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I have constructed a device that demonstrates the spectral decomposition 

of waves according to spatial location along a surface analogous to the 

function of the basilar membrane of the mammalian cochlea.  The design 

is based on previous work done by Robert Keolian at Pennsylvania State 

University.1  I have modified Keolian’s design to incorporate variable 

mass as well as stiffness and an electronically driven shaker, which allows 

the device to be driven with complex waveforms.  The model can be used 

to demonstrate beating, masking, and other psychoacoustical phenomena 

that occur on the basilar membrane.   



I. INTRODUCTION 

 Although there is much that is still not completely understood about mammalian 

hearing, a great deal can be explained by the function of the basilar membrane of the 

cochlea.  The cochlea is the snail shaped organ of the inner ear.  The basilar membrane 

divides the cochlear canal roughly in half as shown in figure 1.  Georg Von Békésy 

originally observed a traveling wave that deposits energy of different frequencies at 

specific locations along the basilar membrane.2  The basilar membrane varies in stiffness, 

mass, and width from its base to its apex.  The basal end is the stiffest, thinnest and least 

massive, and the apical end is least stiff, widest and most massive.  This means that the 

resonant frequency of the membrane differs along its length, with the basal end 

resonating at the highest frequencies and the apical end resonating at the lowest 

frequencies.3  This creates an impedance gradient in the membrane that produces waves 

that always travel from base to apex.3  Numerous mathematical but fewer physical 

models have been used to demonstrate the mechanics of this wave.1, 2,4,5,6   

 

FIG. 1. The cochlea and basilar membrane of the inner ear. 
 
 



I have built a physical model based on a design by Robert Keolian, a professor at 

Pennsylvania State University.1  A polycarbonate twin walled sheet of the type typically 

used in architectural glazing is attached vertically to a clear PVC tube that is bent 

downward.  The walls of the polycarbonate sheet are held apart by many thin parallel 

ribs.  The sheet is cut at the top along an exponential curve.  The PVC tube is bent 

downward on another exponential curve.  This creates many vertical channels of varying 

height connected at the bottom in the PVC tube as shown in figure 2.  The apparatus is 

filled with water up to a certain height in the vertical channels, .  The height of the air 

columns is then given by , and the height of the water columns is 

given by .  For the physical model, 
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61aD = 0 12wh = 1.74wD = m.  A driver is attached to the end of the PVC 

tube where the PVC pipe and the top of the polycarbonate sheet are closest.  The other 

end of the PVC pipe is stopped with a rubber cork.  A metal strip is connected to the top 

with small holes drilled above each of the channels.  After the apparatus is filled with 

water a piece of electrical tape is placed over the metal strip sealing the air in each of the 

channels.  The air trapped in the vertical channels acts as springs of varying stiffness, 

simulating the varying stiffness of the basilar membrane.  The height of the water varies 

along the apparatus simulating the varying mass of the basilar membrane.  When driven, 

traveling waves can be seen on the waters surface similar to traveling waves observed on 

the basilar membrane.  A numerical model was used as a design guide for the physical 

model. 

The physical model can be used in a classroom setting to help describe some of 

the basic physics of hearing, to demonstrate the function of the basilar membrane in the 



cochlea, and to explain how some psychoacoustical phenomena are created as a result of 

this function.  It can also be used to show wave phenomena such as beating, resonance 

and evanescence. 

 

FIG. 2. The demonstration apparatus. 

 

 

 

II. MATERIALS AND METHODS 

A. MATHIMATICAL MODEL 

I experimented with a numerical model that was a guide in the final design of the 

physical model.  The wave equation of the apparatus with varying modulus and its 

derivation are described by Keolian.1 

The derivation of the wave equation follows that of sound, starting from three 

differential equations: a force equation, an equation of continuity, and an equation of 



state.  Assuming harmonic time variations we let ( , ) ( ) jwty x t Y x e=  be the horizontal 

displacement of the fluid in a small section of the bent tube at the base of the apparatus 

representing the scala, or fluid filled section of the cochlea.  Let ( , ) ( ) jwtz x t Z x e=  be the 

vertical displacement of fluid in the apparatus, and ( , ) ( ) jwtp x t P x e= be the excess 

oscillatory pressure at the base of the sheet as shown in figure 3.  Newton’s Force 

equation can be written  
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where ρ  is the density of water. 

