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ABSTRACT

Quantifying Climate Change:
Bayesian Model for Antarctic Surface Mass Balance

Philip Andrew White
Department of Physics and Astronomy

Bachelor of Science

Because of the importance of Antarctic surface mass balance (SMB) in predicting sea level
change, models are created to predict SMB on the Antarctic ice sheet. Using Favier et al.’s quality-
controlled aggregate data set N = 3529, a fully Bayesian spatial model has been utilized to predict
Antarctic SMB (Favier et al. 2013). Utilizing Markov random fields constructed through Gaussian
process models, SMB is predicted over the entire Antarctic ice sheet. An SMB surface over the
Antarctic ice sheet is computed by this model and compared with previous maps. An SMB predic-
tion error surface is created to identify regions of high prediction uncertainty. This model estimates
total SMB to be 1.75±0.335 ·1012 m3 ·w.e ·yr−1 and mean SMB as 124.80±23.85 mm ·w.e. ·yr−1.
These results suggest lower Antarctic water accumulation than previously purported. The calcu-
lated SMB surface showed more negative SMB regions and higher spatial variation than is likely
plausible. Lastly, Antarctic boundary regions and areas with little data show high prediction un-
certainty by the generated SMB prediction uncertainty surface.

Keywords: Bayesian statistics, climate modeling, Gaussian process, global warming, Metropolis-
Hastings, spatial statistics, surface mass balance
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Chapter 1

Introduction

1.1 Introduction to Surface Mass Balance

Although climate change is one of the most hotly-debated issues in politics, its scientific founda-

tions are well established. Climate change could cause drastic changes in growing seasons and

regional climates. Given the consequences of severe climate change, the scientific community

attempts to quantify climate change accurately in important areas like polar ice regions.

Antarctica is significant to the global climate because the water stored in its ice sheet would

increase the sea level by about 200 feet if it were to melt, which would leave every coastal city

under water. Even though radical climate change would not melt the entire Antarctic ice sheet

for thousands of years, smaller, more realistic changes would still make a significant impact in

the global climate, sea level, and growing seasons. For this reason, climatologists describe the

changes in the Antarctic ice sheet in order to measure, predict, and anticipate potential global

climate changes. Currently, surface mass balance is the primary measurement used to quantify

changes in ice systems and can be used to predict sea level changes (Monaghan et al. 2006a;

Van de Berg et al. 2006; Vaughan et al. 1999).

Surface mass balance (SMB) measures the difference between water accumulation and loss

in ice systems. Thus, SMB indicates an ice body’s net water gain at measurement locations. Ice

1



2 Chapter 1 Introduction

stakes are the most common way to measure SMB; they use markers to determine the relative

water gain or loss at a location of interest. When coupled with ice density measurements, ice

stake measurements accurately and reliably represent true SMB. Because of SMB’s importance

in predicting sea level change, people traverse Antarctica, normally by snowmobile, to install

ice stakes and to take SMB measurements at stake locations (displayed in Figure 1.1 and 1.2).

Besides ice stakes, ice core isotope content, volcanic material content, satellite altimetry, and wave

propagation are used to measure SMB. The statistical reliability of these measurements is discussed

in Section 1.4.

(a) Installing ice core to measure SMB (b) SMB measurement taken at ice core

Figure 1.1 Ice core installation for surface mass balance (SMB) measurement is expen-
sive and physically demanding. Because many measurements are taken on site in a harsh
climate, there is significant human error in all SMB measurement methods. Courtesy:
Summer Ruper, Department of Geology, Brigham Young University.

Though water accumulation and loss vary seasonally because of snow build-up in the winter

and snow melt in the summer, measurements taken over long periods of time help to eliminate

seasonal variation. Without seasonal noise, one can integrate SMB over the whole system of

interest, ∫
system

SMBdAAA = Total SMB, (1.1)

where AAA is the area of the ice sheet. In words, the total SMB addresses the net water gain or loss

over an entire ice system’s surface. Total balance addresses an ice system’s total gain and loss,

not just what happens on the surface. This analysis is frequently applied to glaciers or ice sheets
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(a) Snowmobiles used to traverse Antarc-
tica

(b) Snow pit used to obtain SMB mea-
surements.

