group of 

small, randomly oriented single crystal samples. Because the crystals are randomly 

oriented, each Bragg angle produces a ring in the diffraction pattern instead of the 

discrete point. This causes the information contained in the spatial distribution of the 

pattern to be lost and often causes multiple Bragg peaks to map to the same diffraction 

angle in the powder diffraction pattern. This loss of information makes the crystal more 

difficult to solve. A powder pattern like the one shown in Fig. 3 is obtained from powder 

data by integrating around the rings to obtain the total intensity produced at the Bragg 

angle (Masa 2004). 

 

Neutron powder diffraction 

Neutron diffraction is governed by Bragg’s law just like x-ray diffraction. 

Neutrons are heavy and charge neutral causing them to ignore electrons and to be 

scattered primarily by the atomic nuclei. This difference in scattering causes neutron 
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powder diffraction patterns to give additional information that is not present in x-ray 

diffraction patterns (Masa 2004).  

 

Structure solution 

Structure solution is the process of determining the crystal structure from the 

intensities of the diffraction pattern. There are a number of clever methods that have been 

devised to do this. One is called the Patterson method, where a map is created using the 

squared intensities of the powder pattern. Vectors from the origin of the map to maxima 

in the map correspond to interatomic vectors in the crystal. For sufficiently simple 

problems, these vectors can be used to determine the crystal structure (Masa 2004). 

Another approach is called direct methods, which method uses sophisticated statistical 

techniques to determine a self-consistent set of phases for the crystal. While the details of 

the method are too complicated to describe in this paper, the main principle is that the 

phases of three strong reflections sum to 180 degrees. Another, recently developed, 

approach is called charge flipping, which uses  iterative transforms between direct space 

and reciprocal space to determine the structure of the crystal (Oszlanyi and Suto 2004). 

From the structure solution process a model of the crystal in which most of the atoms are 

close to their true atomic positions is obtained.  

 

Refinements 

 

After structure solution has been performed, crystallographic refinements are 

done to determine the exact locations of the atoms in the crystal. A refinement is a 

nonlinear least-squares optimization in which a mathematical model is fit against the 
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observed diffraction pattern. The refined variables include model parameters such as 

atomic positions, lattice parameters, thermal parameter ellipsoids, atomic occupancies, 

and peak-shape profile until the pattern calculated from the model almost perfectly 

matches the observed pattern (Masa 2004). When the refinement is finished, the final 

values for the refined parameters constitute the crystal structure. 

 

INTRODUCTION 

The characterization of structural distortions from powder diffraction data is a 

distinct subclass of the broader field known as “structure determination from powder 

data” (SDPD).  A distorted structure, by definition, can be parameterized in terms of its 

deviations from a known “parent” structure, and has a space group symmetry that is a 

subgroup of the symmetry of the parent.  As a rule, distortions lower symmetry and 

increase structural complexity.  It is common to define a structural distortion relative to 

the experimentally observed parent structure from which it arises in nature.  We note, 

however, that it is often convenient to define a distortion relative to a more distant parent 

separated by several phase transitions, or even a hypothetical parent structure.  We use 

the term “distortion” quite generally here to indicate the presence of any type of physical 

order parameter such as atomic displacements, magnetic moments, compositional 

ordering, lattice strain, etc., which distinguish the parent and child structures.  Distortions 

arising from second order (i.e. continuous) phase transitions tend to be of special interest, 

though arbitrary discontinuous transformations involving one or more coupled order 

parameters also fall within the scope of this work.   
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After removing the parent symmetries that are broken by the distortion, those 

symmetry operations that remain comprise the “distortion symmetry”, which is simply 

the space-group symmetry of the distorted structure.  Here, it is important to distinguish a 

space group from its “type”.  The 230 crystallographic space-group types are tabulated in 

the International Tables Vol. A (Hahn 2005), whereas a complete space group describes 

both the symmetry operators and their actual locations within the crystal.  Thus, there can 

be multiple ways to remove a portion of the parent symmetry, each of which yields the 

same space-group type but different distortion symmetries by virtue of differences in the 

locations of the remaining operators.     ̅ , for example, has an (a’ = 3a, b’ = 3b, c’ = 

3c) maximal subgroup of the same    ̅  type, but which clearly has a much lower 

overall symmetry.  A given distortion symmetry can always be uniquely identified by its 

combination of space-group type, lattice basis (i.e. the size/shape of the supercell) and 

supercell origin relative to the parent cell, provided that standard origin-choices from ITA 

are employed (Campbell, Stokes et al. 2006).  In general, the distortions allowed by 

different distortion symmetries are fundamentally distinct. 

When the powder diffraction pattern contains sufficient information, one can treat 

an unknown distortion like any other unknown structure: extracting the integrated 

intensities and attempting a direct solution of the phase problem via direct methods, 

charge-flipping, real-space global search or some hybrid algorithm (David, Shackland et 

al. 2002).  In many cases, however, the combination of small peak splittings, weak 

superlattice reflections and structural complexity make it difficult or impossible to extract 

reliable intensities, so that direct-space models must then be tested directly against the 

entire powder pattern. This problem reflects the fact that the number of strong and 
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clearly-resolvable Bragg reflections often fails to keep up with the increased structural 

complexity of a subtle distortion. 

We assume that the cell parameters of the distorted structure can be refined and 

used as a starting point for further analysis.  Ideally, the space-group type would also be 

identifiable from systematic absences or other considerations, so that the number of 

structural variables in the distorted phase can be restricted by symmetry to a manageable 

number with the help of reasonable constraints and/or restraints.  For highly-complex 

structural distortions, the likelihood of success is much improved by the use of global 

optimization algorithms which explore a wide parameter space and are more robust 

against getting caught in local minima (Černý and Favre-Nicolin 2007).  Monte Carlo 

(Tremayne, Kariuki et al. 1997; Evans, Howard et al. 2003), simulated annealing (Deem 

and Newsam 1989; Campbell, Bellussi et al. 1998; Coelho 2000), parallel tempering 

(Falcioni and Deem 1999; Favre-Nicolin and Černý 2002), genetic algorithms (Kariuki, 

H. et al. 1997; Shankland, David et al. 1997) and various hybrid approaches have been 

employed with good results.   

