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ABSTRACT	  

	  

Radiation	  of	  Finite-‐amplitude	  Waves	  from	  a	  Baffled	  Pipe	  

K.	  Joshua	  Bodon	  

	  

Department of Physics and Astronomy 

Bachelor of Science	  

	  

The radiation of finite-amplitude waves from the open end of a baffled, circular 
pipe is considered as a direct continuation of work begun by Kuhn, Blackstock, and 
Wright more than three decades ago [Kuhn et al., J. Acoust. Soc. Am. 63, S1, S84 
(1978)]. Band-limited Gaussian noise, as well as 1 kHz, 1.5 kHz, and 2kHz sinusoidal 
pulses, with initial peak pressure amplitudes ranging from 0.5 – 1.2 kPa, have been 
propagated down a 6.1 m pipe, whose open end (5.1 cm inner diameter) has been placed 
off-center in a large rectangular baffle. As the steepened or shock-like waves exit the 
pipe, the measured waveforms are comprised of sharp impulses that are delta function-
like in nature, particularly on axis. Although linear piston theory predicts similar 
waveform shapes, there is also evidence that nonlinear propagation of these impulses, 
which can exceed peak pressure amplitudes of 1.5 kPa near the pipe opening, is 
occurring. 
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Chapter	  1	  	  

Introduction	  

	  

1.1	  Previous	  Work	  Done	  

Propagation of finite-amplitude acoustic waves in an open-ended pipe can result in 

radiated waveforms that contain large positive impulses, particularly on axis. This 

phenomenon has been observed in several applications including waveforms exiting 

trombones and engine noise entering a muffler chamber. Both Hirschberg [1] and 

Thompson and Strong [2] recorded sharp impulses exiting the horn of a trombone when 

played at high levels. While the work done by Hirschberg [1] resulted in far more 

dramatic impulses at high amplitude than those of Thompson and Strong [2] both show a 

steep increasing slope followed by a large negative slope in the positive waveform. 

 Sekine [3] recorded pressure waveforms inside of exhaust pipes and similarly 

recorded peaks just inside the muffler similar to those observed by Thompson and Strong.  

Although Sekine, Thompson and Strong, and Hirschberg were not specifically studying 

radiation of high amplitude waveforms from a finite aperture both have shown that 

nonlinear wave steepening occurs inside trombones when played at fortissimo levels as 

well as in exhaust pipes, and that sharp, delta function-like peaks occur outside a finite 
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aperture [1] [2] [3]. Others have made a specific study of these radiation patterns. For 

example, Kim and Setoguchi [4] demonstrated this behavior in their study of unsteady 

weak shocks exiting a baffled pipe, and Nakamura and Takeuchi [5] performed a 

frequency-domain analysis of N-wave radiation from an unbaffled pipe. Although both of 

these examples involved transient radiation, the phenomenon extends to continuous 

waves. Similar waveforms were also documented by Gee et al. [6] when the U. S. Army 

Research Laboratory’s Mobile Acoustic Source was driven with initially sinusoidal 

waves at high amplitudes.  

In the late 1970’s, Blackstock, Wright, and Kuhn [7] [8] investigated continuous-

wave, finite-amplitude radiation from the end of a flanged pipe.  Their experimental 

apparatus consisted of a 3 m long pipe with a 5.1 cm inner diameter with a flanged 

opening.  They drove the pipe using 8 kHz sinusoidal pulses at 138 dB re 20 µPa while 

pressure measurements were made at various locations outside of the pipe. An example 

of a single cycle is shown in Fig. 1.1 and is representative of the highly asymmetric 

pulses that were measured. The authors considered the nonlinear steepening inside the 

pipe but compared their results with linear piston theory outside. The work done in the 

current paper represents a continuation and extension of work by Blackstock et al [8] by 

analyzing the production and propagation of high-amplitude, continuous waveforms from 

the end of a baffled pipe.  
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Figure 1.1 Measured Waveform from Blackstock et al.  

 

 

The experimental setup considered in this work uses a longer pipe driven with a 

higher amplitudes and a larger baffle than Blackstock.  Furthermore, the excitation 

frequency has been limited to below the first cross mode of the pipe, which will facilitate 

comparison with piston theory.  Results discussed in this paper are limited to 1 kHz 

sinusoidal pulses with initial peak sound pressure levels of 155 dB re 20 µPa. 

1.2	  Background	  Information	  

In order to understand why the waveform transforms from a shockwave shape to an 

impulse like shape upon exiting the pipe it is of some use to examine basic shock 

formation theory necessary to describe the acoustic propagation inside the pipe.  As a 

sinusoidal waveform is propagated down any length of tube its shape begins to distort. 

The positive peaks appear to shift backwards as the troughs shift forwards in the 

waveform, creating a slope approaching infinity between the maximum and minimum 

pressures. This waveform as shown in Figure 1.2 is commonly referred to as a shock 

wave, sawtooth wave, or a N-wave and is caused in part due to high amplitudes affecting 
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the sound speed. In addition to the distortion of the waves shape an amplitude loss also 

occurs.  