Figure 1.2 Travel and measurement in Antarctica is time consuming, labor intensive,
and physically demanding. Furthermore, some Antarctic regions cannot be reached for
measurement because of difficult terrain. Thus, SMB data is sparse and unevely spaced.
Courtesy: Summer Ruper, Department of Geology, Brigham Young University.

to explore whether that system is expanding or shrinking. Because total balance over an ice sheet

indicates global changes in ice sheets, total balance allows us to make inferences about climate

changes in the area. Antarctica, however, is unique because it loses almost all its ice mass through

calving, the breaking off of chunks of ice from the edge of an ice sheet. Furthermore, the Antarctic

ice sheet gains all of its water on its surface through snowfall and rain. For this reason, its surface

is almost strictly an accumulation region. Because of how Antarctica gains and loses its mass,

Total Mass Balance = Total SMB− Icec, (1.2)

where Icec is the ice lost through calving. Because SMB is essential for understanding global

changes on the Antarctic ice sheet, scholars consider surface mass balance to be one of the most

important measurements in analyzing Antarctic climate changes.

Besides predicting current SMB over the Antarctic ice sheet, climatologists are interested in

describing how SMB changes over time. If regions that once accumulated snow now have net

water loss, this would signal regional climate change. Furthermore, if scientists can detect signif-

icant temporal trends in SMB and predict corresponding global sea-level changes, the scientific
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community could explain the rate of climate change more effectively. For these reasons, SMB

measurements and modeling have garnered attention from the scientific community.

In this thesis, I first review literature sources that discuss previous SMB models, measurement

reliability, and discuss challenges in detecting spatial and temporal trends in SMB. I then survey

literature that examines important statistical aspects of our model. Next, I propose a fully Bayesian

model for SMB and discuss our methods. Lastly, I contextualize the results of our model, explain

their climatological significance, and suggest steps for further research.

1.2 Previous Surface Mass Balance Models

Vaughan et al.’s 1999 paper Reassessment of the Net Surface Mass Balance in Antarctica presented

the first enduring model for surface mass balance. Because of irregular data spacing, estimating

total surface mass balance on the Antarctic ice sheet is problematic. Models for surface mass

balance have focused on eclectic factors including elevation, surface slope, air drainage routes,

incoming lower-tropospheric flow, distance from the coast, and the distance to the seasonal sea-ice

edge (Giovinetto and Bull 1987; Vaughan et al. 1999). For this reason, no unified model has been

reached.

Due to developments in satellite imaging and microwave measurement technology, Vaughan

et al.’s model attempted to overcome problematic data spacing by creating a background SMB

field based on satellite measurements. The generated background field enabled them to interpolate

between SMB measurement locations. Specifically, Vaughan et al. modeled surface mass balance

MBz as

MBz =

(
ao +

a1

0.95−Tb/Tm

)
· exp(−5250/Tm) ·1010, (1.3)

where Tb is brightness temperature in K, Tm is mean annual surface temperature in K, and a0 =

−5.50 and a1 = 6.50. This model was first suggested by Zwally in 1977 and numerical solutions

for a0 and a1 were suggested by Zwally and Giovinetto in 1995 as the best fit for data (Vaughan

et al. 1999; Zwally 1977; Zwally and Giovinetto 1995).
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Upon comparison to observed SMB measurements, they found MBobs = (0.81± .002)MBz +

(35± 5), where MBobs is the observed mass balance. Thus, the correlation between MBobs and

MBz was r = .46, suggesting that MBz represents some, but not all, of the variation in the field

observations (Vaughan et al. 1999). When compared to in-situ measurements, Vaughan et al.’s

model found 5% error, which was more accurate than previous models. They also suggested

that integrated net SMB values were higher than previously purported in accumulation regions.

They found that the integrated surface mass balance over the grounded ice sheet is 1811 Gton

yr−1 (149 kg m−2yr−1), and over the entire continent (including ice shelves) it is 2288 Gton yr−1

(166 kg m−2yr−1). These values were about 18% and 7% higher than the then-current estimates

(Vaughan et al. 1999).

Beyond proposing much higher total balance than previous models, Vaughan et al.’s model

also enabled computerized SMB contour map rendering because the background SMB field could

be used to interpolate SMB values in data-poor regions. Prior to this, map rendering of Antarc-

tic surface mass balance could only be done manually. Due to this difficulty, all previous maps

portraying Antarctic surface mass balance ignored non-accumulation regions and only considered

drainage basins. Vaughan et al.’s background SMB field was one of biggest steps forward in SMB

modeling.