 

FIG. 3. Schematic detail of the vertical sheet and 
PVC tube.  Equilibrium positions of the liquid are 
shown with a dotted line; displaced positions with a 
solid line.  Taken from Keolian1 

 
 For sound the continuity equation relates the divergence of flow to the 

compression of the fluid.  Here the fluid is virtually incompressible and is instead 

allowed to move up the vertical channels.  If the distance between channels, , is small 

compared to the section of the apparatus that we are considering,

d

xΔ , and to the local 



wavelength, then the fluid entering a short section is .  Here  is the area of the 

PVC tube representing the scala.  The volume that leaves at 

( , )Sy x t S

x x+ Δ  is 

( , ) ( , )Sy x t S x y x t x+ Δ ∂ ∂  and the volume going up the vertical channel is ( , ) /z x t xa dΔ , 

where  is the area of the vertical channel.  The continuity equation is a statement that 

the net volume of water in a small section of the apparatus does not change, 
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 For sound, the equation of state relates the pressure fluctuations to the density 

fluctuations in the medium.  In the apparatus the pressure at the base of the vertical 

channel is related to the force per channel area needed to move the water column and 

compress the gas.  This relationship is given by 

2( ( ) ( )) /p K x j R M x z aω ω= + −  

Where ( )K x  is the spring constant of the gas trapped in the channel, R  is the mechanical 

resistance of the channel, and ( ) ( )wM x ah xρ=  is the mass of the water in the channel.  

For isothermal compressions the ideal gas law gives 0( ) ( )aK x P a h x= , where  is 

atmospheric pressure.  The damping term,

0P

R , is related to the viscosity of water. 

 We now proceed by taking the derivative of the equation of state with respect to x 

and substituting into Newton’s force equation, which give us 

2
2 2

2

1 ( ( ) ( )) ( ( ) ( )) 0z zK x j R M x K x j R M x
a x a x t

ω ω ω ω ρ∂ ∂
+ − + + − + =

∂ ∂
y∂

∂
. 

For gradual variations in K(x) and M(x) the second term can be ignored.  Next we take 

the derivative of the continuity equation with respect to x and substitute into the above 

equation with the second term eliminated to obtain 



2 2
2

2 2 2( ( ) ( )) 0Sd y yK x j R M x
a x t

ω ω ρ∂ ∂
− + − + =

∂ ∂
. 

This is the wave equation which can be written in the form 
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but it is more convenient if we let ( , ) ( ) j ty x t Y x e ω= .  This gives us  
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Here  is the effective bulk modulus.  A wave traveling from base to apex sees K(x) 

get smaller and M(x) get larger; c2(x) decreases to zero where most of the waves energy 

is deposited after which point c2(x) become negative and the wave becomes evanescent. 

( )B x

 Obtaining solutions numerically to this wave equation poses problems because the 

reflected wave always blows up at the apical end.  We can greatly simplify the problem 

by splitting the equation into left and right going waves,  
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Békésy observed only traveling waves in the cochlea, and as long as we are careful to 

avoid too drastic changes in impedance, we should see all the waves traveling from base 

to apex with no reflections.1, 3  The basilar membrane is completely flaccid at the apical 

end so that any low frequency energy is absorbed and not reflected.3  The apical end of 

the apparatus is not sealed with tape to replicate this condition.  With this in mind, we are 

justified in throwing out the wave that travels from apex to base.  We are left with 
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whose solution is given by 

0
( )

0( )

x

j
cY x y e
ω ξ
ξ

− ∂∫
= . 

This gives us an analytical solution which is easily implemented to find responses of the 

physical model.  Appendix A gives a Matlab M file which animates a solution for 

response when driven at two frequencies simultaneously. 

 

 

 

B. PHYSICAL MODEL 

Construction of the apparatus needs to be done with care.  I will here outline my 

method of construction.  Twin walled polycarbonate sheeting is obtainable from plastics 

manufacturers in various sizes.  I bought a 4 ft X 6 ft sheet from Laird Plastics in Salt 

Lake City.  The sheet comes with thin protective layers of plastic on each side.  These 

should be left on for as long as possible during the construction to protect the surface 

from scratching and marring.  The size of the channels formed by the ribs is 5.62 mm X 

7.87 mm, though there is some variation in this.  I mapped out the curves on the top and 

bottom of the apparatus by measuring and marking by hand.  This is a tedious process.  

