Development of a Data Reduction Pipeline for the ROVOR Observatory

Thayne A. McCombs

A senior thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Bachelor of Science

J. Ward Moody, Advisor

Department of Physics and Astronomy
Brigham Young University

August 2013

Copyright © 2013 Thayne A. McCombs

All Rights Reserved

ABSTRACT
Development of a Data Reduction Pipeline for the ROVOR Observatory

Thayne A. McCombs
Department of Physics and Astronomy
Bachelor of Science

The Remote Observatory for Variable Object Research (ROVOR) has a backlog of three years
of observations that have not been reduced or analyzed. In this Thesis we discuss software we
developed to improve the data reduction pipeline and automate many of the necessary steps in re-
ducing astronomical data. Specifically, we developed the RedROVOR python package to perform
the tasks necessary for reducing data from ROVOR, as well as an online web interface (RovorWeb)
which provides an easy to use interface to the RedROVOR toolset, as well as an online observation
log management system to keep track of observations made with the ROVOR observatory.

Keywords: Remote Observing, Computing, Data reduction, Astronomy, ROVOR

ACKNOWLEDGMENTS

I would like to acknowledge J. Ward Moody for advising me with this research. I would also
like to acknowledge Nathaly Young and Eric Hintz for teaching me how to use IRAF. I would like
to acknowledge all the members of the ROVOR research group. In particular Benjamin Boizelle,
Kimberly Bates, and Marcus Holden. I would also like to thank the National Merit Foundation and
Brigham Young University for providing scholarhips for my tuition, as well as the Department of
Physics and Astronomy and Office of Research and Creative Activities (ORCA) for funding my

research.

Contents

Table of Contents vii
1 Introduction 1
1.1 Motivation e e e 1
1.2 Background 2

2 Design 7
2.1 Overall Design 7
2.2 RedROVOR e 9
221 Passes e 10

222 Modules 12

23 RovorWeb e 13
231 accounts. e e e e 14

232 dirmanage. Lo e 14

233 reduction e 15

234 targets e e e e e e e e 16

2.3.5 obs_database 16

23.6 TOOt e e 16

2.4 ObsDB e 17

3 Implementation 19
3.1 RedROVOR e 19
3.1 coords e 20

3.1.2 simbad L 20

3.1.3 obsDB e 21

314 Processo e e 22

315 WCS .o e e 24

3.1.6 obsRecord e 26

3.1.7 photometry e 26

3.1.8 firstpass oL 29

3.1.9 secondpass 30

3.1.10 thirdpass e 31

viii

CONTENTS

3111 wutilso
3.1.12 renamer,
3.1.13 fitsHeader
3.1.14 frameTypes
3.1.15 observatories
32 RovorWeb
3.3 Observation Database

4 Conclusion and Future Work

A Source Code

A.1 RedROVOR
A.1.1 Photometry
Al12 Passes
A.13 Utlities

B Figures
Bibliography
Index

37

39

.................. 39
.................. 53
.................. 62
.................. 70

77

81

83

Chapter 1

Introduction

1.1 Motivation

The Remote Observatory for Variable Object Research (hereafter referred to as ROVOR) is a re-
motely controlled observatory located at Delta, UT with a 16” RC Optics Ritchey-Crétien telescope
mounted on a Paramount ME mount, all controlled using the Software Bisque suite of observatory
control software including TheSky, CCDSoft, and Orchestrate.

Because of the remote location of ROVOR it is desirable to automate as much of the data
collection process as possible. In particular much of the data reduction process is trivial enough
that automation is feasible, and where it is not, the amount of human interaction can be minimized.
Traditional methods of performing data reduction have not taken full advantage of this potential
for automation.

For the specific case of the ROVOR project, automating the data reduction process has the
added benefit that the reduction can be done remotely, on site, with minimal human input, and
therefore we only need to transfer the final photometric data from the observatory, rather than the

gigabytes of raw frames and calibration frames needed otherwise. This is especially important

2 Chapter 1 Introduction

given the slow internet connection and remote location, and would be even more important for
observatories in more remote locations.

Automation also has the obvious benefit of reducing the amount of time scientists must spend
on the mundane task of removing systematic errors from the data, and extracting the desired infor-
mation, and therefore increasing the time they can spend on actually analyzing and understanding
the data.

However, astronomical observation has many variables, and the automated process may not
always produce the desired results. For some observations, a more customized approach to the
data reduction process may be desired. Furthermore the needs of the observatory, and possibly
other observatories which utilize this software in the future may change over time. Therefore
it is important that our automation process be flexible enough that it allows the user to override
default behaviors, and to go back and check that the process was done correctly, as well as having
a modular design so that individual components of the process can be changed without requiring

the entire project to be modified.

1.2 Background

Astronomical data is primarily taken in the form of images taken with Charged Coupled Devices
(CCDs). Since astronomical objects are very faint, noise from the CCD and other sources is very
non-trivial. As a result the first step in analyzing astronomical data is to remove as much measur-
able error from the images as possible. This is done primarily with a number of calibration frames,
specifically zeros, darks, and flats.

Zero frames, or bias frames are images taken with a zero length exposure. This image measures
the effective zero-point for each pixel. Ideally the zero-point would be the same for every pixel

and would be constant with time. Unfortunately in practice neither of these conditions are true. To

1.2 Background 3

compensate we take a number of zero exposure frames every night, average them together to get
a master zero and subtract the resulting frame from all other frames, including other calibration
frames. By doing this we minimize the variability in the bias between pixels and between nights
in addition to subtracting the overall bias. One thing to note is that when performing the averaging
it is good to remove a few of the extreme points for each pixel to account for cosmic rays or other
outlyers. We remove the same number of maximal and minimal points for statistical balance.

In addition to the underlying bias, there is also noise introduced from thermal activity. Each
pixel in the CCD is similar to a small capacitor, when a photon strikes the pixel it transfers its
energy to an electron which can then jump to the other side of the capacitor and therefore cause a
change in the voltage, signifying that a photon has been detected. Unfortunately, thermal energy
can also excite an electron in the same way. The best way to deal with this problem is to cool the
camera enough that the thermal noise is negligible, and in fact this is often done with astronomical
instruments. However it is not always economical to provide such cooling, especially for smaller
telescopes, and another method must be used to account for it.

This method is to take dark frames. The amount of thermal noise can vary from pixel to pixel,
but unless the exposure is very short, or very long, the contribution to the image from thermal
noise is linear with time. Therefore by taking an image with the shutter closed we can measure
the amount of thermal noise per unit of time. It is best to expose for at least as long as the actual
data frames. Like zeros, darks are taken every night, then after subtracting the master zero from
them, they are averaged, rejecting extreme values for every pixel, to create a master dark. To apply
the master dark to the flats and object frames, the dark is scaled to the same exposure time as the
recipient frame and then subtracted from the recipient frame.

Unlike zero and dark frames, flat frames correct multiplicative errors rather than additive er-
rors. Flat frames correct differences in the transmission function across the chip of the CCD. The

differences could be caused by a number of both intrinsic an extrinsic causes. The primary intrinsic

4 Chapter 1 Introduction

cause of variable transmission is different sensitivity between pixels. Each individual pixel has a
slightly different sensitivity to light. Extrinsic causes include vignetting, imperfections in the op-
tics of the telescope, and dust. These effects remain somewhat constant with time, so flats can be
taken every few nights rather than every night. However since the transmission function is color-
dependent, and the filter itself might contribute to non-uniformity, flats must be taken separately
for each filter.

A flat frame is an image taken of a flat background, and by assuming that the background is flat,
any variation in the image must be created by systematic errors, and those errors can be removed
by dividing the object image by the normalized flat frame. Although there are different ways of
taking flats, the most common, and the method used by ROVOR, is to take flats during twilight,
once it is dark enough not to saturate the detector, but before stars are visible. Once the flats are
obtained for a filter, they must be both zero and dark corrected. They are then normalized to 1 by
dividing the entire frame by the mean of a square at the center of the detector. Finally they too
must be averaged with a min max reject. When applying the flats the object frame is divided by
the master flat for the corresponding filter.

Once the frames have been calibrated it is possible to perform photometry. Photometry is the
measurement of the amount of light radiated by the source. With ROVOR we are primarily inter-
ested in variable objects, which change in brightness over time. To measure how the brightness
changes there are two methods of photometry. Differential photometry compares the flux of the
target to the average flux of a collection of comparison stars in the same field. All-sky photom-
etry on the other hand uses a standardized field contains non-variable stars of known magnitudes
and colors, which is calibrated on the same night at similar airmasses to get the actual apparent
magnitude of the target.

Traditionally, photometry is done using the technique of aperture photometry. In this technique,

a circular aperture is made around the center of the target and the total number of counts within

1.2 Background 5

the aperture is measured. An annulus is also made further out from the aperture, beyond the
extent of the target’s point spread function (PSF). This annulus is used to get a value for the sky
background, which is generally computed using a mode. The instrumental magnitude of the target
is then computed by

Minst = —2.510g (Fyper —nB) +Z,

where F, ., 1s the total number of counts in the aperture, 7 is the number of pixels in the aperture,
B is the mode of the annulus, i.e. the background value, and Z is the zero point, which is the
instrumental magnitude assigned to the sky background.

Another method of photometry, brought about by digital imaging and computers is PSF fitting
photometry. This is the method which is used by RedROVOR project via the daophot IRAF pack-
age (Davis 1994). PSF fitting is more sophisticated than aperture photometry. Rather than simply
counting the number of pixels in an aperture it will fit a model PSF to the star and use that, along
with a determination of the background using a similar method to aperture photometry, to deter-
mine the instrumental magnitude. The primary advantage of this technique, is that it can cope with

multiple stars with overlapping PSFs. It can also provide slightly more accurate results in general.

Chapter 1 Introduction

Chapter 2

Design

2.1 Overall Design

Our intention was to design a system which would be easy to maintain and update as our needs
and existing technology changed. In addition, we wanted a system which, as much as possible,
could be used by other research groups and different observational systems. With this in mind we
split the project into sub projects and those sub-projects into modules. In addition the project of
automating the reduction of data had to fit in with the more broad design of the entire observatory
system. In particular at some future time we expect to combine the data reduction process with the
observation process, once we have completed a more robust method of automating observation.
The data reduction project is split into three sub-projects, as can be seen in Figure 2.1. These
projects are RedROVOR (Reduction for ROVOR), RovorWeb, and ObsDB (Observation Database).
RedROVOR is the collection of all the back-end functions and classes used to perform the vari-
ous stages of reduction. Although it contains a couple of executable scripts, it is intended primarily
as a library for front-end user interfaces such as RovorWeb to use. The RedROVOR library exposes

a relatively abstract public API which allows for changes in the implementation without needing

Chapter 2 Design

Figure 2.1 The Structure of our software design. The green boxes are the components of
our system, the beige boxes are external libraries or programs, and the blue box represents
the SIMBAD website. Arrows represent dependencies.

PYFITS ’ ‘ SIMBAD

RedROVOR
Library

Observation
Database

Django ‘ PHP ’ ‘ MySQL ’

‘ Apache \ ‘ MySQL 1

2.2 RedROVOR 9

to change client code. The advantage of having a seperate project for the back-end code is that
multiple clients can use the same code to perform the actual computations, while giving different
interfaces to the user. In addition to RovorWeb useful front-ends could include an automatic obser-
vation process invoking the reduction process after a night of observation, or a server-client system
that uses local applications rather than a web browser as an interface. RedROVOR is a normal
python package and can easily be installed like any other python package.

RovorWeb is an online interface for the reduction process. It uses normal web standards in-
cluding HTTP, HTML, CSS, javascript, and JSON (Crockford 2006). As mentioned above it does
not actually contain the code for performing the reduction, but uses the RedROVOR library. The
interface allows the user not only to perform all the reduction stages either individually or several
at a time, but also to browse the portion of the filesystem containing the data including download-
ing FITS files at any stage, and maintaining a database of target objects. It is also designed in such
a way that another client can make use of the web-services exposed and use a different interface.

ObsDB is as its name implies a database of observations that have been taken and an online
interface to access it. It is designed so that observations can be added either manually or automat-

ically from the RedROVOR library or other client.

2.2 RedROVOR

Since several astronomical libraries already exist in Python, in particular PyFITS, PyRAF, and
pywcs, it makes sense to write our RedROVOR library in python. Thus the RedROVOR library
is a python library which must perform a number of tasks. These tasks include zero, dark and
flat calibration, astrometric correction, and photometry. We have also chosen this library as the
location for code which interacts with the SIMBAD API and ObsDB which is located at the rovor

website (http:\\rovor.byu.edu).

http:\\rovor.byu.edu

10 Chapter 2 Design

2.2.1 Passes

To facilitate streamlining the pipeline as much as possible we have divided the reduction process
into three “passes”. Each pass performs its processing steps on all of the images in a directory and
prepares the directory for the next pass. The passes are divided by the amount of work that can be
done at one time. Practically this means that the breaks between passes roughly correspond to the
points when we need user input. Each also consists of several steps, which must be performed in

consecutive order. Below we describe each pass.

First Pass The first pass performs the zero and dark calibration, and creates master flats, if any.
The master calibration frames and processed object frames are stored in a seperate directory from

the raw data. The steps are:

1. Examine Directory: Examine the headers in all FITS files and determine the frame type for

each frame (i.e. whether it is a zero, dark, flat, or object).

2. Create Master Zero: Average together zeros with min/max reject to create master zero.

3. Create Master Dark: Subtract zero, and average scaled darks with min/max reject to create

master dark.

4. Create Master Flats: If there are any flat frames in the directory, then for each filter, subtract
the master zero, and scaled master dark, then average the normalized results with min/max

reject.

5. Subtract Zero and Dark: For all the object frames in the directory subtract the master zero
and scaled master dark. We don’t apply the flats yet, because we need the user to tell us

which flat to use for each filter.

2.2 RedROVOR 11

Second Pass The second pass applies flats to the object frames and performs an astrometric
correction to apply a World Coordinate System to each object frame. The second pass is done in

the processed directory where results from the first pass are placed. The steps are:

1. Examine Directory: Examine headers of object files and determine which filters for each

object are present.

2. Determine Flats to Use: This step requires user interaction. The user must supply a flat
frame for each filter that is present in the object frames. These flats were most likely created

during the first pass, either for this directory, or a different one.
3. Divide by Flats: Each object frame is divided by the flat that corresponds to its filter.

4. Apply WCS: A World Coordinate System is applied to all object frames. The resulting

images, along with WCS information is stored in a subdirectory named “WCS”.

Third Pass The third pass is responsible for performing photometry. For greatest accuracy we

use PSF fitting photometry with JRAF’s daophot package. The steps are:

1. Examine Frames: Examine the headers of the frames to determine which objects need to

be photed.

2. Retrive Coordinate Lists: For each target in the directory a file containing celestial coor-
dinates for the target and comparison stars is needed. This file must come from an outside
source. The file could either be user supplied or automatically generated, as is the case for

RovorWeb .

3. Determine Paramaters and Perform Photometry: Using the image frame and coordinate
list for each frame, determine optimal paramaters for performing photometry, and then per-

form the various daophot tasks to perform the photometry.

12 Chapter 2 Design

4. Extract Light Curves: For each object-filter combination extract the HID and instrumental

magnitude from the photometry output files, and combine into a single file.

2.2.2 Modules

The RedROVOR library is a standard Python package consisting of several modules, and sub-
packages. It can easily be installed using an installation script using Python’s distutils package,
which will properly place the package in the system’s site-packages directory. The rest of this

section will describe the purpose of important modules in the library.

coords The coords module is a relatively small module which is responsible for defining data
structures for celestial coordinates. These data structures are also capable of converting between

various representations of celestial coordinates.

simbad The simbad module, as its name suggests, provides functions that interact with the SIM-
BAD database. These functions include functions to get the look up the celestial coordinates of an
object, get a normalized name for an object, and look up the name of an object from its celestial

coordinates.

obsDB The obsDB module contains functions for interacting with the ObsDB API . These func-
tions allow RedROVOR and incidentally RovorWeb to retrieve and store information to the obser-

vation database.

process The process module is the module which contains code to perform image calibration
with zero, dark, and flat frames. It also supports a few other arithmetic procedures on images, such
as addition, subtraction, division, averaging, etc., most of which are used as part of the calibration

process.

