
EVALUATING THE OPEN PHYSICS ABSTRACTION LAYER PROGRAMMING LIBRARY

FOR USE IN UNDERGRADUATE INSTRUCTION

by

Ryan Gardner

A capstone project report submitted to the faculty of

Brigham Young University

in partial fulfi llment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

April 2007

Copyright © 2007

Ryan Gardner

ABSTRACT

EVALUATING THE OPEN PHYSICS ABSTRACTION LAYER
PROGRAMMING LIBRARY

FOR USE IN UNDERGRADUATE INSTRUCTION

Ryan Gardner

Department of Physics and Astronomy

Bachelor of Science

Th e Open Physics Abstraction Layer (OPAL) is an open-source soft ware project

that provides a library of physics routines to use in other programs. In this proj-

ect, the effi cacy of using OPAL to perform physics simulations was examined and

found lacking. Among its major defi ciencies are the inability to export numerical

data, and the lack of commonly-used physics elements such as springs, dampers,

or linear oscillators. To address these issues, a data-logging framework was created

and directions are provided to guide a future developer.

ACKNOWLEDGEMENTS
Th is project could not have been possible without the help of the OPAL develop-
ment community, my advisor Dr. Lawrence Rees, or the capstone coordinator, Dr.
Branton Campbell.

v

Table of Contents
Acknowledgements ..iv

Introduction ...1

Background ..1

Th e Brains behind the system..1

Defi ciencies of OPAL for use in Physics Simulations2

1. Lack of easy building blocks ..2

 3. No built-in method to output physical data ...2

Overcoming Defi ciencies..3

Addressing issues within OPAL ..3

Methods ..4

Data Logging Module ...4

How opal enables the data logging module ...6

opal lacks methods to extract the joints ..6

Over-reliance on assertions makes dealing with joints troublesome6

Results and Discussion ...7

Suggested Improvements to OPAL ...7

Create physicist-friendly building blocks ..7

1. Linear Spring ...7

2. Linear Dashpot ..8

3. Linear Oscillator ...8

Create Physicist-Friendly Default settings...8

For solids: ...8

For the ODE simulator: ..8

References ...9

Appendix ...A1

vi

List of Figures
1-1 An XML OPAL Blueprint fi le describing a pendulum1

1-2 A screenshot of the scene editing program for OPAL2

1-3 Acceleration vs. time for an object falling with linear damping
unspecifi ed ...2

2-1 Example C++ code illustrating how easily the DataLogger is
accessed and used by a programmer ..4

2-2a Th e output method that prints out the values stored in a 4x4
matrix ..5

2-2b Th e output method that generates the output used in the
module responsible for printing data stored in
three-dimensional vecors ...5

1

Introduction
BACKGROUND

A quality physics demonstration can provide a student with a strong mental picture of how a given system works,
and help train his intuition so he can navigate his way through diffi cult problems. Th e demonstrations used most
oft en in teaching mechanical systems are currently “real life” demonstrations involving physical objects. With
access to an easy-to-use physics simulation program, simulated 3-dimensional computer simulations could be
used just as well.

Sometimes just being able to “see it” – either in real life or in a simulation - can help a student grasp a concept.
A good soft ware package for physics demonstrations would reduce the need for real life demonstrations. Th is
would enable professors to construct demonstrations easily, and allow students to build their own demonstra-
tions. Soft ware demonstrations could be used in homework assignments, tests, and for independent study
courses.

Th e ability to type a few keystrokes and change some aspect of a system also provides a way to study the eff ect of
one variable (say, the length of a pendulum or the mass of a pulley) has on the rest of the system.

THE BRAINS BEHIND THE SYSTEM

Th e “brains” to such a versatile physics system is
already available. A group of volunteer developers
from around the world actively develop and main-
tain a project known as the Open Dynamics Engine
(abbreviated from here on as ODE). Th e ODE group
describes the engine as “an open source, high perfor-
mance library for simulating rigid body dynamics. ”

To develop a simulation using the Open Dynam-
ics Engine, however, requires a signifi cant amount
of time and programming knowledge. Fortunately,
another open-source group has spent a great deal of
time building what is known as the Open Physics
Abstraction Layer (referred to as OPAL). OPAL pro-
vides a set of higher-level methods and instructions
to make developing a physics simulation easier. Most
notably, the ability to enter the description of the
physics in an XML fi le, and not in the code itself.

Not only is the XML format convenient to enter simu-
lations initially – but changes to the parameters of the system can be made very quickly and without recompiling
the simulator code. For instance, to make the pendulum 20 meters long instead of 49 meters long, would require
changing two numbers in the XML fi le and then re-running the simulator. Were the simulation programmed

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?>
<OpalBlueprint>
 <Solid>
 <Name value=”Pendulum” />
 <Static value=”false” />
 <Shape type=”box”>
 <Dimensions x=”2” y=”2” z=”98” />
 < Material hardness=”0.8” friction=”0”

bounciness=”0.0” density=”0.2” />
 </Shape>
 <Offset>
 < Transform type=”translate”

x=”0” y=”0” z=”49” />
 </Offset>
 </Solid>
 <Joint>
 <Name value=”Pendulum Hinge” />
 <Type value=”universal” />
 <References solid0=”null” solid1=”Pendulum” />
 <Anchor x=”0” y=”0” z=”100” />
 <Axis>
 <AxisNum value=”0” />
 <Direction x=”1” y=”0” z=”0” />
 <LimitsEnabled value=”false” />
 </Axis>
 <Axis>
 <AxisNum value=”1” />
 <Direction x=”0” y=”0” z=”1” />
 <LimitsEnabled value=”false” />
 </Axis>
 </Joint>
</OpalBlueprint>

Figure 1-1: An XML OPAL Blueprint fi le describing a pendulum

2

into the simulator, the change process would involve
recompiling and relinking.

Th e XML-format becomes an even more appealing way
of entering physical simulations when you use a graphi-
cal editor. One OPAL user has created a visual XML
editor that allow scenes to be created in a 3D environ-
ment instead of a text editor. Th is freely-available editor
simplifi es the most diffi cult parts of making a simulation
- creating the physical elements, joining them together,
and positioning them in a virtual space.

Deficiencies of OPAL for use in Physics Simulations
Th e original goal of this project was to evaluate the
accuracy of the methods that OPAL uses to simulate
mechanical systems. To accomplish this, the plan was
to simulate several systems and compare the results of
the simulated motion to the exact solution of the same
system. In the early stages of creating simulations
inside the OPAL environment, it became clear that
OPAL is not designed for simulating the kind of me-
chanical systems that undergraduate physicists study.
It has several areas that are currently defi cient.