Rather than using satellite “brightness temperature” readings to interpolate between data points

like Vaughan et al., Van de Berg et al. used weighted averages of nearby SMB measurements to

predict SMB values at locations of interest. Van de Berg et al. limited the distance for which a data

point could impact an SMB prediction to 55 km. In their model, nearby data were weighted more

heavily than distant data. Formally, the weight wg,o of the model grid point, g, at the observation

location, o, is

wg,o = αo ·max
(

0,1−
dxg,o

dxmax

)
, (1.4)

where dxg,o is the distance between model grid point and observation location and dxmax is the

maximum distance which data would affect predictions. They account for the density of observa-
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tions around to grid points, dg. Using dg, the model then calculates

do = ∑
g

max(dg,1) ·wg,o. (1.5)

Then, do is scaled by γ to give βo = dγ
o . Finally, SMB predictions are given by

SMBg =
∑o βowg,oSMBo

∑o βowg,o
, (1.6)

where SMBg is the predicted SMB at model grid location and SMBo is the observed SMB at data

locations.

Van de Berg et al.’s approach yielded a correlation between model and observation of r = 0.82,

improving greatly upon Vaughan et al.’s result. When they extended maximum distance at which

data would affect predictions to 193 km, they observed r = 0.84. Furthermore, they found that

integrated SMB over the Antarctic ice sheet was more than 15% larger than previous estimates.

However, it must be noted that Van de Berg et al. excluded coastal Marie Byrd Land, the Antarctic

Peninsula, and Law Dome in their comparisons between observations and model because these

regions have extreme SMB values (Van de Berg et al. 2006). Therefore, Van de Berg et al.’s

success using weighted averages must be understood in the context of the problematic regions they

excluded.

In 2006, Wingham et al. diverged from others’ models by conditioning their SMB model upon

satellite radar altimetry. Satellite altimetry enables researchers to observe changes in elevation,

particularly changes due to relative annual water accumulation. Beyond annual elevation changes,

elevation influences SMB as accumulation basins gain water from locations with higher elevation.

Thus, elevation differences between locations are fundamentally important to SMB prediction.

Unlike others discussed in this section, Wingham et al. focused on temporal trends in total SMB.

Although 0 Gt yr−1 is included within their error bounds, (27 ± 29 Gt yr−1), they suggest that this

trend was slightly positive (Wingham et al. 2006).

Other models have taken micro, rather than macro, approaches to modeling SMB. To do this,

they have utilized regional scale climate models to obtain accurate results when compared to in-

situ measurements. However, in using a smaller model they limit the inferences that they can make
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about the whole Antarctic ice sheet. Thus, overall trends are challenging to detect when using a

smaller model (Gallée et al. 2011; Lenaerts et al. 2012).

When discussing global climate change, we, however, are interested in predictions over the

whole continent. For this reason, the field aspects of Vaughan et al., Van de Berg et al.’s condi-

tioning predictions upon nearby data, and elevation aspects similar to Wingham et al. are most

applicable to the model we will present (Van de Berg et al. 2006; Vaughan et al. 1999; Wingham

et al. 2006).

1.3 Challenges in Detecting Spatial Variability and Temporal

Trends

To answer questions about climate change, scholars attempt to identify statistically significant

climate trends. Many scholars have proposed incompatible trends and results. Thus, detecting

temporal and spatial climate trends has proved elusive.

As discussed in Section 1.2, Wingham et al. performed SMB predictions using satellite altime-

try measurements from 1992 to 2003 in an attempt to detect temporal trends in SMB measure-

ments. When integrating over the ice sheet, they found a trend was close to zero (i.e. 27 ± 29 Gt

yr−1). Though they suggested that this trend was slightly positive, their result was not statistically

significant since 0 Gt yr−1 is within their error bounds (Wingham et al. 2006).

In 2006, Monaghan et al. explored temporal trends and spatial patterns in Antarctic SMB. First,

they examined Antarctic SMB trends on a regional scale. While they found both positive and nega-

tive temporal trends in SMB regionally, but over the whole continent they found no temporal trend

in total SMB. They did, however, find substantial spatial and temporal variation in the Antarctic

SMB. Furthermore, they attributed a large amount of the variation to seasonal effects (Monaghan

et al. 2006b). Then, in a follow-up article, Monaghan et al. used snowfall accumulation to demon-

strate that trend identification in certain regions, especially in west Antarctica and Victoria Land,

was ineffective (Monaghan et al. 2006a). Since west Antarctica has one of the largest SMB accu-
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mulation regions, which greatly affects Antarctic total mass balance, accurately detecting trends in

total mass balance over the whole continent is difficult. Thus, if one cannot detect trends in these

important regions, predictions over the full continent are likely to be biased.