2.3 RovorWeb 13

wes The wes module is the module responsible for applying a World Coordinate System (WCS)
to FITS files. It uses the astrometry.net (Lang et al. 2010) application to automatically perform the

astrometric solution. It is in essence a python function that runs astrometry.net as a sub-process.

obsRecord The obsRecord module contains functions to automatically record observations ei-

ther for a single FITS image or for all FITS images in a directory.

photometry Due to the complexity of performing photometry, an entire package is needed im-
plementing photometry, although from the users perspective, the photometry package can be

treated as a module. It contains the code to perform photometry and generate the light curve files .

firstpass, secondpass, and thirdpass These three modules encapsulate the three “passes” per-
formed during the reduction process as described in 2.2.1. Each module contains a function which
performs all of the steps in a pass, and a Processor class which implements each of the steps of the

pass as methods.

2.3 RovorWeb

Since our backend is written in Python, it is advantageous for us to write our server logic for
our web interface in python as well. Although there are multiple ways of doing this, the Django
(Django Accessed July 22, 2013) framework is a stable and well-respected web framework for
python and takes care of much of the necessary work to set up a dynamic web application. Thus
we used the Django framework to develop RovorWeb.

The Django framework, like most web frameworks, uses a Model, View, Controller (MVC)
architecture, although Django changes the terminology calling Controllers views and Views tem-

plates. Using the Django terminology, the model takes care of the data stored on the server and

14 Chapter 2 Design

serializing it to a database. The template is, as its name suggests, an HTML template which is used
to generate the HTML page sent to the client, and the view (or controller in MVC terminology)
contains the logic to handle form input and instantiate the templates into actual HTML pages.

In the Django framework, a project consists of one or more “apps” which is implemented as a
python package. Thus it is possible to split up a project into logical sub-projects. We take advan-
tage of this in RovorWeb to separate the project into the following apps: accounts, dirmanage,

reduction, targets, obs_database, and root. The rest of this section will describe these apps.

2.3.1 accounts

Since we want our web interface to be available to us remotely, our server must be available on
the public internet, however we do not want our web interface to be vulnerable to corruption or
other malicious intent from exterior parties. Therefore, we protect the interface using an authenti-
cation process. Django takes care of much of the authentication process for use using the built in
authentication app, but we need to provide templates and views for the login page, and logging

out. These are placed in the accounts app.

2.3.2 dirmanage

The user must have a means of selecting folders on the server in which to process images. It would
also be nice for the user to be able to see which files are in the folder and to download files from
the folder. All of these tasks require access to the server’s filesystem and therefore it makes sense
to combine them into the same app.

While we want the user to have access to some parts of the filesystem, we do not want them to
have access to the entire filesystem. Therefore the dirmanage app contains a model which keeps
track of which directories the user can access. If the user tries to access a file or folder that is not

a descendant of one of those directories, the access is forbidden. The model also produces a sort

2.3 RovorWeb 15

of virtual filesystem in which the directories in the database are top-level directories. The model
is responsible for translating paths between this virtual filesystem and the actual filesystem on the
server.

RovorWeb and RedROVOR are intended to have at least two accessible directories: Raw and
Processed. Raw is the directory where the raw images are stored after an observing session, and
Processed is where all of the processed frames are stored.

The dirmanage app contains views which allow the user to browse the accessible folders,
and download any files within those folders. It also contains some widgets which the other apps
use to provide dialogs to the user which allow the user to select a file or folder. It also provides
views which produce JSON (Crockford 2006) descriptions of directory contents. These views are
used extensively with AJAX both in dirmanage and other apps, and could easily be used by other

clients wishing to browse the virtual filesystem.

2.3.3 reduction

The reduction app is the piece de résistance of RovorWeb. It is the app that actually performs
all of the image processing. However, the code in the app does not actually do any image process-
ing directly, rather it processes HTTP requests which may contain form data, and then calls the
applicable code in RedROVOR.

The reduction app roughly follows the design of RedROVOR. Specifically it is broken down
into three passes as described in 2.2.1, and the index page shows a link for each pass. The page for
each pass then prompts the user for the directory to process, and any other user-required informa-
tion, then presents the user with one or more buttons which allow the user to perform the pass in

its entirety, or to perform a single step of the pass.

16 Chapter 2 Design

2.3.4 targets

When we perform photometry we need to know the coordinates of the target and its associated
comparison stars. This information is stored in a database, which is accessed using the models in
the targets app.

For each target the database stores the name, the celestial coordinates, and a normalized name,
i.e. the first name in the name list on SIMBAD. It also has a related table which stores the coor-
dinates for all the comparison stars (and the target). The model can generate a coordinates file for
a target field from these database tables. This is preferable to a static coordinate file, because it is
more dynamic and the comparison star list can be easily changed.

In addition to the models, which are used for photometry, the targets app contains views
which allow the user to edit the list of targets, and their associated coordinate lists, see Figures B.1
and B.2. This includes the capability to upload a coordinate file, such as one produced by ds9, or

to synchronize targets with the targets on ObsDB.

2.3.5 obs_database

The obs_database app, is not the actual observation database, although at a later time it may be
much more closely integrated with it. The main purpose of the app is to allow users to upload
automatically record observations based on the header information in the headers of all images in
a folder. Since this only has one task, the interface is relatively simple. The user simply selects a

folder to record observations for and push a button. See Figure B.3.

2.3.6 root

The root app is not in itself an independent web app. Rather it is the location of resources that are

common to all the apps. In particular it contains javascript and CSS files, and a base template that

2.4 ObsDB 17

most of the other templates extend.

2.4 ObsDB

The ROVOR observatory generates a large number of images each night of various objects and
in different filters. Most of this has not yet been analyzed. When we later wish to go back and
analyze the data it is time consuming to look through hundreds of nights to find data for the object
of interest. Therefore it is advantageous to create a method to efficiently search previous nights for
objects of interest. Thus we produced a searchable database system of all observations and a script
which can crawl through a filesystem, automatically uploading observations into the database.

For the database we took advantage of the resources we already had in place for the ROVOR
website. Specifically we had web hosting provided by the department with a MySQL database and
php.

Initially the design simply used dynamically generated html. However it was quickly apparent
that some aspects of the web interface lent themselves readily to AJAX (Asynchronous Javascript
And XML). In addition, by using AJAX we could use the same web services to provide data and
upload information from both the web interface and the automatic script, as well as potentially
other clients. Although we started with using XML as the data interchange format, parsing the
XML was giving us slow performance, so we switched to JSON (JavaScript Object Notation)
(Crockford 2006) which was much faster.

The database stores information about each of our targets including the name, celestial co-
ordinates, and optionally the type of the object. It also stores the following information about
observations: target object, filter, date and number of frames.

The web interface has pages to manually add observations or target objects to the database, up-

load lists of observations or objects to the database, edit existing observations, and browse existing

18 Chapter 2 Design

observations. When browsing it is possible to filter observations by date or target object.

Chapter 3

Implementation

3.1 RedROVOR

Initially we intended to use the Image Reduction and Analysis Facility (IRAF) for the data reduc-
tion, later we decide to use Python bindings for IRAF called Pyraf. However dealing with the
finicky and temperamental requirements of /RAF led us to decide that it would be easier to simply
rewrite the reduction routines using the lower-level PyFits library and the numpy numerical library,
especially since for our observations we do not need the full capabilities of IRAF. This turned out
to be a good decision since the hand-coded python routines were more stable and simple than using
PyRAF, and it also simplified the code base quite a bit, since we can manipulate the image data
directly in memory rather than having to store intermediate results to file. However, due to the
inherent complexity of photometry, especially since we desired to perform PSF fitting photometry,
we elected to use IRAF for the photometry portion of our process.

In the rest of this section we discuss the implementations of each of the modules in the redrovor

python package.

19

20 Chapter 3 Implementation

3.1.1 coords

The coords module (Listing A.1) contains two classes and a named tuple.

The RA_coord and Dec_coord classes are symmetric in many ways. Both are representations of
a celestial coordinate in sexigesimal form. Internally the coordinate as stored as three number, the
hour/degree and minute are stored as integers, and the second is stored as a Decimal object, which
has arbitrary precision and doesn’t suffer from the rounding errors that the binary representation
of a float would introduce.

The coordinate classes each have constructors that allow them to be constructed from their
three components, but they also have factory class methods which construct a coordinate from a
properly formatted string, or from a number in fractional degrees (and for RA_coord hours). The
string can either be a space or colon delimited string in sexigesimal format, or a fractional degree
value.

The classes also contain methods which return a Decimal value containing the fractional dec-
imal representation in degrees (and for RA_coord hours), and arc-seconds. The formulas used to
convert from the three value representation to degrees are §° = d + m/60 + s/3600 for declina-
tion and o° = 15(h+m/60 + 5/3600) for right ascension. Going the other way requires repeated
truncation, division and modulo operations.

The coords module also contains a Coords class which is simply a named tuple containing an
RA_coord and Dec_coord. 1t has a convenience method withinRadius which determines if another
Coords object is within a certain radius of it. The module also has a convenience function which

will parse a Coords object from a coordinates file in the format output by ds9 in xy mode.

3.1.2 simbad

The SIMBAD website has a public API which allows clients to make requests with “scripts” that

can be sent with the standard HTTP GET method. The URL for the service is http://simbad.

http://simbad.u-strasbg.fr/simbad/sim-script
http://simbad.u-strasbg.fr/simbad/sim-script

3.1 RedROVOR 21

u-strasbg.fr/simbad/sim-script. We use this api to retrieve information from SIMBAD.

The heart of the simbad module (Listing A.2) is the script_request function which uses the
Python urllib library to send a GET request to SIMBAD, then split the result into an array of
lines. It automatically adds a line to the script to supress some header information that needlessly
complicates the output. The rest of the functions in the database simply construct a script to send
to SIMBAD, and then parse the results to create the appropriate python object.

The two most important function are getMainName and getRADec. getMainName gets a nor-
malized name for an object by retrieving the first name in SIMBAD’s list of names for an object.
Since this procedure is performed quite frequently the function implements a cache which it uses
to store previous look-ups. If the function is called with the same input name it will return the
cached value. This significantly reduces the overhead of network traffic. getRADec will retrieve
the celestial coordinates of an object, then parses them into a Coords object . However, SIMBAD
occasionally returns the declination in a format that contains only the degrees and minutes, not the

seconds, so getRADec must handle that special case by parses the string itself.

3.1.3 obsDB

Like the simbad module, obsDB (Listing A.3) interacts with a remote server. However, it is further
complicated because ObsDB uses cookies to keep track of state and requires the user to be logged
in for some operations.

To handle these complications we use the ur11ib2 and cookielib libraries to create a URL
opener with an associated cookie jar, and then use that opener to make the necessary login POST
request. This starts the session and maintains the cookies for the session until the logout function
is called or the module is unloaded.

Since all of the web services that redrovor uses return a JSON (Crockford 2006) object in the

HTTP response, we have a helper function _sendRequest which will construct the correct URL,

http://simbad.u-strasbg.fr/simbad/sim-script
http://simbad.u-strasbg.fr/simbad/sim-script

22 Chapter 3 Implementation

properly encode any request data, and once it receives a response, decode the JSON object into a
python object. The rest of the functions in the module simply supply the page to use in ObsDB and

a dict containing the request data, and return the result of _sendRequest

3.1.4 process

To simplify the logic of performing operations on several images at once we implemented an
ImagelList class in Python. This class can is in the process module (Listing A.4). This class was
inspired by the way that Mira Pro handles image reduction. It represents a list of several related
images on which operations can be performed simultaneously. These operations can be classified
into two categories: transformations (or maps), and aggregations (or folds).

Transformations such as addition, subtraction, division, etc. are operations that are performed
on each of the images in the list individually and produce a new ImageList or alter the existing
ImagelList. Essentially, these operations iterate over each frame in the ImageList and perform a
simpler operation on that frame. That operation may involve a second operand, which may be a
scalar value — i.e. a number — or another image frame.The operations on the individual frames
are often performed by functions from the numpy library which operate with both scalars and
arrays.

Aggregations are a little more complicated since they involve all of the images in a single
computation which produces a single result. The most important of these operations are the sum
and average operations (although the average is simply the sum divided by the number of frames).
Although it would not be that difficult to write code to perform repeated applications of addition
for the sum operation, the numpy library again helps us out with its “universal functions” and the
reduce method which give us a shorthand for performing repeated computations over a collection.
Since the numpy library is written in native C, using the numpy methods also gives us a performance

benefit. However, we would like to reject the minimal and maximal values to account for the

3.1 RedROVOR 23

possibility of cosmic rays. This produces a bit of a difficulty since we don’t know which points
to throw out until we have finished iterating over all the frames. The way we handle this is by
constructing a three dimensional array in which the first axis is the index of the images. We then
sort the array along this axis using the numpy sort function. Finally we fold addition over the

subarray excluding the top and bottom points as seen in the code:

all = numpy.array (map(lambda im: im[O0].data, self._list))
all.sort(0) #sort along frame axis , so we can reject the min and maxes
total = numpy.add.reduce(all [minmax:—minmax])

The operations supported by the ImageList are as follows:

averageAll and avCombine These methods compute the average of all the frames in the Image-
List by adding all the frames together by the method described above, and dividing by the
number of frames minus the number of values rejected by min-max rejection. averageAll
simply returns a numpy array. On the other hand avCombine wraps that array in a Primary-
HDU object from the pyfits library. It copies over the header information from the first frame

in the ImageList as well as updating a couple of fields (see Listing A.4).

subtraction Subtraction is important for correcting both zeros and darks. Therefore we implement
subtraction. If the second operand is a PrimaryHDU we extract the numpy array from it and
subtract that from each frame, otherwise if it is a scalar or numpy array, we just loop over

the frames and subtract it from each frame.

division Division is used both for scaling darks by exposure time, and doing flat correction. It is

implemented similarly to subtraction.

normalization The normalize method computes the average value of a central block of the frame
(100 x 100 by default) and then divides each frame by that average.This is used to normalize

flat frames.

24 Chapter 3 Implementation

subZero, subDark, and divFlat These methods perform the calibration for zero, dark, and flat
frames respectively. Each takes an argument which is a string with the path to the calibration
frame which should be applied. The methods open the appropriate calibration frame, and
then perform the appropriate correction to each frame in the ImageList. subZero simply
subtracts the zero frame; subDark multiplies the dark frame by the exposure time of the
image frame, then subtracts the result from the image frame; and divFlat divides the image

frame by the flat frame, which is assumed to already be normalized.

saving The ImageList supports three methods of saving:

1. Each frame can be saved in place, that is, each frame is saved in the same location it

was read from. This is implemented as the saveInPlace method.

2. Each frame is saved with the same filename, but in a different folder. This is imple-

mented as the saveToPath method.

3. Each frame is saved with the same path and prefix, but with different numerical suffixes.

This is implemented as the saveIndexed method.

In addition to the ImageList class, the process module contains functions which will create
and apply all three kinds of calibration. These they accept strings containing paths to images, and
take care of opening them, and making the appropriate calls to ImageList. They can optionally also

save the results, or return the results as an ImageList or PrimaryHDU.

3.1.5 wecs

The wcs module (Listing A.5) is a relatively simple module. It has a single public method
astrometrySolve which takes a variable length arguments list (varargs) containing filenames to

perform photometry on and optional keyword arguments which will be explained momentarily.