1. LACK OF EASY BUILDING BLOCKS

Th e building-blocks of basic mechanical systems prob-
lems include springs, pulleys, pendulums, wheels, carts, oscillating motors, and inclined planes. Of these ele-
ments, only a few of them are easy to defi ne in the XML-format (or source code). Th e rest of them involve
constructing things that simulate these basic elements out of other existing elements inside OPAL.

2. PARADIGM REGARDING DEFAULT VALUES

OPAL also has certain default assumptions about the simulation you are creating - and some of these assump-
tions run counter to the thinking of a physicist. A falling object, for instance, will be acted upon by what OPAL
refers to as “linear damping” - a rough simulation of air resistance. Th is value can be turned off , but if it is not
explicitly turned off , it will cause objects to fall with non-constant acceleration.

 3. NO BUILTIN METHOD TO OUTPUT PHYSICAL DATA

Even if it were easy to construct simulations in OPAL, and those simulations behaved as expected, the simulation
would be of limited use to the physicist. OPAL is mostly used to produce visual simulations of physical systems.
Although a person fi ring a cannonball in a simulated environment may not care to plot the trajectory of that ball

Figure 1-2: A screenshot of the scene editing program for OPAL

Figure 1-3: Acceleration vs. time for an object falling with linear damping
unspecifi ed (by default it is on)

-12

-10

-8

-6

-4

-2

0
0 2 4 6 8 10 12 14

Time

3

- a physicist studying such a system most certainly would. As OPAL exists now, there is no easy way to extract
position data for each time step. Later on, I describe how I programmatically have fi xed this defi ciency - but the
lack of a built-in method is troubling.

4. NO METHOD TO OUTPUT JOINTRELATED DATA

In addition to the data regarding an objects position, velocity, and other attributes - information about the joints
joining these objects is important to be able to analyze the system. In the case of a pendulum, for instance, posi-
tion data is much less convenient to work with than the angle of the joint. In the case of a double or triple pendu-
lum, the position data alone would be a nightmare to analyze, whereas the joint-angle data would be very simple.

Overcoming Deficiencies
Th e gaps between what OPAL provides already, and what a physicist would need to easily create simulations is
hardly insurmountable. Th e scope of this project is to bridge the gaps where possible, and provide the footings
for future work to bridge other gaps.

Th ere are two possible places to address these issues. Th e fi rst place is within OPAL itself. Th is is the best place to
address issues directly related to functionality that OPAL provides the programmer, or functions that should be
handled within OPAL.

Th e second area to overcome the issue is within the program that relies on OPAL. Th is is the best place to tackle
problems that are outside of the scope of what OPAL project is attempting to provide, and can be solved by call-
ing methods already contained in OPAL.

ADDRESSING ISSUES WITHIN OPAL

Th e open-source nature of OPAL means two things. Its existence means that there is a group of programmers
who are interested enough in having a physics abstraction layer that they have built one. It is true that everyone
who wants to can contribute to the source code of OPAL project, but before new code is accepted into the proj-
ect, it must be approved by one of the primary developers.

Many open-source projects operate under the mantra “patches welcome” - meaning that they are willing to ac-
cept changes to their source code to fi x bugs or improve functionality, and will then review these changes. Many
times, in open-source development, patches that are submitted are not accepted into the project. Certainly addi-
tions that consist of low-quality code, introduce new bugs, or do nothing useful are rejected almost immediately.
When a code change, or patch, would make sweeping changes to the architecture of the current project, regard-
less of how well written, it will usually be rejected.

In the case of OPAL, many of the changes that would be required to make it work the way a physicist wants are
the kind of changes that require more than a simple one-line fi x here or there. Most of them require some sig-
nifi cant consideration on the part of the developers as to where and how to implement the changes. To deal with
these kind of changes, the best way to help the main developers is to provide detailed information describing
situations in which a user may want a certain functionality, and then developing a requirements document.

4

Admittedly, this kind of approach relies heavily on the willingness of volunteer developers. Clarifying what is
wanted, why it is wanted, and providing a compelling reason to make such a change can greatly increase the
likelihood of a programmer to want to make the change. Should no programmers on OPAL project want to make
these changes, it is possible that in the future another physicist will be able to start work on making these chang-
es based on the signifi cant eff ort I have already done in identifying key areas for improvement.

ADDRESSING ISSUES AT THE PROGRAM LEVEL

To address problems at the program level is relatively easy for a programmer. To do so in such a way as to also
provide some assistance to future developers who may be facing a similar problem involves some additional
planning.

In the case of OPAL, outputting data about the objects
being simulated is best solved at the application level.
OPAL provides a set of routines that can be used to
extract data, and a mechanism to assign a certain func-
tion in a program to be called at the end of every time
step in the simulation.

To contribute to the ease of future users who may want
to output detailed logging data of their simulations, I
created a rather robust data logging module that al-
lows the programmer to specify what specifi c data he
wishes to have output, and what fi le to output the data
into. Th is data-logging module is more thoroughly
described in the “Methods” section. Th e basic idea be-
hind it is that anyone who uses OPAL in their program
can include two fi les into their project, write three lines of code into their application, and have the ability to
have detailed data output to a fi le of their choosing.

Methods
DATA LOGGING MODULE

To extract data from the simulator, I wrote a data logging module in C++ that fulfi lls the following requirements:

1. It allows the programmer to specify in a simple way which of the 8 or 9 possible data elements he wants output
for each time step.

2. Th e code is written in a modular way that allows for easy maintenance in the future, should new data formats
be added or parts of OPAL code change

3. Whenever possible, the code uses methods that are easy to maintain.

4. It exports the data in a format that is easily imported into data analysis programs.

void OpalDemo::createPostEventListener(void) {
 std::string outputFile = “/path/to/output/fi le”;
 int fl ags = 0 | LOG_POSITION \
 | LOG_EULER \
 | LOG_GLOBAL_ANGULAR_VELOCITY \
 | LOG_LOCAL_LINEAR_VELOCITY \
 | JOINT_LOG_VELOCITY \
 | JOINT_LOG_ANGLES \
 | JOINT_LOG_DISTANCE;

 // This next line creates a new instance of the
 // DataLogger object with the variables set above
 // and a reference to a vector of PhysicalEntity
 // objects defi ned elsewhere
 mDataLogger = new DataLogger(mPhysicalEntityList,
mSimulator->getStepSize(),outputFile,fl ags);

 // The next line registers this data logger as
 // the post-step event handler for OPAL
 // simulator named “mSimulator”
 mSimulator->addPostStepEventHandler(mDataLogger);
}

Figure 2-1: Example C++ code illustrating how easily the DataLogger is
accessed and used by a programmer

5

Th e code is organized as follows. Th e programmer ties into the DataLogger class and instantiates the object.
Once the DataLogger object is created, he assigns it to be the post event-step listener. Th e following code is all a
developer needs to include in order to implement the data logger in his project:

Th e LOG_POSITION, LOG_EULER, LOG_LOCAL_LINEAR_VELOCITY, and other similarly named variables
mentioned above are constants that are defi ned in a fi le called movementLoggerConstants.h. Th is fi le defi nes the
fl ag variables to be equal to unique powers of two. Using binary logic to “OR” them together uses a single inte-
ger-worth of memory to store “on” or “off ” states for the 20 diff erent possible types of data that can be turned off
or on.

