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ABSTRACT

hsfpy - A Python Interface to the Hierarchical Spline Forest C++ Library

Spencer Lyon
Department of Physics and Astronomy

Bachelor of Science

I describe the creation of a Python interface to the HSF C++ library. HSF stands for hierarchal
spline forests and the C++ library is used to represent surfaces or volumes of arbitrary complexity
in terms of hierarchal splines. This library is under active development by BYU faculty in the
Physics, Engineering, Mathematics, and Information Technology departments. I will defend
the choice of using Python as the high-level interface. I will also describe projects that facilitate
wrapping compiled languages (like C, C++ or Fortran) in Python. Among them are SWIG,
Boost.Python, Cython, and a relatively new project – XDress. XDress blends an expressive
typesystem, C/C++ source code parsers, and code generating utilities into an easy to use system
for constructing Python wrappers for C or C++ code via Cython.

Keywords: Python, C++, Isogeometric geometry, B-splines, NURBS
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hsfpy - A Python Interface to the Hierarchical
Spline Forest C++ Library

1 INTRODUCTION

1.1 BACKGROUND

A physicist is interested in discovering and explaining why things are the way they are. This

is usually done by making observations, isolating important variables or factors, and building

models. In order to use and solve these models physicists need a way to represent them visually

and/or in terms of mathematical functions. Especially in physics, these mathematical functions

are differential or difference equations with an associated set of boundary conditions.

There are many numerical techniques commonly employed to solve boundary value prob-

lems. Among them are finite difference methods (FD), finite element methods (FEM), boundary

element methods (BEM), and finite volume methods (FVM). A 2-component approach is taken

with each of the techniques:

1) The geometry of the problem is discretized and represented using a mesh.

2) One of the above methods is applied to this mesh and a solution to the model is computed.

Each of the discrete solution techniques mentioned above has its own strengths and weak-

nesses. FD methods are relatively easy to implement, but are normally restricted to rectilinear

geometry1. FEM, BEM, and FVM are all more flexible in how the geometry can be represented,

but are typically more difficult to implement. In section 1.1.1, I describe where this additional

flexibility comes from.

1It is actually possible to systems with more complex geometries, but it is difficult and using another method is
suggested
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1.1.1 SPLINES

Often the geometry of a physical system is defined using a system of splines. Most standard

CAD packages use splines. A spline is a smooth, piecewise defined polynomial function that is

also smooth where the polynomials pieces come together [1]. The standard type of spline to

use to represent the geometry is the non-uniform rational B-spline (NURBS). The definition

of a NURBS starts with a non-decreasing and potentially non-uniform vector of knots, which

discretize the domain into smaller regions. Polynomial functions are then defined on each of

those regions. Next, a set of weights is applied to the basis functions to define rational functions.

Finally, a set of coefficients or control points are used to represent the geometry that is to be

described in terms of the rational basis functions.

Once the geometry has been described, it is necessary to generate a computational mesh for

the analysis of the system (this is true for FEM, BEM, or FVM). Once the mesh has been gener-

ated, the boundary value problem can be solved on the discrete system. One inefficiency with

standard FEM, BEM, and FVM methods is that the mathematical constructs used to represent

the geometry are different than those used to perform the analysis. The analysis items mesh may

be built from different shapes, such as triangular patches, square patches, tetrahedral patches,

or hex patches. It is important to understand that the analysis mesh is usually an approximation

of the geometrical representation (i.e. NURBS). This poses at least three issues: 1) It is computa-

tionally costly to move from one representation to another, 2) a significant amount of labor may

be required to convert between the design and analysis geometries, and 3) conversion between

the exact geometry and the analysis mesh often introduces error.

1.1.2 ISOGEOMETRIC ANALYSIS (IGA)

To overcome these issues, a new computational approach called isogeometric analysis (IGA)

was introduced in 2005 by Hughes et al. [2]. The main idea behind IGA is to use the exact same

basis functions to represent the geometry and do the analysis [3]. This simple idea streamlines

the interaction between geometric design and rigorous analysis. IGA also provides many other

2
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benefits to the design and analysis process. FEM and BEM can use the smooth, high-order basis

functions that describe the geometry to perform the computation and analysis, resulting in

more accurate results. Also, analysis based on BEM is usually plagued by geometric error; IGA

completely eliminates this error [4]. IGA has also been shown to have significant advantages

over standard FEM in certain applications due to the smooth basis [5].

1.1.3 HSF

Hierarchal spline forests (HSF) were develped at BYU and are the focus of ongoing research [6];

hierarchal spline forests bring additional improvements to IGA. A set of NURBS satisfying certain

properties can be organized into nested, hierarchal structures called spline trees. The spline

trees can then be collected as an unstructured, geometrically conforming arrangement called a

spline forest. This forest gives IGA a number of enhancements, among which are the following:

• HSF basis functions have compact support and can be made into a partition of unity.

• HSF curves can be made C∞ between knots and C p−k at knots (p is the degree of spline, k

is multiplicity of knot). In this way the user can control the degree of continuity at knot

locations.

• Local refinement of basis functions is possible (not generally true of splines).

• Solutions to boundary value problems obtained using HSF curves are both accurate and

smooth.

• Geometric structure of governing PDEs can be incorporated directly into the basis (for

example ∇·B = 0 in EM, or ∇·v = 0 in incompressible flow).

To accompany the theory behind HSF, a C++ library is being developed that implements

these concepts (hsf will henceforth refer to the C++ library and HSF will refer to the theory). C++

was an appropriate language choice for the implementation of hsf for a number of reasons:

• C++ is a statically typed, compiled programming language. This allows code written in C++

to be executed very fast. For the types of problems IGA and the HSF theory are usually

applied to, this is an absolute must.

3
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• C++ is an object oriented programming language. This programming paradigm allows the

ideas behind hsf (NURBS trees and spline forests, ect.) to be expressed in a very natural

way.

• C++ is mature and has a great foothold in the scientific community. This means that there

are many highly optimized and well-tested libraries available for use in hsf.

• Some advanced language features, like templates and method, function, or operator

overloading, allow the code be general, but still compiled.

On the other hand, there are some shortcomings to choosing C++ as the primary program-

ming language for hsf:

• C++ is a relatively low-level language. While this does mean it can achieve great per-

formance, it also means that the language is difficult to learn. This can be a barrier to

entry for people, especially undergraduate students, who would like to contribute to the

development of hsf2.

• Also due to the low-level nature of C++, it tends to be more verbose than other languages.

The amount of C++ code required to do a task is often much more than the amount of

Matlab or Python code required to do the same thing.

The vision for the hsf library is that it will become the most powerful and flexible discretiza-

tion package for physics and engineering. The C++ implementation gives hsf the potential of

being very powerful, but might also limit its user base. For that reason, the research group has

decided to build an interface between the core C++ library and a higher-level language.

1.2 MOTIVATION

There are many possible options for a high-level interface to hsf. Among the most common

are Matlab, R, Julia and Python. Each of these languages has its respective strengths. Matlab

is among the most popular languages for high-level numerical analysis and computation. R is

the standard for open-source statistical programming. Julia couples a dynamic typesystem and

2This is apparent in that the main developers of the library are all faculty members.

4
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advanced multiple dispatch paradigm with a powerful just-in-time compiler to achieve excellent

performance for numerical programming tasks3. Python, in contrast, features a complete, state

of the art scientific analysis framework built on top of a fully functional programming language.

We decided to use Python to build the interface to C++ for a number of reasons. Python

has long had a reputation for being a good "glue" language. The core of the most common

implementation of Python, CPython, is actually written in C and thus boasts a native Python-

C API. In many ways, the environment most similar to Python is Matlab, but Matlab comes

with a hefty price-tag. Python is free, open source, and runs on almost all operating systems.

Python is known for its very readable syntax. It is not unreasonable to expect a researcher to be

introduced to Python in the morning and be writing meaningful programs by the end of the day4.

Additionally, in Python it is relatively easy to employ parallel processing. The package mpi4py

exposes any system implementation of the message passing interface (MPI) to Python. hsf is

currently using MPI to implement core algorithms in parallel. Being able to use MPI from Python

will help increase the rate of development for parallel hsf. Finally, python has gained significant

traction in the scientific community. A significant shift away from other languages like Matlab

or R to Python is currently taking place due in large measure to the excellent scientific libraries

available in Python.

These virtues of Python language all come together into the ideal programming environment

for the high-level C++ interface, which we call hsfpy. The hope is that a robust and functional

implementation of hsfpy will assist in the larger goal of hsf becoming the go-to package for

discretization by lowering the bar of entry. This will allow more researchers to use hsf to do their

analysis and more students who would like to contribute to the development of hsf itself.

The core C++ library for hsf is still being actively developed, but is at a very mature state. As

of August 2, 2013 there are over 18,000 lines of actual code (excluding blank lines and comments)5

in the library. This has provided a very stable base upon which the Python interface has been

3Julia also supports native calls to C/C++ through the ccall method
4Obviously a mastery of the language will develop over time, but the point of Python being readable and easy to

learn stands.
5This was determined using the cloc utility
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developed.