3.1 RedROVOR 25

We use a local installation of the astrometry.net (Lang et al. 2010) astrometric system to find
the plate solutions for our frames, so the astrometrySolve function creates a child process that
executes the astrometry.net solve-field program with command line options that were generated
from the arguments passed to astrometrySolve. Normally the child process would execute asyn-
chronously, however, since the number of frames to process is generally very large, spawning all of
the processes at once exhausts system resources and the system freezes. To solve this problem we
wait for the current child process to terminate before continuing with the program. It would also
be possible to create a finite pool of threads, each one processing a single frame. This would allow
the program to process multiple frames simultaneously without exhausting resources. However,
due to time constraints and only marginal expected gain we did not implement it as a thread pool.

To create the command line arguments we look at the keyword arguments supplied and translate

them into the corresponding command line arguments. The following options are supported:

guess A Coords object or tuple containing the approximate right ascension and declination of the

center of the frame.

radius The radius of error for the coordinates supllied in guess. The solution will only be tried
with coordinates within a distance of radius degrees of the guessed coordinates. Defaults to

one.

lowscale The lowest plate scale to try.

highscale The highest plate scale to try.

outdir The directory to store the resulting files in.

isfits A boolean indicating whether or not the frames are in FITS format. Defaults to true.

options A list of strings containing any command line options to include directly.

26 Chapter 3 Implementation

3.1.6 obsRecord

The obsRecord module (Listing A.6) contains code to record observations for all the frames in a
directory. It contains two functions, recordObservation and recordDir, which record individ-
ual observations, and all observations for a directory respectively.

The recordObservation function will get the name of the object from the headers of the
frame, using “unknown” if the the TITLE field isn’t set and it is unable to determine the title
from the celestial coordinates. It then gets the information about the target from the observation
database, creating a new target entry if the name does not already exist in the database. After that it
retrieves information from the header and uploads observation information to the remote database
using the obsDB module. .

The recordDir function simply walks through all files in the directory recursively, and for
every file that is a FITS file it checks the frame type. If the frame type is “object” then it will call
recordObservation on the frame.

At the moment it sends an individual request for each frame in the directory. To conserve time
and space it would be better to send all of the recorded observations together in a single HTTP
request, and to group frames of the same target in the same filter together in the same record.

However, due to lack of time we have not yet made these optimizations.

3.1.7 photometry

The photometry package is probably the most complex part of the redrovor package. Unlike the
rest of the modules discussed in this section it is complicated enough to warrant splitting it into
multiple modules and making it a package rather than putting it all in one package.

Although we opted to create our own routines for calibration, photometry is significantly more
complicated, so for our first attempt at least we decided to use PyRAF, an interface to IRAF to

perform the actual photometry.

3.1 RedROVOR 27

Although the photometry package consists of multiple modules, the __init__.py file (Listing
A.7) imports all the functions that the client code would use, so that those functions can be used
by simply importing redrovor.photometry. Specifically __init__ imports init, phot, and
makelLightCurves.

The irafmod module (Listing A.8) is intended to properly initialize PyRAF. The init func-
tion imports pyraf and loads the necessary iraf packages. It temporarily changes directory to the
directory supplied, or a default value, since when importing PyRAF, the working directory needs
to contain the login.cl file. check_init simply verifies that the irafmod module has been
properly initialized.

Since we decided to use PSF fitting photometry, specifically using daophot in IRAF, we need
to determine a number of paramaters, some of which vary from frame to frame. In particular we
need to determine the Full Width at Half Maximum (FWHM) of the PSF for the frame, as well
as the average background, and the standard deviation of the background. These computations are
performed in the calc_params module.

getBox takes an image frame, the celestial coordinates of the target, and optionally a size of
box to get, and returns a subarray containing the pixels of the image inside a box centered at the
celestial coordinates supplied. It does this by converting the right ascension and declination to
degrees, then using the pywecs library to convert the celestial coordinates to pixel coordinates from
the WCS in the headers of the image. background_data retrieves the average background average
by taking the central box determined by getBox and retrieving a histogram of the values with a
bin size of 1. It then sets the average to the value that corresponds to the bin with the highest
frequency. The standard deviation is estimated by taking a standard deviation of the box, with any
value greater than twice the average background trimmed off. This is done to ignore the values
due to stars or other objects in the central frame. These measurements are intended to measure

the background in the area around the target object, however they assume that most of that area

28 Chapter 3 Implementation

is in fact background, and that most of the light from the stars is at least twice as bright as the
background. If either of these assumption is false, the algorithms will not give good estimates.

The getAverageFWHM function uses the IRAF task psfmeasure to measure the average FWHM
of the PSFs for a frame. It simply sets a number of paramaters for psfimeasure then calls psfmeasure
and parses the average value from the result. This assumes that the supplied coordinates are good
stars to measure the FWHM and does not reject outliers.

Related to the calc_params module is the params module. This contains a Params class which
extends dict and keeps track of the plethora of parameters needed for photometry. Params is again
extended by DAO_params which adds specific parameters for daophot. Both classes also have
reasonable defaults for many of the parameters, and some methods which compute parameters
from other parameters. The DAO_params class also has a method called applyParams which
sets the appropriate IRAF parameters in the daophot package according to the values in the dict
underlying the Params object. The module also contains the convenience function getDAOParams
which takes an observatory object (described in Section 3.1.15) an image path, a coordinate file,
and optional keyword arguments, and then uses calc_params to compute the FWHM, background
and background standard deviation, then returns the resulting DAO_Params object.

If another photometry method was added to RedROVOR it would be straightforward to imple-
ment a seperate subclass of Params which specialized the parameters for that method of photome-
try.

Finally, the daophot module provides the phot function which performs the actual PSF fit-
ting photometry with daophot. 1If a Params object is not passed to it, it will create one with
getDAOParams. It then calls applyParams on the Params object to set the appropriate IRAF pa-
rameters. It will then temporarily change into the output directory, since IRAF works best by being
in the directory in which output should be stored. While in this directory it calls the daophot tasks

phot, pstselect, psf, group and nstar in that order. Each step uses output from the task preceding it

3.1 RedROVOR 29

so the order is imperative.

Once the daophot module produces the photometry files, we would like to have the photomet-
ric data in a more usable format since the output from IRAF is rather unwieldy. Therefore, the
lightcurves module contains the makeLightCurves function which parses the phot files and
creates two column files with the heliocentric julian date and instrumental magnitude. Rather than
creating a temporary file, we use StringlO to manipulate the output, so that we can manipulate the
data in memory. We first use the IRAF pdump task to dump the data from the phot file into a more
conventional column-based text file (which in our case is stored in memory). We then use the csv
library to parse that output and split it up into multiple files based on the star ID and filter. To keep
track of all the different combinations of star ID and filter we use a map from tuples of the ID and
filter to open file objects. While this works fine for moderate numbers of comparison stars, for

very large numbers this will exhaust the number of file descriptors available to a single process.

3.1.8 firstpass

The firstpass module performs all of the logic necessary to complete the tasks in the first pass.
Since there are multiple steps which most be performed in a specific order, with the state stored
between each step we created a class, FirstPassProcessor which has each step of the pass as a
method, and stores the state of the operation in member variables. The firstpass method of
the FirstPassProcessor calls the other main methods in the correct order, to perform the first
pass, and the doFirstPass function simply creates a FirstPassProcessor for the path and calls
FirstPassProcessor.firstpass.

The first step is to go through the headers of the images and split them up according to frame
type, and split the object frames according to the target object. The constructor of FirstPassPro-
cessor finds all of the FITS files in the supplied folder and store them in a list. It also creates a new

sub-directory under “/data/Processed” based on the date of the first frame. buildLists then uses

30 Chapter 3 Implementation

functions from the frameTypes module to construct data structures storing lists of the different
frame types, and lists of each object for object frames. Since this computation takes a non-trivial
amount of time, and different parts of the first pass could be done at different times we persist
these data structures by saving them in JSON (Crockford 2006) format as a file. If the class is
later instantiated with the same folder, it can load the JSON file and use the data structures without
having to recompute them.

The makeZero, makeDark, makeFlats, and zero_and_dark_subtract methods are simply
wrappers around respective functions in the process module. Each step stores the result of the
operation, to be used by the next step, and each step checks to see if the result of a previous

operation has been created in the processed folder. Each result is stored in the processed folder.

3.1.9 secondpass

The secondpass module is very similar to the firstpass module. Like firstpass it uses a pro-
cessor class, called SecondPassProcessor to contain the logic and hold the state of the procedure.
Unlike firstpass it only cares about the object frames, but it needs to organize them by filter.
Like firstpass it uses the frameTypes module to accomplish this, and stores the resulting data
structures in a JSON file which can be read later to preven recomputing the structures.

The neededFilters method uses the computed mapping of filters to frames to return a list of
the filters that are needed to flat reduce the object frames. applyFlats then takes a dict mapping
filters to the correct flat frame to use, and applies said flats to the object frames in the correct filter.

The applyWCW method simply extracts some information from the header for every object
frame, and then uses astrometry.net (Lang et al. 2010) to perform astrometry on it, and saves the

result in a sub-directory called “WCS.”

3.1 RedROVOR 31

3.1.10 thirdpass

The thirdpass module follows the same pattern as the firstpass and secondpass modules.
Like them, it also stores its appropriate data structures as JSON files.

The ThirdPassProcessor class has a objectNames method which retrieves a list of all the
target objects in the folder. phot simply wraps the phot function in the photometry module, and
stores the result in a sub-directory called “photometry,” and makeLightCurves simply wraps the

similarly named function in the photometry module.

3.1.11 utils

The utils module is a catch-all module for useful functions that don’t really belong anywhere
else. The ensure_dir function looks to see if a directory already exists, and if it doesn’t it creates
it. The getTimeString function gets a formatted string of the current time, by simply calling
strftime on the date object for now. writeListToFile and writeListtoFileName take a list,
convert every element to a string and join by newlines, then writes the result to the supplied file.
findFrames uses normal extensions for FITS files, and uses a glob to detect all the FITS files
in a folder. The workingDirectory object is a context manager which changes to a different
working directory on entry, and returns to the original working directory on exit. This is useful for
temporarily changing directory with a with statement. The contextmanager decorator turns the
function into a Context Manager where the code before the yield is executed on entry, and the code

after the yield is executed on exit.

3.1.12 renamer

CCDSoft outputs files with the extension “FIT” for reasons unknown. IRAF on the other hand

prefers files with a lower case extension, “fit.”” Thus, we wrote the renamer module (Listing A.17)

32 Chapter 3 Implementation

which renames all FITS files in a folder to have a “fit” extension. The renameFITS function simply
strips off the old extension and appends the new extension, then renames the file, and renameA11l
iterates through all files in the directory and calls renamer on any files which end with the old

extension (which defaults to “FIT”).

3.1.13 fitsHeader

The fitsHeader module (Listing A.18) is a utility module which abstracts some of the logic
for extracting information for the header fields of FITS files. The isFits function checks the
extension of a file to determine whether or not it is a FITS file, and fitsCheckMagic looks at the
first few bytes of the file to determine if it is a FITS file.

The getFrameType function looks at the IMAGETYP header to determine the type of the
frame. It uses regular expressions to compare the values, since there are multiple possible values
for each frame type. It also looks at the EXPTIME header, and if it is zero then it returns “zero”
since a zero length exposure is by definition a zero frame. The getFilter function simply extracts
the value of the FILTER header.

getObjectName will look at the OBJECT and TITLE headers to extract the name of the
target. If neither of these are present it will get the celestial coordinates from the header and look
up the name from ObsDB. If that fails it will create a name from the right ascension and declination
using makeRADecName which simply concatenates the RA and dec with underscores, ignoring the
least significant components. The related normalizedName function calls getObjectName and
then uses simbad to get a normalized name, i.e. a name that will be the same, even if the frames
use different names for the same object.

The getRA and getDec functions, as their name imply, get the right ascension and declination
of the frame from the headers. It can either use OBJCTRA and OBJCTDEC, or RA and DEC.

They return tuples of strings for the sexigesimal components.

3.1 RedROVOR 33

The splitByHeader function iterates through all the files in a list of files, and creates a dict,
where the keys are values of a FITS header, and the values are lists of the frames which have that

value for that FITS header.

3.1.14 frameTypes

This module (Listing A.19) deals with organizing frames according to the type of frame and the
target object. getFrameLists will iterate over a list of files, and call the getFrameType function
from fitsHeader to determine the type, and create lists for zeros, darks, flats, and object frames,
and put them into a dict. There is also an “unknown” category for any files which don’t match any
of the categories, or are not FITS files. saveFrameLists will write the result of getFrameTypes
to text files, one for each type, with a name corresponding to the type.

The makeObjectMap function is similar to getFrameLists but organizes the frames according
to the target object name instead. makObjectList gets a list of all the objects in the directory by
calling makeObjectMap and returning the key set. printObjectList saves a list of the objects

used to file, and printObjectMaps prints a list of frames in a file for each object in the list.

3.1.15 observatories

There are quite a few parameters that we use in RedROVOR which are dependent on the observa-
tory. Although we only have a single observatory at the moment, we hope that in the future this
system could be used for other observatories, including other ROVOR observatories. To facili-
tate migrating the software to other systems we created the Observatory class which encapsulates
many parameters which may depend on the observatory system. Many of these havae reasonable
defaults, but they can be overridden if necessary. This module also contains a definition of the

Observatory object for the ROVOR observatory.

34 Chapter 3 Implementation

3.2 RovorWeb

RovorWeb was developed using the Django framework, as mentioned above. The implementation
of the web interface is not directly relevant to the reduction of the data, and we will therefore not
discuss said implementation further in this text. To see the source code and associated documen-
tation for RovorWeb, please refer to the RovorWeb project on Github (https://github.com/rovor/

RedROVOR).

3.3 Observation Database

The MySQL database for the observations consists of two tables, objects and observations.
The objects table contains all the astronomical targets that we have hit, and observations
contains the actual observations and has a many-to-one relationship with the objects table.

The objects table contains seven columns:
obj_id A unique identifier for the object

name The User Specified Name of the Object, this is the value associated with the value in all

user applications
ra The Right Ascension of the Object
declination The declination of the object

types A comma delimited list of types for the object. For example Markarian 501 may contain

types of AGN, BL Lac, Galaxy, etc.

otherNames Other names which the object may be referred to with, this is less important since

other names can be looked up using Simbad.

https://github.com/rovor/RedROVOR
https://github.com/rovor/RedROVOR

3.3 Observation Database 35

simbadName This is the “main” name of the object in the Simbad database. This makes it easy

to ensure that we don’t have multiple rows referring to the same object with different names.

Note that all the information in the objects table is available from SIMBAD, however query-
ing SIMBAD is somewhat slow, and if we ever observe an object which is not on SIMBAD, or
used a name not recognized by SIMBAD the system would break.

The observations table contains ten columns:
obs_id The identififier number for the observation
object_id The identifier number for the object that was observed
utdate The date in Universal Time that the observation was taken on
filter The filter the observation was taken in
temp The temperature (in Celsius) of the CCD during observation
notes Any notes about the observation (such as weather conditions, problems, etc)
filename The location of the file(s) for the observation on the hard drive

numFrames The number of frames for this particular observation (defaults to one)

Listing 3.1 The SQL code to create the tables used by ObsDB

CREATE TABLE objects (

obj_id int(11) NOT NULL AUTO_INCREMENT,
name varchar(100) NOT NULL,

ra double NOT NULL,

declination double NOT NULL,

types tinytext,

otherNames varchar (200) DEFAULT NULL,
simbadName varchar(100) NOT NULL,
PRIMARY KEY (obj_id),

UNIQUE KEY name (name),

UNIQUE KEY simbadName (simbadName)

)

CREATE TABLE observations (
obs_id int(11) NOT NULL AUTO_INCREMENT,

36

Chapter 3 Implementation

object_id int(11) NOT NULL,
utdate date NOT NULL,

filter varchar (10) DEFAULT NULL,
exptime int(11) DEFAULT NULL,
temp int(11) DEFAULT NULL,

notes text,
filename varchar (200) DEFAULT NULL,

numFrames int (11) DEFAULT NULL,

PRIMARY KEY (obs_id),

KEY object_id (object_id),

CONSTRAINT observations_ibfk_1 FOREIGN KEY (object_id)
REFERENCES objects (obj_id)

Chapter 4

Conclusion and Future Work

Although a considerable amount of work has been done, there is still a lot more that can be done to
further improve this project. While testing, we have encountered a number of bugs, and while those
encountered so far have been fixed, there are likely many more that we have not yet encountered.
There are also some things which could be done to improve performance or usability which, for
the sake of time, we did not implement. The current state can be seen on the Github project under
the issues section.