In a similar analysis based upon regional climate models, Lenaerts et al. found a slightly nega-

tive temporal trend of −4.9±0.1 and −5.7±0.3 mm w.e. a−1 in total SMB over the Antarctic ice

sheet (Lenaerts et al. 2012). Importantly, their results differed from Monaghan et al.’s and Wing-

ham et al.’s conclusions. Because many scholars have suggested different trends, Bromwich et al.

compared Antarctic SMB estimates to five data sets and found that many scholars detected incon-

gruent trends because “reanalyses are known to be prone to spurious trends and inhomogeneities

caused by changes in the observing system” (Bromwich et al. 2011). Bromwich et al.’s conclu-

sions questioned the validity of many of the results proposed in previous works. Because scholars

have made little progress in detecting temporal trends in SMB measurements, they have begun to

reanalyze the reliability of their data and methods.

1.4 Reliability of Surface Mass Balance Measurement Methods

In 2007, Magand et al. analyzed SMB measurement reliability criteria to answer questions about

SMB measurement methods. In their paper, they describe many SMB measurement methods and

each measurement’s reliability. They demonstrate the unreliability of short-term stake measure-

ments, natural 210Pb readings, stable isotope content, snow stratigraphy, and precipitation gauges

for reasons that are outlined in the table in Table 1.1 (Magand et al. 2007). In the table, “C” rated

data are deemed unreliable, “B” rated data are considered conditionally acceptable, and “A” rated

data are judged to be reliable. Since many results were based on unreliable measurement methods,

Magand et al.’s reliability criteria question the validity of these conclusions.

By applying Magand et al.’s reliability standards for quality control, Favier et al. created a

data set that excluded data that were shown to be unreliable due to limited spatial and temporal

representativeness, poor measurement accuracy, or quality control issues (Favier et al. 2013). Their
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Table 1.1 Magand et al.’s Quality Ratinga (Magand et al. 2007). These critiques ques-
tioned the reliablity of many previous measurements and the corresponding conclusions.

quality control rejected data taken by the unreliable techniques outlined by Magand et al. which

are displayed and explained in Table 1.1. Furthermore, Favier et al. point out the inaccuracy of

measurements associated with two snowmobile traversings, altimetry measurements in snow melt

regions, and on steep slope terrain (Favier et al. 2013). Upon applying these quality ratings, Favier

et al. called “A” rated data reliable and “B” and “C” rated data unreliable. The map in Figure 1.3

depicts data location and reliability.

1.5 Topics in Spatial Statistics

Because SMB measurement location is key to modeling SMB, we must consider how to represent

spatial data. Coordinate systems are developed to uniquely grid the Earth’s surface. However,

whenever one attempts to map spherical locations onto a plane, one limits the way the spatial

relationship between locations is interpreted. For example, even though latitudinal and longitudinal

pairs uniquely represent points on the earth, these spatial coordinates fail to accurately represent

distances between points in polar regions. For instance, compare the Mercator projection in which
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Figure 1.3 This map shows the location of all measurements in Favier et al.’s aggregate
data set. All data have been given one of the following reliablity ratings: “A”, “B”, or
“C.” “A” rated data are deemed acceptable, “B” rated data are considered conditionally
acceptable, while “C” rated are unacceptable. Blue represents “A” rated data and red
represents “B” and “C” rated data.

latitude and longitude coordinate axes are linear on a plane, and the stereographic projection, which

attempts to preserve the appearance of spherical objects on a plane, of Antarctica (see Figure 1.4).

Importantly, the extreme left and right locations on the Mercator projection are actually adja-

cent regions. Similarly, the whole bottom line in the Mercator projection represents the south pole,

which is a single point. Thus, the Mercator projection obscures true spatial distance and scale

for Antarctica. For this reason, when mapping polar regions, stereographic projections represent

spatial relationships more accurately than the Mercator projection. To overcome the distortion in

distance measurements made using latitudinal and longitudinal coordinates, great circle distance

can be calculated between points by means of the Haversine formula, the Spherical Law of Cosines,

or equirectangular approximations.