When the DataLogger is instantiated, it creates an empty vector of DataLoggingModule objects and passes a ref-
erence to this vector to the DataLoggingModuleFactory, along with the fl ags indicating which logging modules
to construct. Th e DataLoggingModuleFactory loops over the relevant powers of two and sees if a given fl ag is set.
If the fl ag is set, it will create the corresponding DataLoggingModule for each physical object in the simulation.

Aft er the DataLoggingFactory has created all of the logging modules, the DataLogger is fi nished being construct-
ed. Th e next time that the DataLogger is called is at the end of the fi rst time step - which is the zero-second time
step. At this point, the DataLogger iterates over all of the DataLoggingModules stored in its vector of modules.
For each module, it outputs any relevant header data, each fi eld in the fi le separated by a tab.

Aft er each subsequent time step, the DataLogger writes the current time to the fi le, and then iterates over all of
the DataLoggingModules and calls each module’s OutputData method. Each module outputs its data to the fi le,
again separated by tabs.

Th e DataLogger does not need to know what kind of data needs to be output in order to print the local velocity
of an object, or the current position of an object, or any of the other data elements. All of the diff erent DataLog-
ging modules are subclasses of the main virtual class DataLoggingModule. All of the DataLogging modules have
the same “OutputData” method to return a string that gets printed to the fi le. Each module implements the busi-
ness logic behind printing out the relevant data. At the bottom of this page are two examples of the OutputData()

std::string DataLoggingModuleVec3r::outputVec3r() {
 std::ostringstream s1;
 opal::Vec3r dataVec3r = getDataVec3r();
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);
 s1 << dataVec3r.x << “\t” << dataVec3r.y \
 << “\t”<< dataVec3r.z << “\t”;
 return s1.str();
}

std::string DataLoggingModuleVec3r::OutputData() {
 return outputVec3r();
}

Figure 2-2b: Th e output method that generates the output used in the
module responsible for printing data stored in three-dimensional vecors

std::string DataLoggingModuleMatrix44r::outputMa-
trix44r() {
 std::ostringstream s1;
 opal::Matrix44r dataMatrix44r = getDataMatrix44r();
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);

 for (int j=0;j<16;j++) {
 s1 << dataMatrix44r[j] << “\t”;
 }

 return s1.str();

}
std::string DataLoggingModuleMatrix44r::OutputData() {
 return outputMatrix44r();
}

Figure 2-2a: Th e output method that prints out the values stored in a 4x4
matrix

6

methods and the functions that generate the string that is printed to the fi le.

Th e DataLogging Module that I wrote provides OPAL users with a robust way to specify what data users are
interested in monitoring, and then an easy way to have the program output the data for them to analyze.

HOW OPAL ENABLES THE DATA LOGGING MODULE

OPAL has several functions that it provides which enables the creating of such a data logging module. Th e main
object that runs the simulator is known as the “Simulator.” It has two public functions:

Solid* opal::Simulator::getSolid(unsigned int a) const

and

unsigned int opal::Simulator::getNumSolids() const

By knowing the number of solids that exist in the simulation, and being able to retrieve a solid object via an in-
dex number, it is possible to extract data from all of the solid objects.

OPAL LACKS METHODS TO EXTRACT THE JOINTS

Unlike the solid objects, the joints in OPAL simulation are kept private to the simulator. Th ere is no “getNum-
Joints()” method, nor is there a “getJoint(unsigned int a)” method in the current version of OPAL.

In an attempt to enable a “JointLoggingModule”, I added these functions in to the Simulator class and recompiled
OPAL library. I wrote the necessary code to log the data for the joints, but when I tried to use it, I quickly real-
ized that the code involving joints inside of OPAL is not ready for that kind of data extraction.

OVERRELIANCE ON ASSERTIONS MAKES DEALING WITH JOINTS TROUBLESOME

In programming, it is possible to write code to handle situations in which you believe the program should never
enter. Consider this trivial example of a function that would add the sales tax to a subtotal to return a total:

int calculate total (int salestax, int subtotal) {
 assert(salestax > 0);
 return (salestax + subtotal);
}

When executing the code, if the above method is ever called with salestax less than or equal to zero, then the as-
sertion will fail and the program will halt execution.

Assertions are useful in some situations, but they are very rigid in one thing - when an assertion fails, the entire
program stops.

In OPAL code, the Joint objects can have data for several axes, or on only one axis depending upon how the joint
is instantiated. When a joint that has data for only one axis is requested to return data on an axis that has no
data, an assertion is called and the program stops. When attempting to retrieve information about a given axis
being enabled, an assertion is called and the program exits. When attempting to determine if a given axis can
rotate, and you check an axis number that doesn’t exist, an assertion is called and the program exists.

7

Th is behavior is not necessarily bad programming. Th e methods in OPAL::Joint class are meant to be used
internally by objects that have knowledge about the joints themselves. A more robust way of handling the error,
however, is to have a certain value that is reserved for error status. For instance -32768 could be returned, and
then the calling function can check for this value and realize it had specifi ed invalid input. No currently func-
tioning program would be aff ected by this kind of change, because any program now that is hitting the assertions
is being immediately halted anyway.

Th ere are 17 places in OPAL::Joint code that have assertions. To provide for the ability to easily pull data from
joints, those assertions should be converted to return error code values.

Results and Discussion
In its current state, adapting OPAL to work for physics demonstrations is diffi cult but possible. Th e amount of
time and eff ort required to do so, however, makes other kinds of demonstrations (i.e. a physical demonstration,
or a simple animation in a program such as Maple) more cost-eff ective when preparation time is taken into con-
sideration.

Th ere are several areas that need improvement before a suitable mechanics simulator can be built on top of
OPAL. Of these areas, the biggest one - exporting data into a format that can be analyzed computationaly - was
overcome as a result of this project. Aft er this obstacle is overcome, there are two more that are best addressed by
the current development community of OPAL. Th ese are default values and physicist friendly building blocks.

Suggested Improvements to OPAL
CREATE PHYSICISTFRIENDLY BUILDING BLOCKS

It is possible to string some together some of the building blocks currently in OPAL to create the main building
blocks that are necessary for physics simulations; however, it is not easy.