The use of multiple sources of structural information has also proven helpful for 

highly complicated structures.  The M2P2O7 family of octahedral/tetrahedral framework 

compounds, for example, experience distortions that create large supercells with over 100 

unique atoms and over 400 displacive degrees of freedom. For these compounds, electron 

diffraction patterns and solid-state NMR spectra have been essential for determining the 

distortion symmetry; and joint x-ray/neutron datasets have been needed for successful 

structural refinements (Gover, Withers et al. 2002; Fayon, King et al. 2003; Stinton, 

Hampsons et al. 2006). 
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Unfortunately, the same problems that inhibit the extraction of useful intensities 

(too few resolvable strong reflections) can also make it very difficult to conclusively 

detect systematic absences, placing the determined crystallographer in a tight spot.  

Lacking the space group symmetry of the distorted structure, and deprived of an easy 

solution to the phase problem, he/she reluctantly turns to the design and testing of 

candidate distortion models by trial and error, which requires a great deal of time, 

patience and intuition.  The challenge is compounded by the need to customize 

constraints and restraints for each distortion model that are both physically reasonable 

and appropriate to the symmetry. 

When the distortion symmetry is not known beforehand, the trial and error 

approach to model building can still be guided by symmetry principles rather than by 

brute force.  A relatively simple first step is to try each of the maximal subgroups of the 

parent space group (tabulated in the International Tables of Crystallography Vol. A, Hahn 

2005) to see if the resulting cell parameters and crystal family are consistent with the size 

and shape of the experimentally-identified supercell.  If not, some successive chain of 

maximal subgroups is guaranteed to produce the correct result, provided that your 

structure really is a distortion of the chosen parent.  But it may be necessary to explore a 

large number of such chains before uncovering the right one. 

The development of sophisticated computational tools for mapping out symmetry-

descent chains has helped to make the symmetry-descent process simpler and more 

robust (Howard and Stokes 1998; Evans, Howard et al. 2003; Howard and Zhang 2003; 

Zhao, Ross et al. 2009; Carpenter, McKnight et al. 2010).  For example, Bi2Sn2O7 

exhibits a high-temperature pyrochlore phase () with space-group    ̅  as well as two 
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non-centrosymmetric distorted pyrochlore phases: an intermediate-temperature  phase 

with a 222 supercell, and a room-temperature  phase with a 222 supercell 

(Shannon, Bierlein et al. 1980; Jones and Knight 1997).  When the two maximal 

subgroup of    ̅  consistent with the -phase metric failed to produce a good fit 

(Kennedy, Ismunandar et al. 1998), Evans et al. (2003) systematically generated a 

symmetry-descent tree containing all of the non-centrosymmetric subgroups of the parent 

-phase symmetry that are consistent with the observed -phase metric, and which also 

descend from an intermediate subgroup consistent with the -phase metric.  They then 

created models for each candidate subgroup and performed combined simulated-

annealing-mode refinements against synchrotron x-ray and neutron powder datasets in 

order to discern the correct monoclinic structure. 

Group theoretical symmetry mode analysis (SMA) tools now exist which generate 

all of the candidate distortion symmetries of a parent structure that are consistent with an 

experimentally-observed supercell and point-group or space-group type (Campbell, 

Stokes et al. 2006).  They also generate structural models for each candidate distortion, 

thus dramatically reducing effort required for trial and error exploration.  Most 

importantly, the resulting distortion models can either be expressed in terms of traditional 

atomic parameters (e.g. atomic coordinates, moments, occupancies, etc.) or in terms of 

symmetry-mode amplitudes.  The traditional and symmetry-mode parameter sets are 

related by a simple linear transformation, so that one atom can be influenced by many 

modes, and one mode can influence many atoms.  Both parameter sets always provide the 

same number of degrees of freedom.  In practice, the active mode amplitudes can either 

be calculated from the atomic positions after the refinement (Orobengoa, Capillas et al. 
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2009), or can be refined directly themselves and used to calculate the atomic positions at 

each step (Campbell, Evans et al. 2007).  Muller et al. (2010) further demonstrated a 

parametric refinement in which the temperature dependencies of the key symmetry-

modes were modeled via the direct refinement of their critical exponents.  The 

importance of the symmetry-mode description of a distorted structure clearly lies in the 

fact that most of the modes available to a distortion tend to be inactive, so that the 

essential structural features can be expressed in terms of a relatively small number of 

non-zero mode amplitudes (Campbell, Stokes et al. 2006; Campbell, Evans et al. 2007; 

Perez-Mato, Orobengoa et al. 2010). 

When the symmetry of the distortion is unknown, one might naively consider a 

global optimization without symmetry (i.e. in space group P1) that simply restrains each 

atom to stay close to its position in the high-symmetry parent structure.  However, if a 

scarcity of strong and well-resolved superlattice reflections is the underlying difficulty, 

then a P1 model is very likely to be grossly underdetermined anyway.  In the present 

work, we demonstrate one can readily “bootstrap” a P1-symmetry model that has been 

parameterized in terms of symmetry-mode amplitudes.  Subsequently turning off all of 

the inactive symmetry modes is equivalent to constructing a network of structural 

constraints, and greatly simplifies the structure solution by allowing only the essential 

degrees of freedom to be explored.  The fundamental issue that we address here is how to 

discover which symmetry modes to turn off without prior knowledge of the distorted 

structure.   
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METHODS 

Rietveld refinement 

 

A Rietveld refinement is a refinement method useful for refining powder 

diffraction data. It fits the full profile of the observed diffraction pattern to the profile of a 

calculated diffraction pattern using a structural model. Typically the model contains 

parameters such as lattice parameters, background parameters, thermal parameters, and 

atomic coordinates; however, in this research, atomic coordinates have been replaced by 

atomic distortion modes. These parameters are allowed to vary in an iterative least 

squares process to minimize the function: 

  ∑  {                }
 

 

 

where         is the ith step in the observed pattern,          is the ith step in the calculated 

pattern, and    is the weight at each point.  

The quality of the Reitveld refinement is measured using one among several 

possible R factors. The one used in the analysis presented here is called    , or “R-

weighted pattern” given by: 

    
∑   {                }

 
 

∑          
 

 
   

 

Rwp measures the weighted squared distances between the measured and observed 

diffraction patterns (Masa 2004).  
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Pawley refinement 

A Pawley refinement fits a calculated diffraction pattern against an observed 

diffraction pattern without the use of a structural model (Stokes 2007). Instead a model 

composed only of cell parameters, peak shape parameters, sample height, and zero error 

is used. An iterative least squares process is performed in which the parameters are varied 

until the calculated diffraction pattern fits very well with the observed diffraction pattern. 