Special care needs to be taken not to crack the ribs between the channels when cutting the 

polycarbonate sheet along these curves, especially along the top curve.  Cracks in the ribs 

will connect air columns making springs that are less stiff than intended.  I found that a 

band saw works fairly well for this, while a jig saw tends to crack some of the ribs. 



A slit that is just larger than the width of the polycarbonate sheet and the length of 

the bottom of the polycarbonate sheet needs to be cut in the PVC tube.  A milling 

machine was used to do this.  I used a shelf in the slit as shown in figure 4 to give the 

polycarbonate sheet something to rest on.  The PVC tube is most easily bent by filling it 

with hot sand or heating the PVC with a heat gun while it is filled with sand until it is 

fairly pliable.  Care should be taken that the tube is heated uniformly.  Care must also be 

taken so that the tube is not pinched or twisted during the heating and bending process.  

The tube can then be bent to the desired shape.  A form should be made ahead of time 

that the tube can be easily bent to.  The slit in the tube should be cut ahead of the 

bending.  Masking tape wrapped around the tube works well to keep the sand from 

spilling out the slit. 

 

FIG. 4 Cross section of PVC tube with slit and shelf 
 
 
 The PVC tube is then glued to the polycarbonate sheet.  The product I used is 

called, “Standard Weld On 16.”  This will break apart under sufficient stress.  If I were 

building another apparatus, I would search for better glue for this application.  The tube 

can be held to the sheet by wrapping them together with masking tape and rubber bands.  



If too many rubber bands are used, or the rubber bands are too tight, the ribs of the sheet 

on the opposite side of tube will crack because of the pinching of the rubber bands.  This 

must be avoided.  A good solution to this might be to place the metal strip on top so that 

the channels are not pinched.  More rubber bands could then be used to secure the tube to 

the sheet.  The PVC polycarbonate joint needs additional waterproofing after it is glued 

together.  For this I used a product called “Amazing Goop,” made by the same company 

that makes “Shoe Goo.”  A very generous application of this is needed along the PVC-

polycarbonate joint.  Excessive moving, jostling, and bumping will cause this joint to 

spring leaks that can be repaired by additional application of “Amazing Goop.”   

 A long setting epoxy is used to adhere the metal strip to the top of the 

polycarbonate sheet.  I used a 1/4 inch wide strip of aluminum and long setting “Loc-

Tite” epoxy.  The small holes that will rest over each channel need to be drilled in the 

aluminum before it is adhered to the polycarbonate sheet.  Drilling the holes after the 

aluminum strip is attached will likely lead to puncturing the ribs between the channels.  It 

is important that there is one hole resting above each channel.  I used a clear piece of tape 

placed over the top of the vertical channels and marked the place where each hole should 

be.  The tape was then moved to the aluminum strip and 1/16 inch diameter holes were 

drilled at each mark.  After the holes are drilled a generous layer of epoxy is applied to 

one side of the aluminum strip.  It is then necessary to clear the holes of epoxy with 

something like a toothpick.  The metal strip can then be secured to the sheet using rubber 

bands.  Great care must be taken so that the holes line up directly over the channels.  

When the epoxy sets additional epoxy is needed on the top edge of the polycarbonate 

sheet where it meets the aluminum strip in order to make the junction air tight.  Some of 



the holes will probably have filled with epoxy while it was setting.  Extreme care needs 

to be taken when clearing these holes so as not to puncture the ribs separating the 

channels.   

 I made the driver out of a few PVC pipe fittings.  A 3 inch diameter section of 

pipe is connected to the 1/2 inch clear PVC tube by 3 inch to 1 ½ inch and a 1 ½ inch to 

1/2  inch bushings.  A small piece of plastic machined to reduce the driver diameter 

inside the bushings gradually is also inserted.  Two clear plastic circles just less than 3 

inches in diameter are bolted together on either side of a latex sheet.  The latex sheet is 

held to the end of the 3 inch section of PVC with a hose clamp.  The bolt is reverse 

threaded so that it can be attached to the bolt of the shaker by means of a small metal 

piece machined with reverse threads on the driver side and forward threads on the shaker 

side.  This functions like a turnbuckle to connect the shaker to the driver.  A small hole is 

drilled in the top and bottom of the driver so that air can escape from the top hole while it 

is being filled with water, and the water can be drained from the bottom hole.  Flexible 

PVC tubing was glued into each of these holes so that they can be easily clamped and 

unclamped when needed. 