 The magnitude of the nonlinear steepening can be related numerically through the 

shock formation distance, which can be expressed as  𝑥 = !!!!

!  !  !!
 (eq. 1.1), with 𝛽 a 

constant and sound speed 𝑐.  Shock formation distance 𝑥 is heavily dependent on several 
factors including angular frequency ω, and initial pressure of the wave 𝑝!. As outlined in 
eq. 1.1, if either of pressure or frequency are increased the distance it takes to create a 
stronger shock-wave is reduced.  The dimensionless shock formation distance is 
commonly referred to as  𝜎 = !

!
 (eq. 1.2.), and describes how developed a shock wave will 

be at the end of a tube by relating a distance relative to the shock formation distance 𝑥.       

              

Figure 1.2 Examples of distortion that occurs for σ values of 1 (Blue), 2 (Green) and 3 (Red)  

 

𝑥 = !!!!

!  !  !!                    
                                                                (1.1) 

𝜎 = !
!
	                                                                        (1.2) 

	  

	  

σ  =	  1	  	  	  	  Blue 
σ  =	  2	  	  	  	  Green 
σ  =	  3	  	  	  	  Red 
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Chapter	  2	  

Setup	  and	  Experimental	  Procedure	  

 

Like the original experiments by Blackstock et al.,[8] a 5.1 cm inner diameter pipe was 

used, which limits the initial excitation bandwidth to below 4 kHz to prevent cross 

modes. A BMS 4592 compression driver with a 5.1 cm throat diameter, 1300 W peak 

power capability, and a nominal frequency response between 300 – 7000 Hz was used in 

conjunction with an 1100 W Crown XS1200 Power Amplifier. Signal output and 

acquisition was carried out using National Instruments USB-6259 device with a 1MHz 

aggregate sampling rate input and 2.8 MH sampling rate output. Pressure data were 

obtained using 3.18 mm 40DD GRAS microphones.  Three microphones were placed 

along the pipe at distances of 5.7, 310.5, and 605.4 cm, from the driver, as shown in Fig. 

2.1.   

The microphones were mounted without grid caps so the diaphragms were flush with 

the inner wall surface of the pipe.  A fourth microphone was moved to various positions 

at the height of the pipe centerline in order to measure the waveforms radiated from the 

end of the pipe. The exit of the pipe was flush mounted into a 1.23 m by 1.24 m baffle 

made from medium density fiberboard. The pipe axis was located 9.5 cm horizontally 
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and 8.2 cm vertically from the center of the baffle in order to reduce waves scattered by 

the edges of the baffle from arriving coherently at the on-axis microphone locations. As 

shown in Fig. 2.2, the baffle was placed in an 8.71 m x 5.66 m x 5.74 m anechoic 

chamber with the driver side of the pipe running out the door. During all measurements 

the anechoic doors to the chamber were closed around the pipe to limit reflections from 

the hallway.  

To create the radiation of these sharp impulses, a steepened or shock-like wave must 

be generated in the pipe.  However, an initial sawtooth response cannot be used because 

the higher harmonics would likely generate cross modes within the pipe.  Thus, to 

produce a shock-like response at the end of the tube, significant nonlinear steepening 

must occur from an initial signal with dominant frequencies below the ~4 kHz cutoff 

frequency of the first cross mode. This ensures a planar wavefront across the face of the 

fluid piston at the pipe opening. The pipe length is a key factor in this process because it 

determines the number of shock formation distances the wave travels before exiting the 

pipe.     

The calculated shock formation distance for the parameters used by Blackstock et al. 

[7] (an initial 8 kHz sinusoid at138 dB re 20 µPa in a 3 m pipe) reveals that the 

waveforms had not yet reached one shock formation distance upon exiting the pipe. This 

relatively weak nonlinear steepening differs considerably from the unsteady shock 

experiment of Kim and Setoguchi [4].  For our experiment, space constraints limited our 

pipe to 6.1 m, which meant for our 1 kHz, 155 dB re 20 µPa waveform, the tube was 

approximately two shock formation distances in length.  This condition results in a 

waveform approaching a sawtooth-like condition at the end of the pipe [9], in the absence 
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of the interior reflection occurring from the open end of the pipe.  In order to measure the 

initial waveform near the driver without the influence of reflections, sinusoidal pulses of 

approximately 35 ms in length were used.   

 

 

 

 

 

 

 

	  

Figure 2.1 Mock up of experimental apparatus. A BMS 4592 compression driver is attached to the start of 
the pipe and an 8.71 m x 5.66 m x 5.74 m baffle is flush mounted to the end. Microphones were placed at 
0.0254, 3.05, and 6.05 m along the 6.09 m pipe.  

	  

Figure 2.2 Photographs of setup. (a) microphone mounted in pipe, (b) baffle flush mounted to end of pipe, 
(c) pipe terminating in anechoic chamber.  