The resulting values for lattice parameters, peak shape parameters, sample height, and 

zero error can then be used as a starting point for further structural analysis.   

 

ISODISTORT 

 

ISODISTORT is an online software package for exploring distortions in crystal 

structures (Campbell, Stokes et al. 2006). The software was used to generate distortion 

mode decomposed structural models in P1 symmetry. Models were generated by 

uploading a high symmetry model of the material and using method 3 to decompose the 

high symmetry model into a low symmetry model with the appropriate supercell basis. 

Models were then saved as TOPAS format .str files for use in refinement software. 

 

TOPAS Academic/ J-Edit 

Topas Academic is a structure refinement software capable of performing both 

Pawley refinements and distortion-mode Rietveld refinements (Coelho 2007 ). The Topas 

input (.inp) files were generated using John Evans’ Topas Academic macros.  Topas was 

also used for generating simulated x-ray diffraction data for LaMnO3. 
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EXPERIMENTAL PROCEDURE 

Rietveld refinements were performed on room-temperature (RT) powder-

diffraction data from LaMnO3 and WO3 using the Topas Academic software package 

(Coelho 2007 ).  The refinements reported here employed a global optimization strategy 

best described as “repeated local minimization from random starting values” (RLM), 

which is similar to approach described by Shankland et al. (2010).  This was 

accomplished with the continue_after_convergence keyword of TOPAS, and custom 

macros for variable randomization after each convergence cycle.  Displacive symmetry-

mode amplitudes, rather than traditional atomic xyz coordinates, were refined directly  

(Campbell, Evans et al. 2007).  The ISODISTORT software package was used to 

compute the atomic coordinates as linear functions of the symmetry-mode amplitudes 

and to export these symbolic relationships in TOPAS .str format. 

A WO3 sample was prepared according to the method described by Woodward et 

al (1997). Approximately 12g of reagent grade WO3 (Alpha Aesar, 99.8% pure) was 

ground with a pestle and mortar and placed in a platinum crucible. This was heated in air 

to 1273K and allowed to cool to 298K at a cooling rate of 0.25K/min. The sample was a 

green crystalline powder with no visible yellow impurities.  We found no impurities 

belonging to the lower-temperature 1P -symmetry phase.  

Laboratory x-ray powder data from WO3 were collected over the range 10-150º 

2 on a Bruker D8 Advance diffractometer in Cu-K1 mode with soller slits and a Lynx-

Eye detector.  The data were subsequently corrected to account for the variable 

divergence slit, which maintained a 6 mm beam footprint on the sample.  The samples 

were finely ground and passed through an 80-mesh sieve onto a zero-background silicon 
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disk coated in petroleum jelly to ensure good orientation sampling.  Room temperature 

(RT) x-ray powder patterns were taken from variable-temperature sequences of 

approximately one-minute scans over the range from 1285k to 290k, which were 

collected using an Anton-Parr HTK1200 furnace attachment.  These x-ray powder 

diffraction patterns did not have exceptional counting statistics because each single-

temperature pattern was collected quickly.  The decision to use modest-quality data for 

the current study was strategic because it better demonstrates the limits of the novel 

analysis method that we present here.  Neutron powder diffraction data on a second 

sample from the same synthetic batch of WO3 was collected at the HRPD beamline at 

ISIS over a time-of flight range of 40-114 ms using its back-scattering detector bank.  

The RT neutron powder pattern was taken from a variable-temperature sequence of 

approximately one-minute scans (300 K to 85 K) collected in a CCR cryostat.   

The LaMnO3 x-ray diffraction patterns were simulated from a published model 

(Rodriguez-Carvajal, Hennion et al. 1997) and included various levels of artificial noise.  

This simulated patterns had zero background, a simple peak shape and zero thermal 

parameters.  All LaMnO3 refinements discussed here employed the simulated pattern 

with artificial noise added, whereas all WO3 refinements discussed here employed only 

the experimental diffraction pattern.  The WO3 refinements were performed separately 

against x-ray and neutron data, and also jointly against both x-ray and neutron data. 

The analysis of each powder pattern began with a Pawley fit in order to obtain 

reasonable estimates for the cell parameters, the peak profile, and the sample height and 

zero-angle corrections.  In some cases, we further improved the peak shape and 

background via Rietveld refinement of a structural model.  The high-temperature high-
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symmetry phase above the transition is known and will usually provide a very similar 

peak shape.  All non-structural parameters were then fixed for symmetry-detection work.  

Because no significant stoichiometric deviations were expected, all occupancies were 

fixed at 1.  For WO3, one isotropic thermal parameter was permitted for W and another 

for O.  These thermal parameters were estimated from the best fit amongst several 

simulated-annealing convergences in P1 symmetry and then fixed.  Only the scale factor 

and any displacive parameters were allowed to refine when generating mode-amplitude 

histograms for symmetry detection.  All displacive-amplitude parameters were 

randomized relative to zero after each convergence using a uniform distribution of preset 

width in order to ensure good statistical sampling.  By leaving TOPAS running overnight 

or over the weekend in RLM mode, we were reliably able to obtain over 1000 

convergences for each powder pattern studied, even when refining a large number of 

displacive degrees of freedom. 

 

RESULTS AND DISCUSSION 

Symmetry-mode description of WO3 

The temperature phase diagram of WO3 is quite complicated (Diehl, Brandt et al. 

1978; Woodward, Sleight et al. 1995; Vogt, Woodward et al. 1999).  At room 

temperature, it is reported to have a monoclinic P21/n supercell with ao = 2ac, bo = 2bc 

and co = 2cc (Tanasaki 1960; Howard, Luca et al. 2002). The supercell origin is located at 

(1/2,0,1/2) within the parent cell.  Being 8 times larger than the cubic parent cell, this 

supercell contains a total of 32 atoms and possesses either 24 free displacive variables in 

P21/n symmetry or 96 free displacive variables in P1 symmetry.  Of the 24 displacive 
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symmetry modes available to RT-WO3 in space group P21/n, Campbell et al. (2007) 

demonstrated that only five of these modes have large amplitudes.  They further showed 

that a refinement including only these 5 modes produced nearly as good a fit as a 

refinement that included all 24 modes.  