To create something that behaves like a spring, for instance, a user could specify a “Slider” joint that slides along
one axis and then give that joint a “Bounciness” attribute. One might think that the “Bounciness” is just another
word for “Spring constant” - but it is not. Th e “bounciness” setting on a joint determines the restitution force that
a joint exerts once it hits it’s limit.

Here is a list of building blocks that a physicist would be interested in, and what parameters matter:

1. Linear Spring

Type: Joint
Parameters: Spring constant
 Size when fully compressed
 Maximum stretched size
 Stretched distance
Behavior: Th e linear spring would allow an object to move in one dimension with the constraint of the

spring attached to it.

8

Setting up the spring would involve joining two objects with a spring joint, and then setting the spring constant
and the current distance that the spring was stretched.

Setting up a simple system with a mass attached to the ceiling by a spring would be an ideal test case for verifying
the basic functionality of the spring.

2. Linear Dashpot

Type: Joint
Parameters: Stroke (amount of displacement)
 Damping coeffi cient
Behavior: Th e linear dashpot applies a force proportional to velocity, but in the opposite direction.
A test case for the linear dashpot would be to set up a mass attached to a ceiling with both a spring and a dash-
pot, and observe the resulting motion. Exporting the data and analyzing it versus known exact solutions for such
systems would help verify that the calculations in creating the dashpot were correct

3. Linear Oscillator

Type: Motor
Parameters: Frequency
 Amplitude
 Oscillator Pattern (Sine, Cosine, Square, Sawtooth)
 Current Displacement
Behavior: Th e linear oscillator would attach to an object and would apply a certain displacement to it de-

pending upon the time. Th e linear oscillator acts irrespective of the mass of the other object, and
will move the object into the position dictated by the frequency and current time step.

A test case for this would be a linear oscillator attached to a block moving on a frictionless fl oor. Exporting the
position data, it should plot exactly like a sine wave position data for the attached object should exactly match
the driving function of the linear oscillator

CREATE PHYSICISTFRIENDLY DEFAULT SETTINGS

Currently, the default settings are stored in a the namespace of OPAL::defaults. Below are the defi nitions that
should be included in an OPAL::defaults that is “physicist friendly”

For solids:
const bool enabled = true
const bool sleeping = true
const real sleepiness = (real)0.5
const bool isStatic = false
const real linearDamping = (real)0
const real angularDamping = (real)0

For the ODE simulator:
const real autoDisableLinearMin = 0
const real autoDisableLinearMax = (real)0.2
const real autoDisableAngularMin = 0
const real autoDisableAngularMax = (real)0.2
const int autoDisableStepsMin = (int)1
const int autoDisableStepsMax = (int)60

9

const real autoDisableTimeMin = 0
const real autoDisableTimeMax = (real)0.4
const real minMassRatio = (real)0.001
const real minERP = (real)0.1
const real maxERP = (real)0.9
const real globalCFM = (real)1e-5
const real jointFudgeFactor = (real)0.1
const real maxFriction = (real)1000.0
const real surfaceLayer = (real)0.000
const int maxRaycastContacts = 10

With those relatively minor changes made to OPAL itself, it would be possible for a physicist to create a program
that would read in OPAL blueprint XML fi les and then run physics simulations. Using other existing 3D graphics
libraries, such as Ogre 3D, it would be easy to display 3D animations of physical systems being run in real time.

References
Th e source code for OPAL is freely available from the offi cial OPAL website. In addition, documentation that
refers to specifi c methods within this code was indespensible in preparing this report.

OPAL Source Code Documentation
Various Authors, (May 2006), Generated Source Code Documentation for OPAL 0.4.0, retrieved from Source-
Forge hosted website.
 http://opal.sourceforge.net/api/0.4.0/index.html

Various Authors, (May 2006), OPAL Documentation Wiki, retrieved from the OPAL wiki hosted at Louisville
University.
http://ox.slug.louisville.edu/~o0lozi01/opal_wiki/index.php/Main_Page

OPAL XML Editor
Marzena Gasidło, (February 2005), Ocelot’s Jungle: OpalXMLEditor, retrieved from Marzena Gasidlo’s website.
http://www.ocelotsjungle.republika.pl/index.html

Appendix

movementLoggerConstant.h - Code Listing

/*
 * movementLoggerConstants.h
 *
 * Created by Ryan Gardner on 11/4/06.
 *
 */

#ifndef MOVEMENT_LOGGER_CONSTANTS_H
#defi ne MOVEMENT_LOGGER_CONSTANTS_H

const int MOVEMENT_LOG_OUTPUT_PRECISION = 9; // number of signifi cant fi gures to output
////////////////////////////
// Log Constants - the following bit fl ags represent certain constants that can be logged using the MovementLogger
///////////////////////////

// Logs the position of this Solid in global coordinates. [2 ^ 0]
const int LOG_POSITION = 0x1;

// Logs the euler angles of the Solid’s orientation. [2 ^ 1]
const int LOG_EULER = 0x2;

// Logs the Solid’s inertia tensor as a 4x4 matrix. This will be the identity matrix if the Solid is static. [
2 ^ 2]
const int LOG_INERTIA_TENSOR = 0x4;

// Logs the Solid’s angular velocity in global coordinates [2 ^ 3]
const int LOG_GLOBAL_ANGULAR_VELOCITY = 0x8;

// Logs the Solid’s angular velocity in local coordinates. [2 ^ 4]
const int LOG_LOCAL_ANGULAR_VELOCITY = 0x10;

// Logs the Solid’s linear velocity in local coordinates. [2 ^ 5]
const int LOG_LOCAL_LINEAR_VELOCITY = 0x20;

// Logs the Solid’s linear velocity in global coordinates. [2 ^ 6]
const int LOG_GLOBAL_LINEAR_VELOCITY = 0x40;

// a quaternion representing the Solid’s orientation. [2 ^ 7]
const int LOG_QUATERNION_DATA = 0x80;

// The Solid’s transform relative to the global origin. [2 ^ 8]
const int LOG_SOLID_TRANSFORM = 0x100;

// This will force the movement logger to output data for static solids as well [2 ^ 9]
const int LOG_STATIC_SOLIDS = 0x200;

// [2 ^ 10]
const int LOG_LINEAR_DAMPING = 0x400;

// [2 ^ 11]
const int LOG_ANGULAR_DAMPING = 0x800;

// Reserved [2 ^ 12]
// = 0x1000;

//// Joints related constants

// Joint accumulated damage [2 ^ 13]
const int JOINT_LOG_ACCUMULATED_DAMAGE = 0x2000;
// Joint anchor position [2 ^ 14]
const int JOINT_LOG_ANCHOR_POS = 0x4000;
// Joint distance [2 ^ 15]
const int JOINT_LOG_DISTANCE = 0x8000;

movementLoggerConstant.h - Code Listing

// joint velocities [2 ^ 16]
const int JOINT_LOG_VELOCITY = 0x10000;
// joint angles [2 ^ 17]
const int JOINT_LOG_ANGLES = 0x20000;
// joint anchor [2 ^ 18]
const int JOINT_LOG_ANCHOR = 0x40000;
// joint lower limit [2 ^ 19]
const int JOINT_LOG_LOW_LIMIT = 0x80000;
// joint higher limit [2 ^ 20]
const int JOINT_LOG_HIGH_LIMIT = 0x100000;