 

FIG 5. Driver assembly, the hose clamp and machined plastic 
inserted into the bushings are not shown 



 
 The apparatus is attached to a particle board base.  A “shark fin” shaped piece that 

follows the curve of the bottom of the apparatus and stands vertically is attached to a flat 

base.  The flat base sticks out about 1 ft 4 inches from the basal end of the apparatus to 

provide a space to mount the 4 inch X 6 inch post that will hold up the shaker.  The base 

structure needs to be very sturdy so that the energy of the shaker is not dissipated in 

shaking the base.  To strengthen the base I put two triangular shaped supports on either 

side of the shark fin, and one on each side of the post.  The shaker is bolted onto a 

platform that sits on top of the post.  The shark fin and post are mounted to the flat base 

by means of framing brackets.  A stabilizing strut is also needed between the shark fin 

and the post.  The apparatus is shown on top of the base in figure 1.   

The cochlear apparatus is mounted to the base by 5 wooden brackets shown in 

Figure 6.  The two brackets nearest the apical end are elongated to help stabilize the 

cochlear apparatus.  The brackets are bolted together on either side of the base so that 

they squeeze the PVC tube and hold it in place.   

 

FIG. 6.  Cross section of wooden bracket attaching cochlear apparatus to base. 



 

The model is about 10 cm in height at the basal end and 1.2 m in height at the 

apical end, not including the particle board base.  It is 4 ft long.  The particle board base 

adds about 4 inches of height, and 1 ½ ft of length.   

 

 

III. RESULTS 

 The completed model has an effective bandwidth from about 2 Hz to 35 Hz.  The 

amplitude of maximum response at the apical end is about 2 ½ inches and at the basal end 

about 1/8 inch.  Beating, evanescence, and the place principle (the maximum response of 

a sine wave corresponding to a specific place along the membrane) are all clearly evident 

throughout the entire bandwidth of the apparatus.   

 

FIG. 7. Response of apparatus driven at 4 Hz. 
 
 



 
 

FIG 8. Response of apparatus driven at 12 Hz. 
 
 
 A critical band is a bandwidth of the hearing spectrum where multiple stimuli 

within the bandwidth have a significant effect on one another, and effect the way we 

perceive pitch, loudness, and tone color.  This principle is responsible for much of the 

way we hear, and for the psychoacoustical effects of the basilar membrane.  This is 

clearly demonstrated on the physical model.  In connection with critical bands the model 

can show just noticeable differences in pitch, though just noticeable differences in 

loudness will be more difficult to observe.  The model can also demonstrate masking, and 

how low frequencies are better at masking higher frequencies. 

 The ear does not perceive a tone unless a certain number of cycles (dependent on 

frequency) are present in the signal.  We hear these signals as short clicks rather than 

short tones.  The model also shows how the basilar response to short duration tones is 

broad with no apparent region of maximum response. 

 

 

 



DISCUSSION OF RESULTS 

 The original design intent was for the apparatus to have a band width from 2 Hz 

to 60 Hz.  However, it is difficult to observe visually on the model what is happening at 

frequencies above around 20 Hz.  This makes the bandwidth above this region fairly 

useless as far as demonstration purposes are concerned.  While we can achieve this 

bandwidth, response is better if we put less water in the apparatus than was originally 

intended.  This means that the shaker used to drive the apparatus has less water to push, 

and less stiff springs to push against.  This leads more visible, higher amplitude response 

patterns across the device.  The sacrifice is bandwidth, but since the upper part of the 

bandwidth is fairly useless this is not a great loss.   

 The visibility of the waves and thus its usefulness as a classroom demonstration 

are greatly dependent on the amplitude of the waves traveling along the apparatus.  

Larger amplitude waves require greater stroke distance and a higher force rating of the 

shaker used.  We have found that to get adequate amplitude in our waveforms that a 

shaker with 0.75 inches of stroke with a 13 lbf rating was required.  An amplifier with 

sufficient power to drive the shaker at this force is also required.  Anyone wishing to 

build a similar model should take the cost of the shaker into consideration.  Other than 

the shaker the materials used are inexpensive. 