 

Atom 
Mode # 

(P1) 

Mode name 

(P1) 

Amplitude 

(Å)(P1) 

Mode name 

(P21/n) 

W 14 )(]W)[,,,,,( 15 eTfedcbaX u


 0.47168 

)(]W)[,,,,0,0( 15 bTbbaaX u
 

W 15 )(]W)[,,,,,( 15 fTfedcbaX u


 0.47168 

W 16 )(]W)[,,,,,( 13 aTfedcbaM u


 0.73279 )(]W)[0,,( 13 aTbaM u


 

O 37 )(]O)[,,(4 aEcbaR u


 1.10338 )(]O)[0,,(4 aEbaR u


 

O 38 )(]O)[,,(4 bEcbaR u


 0.83820 )(]O)[0,,(4 bEbaR u


 

O 78 )(]O)[,,(3 cEcbaM u


 1.08814 )(]O)[,0,0(3 aEaM u


 

 
Table 1: Important distortion modes in room temperature WO3 (space group symmetry P21/n) 

 

If reducing 24 structural variables down to 5 important active-mode amplitudes 

provides an advantage in P21/n, the advantage of using symmetry modes will be far 

greater in P1 symmetry where there are 96 displacive degrees of freedom.  Due to low-

symmetry mode splitting, however, there will be 6 rather than 5 P1-symmetry 

counterparts to the 5 important P21/n-symmetry modes (listed in Table 1).  To illustrate 

mode splitting, consider that 


5X
 
is a six-dimensional irrep at the X=[0,1/2,0] point in k-

space, and therefore has a general order-parameter direction (OPD) with 6 degrees of 

freedom, which is indicated as (a,b,c,d,e,f ).  Order parameter directions are described in 

more detail elsewhere.(Stokes and Hatch 1987; Campbell, Stokes et al. 2006)  A 

distortion along this OPD would result in a rather complicated superstructure having P1 

symmetry.  The RT distortion with P21/n symmetry, on the other hand, is achieved via 
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the action of a special six-dimensional OPD containing only two free parameters: 

(0,0,a,a,b,b).  This OPD provides the parent W atom with two displacive modes (one for 

a and one for b), only one of which (the b branch) is shown to be important (i.e. has a 

substantially non-zero amplitude and a significant effect on the diffraction pattern) in RT 

WO3.  In P1 symmetry, this )(]W)[,,,,0,0( 15 bTbbaaX u
 mode splits into two modes, 

)(]W)[,,,,,( 15 eTfedcbaX u



 
and )(]W)[,,,,,( 15 fTfedcbaX u


, which must maintain equal 

and opposite amplitudes in order to describe a structure that actually has P21/n symmetry. 

 

WO3 symmetry detection 

When the RT structure of WO3 is represented with 96 displacive modes in P1 

symmetry, the ability to experimentally identify the important modes (those in Table 1) 

would enable us to establish the P21/n symmetry of the structure without making any a 

priori assumptions.  The identification of these modes is the principle objective of the 

present work.  Rather than attempting to achieve a "best fit" of a P1 model to 

experimental diffraction data, which would not likely succeed because of the large 

number of parameters, we instead statistically sample a large number of convergence 

cycles from randomized starting points, and accumulate the individual parameter values 

from each convergence.  From these results, we are able to compile a separate histogram 

for each of the 96 free displacive mode amplitudes. While a mode may converge to an 

incorrect value on occasion, it statistically tends toward its true value, which is 

manifested as a peak in its histogram.  A peak whose position clearly deviates from zero 

is evidence that the mode is active.  
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When detecting active modes in P1 symmetry, the global structural origin needs 

to either be constrained or restrained so as not to wander randomly.  We constrained the 

origin by fixing the three ferroelectric tungsten
 

4  modes at zero amplitude.  Note that in 

the symmetry-mode description, only ferroelectric modes can translate the origin.  A 

more sophisticated approach would be to restrain the center of mass to stay close to zero. 

This approach was first tested against the room-temperature laboratory x-ray 

power diffraction data shown in Fig. 4.  All non-displacive parameters except the scale 

factor were fixed, as well as the three ferroelectric tungsten mode amplitudes, which left  

 

Figure 4: P21/n-symmetry fits to room temperature  (a) lab x-ray data and (b) time-of-flight neutron data 

from WO3. Calculated, observed and difference patterns are shown. 

 

93 refinable atomic-displacement mode amplitudes.  More than 1000 convergence cycles 

were then run in Topas in RLM mode, and histograms were generated for each mode.  

We found it helpful to keep the number of convergence cycles greater than ten times the 

number of free parameters.  As can be seen from Fig. 5, the histograms of the three 

important tungsten modes belonging to the 


5X  irrep (#14 and #15) and the


3M  irrep 

(#16) have very well defined peaks at nonzero values, clearly showing that they are 
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active, while all other tungsten modes have distinct peaks at zero.  Because the 

combination of these 


5X
 
and 



3M  tungsten modes are insufficient for detecting the actual 

P21/n symmetry, oxygen mode information is essential. 

 

 
Figure 5: Multi-convergence mode-amplitude histograms for each of the displacive WO3 model parameters 

in P1 symmetry based on a refinement against lab x-ray data. Histograms above the horizontal black line 

correspond to tungsten modes, while those below the black line correspond to oxygen modes. The 

horizontal axis of each plot runs from -2.5 Å to 2.5 Å, with tick-marks placed every 1.0 Å (mode amplitude 

is defined as root-summed-squared displacement of all affected atoms).  A histogram with a clearly split 

peak is evidence that the mode is active. The histograms of several important active modes have been 

highlighted. 