(a) (b) (c) 

	  	  	  	  	  	  0.0254	  m	  	  	  	  	  	  	  	  	  3.05	  m	  	  	  	  	  	  	  	  	  6.05	  m 

Driver 

6.09	  m 
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Chapter	  3	  

Discussion	  of	  Results	  

Pressure data were collected both inside and outside of the pipe in a variety of locations. 

In the following sections a discussion will be made in an effort to characterize the effects 

that different measurement locations, initial frequencies, and initial amplitudes have on a 

radiated waveform.  

3.0	  	  Geometries	  	  

For the convenience of the reader the following geometries will hold for the remainder of 

this thesis (Fig. 3.1, 3.2). Additionally, except where noted, each initial signal should be 

considered a 1 kHz sinusoidal pulse. 
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Figure 3.1 Distance Labels: z represents on-axis distance from the center of the pipe, r is the off-axis 
distance from the center of the pipe, R’ represents the distance from the farthest edge of the pipe to 
measurement location, R’’ represents the distance from the closest edge of the pipe to the measurement 
location. 

 

 

      
Figure 3.2 Geometry: R representing the distance from the center of the pipe at the aperture to the 
measurement location, 𝜃 represents the angle from the axis of the pipe at the measurement location. 

 

 

3.1 Inside	  the	  Pipe	  

Measured results provide evidence of nonlinear effects occurring inside of the pipe. The 

data displayed in Fig. 3.3 clearly demonstrate steepening inside of the pipe.  Figures 3.3 

(a-c) show steepening of the sinusoid into a shock-like waveform as the sinusoid 

propagates from 5.7 to 310.5 and then to 605.4 cm, respectively.  The data shown in Fig. 

3.3 (d) are from a microphone placed on axis, at R=3.8 cm.  Figure 3.3 (a) demonstrates 

r 

z 

R’ 

R’’ 

R 

θ 
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that the pressure at the driver is sinusoidal with amplitude of about 1.2 kPa, while Fig 3.3 

(b) shows a slight reduction in amplitude from the original signal and a definite 

steepening towards shock formation approximately halfway down the pipe. At the 

microphone closest to the pipe’s aperture the waveform as displayed in Fig. 3.3 (c), has 

become distorted with an appreciable increase in amplitude due to the reflection from the 

boundary at the end of the pipe. As described, short pulses of 35 ms were propagated in 

order to reduce interference from incident and reflecting waves in most of the pipe, 

however the third microphone was placed only 4 cm from the piston face. This is 

equivalent to approximately 0.2 ms at a 343 m/s sound speed, less than the period of a 1 

kHz signal, creating unavoidable interference at this location. Even as the wave becomes 

more asymmetric due to these reflections, shock wave characteristics are still noticeable. 

Figure 3.3 (d) depicts sharp narrow pressure peaks produced on-axis 3.8 cm outside of 

the tube, similar to those noted in previous studies, but higher in amplitude than the 

continuous wave examples seen in Refs. 4, 5, and 7. 
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Figure 3.3 Pressure waveforms for a 1 kHz sinusoid initial pulse inside tube at (a) 2.54 cm, (b) 305 cm, (c) 

605 cm. (d) pressure waveform outside the tube on-axis 3.8 cm from the baffle.  

The waveform’s shape outside the pipe can be qualitatively explained by 

considering the linearized momentum (Euler’s) equation in one dimension (x), which can 

be written as 𝜌!𝑢 = −𝑝!.  Under this linear approximation, the particle acceleration, 𝑢, 

and pressure gradient, 𝑝! , are proportional to one another via the ambient density, 𝜌!.  

The rapid spatial change in the pressure due to the acoustic shocks produces large 

accelerations at the end of the pipe.  From linear piston theory, the far-field, on-axis 

pressure is proportional to the particle acceleration at the fluid piston face [10]. Far-field 

being defined as a distance greater than the Rayleigh distance  𝑅! =
!!!

!
 (eq. 3.1) from 

(a) (b) 

(c) (d) 
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the pipe’s face, where 𝑘 is the wavenumber and 𝑎 is defined to be the pipe radius [10]. 

Although the Rayleigh distance for the piston varies between 0.59 cm and 59 cm over a 

frequency range of 1 – 100 kHz (Table 1), such that the measurement in Fig. 3.3 (d) is in 

the near field at the highest frequencies measured, the derivative of the pressure in Fig. 

3.3 (c) can still be matched in a qualitative sense to the radiated shape in Fig. 3.3 (d).  

This positive impulse is similar to those seen by both Kim and Setoguchi [4] and 

Hirschberg et al. [1] but appears more shock-like than those measured previously by 

Blackstock et al. [7], Gee et al. [6], and Nakamura and Takeuchi [5].    

 

 

𝑅! =
!!!