// the highest power of 2 stored in a movement constant fl ag
// - used for iterators over the constants
const int K_LOWEST_SOLID_EXPONENT = 0;
const int K_HIGHEST_SOLID_EXPONENT = 11;
const int K_LOWEST_JOINT_EXPONENT = 12;
const int K_HIGHEST_JOINT_EXPONENT = 20;
const int K_HIGHEST_CONST_EXPONENT = 20;

// ints describing the types of data.
const int K_VEC3R = 0;
const int K_POINT3R = 1;
const int K_MATRIX44R = 2;
const int K_REAL = 3;
const int K_UNIMPLEMENTED = 4;
const int K_CONSTANT = 5;

struct movementConstant {
 std::string MeasurementName;
 int typeOfData;
 movementConstant (std::string Name, int type) : MeasurementName(Name), typeOfData(type) {}
};

const movementConstant DATA_TYPES[21] = {
/* 0 */ movementConstant(“Position”, K_POINT3R),
/* 1 */ movementConstant(“Euler Angle”, K_VEC3R),
/* 2 */ movementConstant(“Inertia Tensor”, K_MATRIX44R),
/* 3 */ movementConstant(“Global Angular Velocity”, K_VEC3R),
/* 4 */ movementConstant(“Local Angular Velocity”, K_VEC3R),
/* 5 */ movementConstant(“Local Linear Velocity”, K_VEC3R),
/* 6 */ movementConstant(“Global Linear Velocity”, K_VEC3R),
/* 7 */ movementConstant(“Quaternion Data”, K_UNIMPLEMENTED),
/* 8 */ movementConstant(“Solid Transform”, K_MATRIX44R),
/* 9 */ movementConstant(“Static Solids”, K_CONSTANT),
/* 10 */ movementConstant(“Linear Damping”, K_REAL),
/* 11 */ movementConstant(“Angular Damping”, K_REAL),
/* 12 */ movementConstant(“Reserved For Future Use”, K_UNIMPLEMENTED),
/* 13 */ movementConstant(“Accumulated Damage”, K_REAL),
/* 14 */ movementConstant(“Anchor Position”, K_POINT3R),
/* 15 */ movementConstant(“Distances”, K_REAL),
/* 16 */ movementConstant(“Velocities”, K_REAL),
/* 17 */ movementConstant(“Angles”, K_REAL),
/* 18 */ movementConstant(“Anchor”, K_REAL),
/* 19 */ movementConstant(“Low Limits”, K_REAL),
/* 20 */ movementConstant(“High Limits”, K_REAL) };

#endif

/*
 * DataLoggingModule.h
 *
 * Created by Ryan Gardner on 11/11/06.
 *
 */
#ifndef DATALOGGING_MODULE_H
#defi ne DATALOGGING_MODULE_H

#include <opal/Logger.h>
#include <opal/PostStepEventHandler.h>
#include <opal/Solid.h>
#include <opal/Point3r.h>
#include <opal/OpalMath.h>
#include <opal/Vec3r.h>
#include “PhysicalEntity.h”
#include <sstream>
#include “MovementLogger.h”
#include “movementLoggerConstants.h”

class DataLoggingModule {
 protected:
 int type; // the bit that represents this things type
 std::string moduleName;
 public:
 virtual std::string HeaderOutput()=0;
 virtual std::string OutputData()=0;
 virtual ~DataLoggingModule();
};

class DataLoggingFactory {
 protected:
 // the fl ags that represent which solid objects to make - these are stored for debugging purpos-
es
 int solid_fl agz;
 // the fl ags that represent which joint objects to make - same as above. for dev only.
 int joint_fl agz;

 // methods to add a module, or multiple modules to be tracked
 void AddModules(int sfl ags, int jfl ags);
 void AddSolidModules(int sfl ags);
 void AddJointModules(int jfl ags);

 // A list of physical entities. This is needed for it to create the modules.
 std::vector<PhysicalEntity*>& mPhysicalEntityList; // reference to a list of physical entities...

 std::vector<opal::Joint*> mJointList; // a vector of joints

 public:
 // a list of physical entities...
 std::vector<DataLoggingModule*> mModuleList;

 DataLoggingFactory(int sfl ags, int jfl ags, std::vector<PhysicalEntity*>& physList, std::
vector<opal::Joint*> jointList):
 solid_fl agz(sfl ags),
 joint_fl agz(jfl ags),
 mPhysicalEntityList(physList),
 mJointList(jointList)
 {
 AddModules(sfl ags, jfl ags);
 };
 // returns a pointer to our internal list
 std::vector<DataLoggingModule*>* getDataLoggignModules() const;
};

DataLoggingModule.h - Code Listing

//
// OPAL has a class “PostStepEventHandler” that provides an interface to handle
// events after everytime step. In this case, we are going to be writing out data
// at every time step.
//
class DataLogger : public opal::PostStepEventHandler {
 protected:
 DataLoggingFactory mDataLoggingModules;

 // track the current time in the simulator
 pal::real mCurrentTime;
 // stores the previous step size
 opal::real mLastStepSize;
 // store the size of the timeStep here
 opal::real mStepSize;

 public:
 DataLogger(std::vector<PhysicalEntity*>& physList, std::vector<opal::Joint*> jointList, opal::real
StepSize, const std::string outputFile, const int sFlags, const int jFlags);

 void OPAL_CALL handlePostStepEvent();

 void setStepSize(opal::real newStepSize);

 private:
 inline void updateCurrentTime(void);
 void outputHeaderData(void);
 void outputData(void);

 // We use the loggerImpl to go along with the standard way of doing things in OPAL package
 opal::loggerImpl::Logger mLogStream;
};