 

The oxygen modes, both active and inactive, proved to be less sensitive to x-rays, 

and did not yield well-defined peaks, tending instead to display a relatively uniform 

distribution over a broad range of amplitudes. The oxygen-mode histograms belonging to 

the 

4R  irrep (#37 and #38) are precisely what we need to complete the symmetry, but 

yield no information.  Even the large-amplitude oxygen 


3M mode (#78), which is not 

helpful for identifying the actual symmetry, is not well-defined.  One oxygen 


5X  mode  
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(#88) is clearly split; and two oxygen 


3M  modes (#62 and #63) are slightly split; but 

these modes don't add any new symmetry information to the tungsten 


5X  and 


3M  modes 

discussed above, as they belong to corresponding branches of same irreps.  Because of 

the relative insignificance of the large-amplitude 


4R  oxygen modes in these modest-

quality x-ray powder patterns, we were unable to clearly detect the P21/n symmetry of RT 

WO3, which underscores the importance of obtaining high-quality data that is sensitive to 

all of the important order parameters.  We did, however, subsequently find that the 

important R4
+
 oxygen modes could be readily detected from significantly higher-quality 

x-ray data.  It is, of course, possible to introduce additional chemical information to help 

identify the oxygen modes.  For example, in this case we can use restraints to keep the 

bond valence sums around 6.0 for W sites and 2.0 for O sites and include a simple "anti- 

bump" penalty function to prevent O–O distances shorter than ~2.4 Å.  Both of these are 

relatively unbiased pieces of information designed to restrict the RLM process to finding 

chemically plausible structures.  Introduction of these restraints leads to a significant 

narrowing of the majority of the histograms of Fig. 5 and gives clear indication of the 

importance of R4
+
 and M3

+
 modes. 

Similar refinements were also performed against modest-quality room-

temperature time-of-flight neutron powder diffraction data (Fig. 4) in order to achieve 

greater sensitivity to oxygen relative to tungsten.  In the neutron-based histograms of Fig. 

6, the oxygen R4
+
  (#37 and #38) and M3

+
  (#78) modes are clearly active, while two of 

the oxygen modes belonging to the 


5X  irrep (#46 and #47) also display very slight peak 

splittings, which turn out to be to be real.  Unfortunately, these modes alone are once  

 



23 

 

 
Figure 6: Multi-convergence mode-amplitude histograms for each of the displacive WO3 model 

parameters in P1 symmetry based on a refinement against neutron time-of-flight data. Histograms above 

the horizontal black line correspond to tungsten modes, while those below the black line correspond to 

oxygen modes. The horizontal axis of each plot runs from -2.5 Å to 2.5 Å, with tick-marks placed every 1.0 

Å.  The histograms of several important active modes have been highlighted. 

 

again insufficient to detect the P21/n symmetry.  The active W modes could resolve the 

matter but are not conclusively split.  And the oxygen 


3M  mode (#88) that showed up 

clearly in its x-ray histogram is not at all observable in the neutron histogram.  As a 

result, one should judge its appearance in the x-ray histogram as unreliable (possibly a 

phantom mode). 

Some of the mode histograms in Figs. 5 and 6 that we have not yet discussed are 

not nicely shaped as single peaks.  Some modes, for example, have small satellite peaks, 

indicating that they tend towards an alternate amplitude in a significant fraction of the 

convergence cycles.  Due to the nature of multivariable optimization problems, this is to 

be occasionally expected, even for modes that actually have zero amplitude.  But by 

collecting a sufficiently large statistical sample, we are usually able to distinguish 

between amplitudes associated with global vs local minima.  While this outcome cannot 
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always be guaranteed, it is necessary for the success of the method.  The probability of 

detecting active vs phantom mode amplitudes increases with the quality of the data and 

the simplicity of the distorted structure.  We will discuss the observation and elimination 

of phantom modes in more detail below. 

 

 
Figure 7:  Multi-convergence mode-amplitude histograms for each of the displacive WO3 model 

parameters in P1 symmetry based on a combined refinement against both lab x-ray data and neutron time-

of-flight data. Histograms above the horizontal black line correspond to tungsten modes, while those below 

the black line correspond to oxygen modes. The horizontal axis of each plot runs from -2.5 Å to 2.5 Å, with 

tick-marks placed every 1.0 Å.  The histograms of several important active modes have been highlighted. 

 

The separate x-ray and neutron refinements were followed by a joint refinement 

against both datasets, which combined good sensitivity to both oxygen and tungsten 

modes.  The refined parameters were as described above.  All of the important active 

oxygen and tungsten modes are readily detected in this case, along with a number of less 

important modes that yielded slightly split histograms (Fig. 7).  No phantom modes were 

observed. 
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As discussed above, the 6 important modes identified from the joint x-ray/neutron 

histograms in Fig. 7 must be merged into a smaller set of 5 parameters in order to  

correspond to the correct P21/n symmetry.  In other words, one of these modes must be 

related to one of the others by symmetry.  In Fig. 7, we can see at a glance that 

)(]W)[,,,,,( 15 eTfedcbaX u


 and )(]W)[,,,,,( 15 fTfedcbaX u


 have equal amplitudes.  The 

two dimensional correlation plot in Fig. 8 further reveals that the two mode amplitudes 

are perfectly anticorrelated.  These modes prove to be the b and b components of the 

)(]W)[,,,,0,0( 15 bTbbaaX u
 mode of the P21/n distortion.  In contrast, the top panel 

shows that modes belonging to different irreps (i.e. 


3M  and 


5X ) are uncorrelated.  The 

two oxygen 

4R  modes shown in the middle panel, )(]O)[,,(4 aEcbaR u



 
and 

)(]O)[,,(4 bEcbaR u


, are clearly correlated, yet still have different amplitudes, which tells 

us that the a and b branches of this order parameter are not related by symmetry.  

Because these observations are all consistent with the details of Table 1, the P21/n 

distortion symmetry can be clearly and unambiguously determined.   

  

WO3 structure determination 

Once the important active modes have been identified, the structure has already 

been solved by virtue of the fact that we have refined a model containing only these 

modes.  It is a simple matter to then detect the symmetry of the resulting structure and 

free up all of the less important modes that are still permitted by the correct symmetry.  

These small-amplitude contributions polish the final product provided that the 
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information content of the powder pattern is sufficient to support them.  Identifying the 

active modes is the hard part. 