2 METHODS

In this section I describe the different approaches that were employed and considered during

the creation of hsfpy. I will give an overview of the tools that were considered for this project

as well as a short usage example for each tool. To maintain consistency and make differences

across the methods more apparent, I will use a selection of the code from the hsf C++ library.

The main components of this example code are a C++ class HKnotVector, a function numClamp,

and a few typedefs, DoubleVec, IntVec, and IntVecVec. The goal for each example will be to

correctly wrap the HKnotVector class, as it uses the other components. The source code can be

found in Appendix A.

2.1 SWIG

SWIG6 is an acronym meaning simplified wrapper and interface generator. The following excerpt

from the SWIG homepage provides a good explanation of what SWIG is commonly used for:

SWIG is a software development tool that connects programs written in C and C++
with a variety of high-level programming languages. SWIG is used with different
types of target languages including common scripting languages such as Perl, PHP,
Python, Tcl and Ruby. . . SWIG is most commonly used to create high-level inter-
preted or compiled programming environments, user interfaces, and as a tool for
testing and prototyping C/C++ software. SWIG is typically used to parse C/C++
interfaces and generate the ’glue code’ required for the above target languages to
call into the C/C++ code.

SWIG is a very well-established project; the first version appeared in July 1995 and the most

recent version was released in May 2013. Over the years, SWIG has developed into a very powerful

and flexible tool. The best expression of this flexibility is that SWIG officially has at least partial

support for nineteen different target languages, whereas other tools that will be discussed in this

6SWIG is free and open source. The source code is hosted at https://github.com/swig/swig and the home-
page for the project is http://www.swig.org/.
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section are Python specific. A great aspect of this flexibility is that users can run SWIG on the

exact same set of files and generate wrappers for different target languages by simply changing a

single command line argument.

However, SWIG is not a perfect tool. Due in part to the freedom it gives users to choose

amongst multiple output languages, SWIG generates wrapper code that is relatively difficult to

customize for a specific target language. Due to its multiple output paradigm, SWIG doesn’t fully

support all C++ language features for every output language. This is a significant issue for this

project, because hsf heavily uses advanced C++ techniques. Furthermore, in order to use SWIG,

a user must supply an additional interface file (commonly with a .i suffix) in which the user

uses a C-like syntax to describe the desired interface. Finally, the last main drawback I noticed

when testing SWIG for hsfpy is that the building/compiling phase for SWIG is non-trivial.

2.1.1 SWIG USAGE EXAMPLE

To give an idea of how to use SWIG, I outline how to construct a Python interface to the code

contained in Appendix A. The first step is to create a SWIG interface file where the desired

wrapper is designed. I will present the wrapper used to expose the class HKnotVector, and then

explain the key components.

Listing 1: HKnotVector.i: SWIG interface for HKnotVector
1 %module hsfpy
2

3 %{
4 #include "../HKnotVector.h"
5 %}
6

7 %include "std_vector.i"
8 namespace std {
9 %template(IntVec) vector<int>;

10 %template(DoubleVec) vector<double>;
11 %template(IntVecVec) vector<vector<int> >;
12 }
13

14 %import "../common.h"
15 %include "../HKnotVector.h"

• Line 1 Declare the name of the module. In large projects the module name allows SWIG to

7
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create wrappers that don’t have issues with namespace resolution.

• Lines 3-5 This is a special block that is copied and pasted, without SWIG parsing, directly

into the generated C/C++ portion of the wrapper. If there are things that need to happen

for the underlying source to function, but SWIG doesn’t need to know about, they go here.

• Lines 7-12 Notice the use of the %include where C++ programmers are used to see-

ing #include. This is a special SWIG statement that instructs SWIG to access the file

"std_vector.i" (included as part of SWIG) and give the interface access to the vector

class from within the namespace std. I then then expose the typdefs found in "common.h"

as swig templates.

• Line 14 The SWIG %import directive is used to tell the wrapper that important items live

in common.h, but that no wrapper code needs to be generated for that file.

• Line 15 Finally the SWIG %includedirective is used to include the main file HKnotVector.h

in the generated wrapper.

Although the interface file is only 15 lines long, it is fairly complex. One thing to note about

this interface is that when it is run, the entire HKnotVector class (really everything defined in

HKnotVector.h) is wrapped and exposed to the target language. This could pose problems if

various types, functions, or class attributes shouldn’t be accessed outside of C or C++.

Using this file is a two-step process: 1) Run SWIG on the "HKnotVector.i" and generate the

interface, 2) incorporate the generated files into a build system so that they can be imported

into Python. This first step is very straightforward and can be accomplished by running the

following from the command line:

1 swig -c++ -python HKnotVector.i

This command runs SWIG, tells it that the source language is C++, the target language is Python

and that the interface file is HKnotVector.i. After running the command two files will be gener-

ated HKnotVector_wrap.cxx and hsfpy.py. Together these files files make up the wrapper of

HKnotVector.

8
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The next step is to incorporate these files into a build system so that they can be compiled

in a way that the system Python can interact with them. The SWIG documentation gives a few

possible methods for doing this, but the recommended solution is to let Python handle the

compiling. This will ensure that the correct libraries are linked at compile time and that the

version of Python directing the compilation will be able to use the compiled extensions. To do

this, a setup.py file must be created. The setup.py file for this example appears below (note

that an explanation of key parts of the file is given after the code).

Listing 2: setup.py file for SWIG
1 #!/usr/bin/env python
2 """
3 setup.py file for building SWIG hsfpy extensions
4 """
5

6 from distutils.core import setup, Extension
7

8 h_knot_vector = Extension(’_hsfpy’,
9 sources=[’./HKnotVector_wrap.cxx’]

10 )
11

12 setup(name=’hsfpy’,
13 version=’0.1’,
14 author="Spencer Lyon",
15 description="""Wrapping hsfpy for python using SWIG""",
16 ext_modules=[h_knot_vector],
17 py_modules=["hsfpy"],
18 )

• Line 6 From the Python distutilspackage, import the setup function and the Extension

class. The setup function is the main driving point in this file and will direct the compi-

lation. Objects of type Extension hold all the information the setup function needs to

compile the extensions.

• Lines 8-10 Describe the HKnotVector extension. Notice the first argument given to the

Extension constructor is "_hsfpy". This argument tells the setup function what to name

the shared object (or dynamic linking library on Windows) where the compiled wrapper

will be placed. Without custom configuration, SWIG requires that this name be a leading

underscore followed by the %module name defined in the interface file.

• Lines 12-18 Call the setup function to build all the Extensions in the ext_modules list.

This is also where other metadata about the project goes.

9
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The final step in building the interface is to have Python compile the wrappers. This is done on

the command line with a single command:

1 python setup.py build_ext --inplace

This command tells the system Python (whatever python resolves to on the user’s $PATH) to

build the extensions outlined in setup.py inplace, meaning in the current working directory.

In the end, I decided not to use SWIG to create the interface to the entire hsf library. The

verbose C-like interface files and the need to create a separate interface file for each source file

made SWIG more difficult than necessary. In addition, the fact that all code from an exposed

C++ source file is wrapped was overkill for this project. Also, not all C++ languages features that

appear in hsf are supported by SWIG. However, as can be seen from this small exercise, it is a

fairly straightforward, if tedious, process to use SWIG to create a Python interface to C++ code.

2.2 BOOST.PYTHON

Boost.Python7 (henceforth Boost for short) is an alternative to SWIG and is a highly specialized

tool for wrapping C++ for Python use. This apparent lack of flexibility has allowed the Boost

developers to provide a very natural and complete coverage of the C++ language. Some key C++

features that are supported in boost are

• References and Pointers

• Efficient function overloading

• C++ to Python exception translation (cuts down on SEGFAULTs)

• Functions or methods with default and keyword arguments

• Exporting C++ iterators as Python iterators

• Control over Python documentation strings

On the other hand, Boost has significant limitations. First, Boost has a difficult Bjam utility

for compiling the wrappers. Bjam is similar to make, but has a difficult and strange syntax.

7Boost.Python is part of the free peer-reviewed Boost project. Boost can be downloaded from the main projects
webstie at http://www.boost.org/. The documentation for Boost.Python can be found at http://www.boost.
org/doc/libs/1_54_0/libs/python/doc/index.html.
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Second, the generated wrapper code is generally very verbose. While this is is probably due

to supporting some C++ features that other wrapping tools do not, it has at least two major

drawbacks: 1) It takes a long time to compile the wrappers and 2) the Python-side execution is

typically noticeably slower than the code generated with other tools. Finally, the major drawback

and ultimate reason why I did not use Boost for hsfpy is that it is very difficult to install. After

reading the (sparse) documentation and searching the internet, I still could not get Boost.Python

correctly installed and configured on my system. This would be a major roadblock to future

users of the Python bindings and would actually detract from the main justification for creating

the bindings: lowering the bar to entry for using hsf in research. For these reasons, I will not

include a usage example for Boost.Python, but because I spent quite a bit of time on it and many

people seem to like it, I felt it needed to be addressed in this report.