// The following classes all provide functionality to print out a different kind of data
// Which class is created for a given data element is determined by an entry in the movementLoggerConstants.h
// fi le that links the
//
class DataLoggingModuleVec3r : public DataLoggingModule {
 protected:
 std::string moduleName; // tracks the name of this module
 opal::Solid* dataSource; // the source of the data
 opal::Joint* jointSource; // the source of the joint data
 int vec3rToLog; // a fl ag indicating which vec3r this module logs
 opal::Vec3r getDataVec3r(); // a method that returns the vec3r for this module
 public:
 DataLoggingModuleVec3r(std::string name, opal::Solid* dataSrc, opal::Joint* jointSrc, int
vec3rToLog);
 std::string HeaderOutput();
 std::string OutputData();
 std::string outputVec3r();
};

class DataLoggingModulePoint3r : public DataLoggingModule {
 protected:
 std::string moduleName; // tracks the name of this module
 opal::Solid* dataSource; // the source of the data
 opal::Joint* jointSource; // the source of the joint data
 int point3rToLog; // a fl ag indicating which vec3r this module logs
 opal::Point3r getDataPoint3r(); // a method that returns the vec3r for this module
 public:
 DataLoggingModulePoint3r(std::string name, opal::Solid* dataSrc, opal::Joint* jointSrc, int
vec3rToLog);
 std::string HeaderOutput();
 std::string OutputData();

DataLoggingModule.h - Code Listing

 std::string outputPoint3r();
};

class DataLoggingModuleMatrix44r : public DataLoggingModule {
 protected:
 std::string moduleName; // tracks the name of this module
 opal::Solid* dataSource; // the source of the data
 opal::Joint* jointSource; // the source of the joint data
 int matrix44rToLog; // a fl ag indicating which Matrix44r this module logs
 opal::Matrix44r getDataMatrix44r(); // a method that returns the Matrix44r for this module
 public:
 DataLoggingModuleMatrix44r(std::string name, opal::Solid* dataSrc, opal::Joint* jointSrc, int
Matrix44rToLog);
 std::string HeaderOutput();
 std::string OutputData();
 std::string outputMatrix44r();
};

class DataLoggingModuleReal : public DataLoggingModule {
 protected:
 std::string moduleName; // tracks the name of this module
 opal::Solid* dataSource; // the source of the data
 opal::Joint* jointSource; // the source of the joint data
 int realToLog; // a fl ag indicating which real this module logs
 opal::real getDataReal(); // a method that returns the Real for this module
 void getMultiAxisDataReal(opal::real* rval); // a method that returns the Real for this module
 bool multiAxisReporting; // a bool value that determines if this will output multiple-axis data
 public:
 DataLoggingModuleReal(std::string name, opal::Solid* dataSrc, opal::Joint* jointSrc, int realToLog);
 std::string HeaderOutput();
 std::string OutputData();
 std::string outputReal();
};

// The following method is commented out because it was not needed, and not
// therefore fully implemented.
//class DataLoggingModuleQuaternion : public DataLoggingModule {
//
// std::string outputQuaternion(opal::Quaternion &toPrint) {
// std::ostringstream s1;
// s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);
// s1 << toPrint.length() << “\t”;
// s1 << toPrint.getRoll() << “\t”;
// s1 << toPrint.getYaw() << “\t”;
// s1 << toPrint.getPitch() << “\t”;
//
// return s1;
// }
//
//};

#endif

DataLoggingModule.h - Code Listing

/*
 * DataLoggingModule.cpp
 *
 * Created by Ryan Gardner on 11/11/06.
 *
 */

#include “DataLoggingModule.h”

// When the DataLogger object is created, it creates two output streams - a main one
// that the simulation data will be written to, and a second one that is for debugging data.
// Unless there is an error, the debugging data stream has nothing written to it, and nothing
// gets written to the disk.
DataLogger::DataLogger(std::vector<PhysicalEntity*>& physList, std::vector<opal::Joint*> jointList, opal::real
StepSize, std::string outputFile, int sfl ags, int jfl ags) :
 mStepSize(StepSize),
 mLastStepSize(StepSize),
 mCurrentTime(0),
 mDataLoggingModules(sfl ags, jfl ags, physList, jointList)
{

 // set up a fi le for the debug.
 std::string debugFileStr = outputFile + “debug”;

 std::ofstream* outFile;
 outFile = new std::ofstream(outputFile.c_str(), std::ios::app);

 mLogStream = opal::loggerImpl::Logger();
 mLogStream.setStream(“movementLog”, outFile, “”);
}

// This method provides the basic functionality of outputting the header data to a named stream
// The header row in the fi le will identify what is in that column.
// To output the data, it iterates over the list of data logging modules, and calls each
// module’s OutputHeader method
void DataLogger::outputHeaderData() {
 mLogStream.stream(“movementLog”) << “Time\t”;

 for(std::vector<DataLoggingModule*>::iterator dM = mDataLoggingModules.mModuleList.begin();
 dM != mDataLoggingModules.mModuleList.end(); dM++)
 {
 DataLoggingModule* dataModule = *dM;
 mLogStream.stream(“movementLog”) << (dataModule->HeaderOutput());
 }

 mLogStream.stream(“movementLog”) << “\n”;
}

// This method provides the basic functionality of outputting the data to a named stream
// To output the data, it iterates over the list of data logging modules, and calls each
// module’s OutputData method
void DataLogger::outputData() {
 mLogStream.stream(“movementLog”) << mCurrentTime << “\t”;

 for(std::vector<DataLoggingModule*>::iterator dM = mDataLoggingModules.mModuleList.begin();
 dM != mDataLoggingModules.mModuleList.end(); dM++)
 {
 DataLoggingModule* dataModule = *dM;
 mLogStream.stream(“movementLog”) << (dataModule->OutputData());
 }

 mLogStream.stream(“movementLog”) << “\n”;
}

DataLoggingModule.cpp - Code Listing

// This is the method that is called at the end of each time step in the simulator
// When this method is called, it fi rst checks to see if it is the fi rst time through the loop
// - and if so, it will output the header data.
// If it isn’t, then it will update the current time, and then output the data.
void OPAL_CALL DataLogger::handlePostStepEvent() {
 if (mCurrentTime == 0 || mCurrentTime < StepSize) {
 outputHeaderData();
 }
 updateCurrentTime();
 outputData();
}

// Some simulations may wish to adjust the step size, but doing so will mean that
// the simulator data will not have uniform timesteps in the output fi le. For this reason,
// an informational note is written to the debug stream to help the person analyzing the data
// understand what changed and why.
void DataLogger::setStepSize(opal::real newStepSize) {
 if (newStepSize != mStepSize) {
 mLogStream.stream(“movementDebug”) << “Step size change. Was:” << mLastStepSize << “ is now: “
<< newStepSize << “\n”;
 }
 mLastStepSize = mStepSize;
 mStepSize = newStepSize;
}

// This method simply updates the stored current time with a forward-incremented timestep
inline void DataLogger::updateCurrentTime(void) {
 mCurrentTime += mStepSize;
}

// This method will create modules to log all of the data set in the sfl ags and jfl ags integers
// At the moment, joint modules do not work due to some problems in how OPAL outputs and access
// joint data being unfriendly to data extraction. When OPAL is updated to allow for more friendly
// access to joint-data from outside programs, this line can be uncommented and joint data will
// be output. (Some testing of this code may be necessary at that point, of course)
void DataLoggingFactory::AddModules(int sfl ags, int jfl ags) {
 AddSolidModules(sfl ags);
 // AddJointModules(jfl ags);
}