The biggest area for future work, however, is integrating this data analysis system into the
telescope control system. The ROVOR project will soon begin revamping the telescope control
system. This telescope control system will be able to easily interact with RedROVOR and feed it
data as soon as the data has been taken by the telescope. RedROVOR was designed with this in
mind from the beginning.

Currently, RedROVOR uses twilight flats. However, this introduces added complexity to the
system and requires human interaction to choose the proper flats. We have contemplated using
a mathematical flattening algorithm rather than twilight flats, but we have not yet worked out all
the details or determined if such a method would provide adequate results. If such a method were

used, the entire process could be automated from taking the image to producing the light curves.
37

38 Chapter 4 Conclusion and Future Work

According to Holden (2013), the RedROVOR system is easy to use and works well in most
cases. It takes about four hours to complete a single night, but very little of this time requires
human interaction. From the user’s perspective this is preferable to the more time-consuming task
of reducing the data with IRAF. The ease of use would be even further enhanced if the framework
was tied directly into an automated telescope control system.

Finally, we have strived to develop a system which could be used on other observatory sys-
tems with a minimal amount of modification. We hope that this system can be ported to other

observatories and benefit other projects besides our own.

Appendix A

Source Code

This appendix contains much of the source code for the RedROVOR project. The full source code
is publicly available in the RedROVOR project on GitHub. At the time of writing this project is
located at https://github.com/rovor/RedROVOR.

A.1 RedROVOR

Listing A.1 coords.py

""'"classes for holding coordinate objects "'’

from decimal import Decimal

from collections import namedtuple
from math import copysign

import re

decimal_re = re.compile(r '\d+(\.\d+)?"') #somewhat restrictive re for decimal
numbers

class RA_coord(object):
"'"'A coordinate in RA'''

ra_expr = re.compile(r"(\d{1,2}) [T(\d{L1,2)[:]J(\d{1,2}(\.\d+)?) ")
def __init__ (self ,h,m,s):

"""intialize with hours, minutes, and seconds

note that the signs are ignored since RA is always positive ''’

if isinstance (s, float):

s = "{0:.2}".format(s)

self .h abs(int(h))

self .m abs(int(m))

self.s abs (Decimal(s))

39

https://github.com/rovor/RedROVOR

40 Chapter A Source Code

def toHours(self):
"""return the RA as a Decimal approximation
return self . h+Decimal(self .m)/60 +Decimal(self.s)/3600
def toDegrees(self):
"""convert the RA to degrees and return the result as a Decimal "'’
return self.toHours ()*15
def toASeconds(self):
""'"compute the RA in arcseconds (more accurate representation for
numeric computation '’
return 15x(self.h*3600 + self .m%x60 + self.s)
def __str__(self):
""'"convert to a string of numbers seperated by colons
return "{0:02}:{1:02}:{2:05.2f}".format(self.h,self.m,self.s)
def __repr__(self):
""'"representation of RA_coord '’
return "RA_coord({0},{1},{2})".format(self.h,self.m, self.s)
@classmethod
def fromStr(cls,s):
""'"retrieve the RA from a string in the fromat hh:mm:ss.ss
if invalid format return None'''
match = RA_coord.ra_expr.match(s)
if match:
h,m,s = match.group(1,2,3)
return cls(h,m,s)
elif decimal_re.match(s):
return cls.fromDegrees(Decimal(s))
else:
return None
@classmethod
def fromHours(cls ,hrs):
""'"convert to RA_coord from decimal representation of RA in hours
tmp = hrs
h = int(tmp)
tmp x= 60
m = int(tmp % 60)
tmp x= 60
s = tmp % 60
return cls(h,m,s)
@classmethod
def fromDegrees(cls, deg):
""'"create RA_coord from decimal representation in degrees
if isinstance (deg, float):
deg = "{0:.2}".format(deg)
return cls.fromHours(Decimal(deg)/15)

def __sub__(self, other):
""'"compute the difference between two RA measures
in arcseconds "'’
return self.toASeconds() — other.toASeconds ()

rror

P

rror

rror

@property

def hours(self):
return self.h

@property

def minutes(self):
return self.m

@property

def seconds(self):
return self.s

class Dec_coord(object):

A.1 RedROVOR 41

rror

"'"'A coordinate in declination

dec_expr = re.compile(r ' ([+—]N\d{1l,2}) [:J(\d{1, 2 [:_]J(\d{Ll,2}(\.\d+)?) ")
def __init__ (self ,d,m,s):

"""intialize with degrees, minutes, and seconds

note that the signs are ignored for m and s, and the sign

of the declination is determined by the sign of d''’

if isinstance (s, float):

s = "{0:.2}".format(s)
self.d = int(d)
self .m = abs(int(m))

self.s abs (Decimal(s))
def toDegrees(self):
"'"'"return the dec as a Decimal approximation
return copysign(abs(self.d)+Decimal(self.m)/60 +Decimal(self.s)/3600,
self.d)
def toASeconds(self):
""'"compute the declination in arcseconds '’
return self.d=3600 + self.mx60 + self.s

def __str__(self):
""'"convert to a string of numbers seperated by colons '’
return "{0:+03}:{1:02}:{2:05.2f}".format(self.d, self.m,self.s)
def __repr__(self):
""'"representation of Dec_coord '’
return "Dec_coord({0},{1},{2})".format(self.d,self .m,self.s)
@classmethod
def fromStr(cls,s):
"'"'"retrieve the dec from a string in the fromat hh:mm:ss.ss
if invalid format return none '''
match = Dec_coord.dec_expr.match(s)
if match:
d,m,s = match.group(1,2,3)
return cls(d,m,s)
elif decimal_re.match(s):
return cls.fromDegrees(Decimal(s))
else:
return None
@classmethod
def fromDegrees(cls ,deg):

"""convert to Dec_coord from decimal representation of dec in degrees

P

rror

tmp = abs(deg)
d = copysign(int(tmp) ,deg) #keep sign in the degrees part
tmp x= 60
m = int(tmp % 60)
tmp == 60
s = tmp % 60
return cls(d,m,s)
def __sub__(self ,other):
"""compute the difference between two declinations in arcseconds '’
return self.toASeconds() — other.toASeconds ()

@property

def degrees(self):
return self.d

@property

def minutes(self):
return self.m

@property

def seconds(self):
return self.s

42 Chapter A Source Code

Coords = namedtuple('Coords',['ra', 'dec']) #type for tuple of ra and dec

def __cwithinradius (self, other ,radius):
""'"compute whether or not the other Coords is within radius arcseconds of
self, this assumes rectangular coordinates so it is only accurate if the
two objects are close to each other '''
return (self.ra—other.ra)*%2 + (self.dec—other.dec)=*%2 < radius %2

Coords . withinRadius = __cwithinradius

def parseCoords(f):
""'parse a list of Coords from a file like object
@param f a file —like object which has at least two columns, the first of
which is the RA and the second is dec, they can either be in sexigesimal
or decimal degree format (not that if decimal RA is assumed to be degrees,
not hours
@returns a generator which iterates over the coordinates in a file
and returns Coords objects "'’
for line in f.readlines ():
if not (line.isspace() or line.startswith("#")):
#only deal with lines that have content and don't start with '#'
rastr , decstr = line.split()[0:2]
yield Coords(ra=RA_coord.fromStr(rastr), dec=Dec_coord. fromStr(
decstr))
return

Listing A.2 simbad.py

from urllib import urlopen ,urlencode

from coords import RA_coord, Dec_coord, Coords
from decimal import Decimal

import re

SIMBAD_URL = "http ://simbad.u—strasbg.fr/simbad/"
SIMBAD_SCRIPT_URL = SIMBAD_URL + "/sim—script"

def script_request(script):
""'run a simbad script and return the result as an array
of strings (each item is a single line of the output),
this uses caching to improve performance "'’
#first prepend a line to quiet the console and script echo

script = "output_console=off_script=off\n" + script
resource = urlopen (SIMBAD_SCRIPT_URL, urlencode({ 'script':script}))
result = [x.strip() for x in resource if x.strip ()]

resource .close ()
return result

def getAllNamesFromName (name) :
""'return an array of all names for an object in simbad '’
script = 1 "' '"format object "WIDLIST[%(S)\n]"
query id {0} '''.format(name)
return script_request(script)

def getNamesFromRADec(ra,dec,radius="'5m'):
"'"'"get the names of objects with radius of ra and dec.
we expect ra and dec to be RA_coord and Dec_coord objects
or at least to be convertable by string to the normal
colon delimited sexigesimal format '''
script = r "' 'format object "WIDLIST[%=(S)\n]"
query coo {0:s}) {1:s} radius={2:s}"'"''.format(ra,dec,radius)

A.1 RedROVOR

43

return script_request(script)

def getRADec(name):
""'get a Coords object for the given object
script = r "' 'format object "WCOO(:s;A | D)"

rror

query id {0} '''.format(name)
result = script_request(script)
if ':error:' in result[0]:

return None
ra,dec = result[0].split('l")
ra = RA_coord. fromStr(ra.strip())
match = getRADec._min_re.match(dec. strip ())
if match:
#we need to take care of the special case when we get fractional
minutes instead of seconds
d = int(match.group(1l))

mins = Decimal (match. group(2))
m = int (mins)
s = (mins—m) %60
dec = Dec_coord(d,m,s)
else:

dec = Dec_coord. fromStr(dec.strip ())
return Coords(ra,hdec)

getRADec. _min_re = re.compile(r '"([+—]2\d+) : (\d+\.?2\d=*)$ ")

def getMainName (name) :
"'"'get the "main" name for the given object in simbad,
useful for uniquely identifying an object
if the name wasn't found return the name that was passed in
if name in getMainName.cache:
return getMainName.cache [name]
script = 1 "' '"format object "WIDLIST(1)[%=(S)]"

rror

query id {0} '''.format(name)

response = script_request(script)

if ':error:' in response[0]:
#error, so just return the name that was given to us
result = name

else:
result = response[0]

getMainName . cache [name] = result

return result
getMainName . cache = {}

Listing A.3 obsDB.py

from urllib import urlopen ,urlencode

from coords import RA_coord, Dec_coord, Coords
from decimal import Decimal

import re

SIMBAD_URL = "http ://simbad.u—strasbg . fr/simbad/"
SIMBAD_SCRIPT _URL = SIMBAD URL + "/sim—script"

def script_request(script):
""'run a simbad script and return the result as an array
of strings (each item is a single line of the output),
this uses caching to improve performance '''
#first prepend a line to quiet the console and script echo
script = "output_console=off_script=off\n" + script

44

Chapter A Source Code

def

def

def

resource = urlopen (SIMBAD_SCRIPT_URL, urlencode({ 'script':script}))
result = [x.strip() for x in resource if x.strip ()]
resource . close ()

return result

getAllNamesFromName (name) :

""'return an array of all names for an object in simbad '’
script = r "' 'format object "WIDLIST[%+(S)\n]"

query id {0} '''. format(name)

return script_request(script)

getNamesFromRADec (ra ,dec, radius="'5m"'):

"'"'get the names of objects with radius of ra and dec.

we expect ra and dec to be RA_coord and Dec_coord objects
or at least to be convertable by string to the normal
colon delimited sexigesimal format '''

script = r "' 'format object "WIDLIST[%+(S)\n]"

query coo {0:s}) {1:s} radius={2:s}"'"''.format(ra,dec,radius)
return script_request(script)

getRADec (name) :
"'"'get a Coords object for the given object
script = r "' 'format object "WCOO(:s;A | D)"

v

query id {0} '''. format(name)
result = script_request(script)
if ':error:' in result[0]:

return None
ra,dec = result[0].split('l")
ra = RA_coord. fromStr(ra.strip ())
match = getRADec._min_re.match(dec. strip ())
if match:
#we need to take care of the special case when we get fractional
minutes instead of seconds
d = int(match. group (1))

mins = Decimal (match. group(2))
m = int(mins)
s = (mins—m) %60
dec = Dec_coord(d,m,s)
else:

dec = Dec_coord.fromStr(dec.strip ())
return Coords(ra,dec)

getRADec. _min_re = re.compile(r 'A"([+—]2\d+) : (\d+\.?2\d=*)$ ")

def

getMainName (name) :
"'"'get the "main" name for the given object in simbad,
useful for uniquely identifying an object
if the name wasn't found return the name that was passed in
if name in getMainName.cache:

return getMainName . cache [name]
script = r "' 'format object "WIDLIST(1)[%*(S)]"

rror

query id {0} '''.format(name)

response = script_request(script)

if ':error:' in response [0]:
#error, so just return the name that was given to us
result = name

else:
result = response[0]

getMainName . cache [name] = result

return result

getMainName . cache = {}

A.1 RedROVOR 45

Listing A.4 process.py

import pyfits
import numpy

TODO make sure everything is closed properly if there is an exception
fine for short scripts, but could be a big problem on a continously running
server

from itertools import imap, chain

import os
from utils import ensure_dir, getTimeString

class ImageList:
"'"'A list of images on which to perform operations such as combining,
subtracting , dividing etc "'’

def __init__ (self, =args):
""'"create an image list from supplied filenames
to create from a collection call like ImageList(xcoll)

rror

self . _list = [pyfits.open(fname) for fname in args] # initialize the
list of images

def averageAll(self, minmax=2):
"""compute the average image of all images in the ImageList

defaults to removing the two maximal and minimal values, changing

the paramater minmax changes how many to remove on each end must be
nonnegative

there must also be at least 2xminmax + 1 frames in the ImageList

returns a numpy array with the resulting data, up to suer to pack in

FITS file "'’

n = len(self._list) — 2+minmax # the number of frames involved in
the average

return self.sumAll(minmax) / n # sum up the frames with minmax

reject, and divide by the number of effective frames

def sumAll(self, minmax=2):
"""compute the sum of all images in the ImageList
minmax is the number of values to leave off at the minimum and maximum
ends
set to 0 for no minmax reject

Returns a numpy array with the resulting data, up to user to pack in a
FITS file """’
if minmax < O:
raise ValueError('minmax,_must_be_non—negative ')
if len(self._list) <= 2+minmax:
raise ValueError('must_have_at_least {0} _items_in_ImageList_with_
minmax={1},_only_has_{2}'.format(2*minmax+1,minmax,len(self.
_list)))
#create a 3—d array with the first axis along the frames
all = numpy.array (map(lambda im: im[0]. data, self._list))

all.sort(0) #sort along frame axis , so we can reject the min and
maxes

#now add them together to get the sum, leaving off the mins and maxes
total = numpy.add.reduce (all [minmax:—minmax]) #reduce the add
operation along the z—axis to get the sum of the images

46

Chapter A Source Code

def

def

def

def

return total

updateHeaders (self ,newHeads={}, sxkwargs):
""'"update headers in all images with the key—value pairs supplied '’
#this would be a lot easier to do with pyfits 3.1, but 2.3 is the
version supplied
#with Red Hat, so we are going to use that, and it should still work
on future versions
for header in self.headers():
#since the old version of update with pyfits 2.3 only handles one
at a time we need another loop
for (key, value) in chain(newHeads.items (), kwargs.items()):
header.update (key, value)

avCombine (self ,minmax=2):

Combine all frames in the ImageList into a single frame by using an
arithmetic mean with optional minmax rejection

minmax defaults to 2, set to 0 for no minmax rejection, there must be
at least 2sxminmax+1 frames in the ImageList.