2.3 CYTHON

The next tool I examined was Cython 8. Instead of being a tool used solely to wrap compiled

languages for use in Python, Cython is actually a super-set of the Python language; anything that

is valid Python code is also valid Cython code. However, Cython adds a few major improvements:

• Variables, functions, and classes can be given static types. This avoids much of the over-

head inherent in a "duck-typed" interpreted language like Python.

• Cython programs can make direct calls to C, C++, and Fortran code. This allows the user

to directly mix Python with low-level, high performance compiled code.

Cython accomplishes this by translating the Cython code directly to C or C++, which can

then be compiled and loaded into any Python script or session. This means that blocks of code

where all objects have been given static types can be written directly in C and therefore achieve

almost9 C-like performance. In addition, the ability to directly call C, C++, or Fortran makes

8Cython is free and open source. The source code is hosted at https://github.com/cython/cython and the
homepage for the project is http://cython.org/.

9The almost is necessary because there is small overhead in calling the compiled routines from Python and
getting the results back.
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Cython a viable option for wrapping low-level code for use in Python. In Appendix B, I provide a

detailed example of static typing in Cython.

2.3.1 CYTHON WRAPPING EXAMPLE

Building on the static typing example in Appendix B, I will now show how to use Cython to

wrap the HKnotVector example10. In order to use external libraries, you need to tell Cython

two things: 1) what file the external components are defined in (usually a header .h file) and 2)

which parts of that file you would like to access from Cython. For example, instead of calling

from libc.math cimport sqrt, I could have done the following:

1 cdef extern from "math.h":
2 double sqrt(double x)

In the first line I started a cdef externblock. The syntax is simply cdef extern from <headerName>:,

where headerName is the name of the external file where the desired objects are defined (

"math.h" for this example). Everything in the indented block following the : is part of this cdef

extern block and contains the external declarations that need to be exposed to Cython.

In a larger project, it is often necessary to create a Cython interface file (with a .pxd exten-

sion), which does for Cython what a .h interface file does for C/C++ . This is necessary when you

have multiple Cython .pyx files that need to access the same external source. The declarations

go into a cdef extern block in a .pxd file. This interface is very similar to the C/C++ interface;

often users can copy and paste directly from C to Cython. The actual implementation will go

into a file with the same name, but with a .pyx extension. This is very similar to .h and .c files

for C. Furthermore, when wrapping a set of C++ classes, people often put the extern definitions

in a file named something like cpp_<headerName>.pxd and Cython declarations in a file named

<headerName>.pxd. This is important because it is generally necessary to have one interface file

for external declarations (the file named cpp_), and another interface file exposing the Cython

implementation.

10Readers who are unfamiliar with Cython, especially static typing in Cython, are encouraged to read Appendix B
before proceeding.
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The structure of a Cython wrapper is best understood by example, which I now show as I

wrap HKnotVecter. I begin with Listing 3, which is the file cpp_HKnotVector.pxd. In this file I

use the vector class defined in libcpp.vector and include the all the declarations that appear

in HKnotVector.h (Listing 14 in Appendix A).

Listing 3: cpp_HKnotVector.pxd
1 from libcpp.vector cimport vector as cpp_vector
2

3 cdef extern from "HKnotVector.h" namespace "hsf":
4

5 cdef cppclass HKnotVector:
6 # constructors
7 HKnotVector()
8 HKnotVector(unsigned int, const cpp_vector[double] &)
9

10 # methods
11 unsigned int degree()
12 bint isEven()
13 bint isOdd()

The next part of the wrapper is the Cython interface HKnotVector.pxd in Listing 4. This is a

very minimal file that declares the HKnotVector class and sets up some initial attributes of the

class.

Listing 4: HKnotVector.pxd
1 from hsfpy cimport cpp_HKnotVector
2

3 cdef class HKnotVector:
4 cdef void * _inst
5 cdef public bint _free_inst

The final part and main of the wrapper is HKnotVector.pyx, shown here in Listing 5. This is

where all attributes and methods declared in either of the interface files are implemented.

Listing 5: HKnotVector.pyx
1 cimport numpy as np
2 from libc.stdlib cimport free
3 from libcpp.vector cimport vector as cpp_vector
4 import numpy as np
5

6 np.import_array()
7

8

9 cdef class HKnotVector:
10 def __cinit__(self, *args, **kwargs):
11 self._inst = NULL
12 self._free_inst = True
13

14 def __dealloc__(self):
15 if self._free_inst:

13
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16 free(self._inst)
17

18 # constuctors
19 def _constructor1(self):
20 self._inst = new cpp_HKnotVector.HKnotVector()
21

22 def _constructor2(self, degree, knots):
23 cdef cpp_vector[double] cpp_knots
24 cdef int i
25 cdef int knots_size = len(knots)
26 cpp_knots = cpp_vector[double](<size_t> knots_size)
27 for i in range(knots_size):
28 cpp_knots[i] = <double> knots[i]
29 self._inst = new cpp_HKnotVector.HKnotVector(<unsigned int> long(degree),

cpp_knots)
30

31 def __init__(self, *args, **kwargs):
32 if len(args) == 2:
33 self._constructor2(*args, **kwargs)
34 else:
35 self._constructor1(*args, **kwargs)
36

37 # methods
38 def degree(self):
39 cdef unsigned int rtnval
40 rtnval = (<cpp_HKnotVector.HKnotVector *> self._inst).degree()
41 return int(rtnval)
42

43

44 def isEven(self):
45 cdef bint rtnval
46 rtnval = (<cpp_HKnotVector.HKnotVector *> self._inst).isEven()
47 return bool(rtnval)
48

49

50 def isOdd(self):
51 cdef bint rtnval
52 rtnval = (<cpp_HKnotVector.HKnotVector *> self._inst).isOdd()
53 return bool(rtnval)

• Lines 1-6 All necessary items are imported and set up. Notice that neither of the interface

files are actually imported here. If a .pxd and a .pyx file are in the same directory and

have the same name, then all things imported or defined in the .pxd are automatically

available in the .pyx file.

• Lines 9-16 Use cdef to declare the class and set up a few special Cython methods. __cinit__

is called immediately after the user tries to create an instance of the class and usually holds

the minimial setup required to avoid a SEGFAULT from null pointers. The __dealloc__

method is called when the object is passed through the Python garbage collector and is

implemented here to avoid memory leaks.
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• Lines 18-35 Here the overloaded constructor for HKnotVector is set up. Two private

methods (private by convention of starting with a single underscore) are implemented to

handle each of the overloads. The __init__ method is called after __cinit__ when an

HKnotVector instance is created and is implemented to dispatch object creation to one of

the overloaded constructors.

• Lines 37-53 The methods declared in cpp_HKnotVector.pxd are implemented. Pretty

much the only thing that needs to happen here is type checking. To do this I use cdef to

statically declare variable types and cast objects using < · >.

Now that the wrapper is completed, it needs to be incorporated into a build system and

complied into a shared object so that Python can access it. As before, we let Python handle this

step using a setup.py file, which I have included in Listing 6. There are only a few differences

between this file and the other setup.py files presented earlier. First, in lines 6 and 10 I explicitly

specify the include directories for the HKnotVector extension. Also, I setup the hsfpy package

with a module named HKnotVector. This happens on lines 8 and 17.

Listing 6: setup.py for Cython wrapper of HKnotVector
1 from distutils.core import setup
2 from distutils.extension import Extension
3 from Cython.Distutils import build_ext
4 import numpy as np
5

6 incdirs = [’..’, ’.’, np.get_include()]
7

8 HKnotVector = Extension("hsfpy.HKnotVector",
9 ["hsfpy/HKnotVector.pyx"],

10 include_dirs=incdirs, language="c++")
11

12 ext_modules = [HKnotVector]
13

14 setup(name=’hsfpy’,
15 cmdclass={’build_ext’: build_ext},
16 ext_modules=ext_modules,
17 packages=[’hsfpy’]
18 )

As can be see from this example, wrapping code using Cython provides absolute control over

the structure and feel of the wrapper, but it takes more work than, for example, SWIG. I have only

wrapped a very small portion of the hsf library in this example, but it illustrates the point. The

sheer size of the hsf library makes it unreasonable to construct a wrapper by hand using Cython.
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Additionally, the core hsf C++ library is still being developed and is therefore liable to change at

any time. Trying to keep the Cython wrapper up to date would be a difficult and error-prone

task. For these reasons, I decided not to use a by-hand Cython approach in creating hsfpy.

2.4 XDRESS

The final tool I evaluated when creating the Python wrapper for hsf is XDress 11. XDress is a very

young project that first appeared on github in April 2013. XDress is written in pure Python and is

an automatic Python wrapper generator for C and C++ source. It constructs the wrapper in a

three stage process.

1. External (to XDress) parsing tools are run on the source and a static xml representation of

the data structures is generated. Currently, XDress uses GCC-XML12 for C++ parsing and

pycparser13 for C.