Multiple modes that are simultaneously active in a distortion are said to be 

coupled.  One can think about mode coupling as a sequential process of lowering the 

symmetry of a structure by degrees.  Upon invoking the first mode (i.e. order parameter 

component) that appears to be important (i.e. primary), the resulting distortion symmetry 

will include this mode as a symmetry-allowed degree of freedom.  Additionally, there 

may be several secondary modes that also belong to that distortion symmetry that come 

along for the ride.  If the associated secondary modes already include all of the important 

modes that are observed, we’re done.  If not, add another important mode that has not yet 

been included, which will further lower the symmetry and gather in additional secondary 

modes.  Again, check the list of modes permitted by the new distortion symmetry to see if 

any of the observed important modes are not yet included in the list.  If so, continue 

coupling in this way until all of the important modes have been included.  The resulting 

distortion symmetry will be the correct one. 

In practice, there is a much easier way to determine the distortion symmetry after 

identifying the active modes.  After refining the model that includes only the apparently 

active modes, simply employ a symmetry detection tool like MISSYM or ADDSYM (Le 

Page 1987) or FINDSYM (Rodriguez-Carvajal, Hennion et al. 1997).  This approach 

readily identified the correct P21/n symmetry of RT-WO3. 
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LaMnO3 

In order to further explore the limitations of our approach, we next attempted to 

detect the symmetry of RT LaMnO3 while controlling statistical variables such as data 

signal-to-noise level and mode-randomization amplitude.  RT LaMnO3 has an 

orthorhombic supercell with space-group symmetry Pnma that is related to its cubic 

perovskite parent lattice by ao = ac+bc, bo = -ac+bc and co = cc.  Its supercell has the same 

origin as the parent structure.  Being 4 times larger than the parent cell, the RT-LaMnO3 

supercell contains a total of 20 atoms and possesses 7 free displacive variables in Pnma 

symmetry or 60 free displacive variables in P1 symmetry. 

 

 
Figure 9: Pnma-symmetry fit to low-noise simulated x-ray diffraction data from LaMnO3. Calculated, 

observed and difference patterns are shown. 

 

For this work, we employed a simulated x-ray diffraction pattern which was free 

of systematic experimental errors (Fig. 9).  As with the WO3 data, the oxygen modes are 

more difficult to detect than the heavy-atom modes.  In this case, however, the modes of 
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the heavy lanthanum atom break enough symmetry by themselves to generate the 

observed distortion symmetry.  Luckily, the new oxygen degrees of freedom don’t lower 

the symmetry any further.  In the discussion that follows, we will abbreviate the names of 

the active modes as shown in Table 2. 

 

Atom 
Mode # 

(P1) 

Mode name 

(P1) 

Amplitude 

(Å)(P1) 

Mode name 

(Pnma) 

La 4 )(]La)[,,( 15 aTcbaR u


   0.06196 

)(]La)[0,,( 15 aTaaR u


 

La  5 )(]La)[,,( 15 bTcbaR u


   0.06196 

La  9 )(]La)[0,0,0,0,,( 15 bTbaX u


   0.54731 )(]La)[0,0,0,0,0,( 15 aTaX u


 

O 37 )(]O)[,,(4 aEcbaR u


  0.83865 

)(]O)[0,, (4 aEaaR u
 

O 38 )(]O)[,,(4 bEcbaR u


   0.83865 

O 40 )(]O)[,,(5 aEcbaR u


 0.01886 

)(]O)[0,,(5 aEaaR u


 

O 41 )(]O)[,,(5 bEcbaR u


 0.01886 

O 45 )(]O)[0,0,0,0,,(5 bEbaX u


   0.14768 )(]O)[0,0,0,0,0,(5 aEaX u


 

O 53 )(]O)[,0,0( 22 aAaM u


   0.36055 )(]O)[,0,0( 22 aAaM u


 

O 54 )(]O)[,0,0(3 aEaM u


 -0.89971 )(]O)[,0,0(3 aEaM u


 

 
Table 2: Important distortion modes in room temperature LaMnO3 (space group symmetry Pnma). 

 

Starting with the simulated LaMnO3 data described above, we fixed the lattice 

parameters, background shape, peak shape and all other non-displacive parameters except 

the scale factor at the appropriate values.  The three ferroelectric tungsten mode 

amplitudes that set the origin were also fixed, which left 57 refinable atomic-

displacement mode amplitudes. More than 1000 convergence cycles were then run in 

Topas in simulated-annealing mode, and histograms were generated for each of these 

modes.  The La-mode histograms in Fig. 10 have sufficiently well-defined peaks to 

determine which ones are active and which are not, whereas only two oxygen-mode 



30 

 

histograms (#45 and #53) have well-defined peaks.  One inactive lanthanum 


5R  mode 

(#6) and one inactive manganese 


5M  mode (#23) also appeared to split (Fig. 11 provides 

a closer view of mode #6).  Such phantom modes point us to the wrong space group 

symmetry and must be eliminated if we are to detect the true space group.   

 

 
Figure 10:  Multi-convergence mode-amplitude histograms for each of the displacive LaMnO3 model 

parameters in P1 symmetry based on a refinement against simulated low-noise x-ray data. The horizontal 

axis of each plot runs from 0.5 Å to 0.5 Å, with tick-marks placed every 0.25 Å.  The two horizontal black 

lines separate the well-defined La modes, the Mn modes and the O modes.  The histograms of several 

important active modes have been highlighted. 

 

 
Figure 11: Zoomed-in view of the multi-convergence mode-amplitude histogram for phantom mode #6, for 

which the splitting wasn’t apparent in the previous figure. 
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A procedure to eliminate phantom modes 

A P1-symmetry refinement of a higher-symmetry structure is inherently 

underdetermined.  When one atom is incorrectly placed, the fit may be improved if a 

correlated atom is likewise incorrectly placed.  By creating an overall tendency towards 

misplacement, this correlated behavior can give rise to phantom modes, which are 

inactive in reality, but still give rise to split mode-amplitude histograms.  Fortunately, 

phantom modes have certain characteristics that allow us to distinguish them from truly 

active modes.  Most importantly, fixing the amplitude of an active mode to zero should 

noticeably increase the R value of the fit, whereas fixing the amplitude of a phantom 

mode at zero would not be expected to increase R under normal circumstances.  Because 

phantom-modes are inherently correlated to one another, however, simple R-value tests 

don’t always make their identification easy.  But with some care, phantoms can be 

identified and eliminated by iterative testing.  The procedure that we employed requires 

that we define some terms. 

 

(1) Initial mode set: An initial collection of modes whose mode-amplitude histograms 

are sufficiently well split to be interesting candidates. 