// This method will iterate over the vector of PhysicalEntity objects and will use the bits set in the
// sfl ags to determine what kind of data logging is wanted.
//
// If the fl ag is set to log a certain type of data, this method will then perform a basic lookup against
// data stored in the movementConstants.h fi le to determien what kind of logging module it should create.
//
// If the physical entity object were modifi ed to store a local integer containing solid fl ags, and
// a method to access this information was provided - this method could be changed to allow for object-level
// data logging relatively easily.
//
//
void DataLoggingFactory::AddSolidModules(int sfl ags) {

 // step over the solid modules fi rst
 for(std::vector<PhysicalEntity*>::iterator pE = mPhysicalEntityList.begin(); pE != mPhysicalEntityList.
end(); pE++) {
 PhysicalEntity* tempEntity = *pE;

 // if the physical entity is static (meaning, it is set to never move),
 // by default, we don’t care about tracking its motion. The LOG_STATIC_SOLIDS fl ag can be set
 // - which will enable the logging of the static data
 if (tempEntity->getStatic() && !(outputFlags & LOG_STATIC_SOLIDS == LOG_STATIC_SOLIDS)) {
 continue;
 }

DataLoggingModule.cpp - Code Listing

 std::string physEntityName = tempEntity->getName();
 opal::Solid* tSolid = tempEntity->getSolid();

 // First we add the modules that correspond to the Solids-related logging
 for (int k=K_LOWEST_SOLID_EXPONENT; k <= K_HIGHEST_SOLID_EXPONENT; k++) {
 // test to see if the given fl ag is set.
 int curExponent = (1 << k);
 if (((curExponent) & sfl ags) == (curExponent)) {
 std::ostringstream entityModuleName;
 entityModuleName << physEntityName << “ “ << DATA_TYPES[k].MeasurementName;
 // if the fl ag is set, check to see what kind of fl ag it is
 DataLoggingModule* newModule;

 switch (DATA_TYPES[k].typeOfData) {
 case K_VEC3R:
 newModule = new DataLoggingModuleVec3r(entityModuleName.str(), tSolid, 0, curExponent);
 mModuleList.push_back(newModule);
 break;
 case K_POINT3R:
 newModule = new DataLoggingModulePoint3r(entityModuleName.str(), tSolid, 0, curExponent);
 mModuleList.push_back(newModule);
 break;
 case K_MATRIX44R:
 newModule = new DataLoggingModuleMatrix44r(entityModuleName.str(), tSolid, 0, curExponent);
 mModuleList.push_back(newModule);
 break;
 case K_REAL:
 // implement
 break;
 case K_UNIMPLEMENTED:
 // message
 break;
 case K_CONSTANT:
 // implement
 break;
 }
 }
 }
 }
}

// This method performs an almost identical function to the AddSolidModules funtion above. Joints, however
// currently do not reply to this kind of data extraction very politely. First of all, OPAL doesn’t currently
// have a getter function to pull the vector of Joints out of the simulator data. Adding this functionality to
// OPAL involves adding three or four lines of code to one of the fi les describign the simulator - but once the
// joint data is available, and an attempt is made to pull data out of a joint - it becomes immediately apparent
// that it was not developed with this in mind.
//
//
void DataLoggingFactory::AddJointModules(int jfl ags) {
 for(std::vector<opal::Joint*>::iterator jE = mJointList.begin(); jE != mJointList.end(); ++jE) {
 opal::Joint* tempJoint = *jE;

 if (tempJoint == 0) {
 break;
 }
 std::string jointName = tempJoint->getName();

 for (int j=K_LOWEST_JOINT_EXPONENT; j <= K_HIGHEST_JOINT_EXPONENT; j++) {
 int curExponent = (1 << j);
 // if a given fl ag is set
 if (((curExponent) & jfl ags) == (curExponent)) {
 std::ostringstream entityModuleName;

DataLoggingModule.cpp - Code Listing

 entityModuleName << jointName << “ “ << DATA_TYPES[j].MeasurementName;
 DataLoggingModule* newModule;

 switch (DATA_TYPES[j].typeOfData) {
 case K_VEC3R:
 newModule = new DataLoggingModuleVec3r(entityModuleName.str(), 0, tempJoint, curExpo-
nent);
 mModuleList.push_back(newModule);
 break;
 case K_POINT3R:
 newModule = new DataLoggingModulePoint3r(entityModuleName.str(), 0, tempJoint, curExpo-
nent);
 mModuleList.push_back(newModule);
 break;
 case K_MATRIX44R:
 newModule = new DataLoggingModuleMatrix44r(entityModuleName.str(), 0, tempJoint, curEx-
ponent);
 mModuleList.push_back(newModule);
 break;
 case K_REAL:
 newModule = new DataLoggingModuleReal(entityModuleName.str(), 0, tempJoint, curExpo-
nent);
 mModuleList.push_back(newModule);
 break;
 case K_UNIMPLEMENTED:
 // message
 break;
 case K_CONSTANT:
 // implement
 break;
 }

 }

 }

 }
}

// This is the deconstructor function.
DataLoggingModule::~DataLoggingModule() {
}

// The Vect3r constructor handles storng the name, a pointer to a solid to pull data from, and an integer rep-
resenting
// which Vec3r to pull out of the given solid module
DataLoggingModuleVec3r::DataLoggingModuleVec3r(std::string name, opal::Solid* dSource, opal::Joint* jSource,
int v3rToLog):
 moduleName(name),
 dataSource(dSource),
 jointSource(jSource),
 vec3rToLog(v3rToLog) {
 // All of the member variables are assigned in the calling of this constructor
 // so there is nothing left to do in this method.
}

//
//
//
opal::Vec3r DataLoggingModuleVec3r::getDataVec3r() {
 opal::Vec3r returnVal;
 switch (vec3rToLog) {

 case LOG_EULER:
 returnVal = dataSource->getEulerXYZ();