2. The generated xml files are parsed and the C-based API is described in terms of an internal

XDress typesytem. This typesystem is very dynamic and was designed from the ground up

with API generation in mind. It is the main enabling feature of XDress.

3. XDress uses various built-in and/or user-supplied plugins to take the API stored in the

typesystem and form Cython bindings.

2.4.1 xdressrc.py

Compared to the other methods discussed here, XDress is very easy to use . The main point

of entry for using XDress is to call xdress from the command line. When this command is

executed (with no extra arguments options) it will scan the current directory for a file named

xdressrc.py. All the instructions for XDress are put into this single python file. It is easiest to

understand the types of instructions that need to be in this file by example, so I present one here.

11XDress is free and open source. The source code is hosted at https://github.com/xdress/xdress and the
homepage for the project is http://xdress.org/.

12GCC-XML is free and open source. The source code is hosted at https://github.com/gccxml/gccxml and
the homepage for the project is http://gccxml.github.io/HTML/Index.html.

13pycparser is free and open source. The source code is hosed at https://github.com/eliben/pycparser
and the (limited) documentation is found in README.rst in the source.
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Listing 7: Sample xdressrc.py for HKnotVector
1 package = ’package’
2 packagedir = ’output’
3 sourcedir = ’src’
4

5 plugins = (’xdress.stlwrap’, ’xdress.autoall’, ’xdress.autodescribe’,
6 ’xdress.cythongen’, ’foopack.barplug’)
7

8 ## Which stl containers we need for this code
9 stlcontainers = [(’vector’, ’float64’),

10 (’set’, ’int’),
11 (’map’, ’int’, (’map’, (’vector’, ’uint’), (’set’, ’char’))),
12 (’vector’, (’vector’, ’float64’)),
13 (’set’, ’FooClassBar’)
14 ]
15

16 ## Which classes to create wrappers for.
17 classes = [(’FooClass’, ’Foo’),
18 (’FooClass’, ’Bar’, ’Foo’, ’FooClassBar’),
19 ]
20

21 functions = [(’FooFunc’, ’Foo’)]
22

23 variables = [(’barVar’, ’Bar’)]

• Lines 1-3 Set the name of the Cython package, the output directory where the Cython

wrapper will go, and the name of the directory where the C/C++ source lives.

• Lines 5-7 This is an optional step where the user can specify which plugins should be

run when xdress is executed. All but the last plugin (’foopack.barplug’) are built-in

plugins that come with XDress. They perform the following functions:

– ’xdress.stlwrap’: Generates wrapper a for C++ STL objects (see next bullet for

more information)

– ’xdress.autoall’ and ’xdress.autodescribe’: Parse all included files and enter

all objects into the typesystem

– ’xdress.cythongen’: Use the generated typesystem to actually write out the Cython

files that define the wrapper

– ’foopack.barplug’: Run the user supplied plugin barplug found in the package

foopack.

Note that if the plugins list is omitted from this file that XDress will automatically populate

this list with the necessary plugins to create the Cython interface.
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• Lines 8-14 Specify which STL containers to create Cython wrappers for. These wrappers

will be exposed to Python via custom NumPy dtypes that do all data sharing in memory

(no copying, which means a lower memory footprint and faster performance). Notice that

the specifications here can take on a nested form to accommodate arbitrary complexity.

Also note that non-native C/C++ types can be specified here, with the restriction that the

user-defined types be mentioned in the classes list below (see next bullet).

• Lines 16-19: An optional list of classes XDress should generate wrappers for. The classes

object specified here should be a list of tuples. There are various formats for specifying the

contents of each tuple, but the format used here is (’source_name’, ’source_file’,

’target_name’, ’target_file’). Where source_name is the name of the class in C++,

source_file is the file where the class is defined in C++ and the target variants are the

name and file for how and where the class should be defined in C++.

• Lines 21-23: Optional lists of functions and variables that should be wrapped. The syntax

is similar to the syntax for classes.

2.4.2 XDRESS PLUGINS

As can be seen, specifying the API elements that need to be wrapped is straightforward and

simple. To complement this simplicity XDress has a very easy to use plugin architecture that

gives users absolute control over how the wrapping is handled. The plugin system is not a mere

afterthought, but build into the core of how XDress operates. All the major functionality of

XDress is modularized into distinct plugins that are executed using this archtecture. This means

that user-supplied plugins will be given the same precedence as built-in plugins. To demonstrate

some of the possibilities for XDress plugins, I will explain two of the plugins I have written to

handle issues encountered with wrapping hsf.

The first of these plugins is now a part of XDress and lives in xdress.descfilter. This plu-

gin allows the user to instruct XDress to "filter out" certain API components from the generated

wrapper. This can be done in one of two ways: 1) specify that functions or methods with certain

types in the function signature be excluded or 2) specify that certain methods of a class should

be excluded. This flexibility can be useful when there are certain functions that shouldn’t be
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exposed to Python. This is also a useful stop-gap for data types that have not yet been imple-

mented into the XDress type system. In Section 3.1 I will present the actual xdressrc.py file

currently being developed for hsf, which will provide a usage example for xdress.descfilter.

The second plugin is also part of XDress and lives in xdress.doxygen. This plugin uses

dOxygen14 to output an xml version of in-line documentation contained in the C/C++ source.

The plugin then parses this xml, automatically generates Python docstrings, and inserts them

into the Cython wrappers. These docstrings have many uses such as to provide information

on methods, classes, or functions when these objects are inspected at the Python interpreter,

or to be used by a tool like Sphinx15 in conjunction with other content to produce stylized

documentation. In Section 3.2 I will give a preview of what these docstrings look like for hsfpy

inside of IPython.

Another important item to note is that because I became involved with XDress development

at a very early stage and because the hsf library utilizes advanced C++ language features, much of

the recent and current development of XDress is being driven by the needs that arise in wrapping

hsf. This, together with the ease and freedom XDress provides, caused me to choose XDress as

the tool to use in constructing hsfpy. As the hsf project moves forward, the relationship with

the lead XDress developer, Anthony Scopatz, and the close integration between hsf and the

XDress development cycle will be very helpful and should ensure long-term functionality.

3 RESULTS AND DISCUSSION

XDress is still actively developed and does not yet support all the features of hsf. As such, hsfpy

is still a work in progress. It should be noted, however, that the missing functionality in XDress is

relatively minor and should be implemented before the end of August 2013. At that time, it will

14dOxygen is a common documentation utility for C/C++ projects that gives the user the ability to have specially
formatted comments in the source code become stylized documentation elements. dOxygen is free and open
source. The code is hosted at https://github.com/doxygen/doxygen and the homepage for the project is
http://www.stack.nl/~dimitri/doxygen/.

15Sphinx is a Python package that can automatically create html or pdf (via latex) documentation using the reStruc-
turedText markup language. Additionally, Sphinx can inspect docstrings and turn them into stylized documentation
elements, much like dOxygen.
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be very easy to finish hsfpy. In the remainder of this section I will present the current version

of hsfpy, including the XDress utilities needed to produce it, as well as show some preliminary

usage examples.

3.1 XDRESS AND HSFPY

All instructions needed to create hsfpy are contained in a single xdressrc.py file, which I

give below in Listing 8. This is the actual file used in development as of August 5, 2013. After

presenting the file I will explain key parts.

Listing 8: Actual xdressrc.py for hsfpy
1 import sys
2 sys.path.insert(0, ’.’)
3

4 ## Do basic setup
5 package = ’hsfpy’ # top-level python package name
6 packagedir = ’hsfpy’ # location of the generated python package
7 sourcedir = ’src’ # location of the original C++ source
8

9 # Options for my utils.init_setup plugin
10 init_filename = ’__init__.py’
11 setup_filename = ’setup.py’
12 run_setup = False
13

14

15 ## List the plugins we need. This step is optional, but we use it because we
16 # need to filter out some types
17 plugins = (’xdress.autoall’,
18 ’xdress.autodescribe’,
19 ’xdress.doxygen’,
20 ’xdress.descfilter’,
21 ’xdress.cythongen’,
22 ’xdress.stlwrap’,
23 ’utils.init_setup’)
24

25 # Which types to ignore or exclude in the wrappers
26 skiptypes = [’ExtractData’, ’HExtractCache’, ’HMeshCache’, ’istream’,
27 ’basic_istream’, ’basic_ostream’, ’HTrunkData’, ’Activity’, ’bool’,
28 ’Cell’, ’BFunc’, ’HExtract’, ’Knot’, ’Tree’, ’CellFace’]
29

30 # Which methods to skip in various classes
31 skipmethods = {
32 ’HNurbsTree’: [’saveFile’, ’saveTSplineFile’, ’loadStreamBody’],
33 ’HForest’: [’loadFile’, ’saveFile’, ’loadPointsFile’, ’loadStream’]
34 }
35

36 ## Which stl containers we need for this code
37 stlcontainers = [
38 (’set’, ’uint’),
39 (’vector’, ’float64’), # DoubleVec
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40 (’vector’, ’int32’), # IntVec
41 (’vector’, (’vector’, ’int32’)), # IntVecVec
42 (’vector’, (’vector’, ’float64’)), # DoubleVecVec
43 (’vector’, ’HKnotVector’), # vector< HKnotVector >
44 (’vector’, (’Point’, 3, ’double’, False)), # vector< Point3d >
45 (’vector’, (’Point’, 3, ’double’, True)), # vector< APoint3d >
46 ]
47

48 variables = [
49 (’Activity’, ’common’), # Activity enum
50 (’MeshType’, ’HMesh’) # MeshType enum
51 ]
52

53 ## Which classes to create wrappers for.
54 classes = [
55 (’HKnotVector’, ’HKnotVector’),
56 ((’Point’, 3, ’double’, False), ’Point’, ’Point’, ’APoint3d’),
57 ((’Point’, 3, ’double’, True), ’Point’, ’Point’, ’Point3d’),
58 (’HNurbs’, ’HNurbs’),
59 (’Index’, ’common’),
60 (’HNurbsTree’, ’HNurbsTree’),
61 (’HForest’, ’HForest’),
62 ]
63

64 ## Which functions to create wrappers for
65 functions = [
66 (’linearParameterizeNURBS’, ’HNurbs’)
67 ]

• Lines 1-2 Add the current working directory to the path so the local plugin utils.init_setup

will run16.