One of Keolian’s design objectives was portability of the apparatus.  In this 

design, a great deal of portability has been sacrificed in order to incorporate variable 

mass (to more accurately represent the properties of the basilar membrane), to increase 

the bandwidth, and to be able to show a greater variety of phenomena with electrical 

driving capabilities.  Since a good deal of the bandwidth at higher frequencies is not 



useful, a more portable design could be used with electronically driven means, and a 

versatile demonstration device achieved. 

The numerical model simulates very well what occurs in the physical model.  This 

is further validation of the simplification I made by throwing out the wave that travels 

from apex to base.  Use of the numerical model can be very helpful in the design of the 

physical model.  Of course, the more fine tuned the numerical model, the more accurately 

it will represent the physical model.  R depends on the mass of water in each column.  In 

my numerical model R is an average and is constant across the apparatus.  Those wishing 

to define R in terms of the mass of water in each column are referred to Keolian’s 

derivation of the wave equation for the device1.  Refinements to the numerical model 

could also be made at the driving end of the apparatus.  This could be useful in 

determining stroke and force requirements for the shaker. 

 

 

 

V. CONCLUSIONS 

 The physical model should be effective as a classroom demonstration.  It can be 

used in physics courses to illustrate principles of wave mechanics, resonance, beating, 

and evanescence.  It can be used in acoustics and speech, hearing, and language classes to 

help students understand cochlear function, and some psychoacoustics.  Other results are 

possible as well and further investigation into these possibilities is encouraged. 

 One possible extension of these ideas would be to build a wave tunneling 

demonstration.  This could be built in such a way as to show standing waves, evanescent 



waves, and traveling waves all at the same time.  The apparatus would be similar to the 

one that demonstrates cochlear waves.  The channels of the polycarbonate sheet would 

have a uniform short section, and uniform taller section, followed by another uniform 

short section.  The device could be driven so that, in the short section, the wave speed is 

real, and in the taller section the wave speed is imaginary.  This would create an 

evanescent wave in the taller section.  The first shorter section could be constructed so 

that the reflections from the interface where the wave becomes evanescent create 

standing wave patterns in the first section.  The third section would have the same wave 

speed as the second section.  This would allow the evanescent wave to tunnel into the 

third section.  An absorption boundary at the end of the third section similar to the 

cochlea would create traveling waves in the third section.  A schematic of this design is 

shown in figure 9.  This device could be very useful in helping students understand wave 

mechanics as well as having applications in quantum mechanics classes. 

 

FIG 9. Schematic of a wave tunneling demonstration. 
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APPENDIX A 
 
The following is Matlab code used to solve the one directional wave equation for two 
driving frequencies.  The solution is animated. 
 
clear 
close all 
  
set(0,'DefaultFigurePosition',[10   50  1000   500]); 
x=0:0.001:1.2960; 
inches=5/8; 
S=(inches*0.0254)^2*pi/4;  %cross-sectional area 
f1=10; 
f2=20; 
w1=f1*2*pi; 
w2=f2*2*pi; 
y1=.01; 
y2=.002; 
%parameters 
a=3.16e-5; 
d=6.45e-3; 
h_0=0.203; 
H=6.35e-3; 
D=0.381; 
R=0.0257*2; 
rho=1000; 
P_0=1.01e5; 
hw=.12*10.^(x./1.74428); 
M=rho*a.*hw; 
ha=0.0063*10.^(x./0.6096); 
K=P_0*a./ha; 
c1=sqrt(S*d/a^2/rho.*(K+j*w1*R-w1^2.*M)); 
c2=sqrt(S*d/a^2/rho.*(K+j*w2*R-w2^2.*M)); 
  
for p=1:length(x) 
    ic1(p)=sum(1./c1(1:p))*.001; 
    ic2(p)=sum(1./c2(1:p))*.001; 
end 
  
Z1=j*w1*S*d*y1*exp(-j*w1.*ic1)/a./c1; 
Z2=j*w2*S*d*y2*exp(-j*w2.*ic2)/a./c2; 
  
  
t=0:.002:1; 
for m=1:length(t) 
    z1=Z1*exp(j*w1*t(m)); 
    z2=Z2*exp(j*w2*t(m)); 
    bar(x,real(z1)+real(z2)); 
    xlim([min(x),max(x)]) 
    ylim([-max(abs(Z1+Z2)),max(abs(Z1+Z2))]) 
    xlabel(['t = ',num2str(t)]) 
    pause(.01); 
end 
 