!
                                                         (3.1) 

 

 

 

 

 
Frequency 

 

 
Rayleigh Distance 

 
1 kHz 0.59 cm 

2 kHz 1.18 cm 

10 kHz 5.9 cm 

50 kHz 29.5 cm 

100 kHz 59.09 cm 

Table 3.1 Rayleigh Distances at given frequencies 
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3.2	  Amplitude	  Comparison	  

A comparison of the radiated waveform at a single location with increasing initial 

pressure amplitudes will now be discussed. A 1 kHz pulse was propagated through the 

pipe at peak pressures of 225 Pa, 774 Pa, and 1200 Pa. Radiated waveforms were 

recorded on axis with the pipe (𝜃 = 0°) at a distance R = 2.54 cm and are shown in Fig 

3.4 (a,b,c) respectfully. In Fig. 3.4(a), the radiated wave shows slight steepening from the 

incident waveform. Large losses also occur in peak amplitude, with the radiated 

waveform experiencing nearly a 50% loss. The initial waveform for Fig. 3.4(b) had a 

peak pressure of 774 Pa, a great increase from Fig. 3.4(a). The radiated waveform shows 

sharper peaks, which have narrowed in width when compared to Fig. 3.4 (a). The  

positive amplitude peak width is reduced from approximately 0.5 ms to 0.25 ms, with a 

peak pressure of 732 Pa, nearly equivalent with the initial peak pressure.  

Continuing this trend, the radiated pulse from the initial 1200 Pa waveform is very 

distorted as it passes through the aperture. As seen in Figure 3.4 (c) the initial jump in 

pressure is extremely rapid with the waveform similar to those seen by Nakumura and 

Takeuchi [5]. Peak pressure has now exceeded that of the initial waveform at 1526 Pa. 
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Figure 3.4 Radiated pressure waveforms measured at z=2.54 cm for 1 kHz sinusoid initial pulses with peak 
pressures of (a) 225 Pa, (b) 774 Pa, and (c) 1200 Pa. 

 

These results are qualitatively expected when one considers both shock formation 

distance as well as the linearized momentum equation. For example, a doubling in initial 

peak amplitude reduces the shock formation distance by half. Due to the length of pipe 

remaining constant a more developed shock wave will be present at the end of the pipe. 

This creates a larger particle acceleration therefore increasing the distortion of the 

radiated waveform. At very high amplitudes the radiated waveform exceeds the initial 

wave’s peak pressure. This is due to very large accelerations causing steep derivatives to 

occur as the shock formation distance decreases.  

(a) (b) 

(c) 
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3.3 On-‐Axis	  vs.	  Off-‐Axis	  

A comparison will be made of the radiated waveforms on-axis with increasing R with 

𝜃 = 0°, followed by an increase in R as 𝜃 = 90°. Peak pressures and positive peak 

widths will be discussed as they relate to these geometries.   

3.3.1	  On-‐	  Axis	  

Initial amplitude is now held constant at a 1200 Pa, and the 1 kHz sine wave is 

propagated through the pipe. On–axis positions of 0 cm, 2.54 cm, 12.7 cm, 25.4 cm are 

compared in Fig. 3.5(a-d), with R increasing in each successive plot.  Figure 3.5(a) 

represents the pressure waveform right at the piston face and demonstrating the shape of 

the derivative as previously discussed. As r is held at 0 and z increases several 

characteristics are noticed.  

First the full width half maximum (FWHM) of the peaks becomes increasingly 

narrow. A smaller timescale view is shown in Figure 3.6 of a single peak measured at 

25.4 cm from the piston face, where the FWHM is only four samples in duration. This 

equates to a pulse width of 8 µs, which is incredibly small. This narrowing is explained in 

theory by the work done by Stepanishen [11]. He presents the idea that a radiated 

waveform from a pipe will be dependent on differences in arrival times from waves 

emanating from different locations on the pipe’s aperture. As a sound wave exits a pipe, 

there are many radiation locations, starting from the center of the pipe and moving 

outward until the pipe edge. These waves at the boundary of the pipe are known as edge 

waves and dictate the radiated waveforms width.  A large difference in arrival time from 

the center of the pipe and the edges of the pipe create wider waveforms. Utilizing 
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Pythagorean’s theorum 𝑅! = 𝑟! + 𝑅!. As R increases and r is held constant the path 

length difference between R and R’ becomes smaller, resulting in similar arrival times at 

the measured location. This creates the extremely narrow pulses seen in Fig. 3.6.  

 
Figure 3.5 Pressure waveforms for a 1 kHz sinusoid initial pulse measured on-axis at (a) 0 cm, (b) 
2.54 cm, (c) 12.7 cm, (d) 25.4 cm from the baffle. Initial peak pressure for 1 kHz was 1200 Pa  

 

 

(a) (b) 

(c) (d) 
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Figure 3.6 Pressure waveforms for a 1 kHz sinusoid initial pulse measured on-axis at 25.4 cm from the 
baffle. Initial peak pressure for 1 kHz was 1200 Pa  
	  

 A second characteristic change that occurs is a reduction in peak amplitude as R 

increases. This is to be expected in linear piston theory due to geometric spreading. 

Geometric spreading predicts there to be a !
!
 decrease in peak pressure as a wave 

propagates away from the source in the far field.  Near field linear piston theory predicts 

a series of peaks and sharp troughs as the measurement location approaches 𝑅! [10].  