• Lines 4-7 Set the package name, package directory, and source directory

• Lines 9-12 Set options for the utils.init_setup plugin written specifically for hsfpy.

This plugin will take the information contained in xdressrc.py and automatically cre-

ate the necessary setup.py file. It will also create an __init__.py file in the package

directory17. Finally, the plugin will automatically run python setup.py build_ext

–inplace if run_setup is set to True.

• Lines 15-23 List the plugins XDress should use in creating hsfpy.

• Lines 25-28 Set the skiptypes parameter used by the plugin xdress.descfilter. Any

time an item in this list appears as the type of an argument or return value of a function

16I have included the contents of utils.init_setup.py in Appendix C.
17The __init__.py file is used to manage namespaces. The utils.init_setup plugin automatically imports

all wrapped functions and classes into the main hsfpy namespace.
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or method, that method is skipped when the wrapper is generated. For the most part

this is necessary for two reasons: 1) Un-implemented features of XDress preclude proper

wrapping one of these types or 2) There is no need for the Python interface to deal with

these types.

• Lines 30-34 Set the skipmethods parameter used by the xdress.descfilter plugin.

This dict contains class names as keys and a list of method names as values. The method

names specified in the lists will be excluded from the generated wrapper of the class the

list pertains to.

• Lines 36-46 Which C++ standard library types to create NumPy dtypes for. Note the

inclusion of some non-standard types in lines 43-45.

• Lines 48-67 Which variables, classes, or functions to create wrappers for. The syntax

for these lists was explained in Section 2.4.1. Note, however, that I specified a template

instantiation for the class Point. This was done by having the first element of the tuple be

a tuple with the root name first, followed by the template values. Also note that for these

templates I specified all four items in the class tuple.

The setup.py and __init__.py files generated after running xdress are presented in Listing

9 and Listing 10, respectively.

Listing 9: Actual setup.py for hsfpy
1 import os
2 from distutils.core import setup
3 from distutils.extension import Extension
4 from Cython.Distutils import build_ext
5

6 import numpy as np
7

8 incdirs = [os.path.join(os.getcwd(), ’hsfpy’),
9 os.path.join(os.getcwd(), ’src’),

10 np.get_include()]
11

12 # Define extensions
13 xdress_extras = Extension("hsfpy.xdress_extra_types",
14 ["hsfpy/xdress_extra_types.pyx"],
15 include_dirs=incdirs, language="c++")
16

17

18 stl_cont = Extension("hsfpy.stlcontainers", ["hsfpy/stlcontainers.pyx"],
19 include_dirs=incdirs, language="c++")
20

21
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22 HKnotVector = Extension("hsfpy.HKnotVector",
23 ["hsfpy/HKnotVector.pyx", "src/HKnotVector.cpp"],
24 include_dirs=incdirs, language="c++")
25

26

27 Point = Extension("hsfpy.Point",
28 ["hsfpy/Point.pyx", "src/Point.cpp"],
29 include_dirs=incdirs, language="c++")
30

31

32 HNurbs = Extension("hsfpy.HNurbs",
33 ["hsfpy/HNurbs.pyx", "src/HNurbs.cpp"],
34 include_dirs=incdirs, language="c++")
35

36

37 common = Extension("hsfpy.common",
38 ["hsfpy/common.pyx", "src/common.cpp"],
39 include_dirs=incdirs, language="c++")
40

41

42 HNurbsTree = Extension("hsfpy.HNurbsTree",
43 ["hsfpy/HNurbsTree.pyx", "src/HNurbsTree.cpp"],
44 include_dirs=incdirs, language="c++")
45

46

47 HForest = Extension("hsfpy.HForest",
48 ["hsfpy/HForest.pyx", "src/HForest.cpp"],
49 include_dirs=incdirs, language="c++")
50

51

52 ext_modules = [stl_cont,
53 xdress_extras,
54 HKnotVector,
55 Point,
56 HNurbs,
57 common,
58 HNurbsTree,
59 HForest]
60

61 setup(name=’hsfpy’,
62 cmdclass=dict([(’build_ext’, build_ext)]),
63 ext_modules=ext_modules,
64 packages=[’hsfpy’]
65 )

Listing 10: Actual __init__.py for hsfpy
1 # import classes
2 from hsfpy.HKnotVector import HKnotVector
3 from hsfpy.Point import Point
4 from hsfpy.HNurbs import HNurbs
5 from hsfpy.common import Index
6 from hsfpy.HNurbsTree import HNurbsTree
7 from hsfpy.HForest import HForest
8

9 # import functions
10 from hsfpy.HNurbs import linearParameterizeNURBS
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3.2 HSFPY USAGE

Although hsfpy is not entirely finished, there are still some features I can demonstrate that

will highlight its functionality. The first usage example I will provide shows the interactive

documentation capabilities automatically built in to hsfpy via the xdress.doxygen plugin.

As noted earlier, the plugin will have dOxygen scan the C++ source for inline documentation

included as comments. These comments are then parsed, formatted, and put into the wrapper

as stylized Python docstrings. The docstrings for functions contain the order and type of all

input and output arguments and any brief description provided in the source. Additionally, the

docstrings for classes contain the basic description of the class as well as a list of all attributes

and methods of the class. The content of these docstrings can be accessed interpreter using

the help function, directly as a python str from the __doc__ attribute of a function or class, or

using the ? IPython dynamic introspection operator. Below I have included the content of a

sample IPython session.

Listing 11: Sample IPython showing docstrings in hsfpy
1 In [1]: import hsfpy
2

3 In [2]: print(hsfpy.HKnotVector.__doc__)
4 A one-dimensional object which stores a knot vector of any degree.
5 No geometric operations are performed using a knot vector, only
6 basis function queries. This class is best used in connection with a
7 HNURBS object which stores the geometric information. We do store
8 the extra knot for open knot vectors. So a degree p knot vector will
9 have p + 1 knots at the beginning and end of the knot vector. We

10 currently don’t support periodic knot vectors although this could be
11 added pretty easily.
12

13 Attributes
14 ----------
15 mDeg (uint) : The degree associated with this knot vector.
16 mKnots (DoubleVec) : A vector of knots.
17 mGroups (IntVec) : Assign a unique knot multiplicity group index
18 to each knot in the global knot vector.
19 mReverseGroups (IntVecVec) : The reverse map which allows you to
20 map from a multiplicity group index to the group of knot
21 indices of which it is composed.
22 mMultipleCount (IntVec) : The multiplicity number for each knot
23 in the global knot vector. This can be used when
24 transferring between levels in a tree.
25

26

27 Methods
28 -------
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29 HKnotVector
30 ~HKnotVector
31 cellN
32 decreaseOrder
33 degree
34 elevate
35 funcGroup
36 getDomainMax
37 getDomainMin
38 getDomainWidth
39 getFirstKnot
40 getFirstKnotIndex
41 getFuncKnot
42 getFuncKnotIndex
43 getKVecData
44 getKnot
45 getKnotIndex
46 getKnotMax
47 getKnotMin
48 getLastKnot
49 getLastKnotIndex
50 getLocalKnotIndexVector
51 getLocalKnotVector
52 globalFuncN
53 groupN
54 isBoundary
55 isEven
56 isInterior
57 isLeftBoundary
58 isOdd
59 isRightBoundary
60 knotGroup
61 knotGroupMult
62 knotGroupN
63 knotN
64 operator=
65 order
66 vector
67 zeroCount
68

69 Notes
70 -----
71 This class was defined in HKnotVector.h
72

73 The class is found in the "hbs" namespace
74

75 In [3]: hsfpy.HForest.transformCellAcrossCorner?
76 Type: method_descriptor
77 String Form:<method ’transformCellAcrossCorner’ of ’hsfpy.HForest.HForest’

objects>
78 Docstring:
79 transformCellAcrossCorner(self, trunk, corner, which, cell_idx)
80 Given a trunk and corner and an index specifying which corner
81 adjacency we’re interested in and an index written in terms of
82 the coordinate system of the trunk find the same cell in the
83 coordinate system of the trunk across the corner. If operation
84 is unsuccessful returns an invalid index.
85

86 Parameters
87 ----------
88 trunk : uint
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89

90 corner : uint
91

92 which : uint
93

94 cell_idx : Index
95

96 Returns
97 -------
98 None

As can be seen in the very simple example above, if the user doesn’t know what methods a

certain object has or what the types of a particular function’s arguments are, they can easily pull

up the docstrings and find out. This makes hsfpy much more accessible to outside users who

have not been involved in the structure and development of hsf. Unlike the static, complied

C++ library, the Python interface invites users to explore the various data types interactively,

hopefully encouraging a much quicker development for projects using hsf.