(2) Current mode set: The set of candidate modes that we are considering at any 

given step of the procedure. 

(3) “Measure R”:  Deactivate all modes (i.e. fix the amplitudes to zero) that are not in 

the mode set, and determine the minimum number (N) of least-squares cycles 

needed to achieve a representative (but underdetermined) best fit involving these 

modes.  N should be large enough to be effective, but no larger than necessary, as 

this process will be repeated many times.  For this example, we obtained a 

reasonably good fit in under one minute on a desktop PC with N = 100 least-

squares cycles, which yielded approximately 10 RLM convergences.  Record the 

minimum Rwp value achieved during the course of these N cycles.  This is what it 

means to “measure R" for a given mode set. 
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(4) Mode inclusion run:  Perform an inclusion test on each mode that is not part of the 

current mode set one at time in a convenient order (e.g. lexicographical order by 

name).  This means that for each mode, we activate it, measure R for the new 

mode set (adjust N as needed), and deactivate it again.  Make a bar chart of 

measured R values from these tests, sorted according to ascending R value, and 

use it to determine which modes, if any, should be included in the current mode 

set.  The best candidates will be those that lower R the most relative to the current 

mode set (i.e. the modes on the left-hand side of the graph).  Then activate the 

included modes. 

(5) Mode exclusion run:  Perform an exclusion test on each mode in the current mode 

set one at time in a convenient order.  This means that for each mode, we note the 

original amplitude, deactivate it, measure R for the new mode set (adjust N as 

needed), activate the mode again (i.e. allow it to be refined), and restore its 

original amplitude.  Make a bar chart of the measured R-values from these tests, 

sorted according to descending R value, and use it to determine which, if any, 

modes should be excluded from the current mode set.  The best candidates will be 

those that raise R the least relative to the current mode set (i.e. the modes on the 

right-hand side of the graph).  Then deactivate the excluded modes. 

 

 

Using Python scripts to run TOPAS from the command line, we applied the above 

method to our simulated LaMnO3 data, beginning with 1000 RLM convergence cycles, 

from which we created amplitude histograms.  Based on the histograms, we selected 

modes #[4, 5, 9, 23, 27, 33, 45, 46, 47, 53, 54, 59] as our initial mode set, though we 

could just as easily selected a few more or a few less.  We treated this step as an effective 

mode inclusion run, and followed it with a mode exclusion run, which led to the 

elimination of modes #[23, 33, 46].  Next, we performed a mode inclusion run (Fig. 12a) 

in which we added all modes that had an impact on the R value greater or equal to that of 

mode #60 (i.e. those that brought Rwp below 9.6%), namely modes #[37, 38, 40, 41, 30, 

31, 28, 32, 44, 60].  Another mode exclusion run (Fig. 12b) led us to eliminate all modes 

with an impact less than or equal to that of mode #40 (i.e. those that took Rwp above 
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8.8%), namely modes #[40, 30, 31, 60, 47, 44, 27, 41, 28, 32, 59].  Additional inclusion-

exclusion iterations required no changes to the mode set, which gave us considerable 

confidence in the result. The final mode set, #[4, 5, 9, 37, 38, 45, 53, 54], consisted only 

of active modes and was sufficient to identify the correct Pnma symmetry.  One can, in 

principle, repeat the inclusion and exclusion steps as many times as desired. 

 

 
Figure 12:  Mode inclusion and exclusion charts for the 57-parameter LaMnO3  refinement against 

simulated x-ray data. (a) The inclusion run began with an initial set consisting of 9 modes (see text for 

details). R was measured and plotted for the other 48 modes alongside with the initial run with no modes 

included (labeled 0).  This motivated the inclusion of 10 more modes(up through #60 in the graph).  (b) The 

exclusion run started with these 19 modes and led to the exclusion of all but the first 8 (up through #4 in the 

graph). The first mode in the exclusion-run graph is mode #9, which has its top cropped off because it had a 

much larger impact than any of the others. It has amplitude 27.22.  

 

The same approach was also applied separately to the x-ray and neutron data from 

WO3 described above.  For the x-ray data, the final mode set consisted of three WO3 

modes: #[14, 15, 16], while for the neutron data, it consisted of #[14, 15, 16, 37, 38, 46, 

47, 78].  All of these modes are real – any phantom modes were eliminated.  As per the 
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previous discussion of WO3 histogram analysis, the modes identified from the x-ray data 

were insufficient to fully detect the correct P21/n symmetry.  In the case of the neutron 

data, however, the iterative mode inclusion and exclusion runs enhanced the sensitivity of 

the analysis so that the correct P21/n symmetry was conclusively established without 

using the complementary x-ray information. 

 

Shortcuts 

If we were to initially include all modes, a single mode exclusion run might be 

sufficient to correctly identify the most important active modes without picking up any 

phantom modes.  With such a large number of refined amplitudes, however, each least 

squares cycle can be very slow, and the number of cycles required to achieve a single 

convergence can become very large.  We tried this approach on the x-ray data from WO3 

and found it to be computationally prohibitive.  Using a small initial mode set based on 

mode histograms proved far more efficient.  We also tried starting with an empty mode 

set which worked quite well for our WO3 and LaMnO3 examples, ultimately yielding the 

same final mode sets with much lower overall computational expense.  This is, perhaps, 

the best option of all, though a greater number of inclusion/exclusion iterations are 

needed due to the lack of initial mode information. 

The generation and use of mode histograms has both pros and cons.  On one hand, 

histograms deliver a superior initial mode set that already includes most of the important 

modes that can be detected, so that further analysis is relatively easy.  On the other hand, 

the histograms are computationally expensive to generate for large diffraction datasets 

and require user interaction.  Using a simplistic RLM approach, without any effort to 
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improve speed, it took about 72 hours to achieve 10×96 convergences in the WO3 

example above.  We thus recommend trying an empty initial mode set first.  If 

unsuccessful, one can then generate and visualize mode-amplitude histograms to obtain a 

higher-quality initial mode set.  