However, the type of spreading recorded does not appear to match near field or far field 

linear piston theory, for overall peak amplitude or individual frequency amplitude, but 

rather is closer to cylindrical spreading. If Fig. 3.5 (b) is compared with Fig.3.5 (c), R 

increases by approximately a factor of five.  Maximum amplitude does not respond with 

by decreasing by a factor of five.  Spherical spreading would predict a drop from 1200 Pa 

to approximately 250 Pa, yet at 12.7 cm a peak pressure of 1100 Pa remains. Perhaps an 

easier comparison can be made between 12.7 and 25.4 cm.  Spherical spreading predicts 

a drop from 1100 Pa to 550 Pa yet in this case the drop is actually greater with a peak 

value of 450 Pa at 25.4 cm. The only way this can be explained is due to nonlinearities 
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occurring or measurement error. As multiple tests were conducted with similar results a 

conclusion must be made that there are indeed nonlinear effects taking place.  

 

3.3.2	  Off-‐Axis	  

In contrast to an increasing R value on-axis, an off-axis investigation results in different 

characteristics. Figures 3.7 (a-d) show a radiated pulse measured at increasing R 

distances along the baffle (𝜃 = 90°). Unlike on-axis measurements once the microphone 

placement exceeds the pipe radius there is little change in the positive amplitude peak 

width at any value of R. Figure 3.7 (a) shows some narrowing due to edge waves arriving 

later than the center wave. Beyond the pipe boundary however, as Fig. 3.7(b,c,d) relates, 

the maximum difference in arrival times remains constant between propagation distances 

R’ and R’’. It is therefore possible to conclude that the maximum peak width at a given 

initial amplitude is defined by the diameter of the pipe.  

 Peak amplitude also behaves differently off-axis, resulting more closely in a 

spherical spreading trend. The doubling in distance from Figure 3.7 (c) to Figure 3.7 (d) 

results in a drop in amplitude from 150 Pa to 82 Pa a factor of just over one half. When 

compared to the drop to 75 Pa expected from linear piston theory for a 1 kHz signal, off-

axis results seem to spread far more spherically. The 7 Pa difference can be explained 

with spectra and the directivity of a baffled piston (see sec. 3.6).  
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Figure 3.7 Pressure waveforms for a 1 kHz sinusoid initial pulse measured off-axis at (a) 0 cm, (b) 
2.54 cm, (c) 12.7 cm, (d) 25.4 cm from center of the pipe. Initial peak pressure for 1 kHz was 1200 Pa  
 
 
 
	  
	  
	  
	  

3.4 Angular	  Comparison	  

In addition to the comparisons discussed, an angular study was also conducted. In this 

thesis, only a radius R of 12.4 cm will be presented for direct angular comparison. Figure 

3.8 (a-d) displays the results of the pressure waveform measured at 𝜃 =  0°, 30°, 60°, and 

90° respectively. In Fig. 3.8 (a) the peak amplitude is 1116 Pa and has a very narrow peak 

(a) (b) 

(c) (d) 
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width, approximately 1 µs FWHM. As the measurement location shifts by just 30° (Fig. 

3.8 (b)) the change is very noticeable.  

At 30° peak amplitude is greatly reduced, in this case it has dropped to 1/5 of the 

on-axis value. Additionally the peak width has increased to approximately 56 µs. Peak 

amplitude decrease and FWHM increase continues through 60°. Figure 3.8(c,d) 

demonstrate that beyond 60° there is little change in either peak amplitude or width. This 

lack of change in wave shape can be explained by simple geometry. With R=12.4 cm, the 

differences in path lengths from the edge waves in Fig 3.8 (c) at 60° is very close to those 

at 90° in Fig 3.8 (d). This results in very little shift in the waveform’s shape between the 

two locations. If R was increased to be much greater, it is expected that there would be a 

more significant difference beyond 60° due to a larger difference in path lengths R’ and 

R’’. 
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Figure 3.8 Pressure waveforms for a 1 kHz sinusoid initial pulse measured at R= 12.4 cm at (a) 0°, (b) 
30°, (c) 60°, (d) 90°. Initial peak pressure for the 1 kHz  sinusoid was 1200 Pa   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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3.5 Frequency	  Comparison	  

A similar test was done to that in sec. 3.4 with a 2 kHz sinusoidal waveform with 

peak pressure of 1015 Pa, as the incident signal. The results can be seen in Fig. 3.9 (a-

d) in direct comparison to radiated waveforms of the 1 kHz case at the same 

locations. When comparing the two frequencies’ radiated waveforms, it is apparent 

that frequency has little to no effect on the positive pressure FWHM. At every angle, 

the FWHM of the 2 kHz radiated wave is the same as the 1 kHz case. There are 

double the number of peaks in the same period of time as expected with the doubling 

in frequency but the waveform’s shape is unaffected. This leads to the conclusion that 

high amplitude radiation from a baffled piston is geometry based and frequency 

independent beyond the baffle in regards to FWHM.  