At the moment this simply copies the header from the first frame, but
we add more sophisticated manipulation of the header later.
Returns a pyfits.PrimaryHDU

result = pyfits.PrimaryHDU(self.averageAll (minmax), self. _list[O][O0].
header)

#NOTE: NAXIS, NAXISI, NAXIS2, BITPIX, etc. should be updated to match
the data portion

result.header.update ('NCOMBINE', len(self. _list)) #store the number of
images combined

result.header.update ('IRAF-TLIM', getTimeString ()) #store the time of
last modification

result.header.update ('DATE', getTimeString (), 'Date_FITS_file _was_
generated ')

#TODO add code to modify header, at least mark the average time of
observations , possibly the total exposure time

etc.

return result

normalize (self ,block_size=100):

normalize all images in the list to have a mean of 1 within the center
block of sixe block_size x block_size,

block_size defaults to 100

for im in self. _list:
normData(im[0]. data , block_size)

return self

closeAll(self):
"""close all open files
for f in self. _list:
if f:
f.close ()

rror

#guard code

def

def

__enter__(self):

""'simply return self, to bind self to variable "'’
return self

__exit__(self , exc_type, exc_value, traceback):
"""close all open files '’

self .closeAll ()

A.1 RedROVOR

47

#iterators and accessors
def hdulists (self):
""'"return an iterator over the HDULists in the list
return iter (self. _list)
def hdus(self):
""'"return an iterator over the Primary HDUs
return imap(lambda im: im[0], self. _list)
def headers(self):
""'"return an iterator over the headers of the images
return imap(lambda im: im[O0]. header, self. _list)
def __iter__(self):
"""alias for hdus, so default iterator is over hdus
return self.hdus ()
def __reversed__ (self):
""'reversed iterator
return imap(lambda im: im[0],reversed(self. _list))
def __len__(self):
""'"length of the list '’
return len(self. _list)
def __getitem__(self, idx):
"'"'get the PrimaryHDU at the given index
return self. _list[idx][0]
#note that we don't have __setitem__, that is intentional
def __delitem__ (self ,idx):
del self. _list[idx] #delete the given item
def append(self, fname):
""'add another file to the list, pass in a filename
self . _list.append(pyfits.open(fname))

'

rror

'

"

P

v

'

#arithmetic operations on other images or contants

def isubImage(self ,other):
other should be either
a PrimaryHDU, or ImageHDU "'’
for im in self. _list:
im[0].data —= other.data
def isubVal(self, other):
ImageList inplace, other should be int, or float,
for im in self. list:
im[0].data —= other
def __isub__(self ,other):
""'"subtract an image or a constant from all frames in

'

r

'

'

subtract another image from all images in the ImageList inplace,

subtract a constant value, or array from all images in the

ndarray, etc.

v

ImagList

if isinstance (other,pyfits.PrimaryHDU) or isinstance (other, pyfits.

ImageHDU) :

self.isubIlmage (other)
else:

self .isubVal(other)
return self

def idivVal(self, other):

""'"divide each image by a constant value inplace, other should be

[

something that a numpy array can be divided by
for im in self. _list:
im[0].data /= other
def idivimage(self, other):
""'"divide by another HDU'''
for im in self. _list:
im[0].data /= other.data
def __idiv__(self ,other):

'

’

'

48

Chapter A Source Code

def

def

def

""'"divide all images by something, either a number, numpy array, or
HDUVVI

if isinstance (other, pyfits.PrimaryHDU) or isinstance (other, pyfits.
ImageHDU) :
self .idivimage (other)

else:
self.idivVal(other)

return self

savelnPlace (self):

""'save all of the images in the imagelist back to their original
locations "'

for frame in self. list:
frame . writeto (frame . filename () ,clobber=True)

saveToPath (self , path):

ensure_dir (path) #make sure path is directory, or make it if it doesn'
t exist

for frame in self. list:
frame . writeto (os.path.join (path,os.path.basename(frame. filename ())

)) #same image

savelndexed (self , baseName):

"'"'"save the images as the basename appended by an index starting with
zero

this is useful for renaming the files when saving them, each file is
saved as baseName+i where i is the index with enough leading zeros
that all images use the same number of digits "'’

digitsNeeded = len(str(len(self. _list))) #get the lenght of the
string of the length of the list

count = 0

for frame in self. _list:
frame . writeto (baseName + str(count).zfill (digitsNeeded)+". fit")
count += 1

#convenience methods for calibration:

def

def

subZero (self ,zero):
""'"subtract a zero from all of the images in place and return self
zero should be the path to a zero frame
NOTE: also zerocor header headers '''
datestr = getTimeString ("%B_%d_9H:9%M") #get string of current date
with pyfits.open(zero) as zeroFrame:
for frame in self:
frame.data —= zeroFrame[O]. data
frame . header.update ('"ZEROCOR "', '{0} _Zero _Image _is_{1}"'.format(
datestr ,zero))
return self

subDark (self , dark):
""'"subtract dark from all the images in place and return self

dark shoulb be the path to a dark frame
NOTE: also updates headers '''
datestr = getTimeString ("%B_%d_9H:9%M") #get string of current date
with pyfits.open(dark) as darkFrame:
for frame in self:
#scale dark to the exposure time

#and subtract from frame for all frames
frame . data —= darkFrame[0O].data =« float(frame.header['EXPTIME'

D)
frame . header . update ('DARKCOR ', '{0} _,with_Dark _frame_{1}"'.format
(datestr ,dark))
return self

A.1 RedROVOR 49

def divFlat(self ,flat):
"""divide flat from all the images in place and return self

flat should be the path to a flat frame
NOTE: also update FLATCOR header '’
datestr = getTimeString ("%B_%d_9H:%M")
with pyfits.open(flat) as flatFrame:
for frame in self:
frame.data /= flatFrame[O]. data
frame . header.update ('FLATCOR ', '{0}_with_Flat_frame_{1}"'.format
(datestr , flat))

return self

def makeZero(*fnames ,*xkwargs):
Take the input frames ,(which we assume to be zero or bias frames) as
strings containging filnames
and combine them into a master Zero. The exact behaviour depends on the
following optional keyword arguments

output — if provided this is the path to write the resulting zero to, if
absent makeZero will returning the resulting PrimaryHDU
minmax — if provided will set how many data points to remove from the top

and bottom of the distribution , defaults to 2

rror

minmax = kwargs.get('minmax ' ,2) #get minmax with default of 2
with ImageList(xfnames) as imList:

Zero = imList.avCombine (minmax=minmax)
Zero . header.update ("imagetyp ', 'zero ') #make sure imagetyp is zero

if 'output' in kwargs:
Zero.writeto (kwargs['output'],clobber=True)
else:
return Zero #otherwise return the result for the client to deal with

def applyZero(zero_path, =fnames,xxkwargs):
"""apply a zero to one or more frames, zero_path and fnames should both be
filenames

if save_path is supplied and not None then all the frames are saved into
the folder save_path with the same

basename they had before. If save_inplace is supplied and not false, then
the images are saved in place with the zero correction '’

imlist = ImageList(*fnames)

imlist.subZero(zero_path)

#mark what we have done in the headers

#TODO write to logger, we need to figure out the best way to configure

#a logger for redrovor

add ccdproc header:

imlist.updateHeaders({ 'CCDPROC': '{0}_CCD_processing_done'.format(datestr)

. b

#if a path was given, then write the processed files with the same name
into that path, otherwise
save in place
if 'save_path' in kwargs and kwargs['save_path']:
imlist.saveToPath (kwargs['save_path '])
imlist.closeAll () #clean up
elif 'save_inplace' in kwargs and kwargs['save_inplace ']:
#save the files in place
imlist.savelnPlace ()

50 Chapter A Source Code
imlist.closeAll () #clean up
else:
return imlist #let the client do something with it
def makeDark (*fnames, #xkwargs):
Take the input frames ,(which we assume to be dark frames) as strings
containging filnames
and combine them into a master Dark. The exact behaviour depends on the
following optional keyword arguments
output — if provided this is the path to write the resulting dark to, if
absent makeDark will returning the resulting PrimaryHDU
minmax — if provided will set how many data points to remove from the top
and bottom of the distribution , defaults to 2
zero — if provided, the filename of the zero frame to apply first,
otherwise assumes that zero correction has already been done
minmax = kwargs.get('minmax',2)
with ImageList(xfnames) as imlist:
if 'zero' in kwargs:
#subtract zeroFrame if supplied
imlist.subZero(kwargs['zero'])
#now divide all images by their exposure time for scaling
for frame in imlist:
frame . data /= float(frame.header['EXPTIME'])
Dark = imlist.avCombine (minmax=minmax)
#now update the heaers
Dark. header.update ('imagetyp ', 'dark ')
if 'zero' in kwargs:
#add header for zero
Dark. header.update ('"ZEROCOR ', '{0}_,Zero_Images_is {1} "'.format(
getTimeString ('%x _%X'), kwargs['zero']))
if 'output' in kwargs:
Dark. writeto (kwargs['output '], clobber=True)
else:
return Dark
def applyDark(dark_path ,*fnames, =#sxkwargs):
apply a dark to one or more frames, dark_path and fnames should both be
filenames if save_path is supplied and not None then all the frames are
saved into the folder save_path with the same basename they had before.
If save_inplace is supplied and not false, then the images are saved in
place with the zero correction
imlist = ImageList(*fnames)
imlist.subDark(dark_path)
datestr = getTimeString ('%x_%X")
imlist.updateHeaders (ccdproc="'{0}_CCD_Processing, _done'.format(datestr))
if 'save_path' in kwargs and kwargs['save_path']:
imlist.saveToPath (kwargs['save_path '])
imlist.closeAll () #clean up
elif 'save_inplace' in kwargs and kwargs['save_inplace ']:
#save the files in place
imlist.savelnPlace ()
imlist.closeAll () #clean up
else:
return imlist #let the client do something with it
def makeFlat(xfnames, #xkwargs):

P

A.l

RedROVOR

51

def

def

Take the input frames ,(which we assume to be flat frames of the same
filter) as strings containging filnames

and combine them into a master Flat. The exact behaviour depends on the
following optional keyword arguments

output — if provided this is the path to write the resulting flat to,
absent makeFlat will returning the resulting PrimaryHDU
minmax — if provided will set how many data points to remove from the
and bottom of the distribution , defaults to 2
zero — if provided, the filename of the zero frame to apply first,
otherwise assumes that zero correction has already been done
dark — if provide, the filename of the dark frame to apply first,
otherwise assumes that dark correction has already been done
minmax = kwargs.get('minmax',2)
with ImageList(xfnames) as imlist:
if 'zero' in kwargs:
imlist.subZero(kwargs['zero'])
if 'dark' in kwargs:
imlist.subDark (kwargs['dark '])
imlist.normalize () #normalize the flats
Flat = imlist.avCombine (minmax=minmax)
Flat.header.update('imagetyp ', 'flat ')
if 'zero' in kwargs:
Flat.header.update ('"ZEROCOR ', '{0} _Zero _Image _is _{1}"'.format(
getTimeString ('%x,_%X') ,kwargs|['zero ']))
if 'dark' in kwargs:
Flat.header.update ('DARKCOR', '{0} ,Dark _Image is {1} "'.format(
getTimeString ('"%x_%X') ,kwargs['dark ']))
if 'output' in kwargs:
Flat. writeto (kwargs['output '], clobber=True)
else:
return Flat

applyFlat(flat_path ,xfnames, =xkwargs):

apply a flat to one or more frames, flat_path and fnames should both be
filenames if save_path is supplied and not None then all the frames are
saved into the folder save_path with the same basename they had before.
If save_inplace is supplied and not false, then the images are saved in
place with the zero correction
imlist = ImageList(xfnames)
imlist.divFlat(flat_path)
datestr = getTimeString ("%x_%X")
imlist.updateHeaders (ccdproc="'{0}_CCD_Processing_done'.format(datestr))
if 'save_path' in kwargs and kwargs['save_path']:
imlist.saveToPath (kwargs['save_path '])
imlist.closeAll () #clean up
elif 'save_inplace' in kwargs and kwargs['save_inplace ']:
imlist.savelnPlace ()
imlist.closeAll ()
else:
return imlist

normData(imageData, block_size=100):

""'"normalize the data in the imageData to the mean in the block_size x
block_size square

note: this modifies imageData inplace

originy = int((imageData.shape[0] — block_size)/2)

originx = int((imageData.shape[l] — block_size)/2)

rror

if

top

52 Chapter A Source Code

avg = numpy.average (imageData[originy:originy+block_size ,originx:originx+
block_size])

imageData /= avg #divide by the average of the center to normalize

return imageData

Listing A.5 wcs.py
#!/usr/bin/python

import os
from subprocess import Popen
from collections import namedtuple

SOLVE_PATH = "/usr/local/astrometry/bin/solve—field"
Coords = namedtuple('Coords',['ra', 'dec'])

def astrometrySolve (xfnames,+=*kwargs):
""'use the framework from astrometry.net to apply
world coordinate systems to the files located at fnames
with open(os.devnull, 'w') as dnull:
proc = Popen(buildArgList(fnames,h kwargs),stdout=dnull , stderr=dnull)
return proc.wait() #wait until it completes, we may want to do some
threading so that we can do more than one at at a time, but not all of
them at once
#which would fill up memory really fast

v

def buildArgList(fnames,args):

"""build a string for the options to the solve—field command, this should
not be

used directly , but as a helper for astrometrySolve

result = [SOLVE_PATH]

if 'options' in args:
result.extend (args['options '])

if 'guess' in args:

rrr

ra,dec = args|['guess ']
radius = args.get('radius',l) # in degrees
result.extend (['—ra',str(ra),'—dec',str(dec), '—radius ',str(radius)
D
if 'lowscale' in args:
result.extend (['—scale —low ', str (args['lowscale '])])

1

if 'highscale' in args:
result.extend (['—scale—high',str (args['highscale '])])
if 'outdir' in args:

result.extend (['—dir ',args['outdir ']])
if args.get('isfits ',True):

result.append('—fits —image ')
result.extend (['—no—plots ', '—no—Tfits2fits ']) #disable making plots and

sanitizing fits files
result.extend (fnames)
return result

Listing A.6 obsRecord.py
#!/usr/bin/python

import obsDB
import pyfits
import frameTypes

A.1 RedROVOR

53

import re
from fitsHeader import isFits , getObjectName
import os

import logging
import traceback

logger = logging.getLogger("Rovor.recordobs")
dateRegex = re.compile(r ' (\d{4}—-\d{2}-\d{2})T.x")

def recordObservation (fitsHeader ,fname=""):
""'record the information contained in the header to the online database
and optionally the filename passed as fname '''’
objName = getObjectName (fitsHeader)
obj = obsDB.obj_get_or_add (objName)
logger.info (obj)
objid = obj['obj_id "]
ffilter = fitsHeader['FILTER ']
exptime = fitsHeader['EXPTIME ']
temp = fitsHeader ['CCD-TEMP']
utdate = dateRegex.match(fitsHeader ['DATE-OBS']) . group (1)

obsDB.newObservation (objid ,utdate , ffilter ,exptime ,temp,fname=os. path.
realpath (fname))
return

def recordDir(dir):
""'record information for all fits files of images in
the given directory and subdirectories '’
logger.info ("Recording_observations_in_"+dir)
obsDB . login ()
for root, dirs, files in os.walk(dir):
logger.info("root_=_"+root)
for f in files:
fullPath = os.path.join(root,f)
if isFits(fullPath):
#logger.info ("Attempting to record observation for "+f)
try:
header = pyfits.getheader(fullPath)
if frameTypes.getFrameType(header) != 'object':
continue
recordObservation (header, fullPath)
except Exception as e:
logger.error (traceback.format_exc())
break #keep going and record everything else

A.1.1 Photometry

Listing A.7 photometry/__init__.py

from daophot import phot
from irafmod import init
from lightcurves import makeLightCurves

all__ = ['daophot', 'params ', 'irafmod ']