 

Signal-to-noise limitations 

We also tested the limit to which active-mode detection is sensitive to noisy 

diffraction data by refining the LaMnO3 model against simulated x-ray data to which 

artificial Gaussian noise was added. For each noise-level studied, over a range between 

zero and the approximate average Bragg-peak height, histogram sets comparable to those 

of Fig. 10 were generated.  Because La is a strong scatterer, the active lanthanum modes 

proved to be robust against modest noise levels, but eventually disappeared (i.e. lost their 

distinctive histogram splittings) at higher noise levels.  The large-amplitude 

)(]La)[,,( 15 bTcbaR u


 (#5) mode persisted until the noise level exceeded the heights of all 

but the strongest Bragg peak.  The weaker oxygen modes were difficult to detect, even 

with zero noise, and washed out completely at intermediate noise levels.  It seems 

intuitive that when the magnitude of the noise becomes comparable to a mode’s strongest 

contribution to the diffraction pattern, the mode’s histogram splitting will disappear.  

Phantom modes tend to become more prevalent at higher noise levels. This 

happens because inactive modes can take on larger amplitudes at higher noise levels 

without significantly impacting the R value of the fit.  They are then more likely to be 

pulled to consistently non-zero amplitudes via correlations with other modes.  After 

completing a fit that included phantom mode number #6 of La, we manually varied its 
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amplitude while holding all others constant and observed that the minimum R value 

occurred at a distinctly non-zero value (see Fig. 13) for this particular refinement model.  

The lowering of R was, however, very small and this effect was correlated with other 

trivial aspects of the fitting model such as peak shape or background description. 

 

 
Figure 13: Plot of Rwp vs mode amplitude for phantom mode #6 of the LaMnO3 distortion.  After 

allowing the active mode amplitudes to refine to their optimal values, they were all fixed, at which point, 

only mode #6 was varied over a narrow range around zero in steps of 0.002 Å. This analysis was performed 

at two different simulated noise levels: 50 (open circles) and 150 (filled squares).  Deviations from the 

expected parabolic behavior are more apparent at higher noise levels. 

 

Randomization Range 

We next explored the optimal width for the uniform distribution of initial mode-

amplitude values.  We tested a variety of widths between 0.01 Å and 2.0 Å.  For each 

candidate width, we ran a series of 1000 or more RLM-mode convergences against a low 

noise LaMnO3 dataset and generated a histogram of converged Rwp values, as shown in 

Fig. 14. The Rwp axis on these histograms has been shifted so that the lowest Rwp value 

recorded in the refinement is defined to be zero.  The histograms tend to be bimodal, 

possessing a low-R peak of relatively good fits that are likely to be close to the correct 

structure, and a broader high-R peak of relatively poor fits.  At 0.75 Å, the size of the 

low-R peak indicates that about 1/5 of the convergence cycles end with a good fit.  A  
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Figure 14:  Histograms of R values for approximately 1000 convergence cycles of simulated annealing 

against simulate LaMnO3 x-ray data at room temperature. Randomization amplitudes of 0, 0.1, 0.5, 0.75, 

1.0, and 2.0 are shown. 

 

width of 0.75 Å is probably the highest tolerable value in this example – reasonable 

structures are rare beyond that point.  As the distribution width decreases towards zero, 

the frequency of a good fit increases.  If the width of the distribution is too small, 

however, it may be impossible for the fit to escape a common local minimum.  For this 

example, we determined that a randomization range of 0.1 Å provided sufficient 

randomness for effective parameter-space exploration, but not so much that the fits can't 

find their way home.  
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CONCLUSIONS 

In contrast to general structure-determination work, the problem of determining a 

distorted structure lends itself to a symmetry-mode parameterization, where the key lies 

in determining which modes are active in the distortion.  Assuming that the number of 

active modes is relatively small (which it usually is), the subsequent steps of detecting the 

distortion symmetry and refining the active mode amplitudes is simple and 

straightforward.  The symmetry-mode description is ideal here because the interactions 

responsible for a distortion tend to activate a relatively small number of modes in order to 

break the parent symmetry in a specific way.  It is also helpful that the mode amplitudes 

themselves tend to be small (deviations from zero). 

We used modest-quality experimental laboratory x-ray and time-of-flight neutron 

powder data from RT WO3, and also noisy simulated x-ray powder data from RT 

LaMnO3, to test several different methods of identifying active modes and distinguishing 

them from phantom modes.  In each case, the symmetry was lowered to P1 within the 

experimentally observed supercell and the structural degrees of freedom were 

parameterized in terms of symmetry-modes.  A “repeated local minimization” (RLM) 

global optimization strategy was used to achieve a number of convergences equal to 

roughly ten times the number of free parameters, and separate histograms were generated 

for each symmetry-mode amplitude.  Active modes were then identified by histograms 

that peaked at distinctly non-zero values.  Even without generating histograms, we found 

that turning one mode on at a time and examining the effect on R allowed us to select a 

reasonably good initial mode set, from which the iterative use of inclusion and exclusion 

cycles eventually produced a high-quality final mode set. 
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Data noise was seen to increase the occurrence of phantom modes (inactive 

modes that tend toward non-zero amplitudes), which arise due to inter-mode correlations.  

Phantom modes are a problem because their inclusion will often result in a distortion 

symmetry that is too low.  While it goes without question that good signal to noise levels 

are important, we did find that phantom modes can be identified and eliminated by 

iteratively including and excluding modes while monitoring the impact on the R value of 

the fit. 

The displacive symmetry-mode analysis that we demonstrate here is highly 

analogous to the magnetic symmetry-mode approach of Wills (2000; Oszlanyi and Suto 

2004; Stokes 2007).  But there are also differences.  The symmetry-mode tools employed 

here are equally applicable to the determination of other types of distortions, including 

atomic displacements, compositional order-disorder, and macroscopic strains.  Rather 

than coupling every mode belonging to every irrep defined at a particular k-point in the 

Brillioun zone, we couple all of the modes capable of contributing to a P1-symmetry 

distortion within the observed supercell.  And after identifying the modes that are active, 

we endeavor to identify the resulting distortion symmetry and to employ it in the final 

refinement. 

The symmetry-mode approach to solving distorted structures has general utility, 

though its impact is greatest for challenging problems where other methods fail, 

particularly for powder diffraction data from subtle distortions that yield small peak 

splittings and weak superlattice reflections, and especially when the symmetry of the 

distortion is not known.  When combined with a good global-optimization algorithm, we 
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believe that the symmetry-mode approach to whole profile fitting is the best way to 

squeeze all possible information out of a powder diffraction dataset. 
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