A less obvious result is that of radiated peak amplitude. The peak amplitudes of 

every 2 kHz data set is lower than the 1 kHz counterpart. As the initial waveform at 2 

kHz has lower peak amplitude this might be expected. However, when doubling the 

frequency of a signal this also reduces the shock formation distance to half of what it 

was for a 1 kHz signal. This being the case, shock waves for the 2 kHz case should 

develop faster and have a higher σ value for the same pipe length (Equation 1.1). The 

result should theoretically place the radiated peak amplitudes significantly higher than 

the 1 kHz case. This is not the measured result as seen in Figure 3.9. The solution in 

part presents itself in the spectral information of the radiated peaks. Figure 3.10 

shows the spectra of on-axis radiated pulses of both the 1 and 2 kHz signals. The 

spectra are very similar as expected, however the 2 kHz case lacks half of the higher 
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harmonic frequencies that the 1 kHz signal contains, theoretically reducing the energy 

of the wave form by half resulting in peak amplitudes similar to those at 1 kHz. 
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Figure 3.9 Pressure waveforms for a 1 kHz and 2 kHz sinusoid initial pulse inside tube measured at R= 
12.4 cm at a) 0°, b) 30°, c) 60°, d) 90°. Initial peak pressure for 1 kHz was 1200 Pa and for 2 kHz was 1015 
Pa 

1000	  Hz	   2000	  Hz	  

(a) 

(b) 

(c) 

(d) 

0° 

30° 

60° 

90° 
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Figure 3.10 Spectrum of radiated waveforms for 1 kHz and 2 kHz pulses at R = 12.7 cm on-axis. Initial 
peak pressure for 1 kHz was 1200 Pa and for 2 kHz was 1015 Pa 

	  

3.6 	  Peak	  Pressures	  

Figure 3.11 presents a contour plot of the radiated wave’s peak pressures over area for 1 

kHz data. The x-axis represents increasing on-axis distance away from the center of the 

pipe. The y-axis similarly represents the off-axis distance along the baffle increasing 

away from the center of the pipe. The contour lines and colors display peak pressure 

levels. 

Due to the high amplitudes of the waveforms, higher frequency spectral content 

becomes more important, and, with a 500 kHz sampling frequency, frequencies up to 250 

kHz are relevant. As frequency increases radiation patterns become more directional. In 

Fig. 3.12 the directivity patterns for a sinusoidal wave of multiple frequencies are shown. 

This results in contributions from high-amplitude harmonic content significantly 

1000	  Hz	   2000	  Hz	  
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effecting peak pressure near 0°, while contributing significantly less at locations farther 

off axis. 

 

 

     
Figure 3.11. Peak amplitude of radiated waveforms of an initial 1 kHz sinusoidal pulse with an initial peak 
amplitude of 155.5 dB 
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Figure 3.12. Directivity patterns of a baffled piston at four frequencies. The piston face radiates outward 
toward 0° with the baffle along the 90° axis. 

 

Little has been discussed thus far about any evidence of nonlinear effects 

occurring as the radiated waveform propagates away from the pipe. The 

characteristics of the radiated wave can been explained by linear theory, yet with peak 

amplitudes over 150 dB in some regions, nonlinear behavior cannot be discounted. 

The peak pressure map from Fig 3.11 demonstrates the possibility that nonlinear 

effects are indeed occurring, as the on-axis peak pressure contour is examined the 

curve rolls off faster than linear piston theory suggests. As shown in Fig. 3.13, at 20 

cm on-axis the maximum pressure is approximately 151 dB. At four times that 

distance, 80 cm, the pressure has been reduced to 137 dB. This equates to a 14 dB 

drop in pressure over two doublings in distance. Linear theory expects a 6 dB 

reduction per doubling in distance or in this case 12 dB for a quadrupling. Although 

not conclusive, it is probable that peak amplitude decreases faster than expected due 

to nonlinear effects. 
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Figure 3.13 Peak pressures of radiated waveform measured on-axis of an initial 1 kHz sinusoidal pulse. 
Initial peak pressure was 155.5 dB. 

 

 Additionally when collected data is directly compared with far field baffled piston 

directivity in Fig 3.14 there are definite discrepancies. At  R = 12.7 cm frequencies up to 

10 kHz are categorized as far field and measured data should agree with linear piston 

theory.  However, Fig. 3.14 shows definite discrepancies especially for the 5 kHz and 10 

kHz frequencies. These differences may be a result of nonlinear behavior occurring, but 

whether this is the case or if the discrepancies can be attributed to signal processing error 

or some other reason is currently unknown. Further investigation will be required to 

explain these results.  
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Figure  3.14  Baffled piston directivity plot for Linear theory (solid lines), Measured data (*), and Modeled 
data (o). Different frequencies are represented by colors: Red (1 kHz), Green (2 kHz), Magenta (5 kHz), 
Blue (10 kHz). 

	  

3.7 Noise	  

To ensure that the aforementioned radiation patterns were not dependent on a periodic 

signal, band-limited Gaussian noise was also propagated down the pipe. The signal was 

pulsed just as the sinusoidal signal, in short bursts with frequency limits of 0.9 – 1.6 kHz. 