54 Chapter A Source Code

Listing A.8 photometry/irafmod.py

import os

import tempfile

from decimal import Decimal

from redrovor.util import workingDirectory

DEFAULT_IRAF DIR = '/home/iraf' #default directory to start iraf in

_initialized = False

class InitializationError (Exception):
"""Error raised when a function of this module
is called before init() has been called "'’
def _ _init__ (self ,value=""):
self.value = value
def __str__(self):
return 'Call_attempted_before_init () _was_called: '+repr(self.value)

def init(iraf_dir=DEFAULT_IRAF_DIR):
""'"Initialize IRAF for use in photometry
@param iraf_dir The home directory for iraf, i.e. where login.cl
and uparm are located, slightly annoying that we need this, but not
much we can do about it '''
global _initialized
if _initialized:
#already initialized no need to run again
return
global iraf
global yes
global no
with workingDirectory (iraf_dir):
from pyraf import iraf
yes = iraf.yes
no = iraf.no
#now load the packages we need
iraf .noao ()
iraf .digiphot ()
iraf.daophot()
iraf.obsutil ()

_initialized = True
return

def check_init(error_msg="Not_initialized"):
""'check that the irafmod module has been initialized ''’
if not _initialized:
raise InitializationError (error_msg)

Listing A.9 photometry/params.py

this module takes care of setting up paramaters
for iraf tasks '''

rror

from calc_params import getAverageFWHM, background_data
from redrovor.coords import Coords, RA_coord, Dec_coord

import irafmod

class Params(dict):
""'"class to take care of holding paramaters, this is more abstract

A.1 RedROVOR 55

and is intended as a superclass for classes that can actually set the
IRAF paramaters, it is sort of a wrapper around a dictionary "'’
def __init__ (self ,observ ,xxkwargs):
#start with default options
#TODO some of these are dependent on the system
we should make a way to abstract those part out into
a seperate object for system—dependent permanent settings
defaults = {
'"aperture_ratio ':1.2,
"annulus_ratio ':4,
"dannulus_ratio ':3,
'zmag': 25,
'datamax ': observ.datamax, #point where CCD saturates
#header keywords
'obsdate ': observ.date_key,
'obstime ':observ.time_key,
"exposure ':observ.exp_key,
"airmass ':observ.air_key,
"filter ':observ. filt_key ,
'epoch': observ.epoch_key,
'ra_key ': observ.ra_key,
'dec_key ': observ.dec_key,
'observat ':observ.name, #this needs to be set up for the right
telescope

'otime ': 'hjd', #header keyword for the time to output in phot
files
super (Params , self).__init__(defaults)

self .update (kwargs)

def __call__(self ,xargs,xxkwargs):
""'"calling the method simply forwards the call to
applyParams with the supplied arguments, it is expected
that the subclass will implement applyParams, it is not
implemented in this class '''
self .applyParams (% args ,*xkwargs)

@property

def aperture(self):
""'"return the aperture in scale units
return self['aperture_ratio ']Jxself['fwhm']

@property

def annulus(self):
""'"return a tuple of the inner and outer annuli in scale units '’
return self['annulus_ratio ']«self['fwhm']

@property

def dannulus(self):
""'"return a tuple of the inner and outer annuli in scale units '’
return self['dannulus_ratio 'J+*self['"fwhm']

v

@property
def datamax(self):
""'"return the maximum good data value
return self.get('datamax ', 'INDEF")
@property
def datamin(self):
""'"return the minimum good data value
if 'datamin' in self:
return self['datamin ']
elif 'background' in self and 'sigma' in self:
#minimum good data is 6 sigma below background
return self['background'] — 6.0%self['sigma']

v

rrr

56

Chapter A Source Code

else

rror

maximum of 5 and 2xfwhm

return self.get('cbox',max(5.0, 2.0«self['fwhm']))

return 'INDEF'
@property
def cbox(self):

return size for center box, if not explicetly set use

rror

class DAO_params(Params):

to take care of setting up paramaters for dao photting ''’
__init__(self ,observat ,xxkwargs):

super (DAO_params, self).__init__ (observat , fitfunction="'gauss ',

v

def

def

class

readnoise=

observat.readnoise , gain=observat.gain)

self .update (kwargs)

applyParams (self):

[

apply paramaters for daophot

P

irafmod . check_init ("DAO_params. applyParams")

iraf = irafmod. iraf

#photpars

iraf.photpars.aperture = self.aperture
iraf . photpars.zmag = self['zmag']

#set world coordinates as input for phot
iraf .phot.wcsin="world"

#datapars

iraf.datapars.fwhmpsf = self['fwhm']
iraf.datapars.sigma = self.get('sigma',0)
iraf.datapars.datamax = self.datamax
iraf.datapars.datamin = self.datamin

iraf .datapars.obstime = self['otime ']
iraf.datapars.exposure = self['exposure ']
iraf.datapars.airmass = self['airmass ']
iraf.datapars. filter = self['filter ']
#centerpars

iraf.centerpars.cbox = self.cbox
iraf.centerpars.calgorithm = self.get('calgorithm', 'centroid ")
#fitskypars

iraf . fitskypars.annulus = self.annulus
iraf . fitskypars.dannulus = self.dannulus

iraf . fitskypars.salgorithm = self.get('salgorithm

#daopars

iraf.daopars.psfrad
iraf .daopars. fitrad

#psfpars
iraf . psf.function = self[' 'fitfunction ']

#make sure we are using default logical coordinate system
#for everything except the phot command

iraf .daophot.wcsin="1logical"
iraf.daophot.wcsout="1logical"

iraf .daophot.verify=iraf.no

setjd paramaters

iraf.
iraf .

iraf

iraf.
iraf.
iraf .

iraf
iraf

1

, 'mode ')

4.0%self ['fwhm']+1.0
self . aperture

observatory.observatory = self['observat ']
setjd .date = self['obsdate ']

.setjd .time = self['obstime ']
setjd.observatory = self['observat ']

setjd .exposur = self['exposure ']

.setjd .ra
.setjd .dec

setjd .epoch = self['epoch']

= self['ra_key ']
= self['dec_key ']

A.1 RedROVOR

57

def getDAOParams(observ ,imageName, coord_file ,
xxkwargs):

rror

using the coordinate file and possibly the

target_coords=None, size=100,

calculate the paramaters for performing daophot for an image

coordinate of the target,

if target_coords is None or not supplied, we assume that the target is the
first set of coordinates in the coordinate file.

The target coordinates are used to estimate
sigma.

the background and background

size is the size of the sampling box for getting sigma and background '’

if target_coords is None:

target_coords = parse_first_coords(coord_file)

params = DAO_params(observ ,%xkwargs)
params|['fwhm'] = getAverageFWHM (imageName,

coord_file)

params|['background '], params|['sigma'] = background_data(imageName,

target_coords ,size)
return params

def parse_first_coords(coord_file):
in the coordinate file and return a Coords
with open(coord_file) as cf:
line = cf.readline ()
while line and (line.isspace() or line.
#skip over blank lines and comments
line = cf.readline ()
if not line:
raise Exception("Unable_to_parse_coordi
exception type

rastr , decstr = line.split()[0:2] #assume s
internal whitespace

ra = RA_coord. fromStr(rastr)

dec = Dec_coord.fromStr(decstr)

return Coords(ra,dec)

parse the coordinates of the first object

rror

object

startswith ('#')):

nates") #TODO use better

eperationg by whitespace and no

Listing A.10 photometry/calc_params.py

rrr

import pywcs

import numpy

import pyfits

from scipy.interpolate import UnivariateSpline
from scipy.stats import tstd

import irafmod
import re

def getBox(image, center, size=100):
""" get a box centered at \p center with a
pixels.

module to calculate paramaters for photometry, this
should only be used internally by the phot package

P

as uniSpline

size of \p size

@param image the pyfits HDU object of the image to find the coordinates

for

@param center a coords.Coords object containing the WCS

coordinates for the center of the box

@param size the length of one side of the box in pixels

P

58

Chapter A Source Code

def

#TODO figure out what to do about the order of coordinates (ra,dec) or (
dec,ra) we don't
#seem to have the right paramaters set

mywcs = pywcs .WCS(image . header) #get WCS object

ra,dec = center

#we need to convert to decimal degrees before doing transformation
r = float(ra.toDegrees())

d = float(dec.toDegrees())

x,y = mywcs.wcs_sky2pix ([(r,d)],0)[0] #perform conversion

#get the bottom and left coordinates

bottom = int(y—size/2)

left = int(x—size/2)

#numpy arrays are column major, so we give y vallues first
return image.data[bottom:bottom+size ,left:left+size]

im_histogram (box, bins=1000):

"'"'"get the histogram of a numpy array, return (x,y) where

x is the midpoints of the bins, and y is the number of pixels in each bin
@param bins the number of bins to use '’

y,bins = numpy. histogram (box, bins=bins)

x = (bins[1:]+bins[:—1])/2 #compute the average of each consecutive pair
of elements

return (x,y)

class MultiplePeakError (Exception):

v

more than one peak in the distribution "'’
pass

class NoPeakFoundError (Exception):

def

def

v rror

no peak in distribution
pass

center_and_fwhm(x,y, bins=1000):

""'"calculate the full width half max of the function y(x),

and get the center of the thing

@returns (center, fwhm) where center is the x value of the center of the
peak and fwhm is

the full width half max of the peak

we won't actually use this for now, but we will keep it case we want it
later "'’

midx = numpy.argmax(y) #get index of maximum

half_max = y[midx]/2 #get half the maximum

center = x[midx] #get the value of the center
s = uniSpline (x,y—half_max) #create a spline of the data
roots = s.roots () #get roots of the spline, i.e. place of half—max

if len(roots) > 2:

#too many roots

raise MultiplePeakError (" There_appears _to_be_more_than_one_peak")
elif len(roots) < 2:

raise NoPeakFoundError("There_doesn't_appear _to_be_a_proper _peak")
else:

return (center, abs(roots[l]—roots[0]))

background_data (imageName, center_coords, size=100):
""'"calculate the background value and standard deviations
and return as a tuple (background, sigma)

@param imageName the path to the image to get the data for

A.1 RedROVOR 59

@param center_coords the coordinates to center the sampling box around,
probably the coordinates of the target object

@param size the size of the sampling box in pixels

@returns a modal value with bins of size 1 count and a trimmed standard
deviation reject values more than twice the background value '’

with pyfits.open(imageName) as im:

box = getBox(im[0], center_coords ,size)

bins = numpy.arange (box.min(), box.max() ,1) #use bins of size I ranging
Jfrom the minimum to maximum values of the sample box

X,y = im_histogram (box, bins=bins)

#compute the location of the peak of the histogram

midx = numpy.argmax(y)

center = Xx[midx]

sigma = tstd (box, [0,2xcenter]) #trim to twice the the peak value

return (center , sigma)

def getAverageFWHM (image, coord_file):
""'"calculate the average Full Width Half Max for the objects in image
at the coords specified in coord_file
the coordinates in coord_file should be in the same world coordiantes
as the WCS applied to the image'''

if not irafmod. _initialized:
raise irafmod. InitializationError ()

psfmeasure = irafmod.iraf.psfmeasure

#set up all paramaters

psfmeasure . coords = "markl"

psfmeasure.wecs = "world"

psfmeasure . display = irafmod.no

psfmeasure.size = "FWHM"

psfmeasure .imagecur = coord_file

psfmeasure . graphcur = '/dev/null' #file that is empty by definition
res = psfmeasure(image, Stdout=1)[—1] #get last line of output

match = getAverageFWHM .numMatch. search (res)
return float (match. group(l))

getAverageFWHM . numMatch = re.compile(r' (\d+(\.\d+)?) ")

Listing A.11 photometry/daophot.py

""'"module for actually performing daophot '’
import irafmod

from params import getDAOParams

from redrovor.utils import workingDirectory
from redrovor.observatories import ROVOR

def phot(imageName, output_dir ,coordFile, target_coords=None,
sample_size=100,params=None, observat=ROVOR, *x kwargs) :
""'perform daophot on imageName with the supplied
coordinate file , and optionally the target coordinates, which
defaults to the first coordinates in coordFile

sample_size is the size of the sample box used for background measurement
kwargs are additional args to pass to constructor for params (or update
params) "'’

#first ensure that irafmod has been initialized
irafmod.check_init("unable_to_phot")
daophot = irafmod.iraf.daophot

60 Chapter A Source Code

#first get the paramaters we need
if not params:
params = getDAOParams(observat ,imageName, coordFile ,
target_coords , size=sample_size)
params.update (kwargs)
params . applyParams ()

with workingDirectory (output_dir):
#temporarily change working directory

irafmod . iraf.setjd (imageName)

daophot . phot(imageName, coordFile ,"default")

#params: image, photfile, pstfile, maxnpsf

daophot. pstselect (imageName, "default" ,"default" ,25)

#params: imagename photfile pstfile psfimage opstfile groupfile

daophot. psf(imageName, "default" ,"default","default”" ,"default","default
interactive=irafmod .no)

#TODO should we be more sophisticated and do multiple runs of psf

#along with using nstar and substar to try and get best fit?

#use nstar for now, but we will make it a seperate function
#so it is easy to switch out with peak or allstar

#if we desire later

do_nstar (imageName)

def do_nstar (imageName) :
"'"'perform nstar stuff, should not be called by user code
only a helper for phot'''
daophot = irafmod.iraf.daophot
daophot. group (imageName, "default" ,"default","default")
#we will assume that we don't have any big groups for now,
#so we don't have to use grpselect
daophot. nstar (imageName, "default","default","default","default")

def do_allstar (imageName):
""'perform allstar stuuf, should only be called by phot
irafmod . iraf.daophot. allstar (imageName, "default","default","default",
default","default")

P

"

Listing A.12 photometry/lightcurves.py

rror

module to perform various operations to manipulate
the output from photting specifically related to producing
lightcurves "'’

import irafmod
import os
import csv

from cStringlO import StringlO

import logging
logger = logging.getLogger('Rovor.photometry ")

def sortphotfiles (folder, suffix=".nst.1"):
""'sort all of the phot files in \p folder
by id. They must end in \p suffix, which defaults to
.nst. 1 """’
irafmod.check_init("can't_sort")
irafmod . iraf.psort(os.path.join(folder,"«"+suffix),'id")

A.l

RedROVOR 61

return

#constant holding the list of fields to dump from phot files
FIELD_STR = "id, ifilter ,otime ,mag, airmass"

def photdump(files , output):

def

def

""'"dump photometric information in the given list of
photometry files into output

output can be either a file—like object open for writing, or a string,
! r

if it is a string it is the path to a file, which is then opened in 'w
mode .

photdump returns the (still open) file object when done.
it dumpst the following fields in the given order:

id

ifilter

otime (observation time)

magnitude
airmass

v

irafmod.check_init("can't_dump")

iraf = irafmod. iraf
if isinstance (output, str):
output = open(output, 'w")

for pfile in files:
iraf .pdump(pfile , FIELD_STR, iraf.yes, Stdout=output)
return output

photdump_all (globber , output):

""'similar to photdump, except that instead

of a list of files, it takes a string, which is a
glob expression for the files to use,

ex. =.nst.l """’

irafmod . check_init("can't_dump")

iraf = irafmod.iraf
if isinstance (output, str):
output = open(output, 'w')

iraf .pdump(globber ,FIELD_STR, iraf .yes, Stdout=output)
return output

splitdump (dumpfile , prefix ,delim="_"):
""'"split a phot dump into seperate files for each id and filter
combination .

dumpfile is a file like object open for reading in text mode,
unfortunately it would be rather difficult to also support opening
the file for you. Sorry''’

fdict = {}
reader = csv.reader(dumpfile ,delimiter=delim, skipinitialspace=True)
try:

for line in reader:
#in python three we could write it like this:
#starid , filt, =rest = line
logger.debug(str(line))
starid , filt = line[0:2]
rest = line[2:]
if (starid, filt) not in fdict:
fdict[(starid , filt)] = open(prefix+"_"+filt+"_"+starid+".1c","'

w
fdict[(starid , filt)]. write(delim.join(rest)+"\n")
finally :

62

Chapter A Source Code

for f in fdict.values():
#close all the open files
f.close ()

def makeLightCurves(photFiles , prefix):

"""Create light curves for an object.

photFiles is a list of photometry files , such as nst files
which will be dumped to create the light curves.

prefix is the prefix to save the light curves to. This should be the

full path to the folder to save it in, and probably the name of the target
or field.