DataLoggingModule.cpp - Code Listing

 break;

 case LOG_LOCAL_LINEAR_VELOCITY:
 returnVal = dataSource->getLocalAngularVel();
 break;

 case LOG_GLOBAL_LINEAR_VELOCITY:
 returnVal = dataSource->getGlobalLinearVel();
 break;

 case LOG_GLOBAL_ANGULAR_VELOCITY:
 returnVal = dataSource->getGlobalAngularVel();
 break;

 case LOG_LOCAL_ANGULAR_VELOCITY:
 returnVal = dataSource->getLocalAngularVel();
 break;

 default: // this is just in here while I’m testing
 returnVal = dataSource->getGlobalLinearVel();
 break;
 }
 return returnVal;
}

std::string DataLoggingModuleVec3r::outputVec3r() {
 std::ostringstream s1;
 opal::Vec3r dataVec3r = getDataVec3r();
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);
 s1 << dataVec3r.x << “\t” << dataVec3r.y << “\t” << dataVec3r.z << “\t”;
 return s1.str();
}

std::string DataLoggingModuleVec3r::HeaderOutput() {
 std::ostringstream head;
 head << moduleName << “ X” << “\t” << moduleName << “ Y” << “\t” << moduleName << “ Z” << “\t”;
 return head.str();
}

std::string DataLoggingModuleVec3r::OutputData() {
 return outputVec3r();
}

/***************************/
// Point3r output module

DataLoggingModulePoint3r::DataLoggingModulePoint3r(std::string name, opal::Solid* dSource, opal::Joint*
jSource, int p3rtoLog): moduleName(name), dataSource(dSource), jointSource(jSource),point3rToLog(p3rtoLog) {
 std::cout << “the class didn’t puke when creating the vec3r\n”;
}

opal::Point3r DataLoggingModulePoint3r::getDataPoint3r() {
 opal::Point3r returnVal;
 switch (point3rToLog) {

 case LOG_POSITION:
 returnVal = dataSource->getPosition();
 break;

 /* case JOINT_LOG_ANCHOR_POS:
 returnVal = dataSource->getLocalAngularVel();
 break;
 */
 default: // this is just in here while I’m testing
 returnVal = dataSource->getPosition();

DataLoggingModule.cpp - Code Listing

 break;
 }
 return returnVal;
}

std::string DataLoggingModulePoint3r::outputPoint3r() {
 std::ostringstream s1;
 opal::Point3r dataPoint3r = getDataPoint3r();
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);
 s1 << dataPoint3r.x << “\t” << dataPoint3r.y << “\t” << dataPoint3r.z << “\t”;
 return s1.str();
}

std::string DataLoggingModulePoint3r::HeaderOutput() {
 std::ostringstream head;
 head << moduleName << “ X” << “\t” << moduleName << “ Y” << “\t” << moduleName << “ Z” << “\t”;
 return head.str();
}

std::string DataLoggingModulePoint3r::OutputData() {
 return outputPoint3r();
}

/********************************/
// Matrix44r output module

DataLoggingModuleMatrix44r::DataLoggingModuleMatrix44r(std::string name, opal::Solid* dSource, opal::Joint*
jSource, int m44rToLog): moduleName(name), dataSource(dSource), jointSource(jSource),matrix44rToLog(m44rToLog)
{
 std::cout << “the class didn’t throw errors when creating the Matrix44r\n”;
}

opal::Matrix44r DataLoggingModuleMatrix44r::getDataMatrix44r() {
 opal::Matrix44r returnVal;
 switch (matrix44rToLog) {

 case LOG_INERTIA_TENSOR:
 returnVal = dataSource->getInertiaTensor();
 break;

 default: // this is just in here while I’m testing
 returnVal = dataSource->getInertiaTensor();
 break;
 }
 return returnVal;
}

std::string DataLoggingModuleMatrix44r::outputMatrix44r() {
 std::ostringstream s1;
 opal::Matrix44r dataMatrix44r = getDataMatrix44r();
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);

 for (int j=0;j<16;j++) {
 s1 << dataMatrix44r[j] << “\t”;
 }

 return s1.str();

}

std::string DataLoggingModuleMatrix44r::HeaderOutput() {
 std::ostringstream head;

 for (int i=0;i<4;i++) {
 for (int j=0;j<4;j++) {

DataLoggingModule.cpp - Code Listing

 head << moduleName << “Solid Transform “ << i << j << “\t”;
 }
 }

 return head.str();
}

std::string DataLoggingModuleMatrix44r::OutputData() {
 return outputMatrix44r();
}

/***/
// Real logging module

DataLoggingModuleReal::DataLoggingModuleReal(std::string name, opal::Solid* dSource, opal::Joint* jSource, int
rToLog): moduleName(name), dataSource(dSource), jointSource(jSource), realToLog(rToLog) {
 // all binary for joints with fl ags greater than 2^13 that are reals have multiple-axis reporting for them.
 multiAxisReporting = (rToLog > (1 << 13)) ? true : false;
 std::cout << “the class didn’t puke when creating the real\n”;
}

opal::real DataLoggingModuleReal::getDataReal() {
 opal::real returnVal;
 switch (realToLog) {

 case LOG_LINEAR_DAMPING:
 returnVal = dataSource->getLinearDamping();
 break;

 case LOG_ANGULAR_DAMPING:
 returnVal = dataSource->getAngularDamping();
 break;

 default: // this is just in here while I’m testing
 returnVal = dataSource->getLinearDamping();
 break;
 }
 return returnVal;
}

void DataLoggingModuleReal::getMultiAxisDataReal(opal::real* returnVal) {
 switch (realToLog) {
 case JOINT_LOG_DISTANCE:
 for (int i=0;i<3;i++)
 returnVal[i] = jointSource->getDistance(i);
 break;

 case JOINT_LOG_VELOCITY:
 for (int i=0;i<3;i++)
 returnVal[i] = jointSource->getVelocity(i);
 break;

 case JOINT_LOG_LOW_LIMIT:
 for (int i=0;i<3;i++)
 returnVal[i] = jointSource->getLowLimit(i);
 break;

 case JOINT_LOG_HIGH_LIMIT:
 for (int i=0;i<3;i++)
 returnVal[i] = jointSource->getHighLimit(i);
 break;

 default: // this is just in here while I’m testing
 for (int i=0;i<3;i++)
 returnVal[i] = jointSource->getHighLimit(i);

DataLoggingModule.cpp - Code Listing

 break;
 }
}

std::string DataLoggingModuleReal::outputReal() {
 std::ostringstream s1;
 s1.precision(MOVEMENT_LOG_OUTPUT_PRECISION);

 if (multiAxisReporting) {
 opal::real dataReal[3];
 getMultiAxisDataReal(dataReal);

 s1 << dataReal[0] << “\t” << dataReal[1] << “\t” << dataReal[2] << “\t”;
 }
 else {
 opal::real dataReal = getDataReal();
 s1 << dataReal;
 }

 return s1.str();
}

std::string DataLoggingModuleReal::HeaderOutput() {
 std::ostringstream head;

 if (multiAxisReporting) {
 head << moduleName << “ X” << “\t” << moduleName << “ Y” << “\t” << moduleName << “ Z” << “\t”;
 }
 else {
 head << moduleName;
 }

 return head.str();
}

std::string DataLoggingModuleReal::OutputData() {
 return outputReal();
}

DataLoggingModule.cpp - Code Listing

movementLoggerConstant.h - Code Listing