Peak amplitude was not relevant as noise is rarely measured with peak amplitudes, 

however, maximum peaks were seen in the initial signal which are comparable to the 1 

kHz, 1200 Pa signals previously used. Fig. 3.15 (a) demonstrates similar impulse like 

peaks being radiated at 12.7 cm on-axis to those of both 1 kHz and 2 kHz signals 

allowing a conclusion of signal invariance to the behavior of a radiated wave from a 

baffled pipe at high amplitude.  

 It is of some value to compare the spectra from a radiated noise signal (Fig. 3.15 

(b)) to that of the radiated sinusoid waveform (Fig. 3.15 (d)). One expects a train of 
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perfect delta functions to have a spectrum with 0 dB/decade roll off, just as white 

Gaussian noise should have no roll off. The spectrum of a sawtooth wave has a roll off of 

approximately 20 dB/decade, which if radiated from a piston should create a perfect train 

of delta functions. The spectrum seen in Fig. 3.15 (d), rolls off at approximately 10 

dB/decade, somewhere in between a sawtooth wave and a delta function train, 

demonstrating that the driving signal is not a perfect sawtooth but, due to the roll off 

being between 10 and 20 dB/decade, non-linear in nature. It should follow that as the 

shock formation distance is decreased the delta function like peaks seen in Figure 3.15 (c) 

would become more like a train perfect impulses. This would cause the roll off of the 

power spectrum to flatten out. Further investigation would be appropriate in order to 

investigate this theory. 
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Figure 3.15 (a) Radiated waveform from a 0.9-1.6 kHz band limited Gaussian noise signal measured on-
axis at R=12.7 cm. (b) The power spectrum of (a). (c) The pressure waveform from a 1 kHz pulse radiated 
as measured on-axis at R=12.7 cm. (d) the spectrum of (c).	   	  

(a) (b) 

(c) (d) 
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Chapter	  4	  

Analytical	  Model	  

	  

4.1	  Model	  Development	  

Blackstock et al. [8] predicted impulse-like waveforms produced by a baffled piston by 

applying the Greens’ function to time-dependent pressures achieved from particle 

velocities at the pipe boundary. This work was stems from Stepanishen, however, the 

cross modes in the pipe and open-end reflections were not included in the model. 

Equations 4.1 through 4.4 are directly from the work done by Stepanishen and were used 

to build the model presented in this paper. [11] 

𝑃1(𝑥, 𝑡) = !"
!

cos−1 !" !!!!!!!!!!

!! !" !!!!
𝑣′ 𝑡 − !!!

!
𝑑𝜏!!!

!!                       (4.1)  

𝑃! 𝑥, 𝑡 = 𝜌𝑐[𝑣 𝑡 − !
!
− 𝑣 𝑡 − !!!

!
]                                  (4.2) 

𝑅′ = 𝑧! + 𝑎 + 𝑟 !                                                (4.3) 

𝑅!! = 𝑧! + 𝑎 − 𝑟 !                                                   (4.4) 
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A detailed analysis of the origins of these equations can be found by reading 

Stepanishen and will not be presently discussed. It is sufficient to state that if 𝑟 > 𝑎      𝑃 =

𝑃!(𝑥, 𝑡) and if  𝑟 < 𝑎      𝑃 = 𝑃! 𝑥, 𝑡 + 𝑃!(𝑥, 𝑡)  [11] (eq. 4.1 & 4.2). This model 

incorporates Stepanishen’s equations in addition to modeled radiation impedance. The 

initial waveform used for the model is the actual measured waveform from the 

microphone at 605 cm from the driver (Fig. 3.3 (c)). This is a deviation from Blackstock 

et al. [8] who used a perfect N-wave for their model. These changes were made in order 

to more accurately model the measured radiated waveform.  

4.2	  Data/Model	  Comparison	  

Comparisons are made from real collected data to that of the analytical model for three 

previously discussed results including: on-axis, off-axis and angular comparisons. They 

are shown in figures 4.1, 4.2, and 4.3 respectively. Results shown in red are modeled and 

those in blue are collected data. 

It is difficult to make many quantitative comparisons between model and data, as 

there are many areas where the model breaks down. Negative pressure values tend to be 

very inaccurately modeled possibly due to numerical artifacts and other undetermined 

effects. Also peak amplitudes do not compare accurately, this is most likely due to the 

lack of directivity built into the model as well as its dependence on linear theory. When 

the peak amplitudes are normalized data and model closely match at most frequencies as 

shown in Fig. 3.15. What the model does well in most cases is to predict the general 

positive waveform shape as well as width of the positive pressure of the waveform. This 

is done particularly well in the on-axis case where the integrated portion of the model (eq. 
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4.1) evaluates to a constant therefore reducing the amount of artifacts present.  The 

obvious discrepancies between the model, measured data and theory, help to support the 

idea of non-linear effects occurring during radiation.  