The prefix will be appended with the filter and the object id and the
suffix .lc. '’

#how hard would it be to parallelize this and pipe the result of photdump
to the input of

splitdump

buffer = StringlO ()

photdump (photFiles , buffer)

buffer.reset () #reset to beginning of 'file' for reading

splitdump (buffer, prefix)

buffer.close ()

return True

A.1.2 Passes

Listing A.13 firstpass.py

#!/usr/bin/python

import sys

import datetime

import os

import os.path as path
import shutil

import tempfile

import json

import logging

from glob import glob
from collections import defaultdict

import pyfits

import updateHeaders

import frameTypes

import process

from fitsHeader import splitByHeader

from utils import writeListToFileName , getTimeString

#TODO allow more flexibility in where the output files are stored
ProcessedFolderBase = '/data/Processed'
MasterCalFolder = '/data/Calibration'

def genDate(date):

return date.strftime ('/%Y/%b/%d%b%Y ') . lower ()

A.1 RedROVOR 63

def createResultFolder (date):

"''given a datetime.date create a new folder to hold the resulting
processed images. "'’

folderName = ProcessedFolderBase+genDate(date)

if not path.isdir (folderName):

os.makedirs (folderName) #create folder in format ddmonyyyy inside
folder for month inside folder for year
return folderName

def relocateFiles(fileList , destFolder):
""'"takes a list of filenames (fileList) and adds the destFolder to the
beginning of them, returning a new list "'’
return [path.join(destFolder, path.basename(fname)) for fname in fileList

class FirstPassProcessor:
"""Class to handle image processing for a folder, we use a class to
make it easier to keep track of the state '’

def __init__(self, rawFolder, processedFolder = None):
"""initialize the processor in the folder containing the raw data

rror

set up logger
self.logger = logging.getLogger('Rovor. FirstPassProcessor_{0} '.format(
id (self)))

self .rawFolder = rawFolder

#TODO figure out a robust way to determine the date of observation
#for now we will simply look at the date of observation for the first
#fits file

self._findFrames () #find frames

header = pyfits.getheader(self.frames[0])

self.obsDate = datetime.datetime . strptime (header['date—obs '], 'BY—9%a%
dT9H: %M: %S . %t ') . date ()

#create the folder to store results in

self . processedFolder = processedFolder or createResultFolder(self.
obsDate)

self .zeroFrame = None

self.darkFrame = None

self .flatBase = None

self . flatFrames = {}

self .frameTypes = None

self .objects = None

return
def _findFrames(self):
""'"find all fits files in the folder (anything ending with . fits ,
fit, .FIT, or .fts '''
self.logger.info ('Looking_for_frames...
validExtensions = ['. fits',"'.fit"',"'.FIT',"'. fts ']
self.frames=1list ()
for ext in validExtensions:
self . frames.extend(glob(self.rawFolder+'/* '+ext))
return self
def updateHeaders(self ,inplace=True):
""'"update the headers for all the frames in the folder
always works in place '’
self.logger.info ('Updating_Headers ... ")
for frame in self.frames:
updateHeaders . updateFrame (frame)
return self

1

64

Chapter A Source Code

def

def

def

def

def

def

def

buildLists (self):
self .logger.info ("Building_Lists")
self . frameTypes = frameTypes. getFrameLists(self.frames) #get frame
types
self.objects = frameTypes.makeObjectMap(self.frameTypes['object'])
#save a cache of the frame info to speed up future uses of the
FirstPassProcessor
with open(path.join(self.rawFolder, 'framelnfo.json'),'w') as f:
json .dump ([self.frameTypes,self.objects],f)
return self
ensure_frameTypes(self):
""'"ensure that frameTypes is set
if not self.frameTypes:
framelnfoPath = path.join(self.rawFolder, 'framelnfo.json ')
#if we have a previously made file load that
if path.isfile (framelnfoPath):
with open(framelnfoPath, 'r') as f:
self.frameTypes, self.objects = json.load(f)
else: #otherwise build the lists
self.logger.warning('Type_lists_were_not_previously_made,
making _them_now")
self.buildLists ()
makeZero(self):
#insure that we have the frame types already
self .ensure_frameTypes ()
self.logger.info ('Making_Zero ')
self .zeroFrame = path.join(self.processedFolder, 'Zero.fits ")
self .logger.info ("Set_zeroFrame to_"+ self.zeroFrame)
process . makeZero(x self.frameTypes['zero '], output=self.zeroFrame)
return self
ensure_zero (self):
"""check to see if we already have a zeroFrame location ,

if not look for a zero in the processed folder, if we still can't find
one

then run makeZero
self .zeroFrame = self.zeroFrame or path.join(self.processedFolder,
Zero. fits ')
if not path.isfile (self.zeroFrame):
#the zero hasn't been made yet
self . makeZero ()
makeDark (self):
self .logger.info ('Making_Dark ")
self .ensure_frameTypes ()
self.ensure_zero () #make sure we have a zero to use
self .darkFrame = path.join(self.processedFolder, 'Dark. fits ")
#apply zeros to darks
process .makeDark (* self . frameTypes|['dark '], zero=self.zeroFrame , output=
self .darkFrame)
return self
ensure_dark (self):
""'"check to see if we already have a zeroFrame location ,

if not look for a zero in the processed folder, if we still can't find
one

then run makeZero
self .darkFrame = self.darkFrame or path.join(self.processedFolder,
Dark. fits ")
if not path.isfile (self.darkFrame):
#the dark hasn't been made yet
self . makeDark ()
makeFlats (self):
self .logger.info ('Making_Flats ")
self.ensure_frameTypes ()

rror

v

rror

A.1 RedROVOR 65

self.ensure_zero ()
self .ensure_dark ()
flatBase = path.join(self.processedFolder, 'Flat")
flats = splitByHeader(self.frameTypes['flat '], 'filter ')
for filter in flats:
outName = "{0}_{1}.fits".format(flatBase , filter) #name is the
base flat name plus the filter type
process . makeFlat(x flats [filter],zero=self.zeroFrame , dark=self.
darkFrame , output=outName)
self.flatFrames [filter] = outName
#TODO should we copy the flats to calibration folder?
return self

def zero_and_dark_subtract(self):
""'"subtract zeros and darks from image files
and save in the processed folder '’
self .logger.info (" Subtracting, zeros_and,_darks")
#ensure we have everything we need
self.ensure_frameTypes ()
self.ensure_zero ()
self.ensure_dark ()
for (obj, flist) in self.objects.items():
#iterate over each object
for (filt , frames) in splitByHeader(flist , 'filter ').items():
baseName = "{0}/{1}{2}—".format(self.processedFolder, obj.
replace(',"',"'_"),filt)
with process.ImageList(*frames) as imlist:
imlist.subZero(self.zeroFrame)
imlist.subDark(self.darkFrame)
imlist.updateHeaders (ccdproc="{0} _CCD_Processing_done'.
format(getTimeString ("%x_%X")))
imlist.savelndexed (baseName) #save the processed images

def firstPass (self):
perform the first pass of reduction on the folder. This does the
following
— Create Master zero and place in Processed folder
— Create Master dark and place in Processed folder
— Create Master flats if any and place in Processed folder
— Apply zero and darks to all object frames and store the
processed images in Processed folder
Note that the processed images have not been flat reduced yet, this is
done in the second pass
self.logger.info('Processing_Directory_{O0}..."'.format(self.rawFolder))
#self.updateHeaders ()
self.buildLists ()
self .makeZero ()
self .makeDark ()
self . makeFlats ()
self.zero_and_dark_subtract ()

def doFirstPass (path):
""'"convenience wrapper function for the FirstPassProcessor. firstPass ,
which takes the path
opens a FirstPassProcessor and calls firstPass "'’
improc = FirstPassProcessor (path)
improc . firstPass ()

66

Chapter A Source Code

if

[

__name__ == '__main__

#optparse is deprecated after python 2.7, but

#argparse isn 't available on python 2.6, which is what
#we are currently using, if we upgrade to a newer version
#of python then we should change to argparser

from optparse import OptionParser
parser = OptionParser ()

' ' '

#parser.add_option('—F', '——use—flats ', action="'store_true ', dest="
useFlats ', default=False, help="apply flats when doing the calibration
(not done by default because flats can be tricky) ')

(options ,args)=parser.parse_args ()

if len(args) != 1:
parser.error("incorrect_number_of_arguments")
rawDirectory = args[0]

doFirstPass (rawDirectory) #for now we will just do the first pass

Listing A.14 secondpass.py

""'module for code to perform the second pass, which consists of:

NOTE: we may change the name of this module at a later time

x Apply Flats
x= Apply WCS to images

P

import logging
import json
import pyfits

from

os import path

import observatories

from
from
from
from

from

utils import findFrames

frameTypes import getFrameLists

fitsHeader import getRA, getDec, splitByHeader
wcs import astrometrySolve

process import applyFlat

import renamer

clas

s SecondPassProcessor:

"'""Class for taking care of all the processing needed for

the second pass. Again the name may change, but I couldn 't
think of a good name since Flats and WCS coordinates don't
have a lot in common except that we are going to do them at
the same time "'

def _ _init__ (self ,folder):

"""initalize the class with the path of the folder that we are going
to process.

This path will mostly be a subdirectory of the Processed folder
self . folder = folder
self .logger = logging.getLogger("Rovor.secondpass")
self.objects = None

def buildObjectList(self):
self.logger.info (" Building_Object_List")
frames = findFrames(self.folder)
frameTypes = getFrameLists(frames) #get frame types
self.objects = splitByHeader (frameTypes['object '], 'filter ')

P

A.1 RedROVOR 67

#save a cache of the frame info to speed up future uses of the
ZeroDarkProcessor
with open(path.join(self.folder, 'filterLists.json"'),'w') as f:
json.dump(self.objects ,f)
return self
def ensure_objectList(self):
""'"ensure that frameTypes is set
if not self.objects:
objectPath = path.join(self.folder, 'filterLists.json")
#if we have a previously made file load that
if path.isfile (objectPath):
with open(objectPath,'r') as f:
self.objects = json.load(f)
else: #otherwise build the lists
self.logger.warning('Object_lists_were_not_previously_made,
making _them_now")
self .buildObjectList ()
def neededFilters(self):
"'"'get the filters that the object frames are in so that we know which
filters we need to use for
flat processing, returns a set
self.ensure_objectList ()
return list(self.objects.keys())
def applyFlats(self,flatDict):
"""@brief Apply Flats in \p flatdict to object images in the folder

rror

v

For each flat in the dictionary flatDict apply the flats to all object
images in that filter

@param[in] flatDict a dictionary mapping the names of filters to paths
of the flat to use for that filter
@returns self
self .logger.info (" Applying_Flats _to_"+self.folder)
self.ensure_objectList ()
for filt ,flat in flatDict.items():

self.logger.debug(" filt={0}".format(filt))

self.logger.debug(" flat={0}".format(flat))

if filt and filt in self.objects:

applyFlat(flat ,+self.objects[filt],save_inplace=True)

return self

def applyWCS(self ,observatory = observatories .ROVOR) :
"""apply world coordinate systems to the images using data from
the observatory information to set paramaters to astrometry.net'''
self .ensure_objectList ()
for frames in self.objects.values():
for frame in frames:
header = pyfits.getheader (frame)
ra = ':'.join(getRA(header))
dec = ':'.join(getDec(header))
astrometrySolve (frame ,
guess=(ra,dec),
lowscale=observatory .lowscale ,
highscale=observatory . highscale ,
outdir=path.join(self.folder , 'WCS")
)
#astrometry.net names the new files with .new extension , rename them
renamer .renameAll (path.join (self.folder , "'WCS') ,oldExt=".new"

def doSecondPass(path, flatDict):
""'perform the second pass on images in the given folder '’

68 Chapter A Source Code

improc = SecondPassProcessor(path)
improc.applyFlats (flatDict)
improc . applyWCS ()

Listing A.15 thirdpass.py

from collections import defaultdict
import os

from os import path

import pyfits

import json

import photometry

from photometry import phot, makeLightCurves
from utils import findFrames

from fitsHeader import normalizedName

import logging
logger = logging.getLogger("Rovor. thirdpass")

#go ahead and initialize the photometry package
photometry . init ()

class ThirdPassProcessor:
"""Class for taking care of all the processing
for the third, pass.

For photometry this is kind of overkill ,
but it will make things easier when we add more to this phase

v

def __init__ (self, folder):
"'""initialize the class with the path of the folder that we are
going to process, this is most likley the WCS folder produced by
the second pass. '''
self . folder = folder
self.objects = defaultdict(list)
def buildObjectList(self):
""'"discover object frames in the folder, and what the targets are
for im in findFrames(self.folder):
header = pyfits.getheader (im)
self.objects [normalizedName (header)]. append (im)
#now save the object lists
with open(path.join(self.folder, 'objectLists.json'),'w') as f:
json .dump(self.objects, f)
return self
def ensure_objectLists(self):
""'ensure that self.objects is set
if not self.objects:
objectPath = path.join(self.folder, 'objectLists.json"')
#if we already made the file load it
if path.isfile (objectPath):
with open(objectPath,'r') as f:
self.objects = json.load(f)

rror

rror

else:

logger.info (" Creating_object_lists")
self . buildObjectList ()

return self

def objectNames(self):

"""Get the normalized names of the objects we

are dealing with in this folder. '’

self.ensure_objectLists ()

A.1 RedROVOR

return list(self.objects.keys())
def phot(self ,obj_mapping ,sxkwargs):

v

Phot the frames in the folder

obj_mapping must be a dict mapping the normalized name of objects
to a tuple containing the coordinate file and optionally a
coords.Coords object containing the coordinates of the target.
output_dir is the directory to save the output folders in,

it defaults to a subdirectory of self.folder named "photometry"
and will be created if it does not already exist.

all kwargs are passed through to the phot method
logger.info ("Photting _folder: "+self.folder)
self.ensure_objectLists ()
output_dir = path.join(self.folder, 'photometry ')
if not path.isdir(output_dir):
#only create directory if it does not already exist
os.makedirs (output_dir)
for objName, (coordfile ,targetCoords) in obj_mapping.items():
for im in self.objects [objName]:
try:
logger.info ("Photting,_image: _"+im)
phot(im, output_dir , coordfile , targetCoords ,**kwargs)
except Exception as ex:
logger.warning (ex)
#continue photting the rest

return self

def makeLightCurves(self):
""'"create light curves from the output of the
photting process. "'’
#this will just wrap a function in redrovor.photometry
for targ, flist in self.objects.items():
prefix = path.join(self.folder, 'photometry', targ)
try:
makeLightCurves (map(self._getNstName, flist),prefix)
except Exception as ex:
logger.warning (ex)
#continue making the rest of the light curves

def _getNstName(self, fitsPath):
base = path.basename(fitsPath)
return path.join(self.folder, 'photometry ',base+".nst.1")

def doThirdPass(path, obj_mapping,+xkwargs):
""'perform the third pass, for now this just does the photometry,
although at some later point we may add other processing such as
combining data for the same object—filter combinations, not that this
uses the photometry package so changing the photometry package is
sufficient to change how photometry is done.
also, additional options to control the phot process can be passed in
as kwargs
proc = ThirdPassProcessor (path)
proc.phot(obj_mapping ,**kwargs)
proc . makeLightCurves ()

70 Chapter A Source Code

A.1.3 Utilities

These are modules of RedROVOR which are used internally, but are probably not necessary for

user code.