In the next example, I will use hsfpy to create instances of the basic mathematical constructs

of hsf and show how these instances can be queried to give information about the underlying

objects18. The main object in HSF is the hierarchical spline forest, which is implemented as

HForest. The spline forest is created from a collection of spline trees, represented in the code as

HNurbsTree. Each of these spline trees is a collection of individual NURBS, which corresponds

to the HNurbs class. Finally, the HNurbs objects are built using C++ vectors of HKnotVector

objects, which each represent a knot vector. Listing 12 shows how these objects might be created.

Note that the printed statements from Listing 12 appear in Listing 13.

Listing 12: Creating hsfpy objects.
1 from __future__ import print_function
2 from hsfpy import *
3 msg = "{0} is\n{1}\n"
4 f = open(’longoutput.txt’, ’w’)
5 section = ’#’ * 72
6

7

8 ## Create HKnotVector objects
9 knots1 = [0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0]

10 knots2 = [0.0, 0.0, 0.0, 1./3, 2./3, 1.0, 1.0, 1.0]
11 hkv1 = HKnotVector(1, knots1)
12 hkv2 = HKnotVector(2, knots2)

18Again hsfpy is an unfinished project, but most main data structures have been wrapped. The components that
are missing deal with doing the analysis on those data structures.
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13 print(section, file=f)
14 print(’Verifying consistency of two methods of creating HNurbs’, file=f)
15 print(msg.format(’hkv1’, repr(hkv1)), file=f)
16 print(msg.format(’hkv2’, repr(hkv2)), file=f)
17

18 ## Create HNurbs
19 nurbs1 = HNurbs([hkv1, hkv2])
20 nurbs2 = HNurbs()
21

22 # Note linearParameterizeNURBS makes nurbs2 = HNurbs([hkv2, hkv1])
23 linearParameterizeNURBS(2, 3, 2, 2, 2, 4, 4, 10., 2., 2., nurbs2)
24 print(’HKnotVectors of nurbs2. First should be hkv2 and second hkv1’, file=f)
25 print(msg.format(’nurbs2.getKnots(0)’, nurbs2.getKnots(0)), file=f)
26 print(msg.format(’nurbs2.getKnots(1)’, nurbs2.getKnots(1)), file=f)
27

28 ## Now create NURBS for the next level in the hierarchy
29 # The knot vectors are obtained by subdividing the nonzero segments in the

previous set
30 knots3 = [0.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.0]
31 knots4 = [0.0, 0.0, 0.0, 1./6, 1./3, 1./2, 2./3, 5./6, 1.0, 1.0, 1.0]
32 hkv3 = HKnotVector(1, knots3)
33 hkv4 = HKnotVector(2, knots4)
34 print(section, file=f)
35 print(’HKnotVectors in second level HNurbs\n’, file=f)
36 print(msg.format(’hkv3’, repr(hkv3)), file=f)
37 print(msg.format(’hkv4’, repr(hkv4)), file=f)
38 nurbs3 = HNurbs([hkv3, hkv4])
39

40 ## Create Trees
41 print(section, file=f)
42 print(’Creating HNurbsTree and HForest. Then testing integrity of underlying

HKnotVectors’, file=f)
43 tree = HNurbsTree(0, nurbs1)
44 tree.addLevel(nurbs3)
45

46 ## Create forest
47 forest = HForest(tree)
48

49 # get some data and verify integrity
50 direct = hkv2.getKnot(4)
51 nonstop1 = nurbs1.getKnot(1, 4)
52 nonstop2 = nurbs2.getKnot(0, 4)
53 layover = tree.getLevel(0).getKnots(1).getKnot(4)
54 longest = forest.getTree(0).getLevel(0).getKnots(1).getKnot(4)
55

56 print(’Are the values of HKnotVector 2 preserved?’, file=f)
57 print(str(direct == nonstop1 == nonstop2 == layover == longest), file=f)
58 f.close()

Listing 13: Output of data structure example
########################################################################
Verifying consistency of two methods of creating HNurbs
hkv1 is
HKnotVector

Degree: 1
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Knots: [0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0]

hkv2 is
HKnotVector

Degree: 2
Knots: [0.0, 0.0, 0.0, 0.333333333333, 0.666666666667, 1.0, 1.0, 1.0]

HKnotVectors of nurbs2. First should be hkv2 and second hkv1
nurbs2.getKnots(0) is
HKnotVector

Degree: 2
Knots: [0.0, 0.0, 0.0, 0.333333333333, 0.666666666667, 1.0, 1.0, 1.0]

nurbs2.getKnots(1) is
HKnotVector

Degree: 1
Knots: [0.0, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.0]

########################################################################
HKnotVectors in second level HNurbs

hkv3 is
HKnotVector

Degree: 1
Knots: [0.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.0]

hkv4 is
HKnotVector

Degree: 2
Knots: [0.0, 0.0, 0.0, 0.166666666667, 0.333333333333, 0.5,

0.666666666667, 0.833333333333, 1.0, 1.0, 1.0]

########################################################################
Creating HNurbsTree and HForest. Then testing integrity of underlying HKnotVectors
Are the values of HKnotVector 2 preserved?
True

As can be seen, hsfpy is well on its way to becoming a functional and seamless Python

interface to hsf. In addition to wrapping the analysis portions of hsf, there are a few other

things that could make hsfpy even better. XDress allows the insertion of handwritten functions

and methods into the wrapper code via sidecar files. A sidecar file is a Python file that sits along

the .h and .cpp source and modifies the internal XDress representation of the objects when

XDress is executed. I actually used this feature to get the HKnotVector instances to print nicely in

the output file from the example above. In addition to aesthetic improvements, the sidecar files

can be used to make the wrapped classes behave more like native Python classes. Adding things

like Python indexing (through the __getitem__ and __setitem__ methods) and overloading

standard arithmetic operators (through methods like __add__, __sub__, ect.) will allow the
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hsfpy classes to behave and feel as if they were implemented in Python initially. However, these

classes will have the added benefit of C++ execution speeds and precise memory management.

4 CONCLUSION

I have presented the basics of the hierarchal spline forests project and its associated software

implementation. The hsf library is written in C++, which allows the code to be very efficient and

generally applicable in many contexts. The long-run goal of hsf is to be the most flexible and

powerful discretization package available. To broaden the potential user-base, increase the rate

of development, and lower the barriers to entry for undergraduate contributions to the project,

the focus of this project has been creating a wrapper around hsf in a high level language.

I described potential language choices and justified the selection of Python as the high-level

target for the wrapper. I evaluated and included functional examples of SWIG, Boost.Python,

Cython, and XDress as candidates for creating the Python interface to the library: hsfpy. XDress

best fit the needs of hsfpy and was chosen as the tool for its creation. I then gave a detailed

explanation of how XDress was used to create the wrapper, including the contributions I have

made to XDress to enable functionality required by hsfpy. Finally I presented the current state

of the wrapper, showed a usage example, and highlighted various features.

There is still some work to be done before this project is complete. Most of the remaining

tasks deal with extending the capabilities of XDress so that it can handle all the C++ language

features hsf uses. After those remaining items are implemented, XDress will be a very robust

tool that will make wrapping future projects and maintaining hsfpy simple and straightforward.
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A HSFPY (C++) CODE LISTINGS

Below are the code listings that are used as examples throughout section 2.