It should be noted that upon completion of this work and gaining Dr. Blackstock’s 

opinion on these results, he concluded that the current model is too simple and needs to 

be modified to incorporate other phenomenon. This will be for future work and the 

possible incorporated changes that could occur will not be discussed here. 
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Figure 4.1 Comparison of model (red) and measured data (blue) for radiated waveforms on-axis at a) 0 
cm, b) 2.54 cm, c) 12.7 cm, d) 25.4 cm from the baffle. Initial peak pressure for 1 kHz signal was 1200 
Pa. 

Model	   Measured	  Data	  

(a) 

(b) 

(c) 

(d) 

0 cm 
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25.4 cm 



P a g e 	  |	  36	  
	  

 

	  

Figure 4.2 Comparison of model (red) and measured data (blue) for radiated waveforms off-axis at a) 0 
cm, b) 2.54 cm, c) 12.7 cm., d) 25.4 cm from the baffle. Initial peak pressure for 1 kHz signal was 1200 Pa  

Model	   Measured	  Data	  

(a) 

(b) 

(c) 

(d) 

0 cm 

2.54 cm 

12.7 cm 

25.4 cm 
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Figure 4.3 Comparison of model (red) and measured data (blue) for radiated waveforms off-axis at R= 
12.4 cm at a) 0°, b) 30°, c) 60°, d) 90°. Initial peak pressure for 1 kHz signal was 1200 Pa  

 

Model	   Measured	  Data	  
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(b) 

(c) 
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Chapter	  5	  

Conclusion	  

	  

An in depth study has been conducted on the radiation of finite amplitude waves from a 

baffled pipe. Work done by Blackstock et al. [8] has been expanded and a more complete 

study has taken place, including on and off axis, angular, frequency, peak amplitude, and 

noise comparisons. A modified analytical model has also been created and compares 

accurately in some respects to existing data. It has been shown that the radiated 

waveform’s shape is dependent on both off-axis and on-axis distances, and is dictated by 

arrival times from the center and edges of the pipe. As on-axis distance increases the 

radiated waveform narrows and becomes more impulse like. Additionally the patterns 

seen in radiated waveforms are signal type independent, but rather depend on pipe 

diameter and shock formation distance. 

Many effects of the radiated wave form can be explained under linear theory, 

however there are several things including peak amplitude roll off and lack of accuracy 

with the linear directivity model which provide basis for arguing that non-linear effects 

are occurring. In the future more work can be done to improve the current model as well 
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as to investigate the possibility of thermal or other effects that could be contributing to 

the discrepancies with linear theory.  

	   	  



P a g e 	  |	  40	  
	  

	   	  



P a g e 	  |	  41	  
	  

Bibliography	  

 

[1] A. Hirschberg, J. Gilbert, R. Msallam, and A. P. J. Wijnands, "Shock waves in    

trombones," J. Acoust. Soc. Am. 99, 1754 - 1758 (1996).  

[2] M. W. Thompson and W. J. Strong, "Inclusion of wave steepening in a frequency-

domain model of trombone sound production," J. Acoust. Soc. Am. 110, 556-562 

(2001).  

[3] N. Sekine, S. Matsumura, K. Aoki, and K. Takayama, “Generation and propagation of 

shock waves in the exhaust pipe of a 4 cycle automobile engine”, AIP Conf. Proc. 208, 

671 (1990). 

[4] H. D. Kim and T. Setoguchi, "Study of the discharge of weak shocks from an open 

end of a duct," J. Sound Vib. 226, 1011-1028 (1999). 

[5] A. Nakamura and R.Takeuchi, "Reflection and transmission of acoustic shock wave at 

a boundary," Acustica 26, 42-50 (1972). 

[6] K. L. Gee, V. W. Sparrow, M. M. James, J. M. Downing, and C. M. Hobbs, 

"Measurement and prediction of nonlinearity in outdoor propagation of periodic 

signals." J. Acoust. Soc. Am. 120, 2491 - 2499 (2006).   

[7] D. T. Blackstock , W. M. Wright, and J. R. Kuhn, “Radiation of sawtooth waves from 

the open end of a pipe” (Unpublished manuscript). 



P a g e 	  |	  42	  
	  

[8] J. R. Kuhn, D. T. Blackstock, and W. M. Wright, "Radiation of sawtooth waves from 

the open end of a pipe," J. Acoust. Soc. Am. 63(S1), S84 (1978).  

[9] D. T. Blackstock, M. F. Hamilton., and A. D. Pierce, "Progressive Waves in Lossless 

and Lossy Fluids", in Nonlinear Acoustics, edited by M. F. Hamilton and D. T. 

Blackstock (Academic Press, 1998), pp. 65-150.  

[10] D. T. Blackstock, "Radiation from a Baffled Piston", in fundamentals of physical 

acoustics, (A	  Wiley-‐Interscience	  publication, 2000), pp. 440-471. 

[11] P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J.  

Acoust. Soc. Am. 49, 1629-1638 (1971). 

[12] J. Y. Chung and D. A. Blaser, “Transfer function method of measuring in-duct 

acoustic properties. I. Theory,” J. Acoust. Soc. Am. 68, 907 – 913 (1980).   

	  