Listing A.16 utils.py

import os

from datetime import datetime

from glob import glob

from contextlib import contextmanager
import sys

def ensure_dir(path):
#first see if it is exists
if os.path.exists(path):
#now if it is a dir return successfully
if os.path.isdir (path):
return
else:
#a non—directory file , throw an error
raise ValueError('Path_to_non—directory ')
else:
#attempt to create the path
os . makedirs (path)

def getTimeString (frmt="%Y—9%an—%dTIH: %M: %S ') :
""'get a formatted timeString '’
return datetime .now().strftime (frmt)

def writeListToFile (11, ff=sys.stdout,delimeter="\n"):
"""Write the supplied list to the given file, one element per line,
with no other delimeters

Il — The list of items to write

ff — The file to write to (as in file object)

delimeter — the delimeter between items in the list '’
ff. write('\n'.join(str(item) for item in 11))
return

def writeListToFileName (11, fname, delimeter='\n'):
"""write the list to the file given by fname (opens a file object for
writing) '
with open(fname, 'w') as ff:
writeListToFile (11 ,ff,delimeter)
return

def findFrames(folder):

""'"find all fits files in the folder (anything ending with . fits , .fit,
FIT, or .fts '’

validExtensions = ['.fits ','.fit',' ' .FIT"'," . fts ']

frames=1list ()

for ext in validExtensions:
frames.extend (glob(folder+"'/+ "+ext))

return frames

def shell_quote(s):
'quote _,string _,to_be safe_in_shell'
return "'" + s.replace(""'",r"'\""") +

"noan

@contextmanager

A.1 RedROVOR 71

def workingDirectory (path):

"""Create a context manager that temporarily changes into a
working directory , and gaurantees to return to the original workign
directory "'’
oldDir = os.getcwd ()
try:
os.chdir (path)
yield
finally :
os.chdir (oldDir)
return

Listing A.17 renamer.py

#!/usr/bin/python

""'A Module to take care of renaming fits files to a more friendly extension (

i.e. fit instead of FIT). "'’

import os
import fitsHeader

def renameFITS (origFile ,newExt=".fit"):

def

""'"Rename a single fits file to have the extension provided (defaults to
fitr)
origFile is a string with the correct path to the file to rename (absolute
or relative to working directory)
return true if the rename was successful , false otherwise "'’
if os.path.isfile (origFile):
newName = os.path.splitext(origFile)[0] + newExt
try:
os.rename (origFile ,newName)
return True
except OSError:
return False

else:
return False

renameAll (path ,newExt=".fit", oldExt=".FIT"):
"'"'Rename all FITS files with extension oldExt to extension newExt (
defaults
to .fit) which are in directory path. If path is empty or not a directory
renameAll will silently return without doing anything.
if not os.path.isdir(path):
return
for f in os.listdir (path):
if f.endswith(oldExt):
renameFITS (os. path.join (path,f) ,newExt)

Listing A.18 fitsHeader.py

import os
import os.path
import re

import obsDB
import simbad

72 Chapter A Source Code

from collections import defaultdict
import pyfits

zeroRE = re.compile(r'([zZ]ero)|I([Bb]ias) ")
darkRE = re.compile(r '[dD]ark ")
flatRE = re.compile(r'[Ff]lat")

objectRE = re.compile(r'([il Jmage) I([LI]ight)I([oO]bject)")
fitsSuffixes = set(["'.fits"','.fts','.FIT','.FITS','.fit'])

def isFits (fname):
"""Determine if the filename is right for a fits file or not'''
return os.path.isfile (fname) and os.path.splitext(fname)[1] in

fitsSuffixes

def fitsCheckMagic (fname):
"'"'check the magic number to make sure it actually is a fits file "’
with open(fname, 'rb') as fl:
return fl.read(len('SIMPLE')) == 'SIMPLE'

def getFrameType (header):

"""Given the header for a frame determine if it is a
zero, dark, flat, or image frame using the imagetyp header
and possibly the exposure time '''

imtype = header['imagetyp ']

exptime = header['exptime ']

if zeroRE.search(imtype) or exptime ==

return 'zero'

elif darkRE.search(imtype):

return 'dark’

elif flatRE.search(imtype):

return 'flat'

elif objectRE.search(imtype):

return 'object’
else:
return None

def getObjectName (header):
""'"get the name of the object in the frame
if 'object' in header:

rror

return header['object'].replace('_","'.")
elif 'title ' in header:
return header['title ']J.replace('_"',"'.")
else:
ra= header.get('objctra','0:0:0").replace(',",":"
dec = header.get('objctdec','0:0:0").replace(',"',"':")
try:
name = obsDB.lookup_name(ra,dec)

return str (name) #convert from unicode to string
except obsDB.ObsDBError as e:
#return 'unknown' #if there was a problem retrieving it is unknown
#if we don't know the name create a name from RA and dec
return makeRADecName(header)

def normalizedName (header):
"'"'get a normalized name from simbad from the header,

this is just a convenience method which calls getObjectName and
then uses simbad to get the "main name" wich is the primary name
from simbad "'’

name = getObjectName (header)

return simbad.getMainName (name)

A.1 RedROVOR 73
def getFilter (header):
if 'filter ' in header:
return header[' filter ']
else:
return 'unknown'
def getRA (header):
"'"'get the Right Ascension and return a tuple containing the
hour, minute and second '''
if 'objctra' in header:
return tuple (header['objctra'].split())
elif 'ra' in header:
return tuple (header['ra'].split())
else:
return None # ra isn 't there
def getDec(header):
""" get the declination and return a tuple containing the degree,
arcminute , and arcsecond, or None if no dec is there '''
if 'objctdec' in header:
return tuple (header['objctdec ']. split())
elif 'dec' in header:
return tuple (header['dec'].split())
else:
return None
def makeRADecName(header):
""'"If we don't have the name of the object, build a name from the RA and
dec, but only use hours/degrees and minutes/arcminutes, so that we get a
single
name for each object. We may still get collisions , but it is better than
just using unknown which would give us a lot more collisions "'’
ra = getRA(header)
dec = getDec(header)
if not ra or not dec:
#either ra or dec was None so just return 'unknown'
return 'unknown'
return 'R{0}_{1}D{2}_{3}'.format(ra[0],ra[1],dec[0],dec[1])
def splitByHeader(imlist ,keyword):

o

split a list of filenames by a header keyword, throw out any non—fits
files .

@returns a dict where the keys are the values of the supplied header and
the values are lists of images which have that value in the header.

if the keyword isn't in the header, then the empty string is used as
the value '’
result = defaultdict(list)
for im in iter (imlist):
if isFits(im):

#put each image into a list identified by the filter

#if the filter keyword isn 't supplied default to empty string

result[pyfits. getheader(im). get(keyword, '"')].append(im)
return result

Listing A.19 frameTypes.py

#!/usr/bin/python

import pyfits

import sys
import os

74 Chapter A Source Code

import os.path
from collections import defaultdict

import obsDB
from fitsHeader import isFits , getFrameType, getObjectName, splitByHeader

def getFrameLists(fileList):
"'"'given an iterator of filenames, go through each one,
get the the type of the frame and add it to the appropriate list

return a dictionary containing lists of files for 'zero', 'dark',
'object ', and 'none '. The 'none' category will contain fits files
that we can't determine the type for and files that we are unable to
Openlfl

results = {'zero':[], 'dark':[], 'flat':[], 'object':[], 'unknown':[]}
for f in iter(fileList):

try:

imType = getFrameType(pyfits.getheader(f))
except:

imType = 'unknown'
if imType is None:

imType = 'unknown'

results [imType]. append (f)
return results

def saveFrameLists(frameLists, zeroFile='zeros.1st',darkFile="'darks.lIst ',
flatFile="flats .lst',objectFile="objects.1lst',unknownFile="unknown. Ist
""'"Take the output from getFrameLists, and save them to files '''
with open(zeroFile , 'w') as zf:
for frame in frameLists['zero']:
zf . write('{0}\n'.format(frame))
with open(darkFile , 'w') as df:
for frame in frameLists['dark']:
df . write (' {O}\n'.format(frame))
with open(flatFile ,'w') as ff:
for frame in frameLists['flat']:
ff.write('{0}\n'.format(frame))
with open(objectFile ,'w') as of:
for frame in frameLists['object']:
of . write('{0O}\n'.format(frame))
with open(unknownFile, 'w') as uf:
for frame in frameLists ['unknown']:
uf.write('{0}\n"'.format(frame))

def makeObjectMap(files):
"'""create a dictionary with keys of the objects, and
the values are lists of all the frames of that object
result = defaultdict(list)
for frame in iter (files):
result[getObjectName (pyfits.getheader (frame))].append(frame)
return result

def makeObjectList(files):
""'create a list of all the objects observed "'’
return makeObjectMap(files).keys ()

def printObjectList(objectlist ,objectFile="objectList.lst"'):
""'"create a file containing a list of all the objects in objectlist
with open(objectFile , 'w') as of:
for obj in iter(objectlist):
of . write (obj)

rror

A.1 RedROVOR 75

of . write('\n")
return

def printObjectMaps (objectMap, fileBase='obj_',ext="'.1st"'):
""'"for each object create file named fileBase+objName+ext
which contains a single line header in the formate #(objname)
followed a list of the frames of that object, one per line "'’
for obj, frames in objectMap.items():
fname = fileBase + obj + ext #build name for the file
with open(fname, 'w') as olist:
olist.write('#({0})\n'.format(obj)) #write header with
object name
for frame in frames:
olist.write (frame)
olist.write('\n")
return

#main function
def main(fileList=None):
if fileList is None:
#default to everything in the folder
fileList = os.listdir('.")
#look at the frame types
frameTypes = getFrameLists(fileList)
#get object names
objNames = makeObjectMap (frameTypes['object'])

#now print out the files
printObjectMaps (objNames)
printObjectList (objNames.keys())
saveFrameLists (frameTypes)

#run main if the script is directly executed
if __name__ == '__main

main(sys.argv[1:])

Listing A.20 observatories.py

from decimal import Decimal

class Observatory:
"""class to hold constants for a specific observatory,
this should be set for any observatory you use.

The name should be the name of the observatory and should
match the name of the observatory in the IRAF observatory
database. This is necessary for the HID to be set when photting.

For accurate photometry the readnoise and gain of the detector should
be set to good values for the system.'''
def __init__ (self,
name, #name of the observatory, should match IRAF observatory database
width=Decimal (1) ,
height=Decimal (1),
lowscale=Decimal ('0.1 "),
highscale=Decimal('2"),

ra_key = 'objctra ',
dec_key = 'objctdec ',
exp_key = 'exptime ',

76 Chapter A Source Code

date_key = 'date—obs ',
time_key = 'date—obs ',
epoch_key = 'equinox',
air_key = 'airmass ',
filt_key = 'filter ',

datamax = 50000,

#these should be properly set for accurate photometry
readnoise = 0,

gain = 1,

xxkwargs) :

self.__dict__["'_dict'] = kwargs

self._dict['name'] = name

self._dict['units '] 'degrees ' #default units are degrees
self._dict['width '] Decimal (width)

self._dict['"height'] = Decimal(height)

self._dict['lowscale '] = Decimal(lowscale) #value for low scale when

using astrometry.net

self . _dict['"highscale '] = Decimal(highscale) #value for high scale

when using astrometry.net
self._dict['ra_key '] = ra_key

self._dict['dec_key '] = dec_key
self._dict['exp_key '] = exp_key
self._dict['date_key '] = date_key
self . _dict['time_key '] = time_key

self._dict['epoch_key '] = epoch_key
self._dict['air_key '] = air_key
self._dict['filt_key '] = filt_key
self._dict['datamax '] = datamax
self._dict['readnoise '] = readnoise
self._dict['gain'] = gain

def __getitem__ (self ,key):
return self._dict[key]

def __setitem__ (self ,key,value):
self._dict[key] = value

def __getattr__ (self ,name):

if name == ' _dict"':
return self.__dict__ [name]
else:
return self._dict[name]
def __setattr__ (self ,name, value):
self._dict[name] = value

#constants for the ROVOR observatory
ROVOR = Observatory ('rovor ' ,width=Decimal (23)/60,height=Decimal (23)/60,
lowscale='0.3 ', highscale="0.4")

Appendix B

Figures

77

78 Chapter B Figures

Figure B.1 Screenshot of Target List page

Synchronize with rovor.byu.edu

|Qs0 B0111+021
Q50 B1133+704

RGB J0710+591

79

Figure B.2 Screenshots of page to edit coordinate lists

| g |

+38:09:41.23

+38:05:12.05

+38:18:46.38

+38:18:23.08

+38:20:48.41

+38:16:30.00

+38:17:11.06

+38:17:35.21

+38:21:13.33

+38:22:25.83

+38:12:48.83

+38:09:02.67

+38:09:20.05

+38:21:47.55

+38:19:48.12

+38:21:12.40

+38:12:31.80

Processed/2012/jan/01jan2012/)

80

Figure B.4 First Pass page

-]
BEG

Raw]
[renama e oo o

[[Wake master 2er0 |

ke st |

ke st

" Subtrctzoos ana s |

Figure B.5 Flat Selection Page

[][bromse]
[[brouse]
[][browse]

T
| coply ot |

| soply wes |

| Perform Second Pass

Chapter B Figures

Bibliography

Crockford, D. 2006, RFC 4627, http://www.ietf.org/rfc/rfc4627.txt?7number=4627
Davis, L. E. 1994, IRAF Programming Group, NOAO, Tucson

Django. Accessed July 22, 2013, https://www.djangoproject.com/

Holden, M. 2013, Private Communication

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, The Astronomical Journal,
137, 1782, arXiv:0910.2233

81

http://www.ietf.org/rfc/rfc4627.txt?number=4627
https://www.djangoproject.com/
https://www.djangoproject.com/

Index

AJAX, 15 process module, 12, 22

Aperture Photometry, 4 PSFE, 5, 27

APIL, 9, 12 PSF fitting, 11, 27
PyRAF, 26

CCD, 2

CCDSoft, 31 RedROVOR, 7,9, 12, 15

comparison stars, 16 reduction, 15

Coordinate File, 11 ROVOR, iii, 1

Coords, 20, 21 RovorWeb, 9, 11-13

coords module, 12, 20
Second Pass, 11, 13

daophot, 11, 27, 28 secondpass module, 13

Dark Frame, 3, 10, 12, 23 SIMBAD, 9, 12, 16

Django, 13 simbad module, 12

First Pass, 10, 13 Third Pass, 11, 13

firstpass module, 13 thirdpass module, 13

FITS, 10, 13, 32

Flat Frame, 3, 1012, 23 WCS, 11, 27

FWHM. 27 WCS module, 13

Github. 37 Zero Frame, 2, 10, 12, 23, 32

ImageList, 23
IRAF, 11, 19, 26-28

Light Curve, 12, 13
MVC, 13

ObsDB, 9, 12
obsDB module, 12, 21, 26
obsRecord module, 13, 26

Photometry, 4
photometry, 1, 13
photometry package, 13

83

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Background

	2 Design
	2.1 Overall Design
	2.2 RedROVOR
	2.2.1 Passes
	2.2.2 Modules

	2.3 RovorWeb
	2.3.1 accounts
	2.3.2 dirmanage
	2.3.3 reduction
	2.3.4 targets
	2.3.5 obs_database
	2.3.6 root

	2.4 ObsDB

	3 Implementation
	3.1 RedROVOR
	3.1.1 coords
	3.1.2 simbad
	3.1.3 obsDB
	3.1.4 process
	3.1.5 wcs
	3.1.6 obsRecord
	3.1.7 photometry
	3.1.8 firstpass
	3.1.9 secondpass
	3.1.10 thirdpass
	3.1.11 utils
	3.1.12 renamer
	3.1.13 fitsHeader
	3.1.14 frameTypes
	3.1.15 observatories

	3.2 RovorWeb
	3.3 Observation Database

	4 Conclusion and Future Work
	A Source Code
	A.1 RedROVOR
	A.1.1 Photometry
	A.1.2 Passes
	A.1.3 Utilities

	B Figures
	Bibliography
	Index