Listing 14: Portions of HKnotVector.h
1 #ifndef _H_KNOT_VECTOR_H_
2 #define _H_KNOT_VECTOR_H_
3

4 #include "common.h"
5 #include <vector>
6 #include <iostream>
7

8 using namespace std;
9 using namespace util;

10

11 namespace hsf
12 {
13 class HKnotVector
14 {
15 /// A one-dimensional object which stores a knot vector of any degree.
16 /// No geometric operations are performed using a knot vector, only basis
17 /// function queries. This class is best used in connection with a HNURBS

object which
18 /// stores the geometric information. We do store the extra knot for open
19 /// knot vectors. So a degree p knot vector will have p + 1 knots at the

beginning
20 /// and end of the knot vector. We currently don’t support periodic knot
21 /// vectors although this could be added pretty easily.
22 public:
23

24 /// Default constructor
25 HKnotVector() : mDeg( 0 ) {}
26

27 /// construct a knot vector from a vector of knots. We assume that p + 1
repeated

28 /// knots exists at the beginning and end of the knot vector.
29 HKnotVector( uint degree, const DoubleVec &knots )
30 : mDeg( degree ), mKnots( knots )
31 {
32 getKVecData( mKnots, mGroups, mReverseGroups, mMultipleCount );
33 }
34

35 /// A destructor
36 ~HKnotVector() {}
37

38 /// Returns the degree of this knot vector.
39 uint degree() const { return mDeg; }
40

41 /// Returns true if the knot vector is even.
42 bool isEven() const { return degree() % 2 == 0; }
43

44 /// Returns true if the knot vector is odd.
45 bool isOdd() const { return !isEven(); }
46

47 protected:
48

49 uint mDeg;
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50 DoubleVec mKnots;
51 IntVec mGroups;
52 IntVecVec mReverseGroups;
53 IntVec mMultipleCount;
54

55 /// Returns group, multiplicity, zcount data for a vector of knots.
56 void getKVecData( const DoubleVec &knots, IntVec &knot_groups,
57 IntVecVec &reverse_knot_groups, IntVec &multiple_counts ) const
58 {
59 knot_groups.clear();
60 reverse_knot_groups.clear();
61 multiple_counts.clear();
62 knot_groups.push_back( 0 );
63 multiple_counts.push_back( 0 );
64 uint group_index = 0;
65 uint multiple_count = 0;
66 IntVec group;
67 group.push_back( 0 );
68 for( uint iknot = 1; iknot < knots.size(); ++iknot )
69 {
70 if( equals( knots[ iknot - 1 ], knots[ iknot ], 1e-8 ) )
71 {
72 group.push_back( iknot );
73 ++multiple_count;
74 }
75 else
76 {
77 ++group_index;
78 multiple_count = 0;
79 reverse_knot_groups.push_back( group );
80 group.clear();
81 group.push_back( iknot );
82 }
83 knot_groups.push_back( group_index );
84 multiple_counts.push_back( multiple_count );
85 }
86 reverse_knot_groups.push_back( group );
87 }
88 };
89 }
90 #endif

Listing 15: Portions of common.h
1 #ifndef _UTIL_COMMON_H_
2 #define _UTIL_COMMON_H_
3

4 #include <climits>
5 #include <iostream>
6 #include <vector>
7 #include <set>
8 #include <map>
9 #include <cmath>

10 #include <string>
11 #include <assert.h>
12

13 /// common definitions needed throughout the hsf library
14
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15 typedef unsigned int uint;
16 typedef unsigned long ulong;
17 typedef unsigned short ushort;
18 typedef unsigned char uchar;
19

20 using namespace std;
21

22 namespace util
23 {
24 /// Clamps the values to a determined range. The values
25 /// ’minimum’ and ’maxmimum’ must be of a type that can be
26 /// cast to the same type as ’value’, and must be less-than
27 /// comparable with value’s type as well.
28 template< typename T, typename T2, typename T3 >
29 inline T numClamp( T value, T2 minimum, T3 maximum )
30 {
31 if( value < minimum )
32 return minimum;
33 if( maximum < value )
34 return maximum;
35 return value;
36 }
37

38 /// This form is a little inconvenient, but is the basis of most other
39 /// ways of measuring equality.
40 inline bool equals( double a, double b, double tolerance )
41 {
42 // This method has been benchmarked, and it’s pretty fast.
43 return ( a == b ) ||
44 ( ( a <= ( b + tolerance ) ) &&
45 ( a >= ( b - tolerance ) ) );
46 }
47

48 typedef std::vector< double > DoubleVec;
49 typedef std::vector< int > IntVec;
50 typedef std::vector< IntVec > IntVecVec;
51 }
52 #endif

B CYTHON TYPE EXAMPLE

The main point of entry for adding static types in Cython is the cdef keyword. This can be

used before any object to assign a type to it. All C types can be used as valid cdef declarations:

numeric types, structs, unions, pointers, ect. In addition, many Python types like list or dict

have been optimized to get performance gains when cdef is used to declare their type. When

using cdef, Cython will generate C code that does automatic type conversion between related

Python and C types. The end result of code that has been properly typed using cdef is much
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faster code - sometimes faster by orders of magnitude.

To demonstrate the use of the cdef keyword I will show Python and Cython versions of a

pairwise-distance function. This function takes in an n ×m matrix that represents n points in m

dimensions and it will return an n ×n matrix containing the Euclidean distance between each

point in the input array and every other point in that array. I show Python and Cython versions

below and then explain the differences:

Listing 16: pairs.py: Pure Python pairwise distance function
1 from math import sqrt
2 import numpy as np
3

4

5 def dist(x):
6 n = x.shape[0]
7 m = x.shape[1]
8 ret = np.empty((n, n))
9 for i in range(n):

10 for j in range(n):
11 d = 0.0
12 for k in range(m):
13 tmp = x[i, k] - x[j, k]
14 d += tmp * tmp
15 ret[i, j] = sqrt(d)
16 return ret

Listing 17: cy_pairs.pyx: Cython pairwise distance function
1 from libc.math cimport sqrt
2 import numpy as np
3

4

5 cpdef dist(double[:, ::1] x):
6 cdef int n = x.shape[0]
7 cdef int m = x.shape[1]
8 cdef double[:, ::1] ret = np.empty((n, n))
9 cdef double d, tmp

10 cdef int i, j, k
11 for i in range(n):
12 for j in range(n):
13 d = 0.0
14 for k in range(m):
15 tmp = x[i, k] - x[j, k]
16 d += tmp * tmp
17 ret[i, j] = sqrt(d)
18 return ret

• Line 1 Cython exposes the much of the C standard library via libc.<headerName>. The

sqrt function from the standard library is a bit faster than the one from Python’s built-in
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math package. Note that I must use the Cython keyword cimport to access this function.

• Line 5 Notice the use of the keyword cpdef. This keyword is used to define functions or

classes that need to be callable from both Python and C. Were I to have used cdef here, the

function would be translated to a C function and I would not be able to call it from Python.

Behind the scenes cpdef instructs the Cython to C translator to make two versions of the

function: one for Python use and the other for C use.

• Line 5 Also note that on line 5 I declare a Cython typed memoryview using double[:,

::1]. This statement tells Cython that x will be a two dimensional array of doubles. In

addition, the ::1 in the second position tells Cython that x will be C-contiguous19. This

allows the generated C code to use natural C array operations on x.

• Lines 6-10 Here I give static types to all variables local to the function. Note the use of the

typed memory view again on line 8. Also note that Cython requires types to be declared at

the top level of a function. For that reason, I declared d and tmp as double and i, j, k as

int before entering first for loop.

• The rest of the function is identical to the pure Python version.

In order to use the Cython version of the function, we must instruct Cython to translate it to C

and then compile it for Python use. There are many ways to do this, but as with SWIG it is easiest

to let Python handle it for us using a setup.py file. A setup.py file for this function appears

below:

Listing 18: setup.py file for Cython pairwise distance
1 from distutils.core import setup
2 from Cython.Build import cythonize
3

4 setup(name="Pairwise distance", ext_modules=cythonize(’cy_pairs.pyx’))

This file is very simple: lines 1 and 2 import the setup and cythonize functions and line 4

calls the setup function where the extension modules are given using the cythonize function.

The only remaining step is to build the extension using the command used to build the SWIG

extension above. I repeat the command here:

19Note that by default all NumPy arrays are C-contiguous.
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python setup.py build_ext --inplace

I timed both of these functions using x = np.random.randn(1500, 5) as the input array. Both

functions returned the exact same answer, but the execution time was very different. The Python

function took 21.2 seconds to execute, whereas the Cython version only took 75.6 milliseconds:

a speedup of over 280x 20!

C init_setup.py XDRESS PLUGIN

The contents of the utils.init_setup plugin mentioned in Section 3.1 appear below.

Listing 19: XDress plugin init_setup.py
1 import sys
2 import os
3 import io
4 from subprocess import call
5 from xdress.plugins import Plugin
6

7 if sys.version < 3:
8 basestring = str
9

10 import collections
11

12

13 class OrderedSet(collections.MutableSet):
14

15 def __init__(self, iterable=None):
16 self.end = end = []
17 end += [None, end, end] # sentinel node for doubly linked list
18 self.map = {} # key --> [key, prev, next]
19 if iterable is not None:
20 self |= iterable
21

22 def __len__(self):
23 return len(self.map)
24

25 def __contains__(self, key):
26 return key in self.map
27

28 def add(self, key):
29 if key not in self.map:
30 end = self.end
31 curr = end[1]
32 curr[2] = end[1] = self.map[key] = [key, curr, end]
33

20I also have a more optimized version of the Cython code that only takes 14.9 milliseconds to run. While that
shows a speed improvement of over 1400x, it makes use of some advanced Cython features that are beyond the
scope of this report.
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34 def discard(self, key):
35 if key in self.map:
36 key, prev, next = self.map.pop(key)
37 prev[2] = next
38 next[1] = prev
39

40 def __iter__(self):
41 end = self.end
42 curr = end[2]
43 while curr is not end:
44 yield curr[0]
45 curr = curr[2]
46

47 def __reversed__(self):
48 end = self.end
49 curr = end[1]
50 while curr is not end:
51 yield curr[0]
52 curr = curr[1]
53

54 def pop(self, last=True):
55 if not self:
56 raise KeyError(’set is empty’)
57 key = self.end[1][0] if last else self.end[2][0]
58 self.discard(key)
59 return key
60

61 def __repr__(self):
62 if not self:
63 return ’%s()’ % (self.__class__.__name__,)
64 return ’%s(%r)’ % (self.__class__.__name__, list(self))
65

66 def __eq__(self, other):
67 if isinstance(other, OrderedSet):
68 return len(self) == len(other) and list(self) == list(other)
69 return set(self) == set(other)
70

71 _extension = """\
72 {tarfile} = Extension("{pack}.{tarfile}",
73 \t["{packdir}/{tarfile}.pyx", "{srcdir}/{srcfile}.cpp"],
74 \tinclude_dirs=incdirs, language="c++")
75 """
76

77 _stl_extention = """\
78 stl_cont = Extension("{pack}.stlcontainers", ["{pack}/stlcontainers.pyx"],
79 include_dirs=incdirs, language="c++")
80 """
81 _xd_extras_ext = """\
82 xdress_extras = Extension("{pack}.xdress_extra_types",
83 ["{pack}/xdress_extra_types.pyx"],
84 include_dirs=incdirs, language="c++")
85 """
86

87 _setup_main = """\
88 import os
89 from distutils.core import setup
90 from distutils.extension import Extension
91 from Cython.Distutils import build_ext
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92

93 import numpy as np
94

95 incdirs = [os.path.join(os.getcwd(), ’{packdir}’),
96 os.path.join(os.getcwd(), ’{srcdir}’),
97 np.get_include()]
98

99 # Define extensions
100 {extensions}
101

102 ext_modules = {ext_mod_list}
103

104 setup(name=’{pack}’,
105 cmdclass=dict([(’build_ext’, build_ext)]),
106 ext_modules=ext_modules,
107 packages=[’{pack}’]
108 )
109 """
110

111 _import_obj = "from {pack}.{tarfile} import {obj}\n"
112

113

114 _init_main = """\
115 # import classes
116 {classes}
117 # import functions
118 {functions}
119

120 """
121

122

123 class XDressPlugin(Plugin):
124 """Plugin for generating __init__.py and setup.py."""
125 defaultrc = {’init_filename’: ’__init__.py’,
126 ’setup_filename’: ’setup.py’,
127 ’run_setup’: False}
128

129 def execute(self, rc):
130 package = rc.package
131 packagedir = rc.packagedir
132 srcdir = rc.sourcedir
133

134 classes = rc.classes
135 functions = rc.functions
136

137 classes_set = OrderedSet()
138 ext_set = OrderedSet()
139 str_funcs = ’’
140 e_mod_list = OrderedSet()
141

142 if os.path.isfile(packagedir + os.path.sep + ’xdress_extra_types.pyx’):
143 ext_set.add(_xd_extras_ext.format(pack=package))
144 e_mod_list.add(’stl_cont’)
145

146 if os.path.isfile(packagedir + os.path.sep + ’stlcontainers.pyx’):
147 ext_set.add(_stl_extention.format(pack=package))
148 e_mod_list.add(’xdress_extras’)
149

150 for cc in classes:
151 srcfile = cc.srcfile
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152 tarfile = cc.tarfile
153 c_tarname = cc.tarname
154 if isinstance(c_tarname, basestring):
155 tarname = c_tarname
156 else:
157 tarname = c_tarname[0]
158

159 classes_set.add(_import_obj.format(pack=package,
160 tarfile=tarfile,
161 obj=tarname))
162

163 ext_set.add(_extension.format(pack=package,
164 tarfile=tarfile,
165 packdir=packagedir,
166 srcdir=srcdir,
167 srcfile=srcfile
168 ))
169 e_mod_list.add(tarfile)
170

171 for ff in functions:
172 srcfile = ff.srcfile
173 tarfile = ff.tarfile
174 c_tarname = ff.tarname
175 if isinstance(c_tarname, basestring):
176 tarname = c_tarname
177 else:
178 tarname = c_tarname[0]
179

180 str_funcs += _import_obj.format(pack=package,
181 tarfile=tarfile,
182 obj=tarname)
183

184 ext_set.add(_extension.format(pack=package,
185 tarfile=tarfile,
186 packdir=packagedir,
187 srcdir=srcdir,
188 srcfile=srcfile
189 ))
190 e_mod_list.add(tarfile)
191

192 # Create the string for the extension modules
193 str_e_mod_list = ’[’
194 str_e_mod_list += ’,\n\t’.join(e_mod_list)
195 str_e_mod_list += ’]’
196

197 # Create the string for the classes
198 str_classes = ’’.join(classes_set)
199

200 # Create string for the extensions
201 str_extensions = ’\n\n’.join(ext_set)
202

203 # Write the __init__.py
204 init_name = packagedir + os.path.sep + rc.init_filename
205 print(’init_setup: Writing %s’ % init_name)
206 init_txt = _init_main.format(classes=str_classes, functions=str_funcs)
207 with io.open(init_name, ’wb’) as f:
208 f.write(init_txt)
209

210 setup_txt = _setup_main.format(extensions=str_extensions,
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211 ext_mod_list=str_e_mod_list,
212 pack=package,
213 packdir=packagedir,
214 srcdir=srcdir)
215

216 # Write the setup.py
217 print(’init_setup: Writing %s’ % rc.setup_filename)
218 with io.open(rc.setup_filename, ’wb’) as f:
219 f.write(setup_txt)
220

221 if rc.run_setup:
222 print(’#’ * 72 + ’\nRunning setup.py’)
223 call([’python’, ’setup.py’, ’build_ext’, ’--inplace’])

D PYTHON SETUP AND INSTALLATION

As motivated in Section 1.2, Python was chosen for the high-level interface to hsf. In addition to

the hsfpy specific benefits, a working Python environment brings a complete programming lan-

guage and world-class scientific libraries to the users fingertips. Because Python and most of its

packages are open source, there are numberless ways to set up a scientific Python environment.

I will describe a few of them here, give a recommendation for which path to take, and walk the

reader through the setup process.

There are two main ways to get a working scientific python distribution:

1) Build the entire system from scratch. First, Python itself would be installed and then users

decide exactly which 3rd party package to include in their Python environment. This is the

preferred method for many Python developers and others who are very comfortable at the

command prompt.

2) Use a scientific Python distribution. Users who choose this option get a Python distribution

bundled with at least the core scientific stack.

For readers of this report, I recommend the second option. Amongst the many scientific

Python distributions, I recommend either Enthought Canopy21 or the Anaconda Python distri-

21Enthought Canopy the successor to the very popular Enthought Python distribution. The homepage Canopy is
https://www.enthought.com/products/canopy/.
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bution from Continuum Analytics22. Anaconda is a highly specialized distribution focused on

scientific or data-driven programming. It includes over 50 of the most useful scientific packages.

Enthought Canopy is a more general distribution that bundles over 100 packages, including the

core scientific ones. Both distributions have free and paid variants, but as an academic user the

complete version of each is available without cost. It should be noted that both Canopy and

Anaconda are easily extensible in the same way a distribution built from scratch is; any other

Python package can be installed into any Python distribution. Using a scientific distribution

simply eliminates much of the initial setup required to get a functional scientific environment.

For use with hsfpy I recommend using Canopy. For unknown reasons, portions of hsfpy

failed to compile using Anaconda, but did compile with Canopy23. To install Canopy download

the basic (free) version of Canopy from https://www.enthought.com/downloads/ and install.

Then, to activate the full version as an academic user, register for an Enthought account using an

academic email address here: https://www.enthought.com/products/canopy/academic/.

Enthought will send an email to the given email address with a verification link. Once the

account is verified, open Canopy and at the top of the window click Login and input the email

address and password that were just set up. The final step in getting Canopy fully installed is

to click the box labeled Package Manager. In the window that appears, click the button in the

bottom right corner that says it will install all available packages. This completes the Canopy

setup.

XDress also has a non-Python dependency: GCC-XML. To install GCC-XML download the

source code from https://github.com/gccxml/gccxml/releases/tag/v0.6.x and follow

the installation instructions from http://gccxml.github.io/HTML/Install.html.

22The homepage for the Anaconda Python distribution is https://store.continuum.io/cshop/anaconda/.
23This is probably due to the fact that Anaconda is a more bleeding-edge distribution and the included Python is

compiled with a relatively new C compiler. Parts of the hsf C++ library are known not to work with the clang C++
compiler, but function fine when using gcc.
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