The distance between points of interest is one of the most important aspects of spatial statistics

because “one of the fundamental attributes of spatial data is spatial autocorrelation: observations
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Mercator Projection of Antarctica

Sterographic Projection of Antarctica

Figure 1.4 Comparison between Mercator and stereographic projections of Antarctica.
Note that the Mercator projection obscures true spatial scale near the south pole. For this
reason, using latitude longitude pairs to calculate distance inaccurately represent distance.

closer together tend to be more alike than observations farther apart” (Waller and Gotway 2004).

In spatial statistics, autocorrelation for a spatial processZ, on a subset S⊆R2 is expressed in terms

of a semivariogram,

γ(si− s j) =
Var(Z(si)−Z(s j))

2
, (1.7)

where si, s j ∈ S. A spatial process is called isotropic if the semivariogram is completely defined

by the distance d between points of interest. Because isotropic processes are defined solely by the

distance between locations, we write the semivariogram as γ(d) instead of γ(si− s j).

Semivariograms are characterized by three quantities: the sill, the range, and the nugget. In

general, limd→∞ γ(d) = C, where C is a constant called the sill. The first distance d such that

γ(d) =C is called the range. All distances greater than or equal to the range yield γ(d) = sill and

are uncorrelated with the reference point. The value γ(0) is called the nugget. The nugget models

variation in measurements between nearby locations (Waller and Gotway 2004). Physically, the

nugget can be thought of as measurements noise, and importantly, γ(0)≥ 0. Figure 1.5 illustrates

an isotropic semivariogram with a nugget = 2, sill = 9, and range≈ 12.

Mathematically, the nugget can be thought of as an adjustment to a model’s covariance matrix.
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Figure 1.5 Semivariograms γ with arbitrary units of variance are used to represent spatial
correlation. This is semivariogram has nugget = 2, sill = 9, range ≈ 12. The sill is the
maximum value of γ , the nugget is the minimum of γ , and the range is the distance from
the nugget to the sill. These terms and their spatial meaning is explained in detail in the
text.

Specifically, the nugget is analogous to adding γ(0) to the diagonal elements of the covariance

matrix. Beyond its spatial interpretation, the nugget is sometimes used as a computational remedy

for a non-positive-semidefinite covariance matrix. In this case, it is called a computational nugget.

Covariance matrices diverge from positive-semidefiniteness due either to computational precision

problems or the design points in the covariance matrix being ill-conditioned (Andrianakis and

Challenor 2012). For example, when modeling a spatial process with the squared exponential

covariance function

k(x,x′) = exp

(
p

∑
i=1

(
di

δi

)2
)
, (1.8)

where di = |x− x′|. Andrianakis and Challenor demonstrated that a computational nugget can

introduce artificial modes in the estimating smoothing parameter δ when the true value of δ ap-

proaches extreme values (Andrianakis and Challenor 2012). However, this issue with the squared

exponential covariance function is characteristic of its broader family of covariance functions. The
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squared exponential covariance function is a special case of the Matérn covariance function; and

the same issues can arise with the Matérn covariance function. Thus, if a model uses a compu-

tational nugget with a spatial process modeled with any special case of the Matérn covariance

function, the nugget’s effects must be monitored as it can induce artificial results in parameters of

interest which could lead to problems in inference on target distribution.

Because each spatial process has a unique semivariogram, they are modeled by different covari-

ance functions with appropriately corresponding characteristics. Because any choice of covariance

function limits the autocorrelation relationships of the model, selecting a covariance function is

vital for an accurate representation of a spatial process. For this reason, when little is known about

the spatial process, generalized covariance functions, like the Matérn covariance function, can be

used. The Matérn covariance function has the following form:

σ
2 1

Γ(ν)2ν−1

(
d
ρ

)ν

Kν

(
d
ρ

)
. (1.9)

Though introduced by Bertil Matérn to model autocorrelation in forestry statistics, Minasny and

McBratney suggested the Matérn covariance function as a general model for spatial processes as it

is a generalization of many covariance functions. The exponential, squared exponential, power, De

Wijs, and Whittle covariance functions are special cases of the Matérn covariance function with

specific parameters (Minasny and McBratney 2005). For this reason, the Matérn covariance func-

tion is a flexible, practical, and general choice for representing autocorrelation of spatial processes.

As discussed above, points separated by distances greater than the range are uncorrelated. So,

the entries corresponding to γ(d) = sill in a covariance matrix are Σi j = 0. Therefore, depending

upon the range of the semivariogram, the covariance matrix could be sparse. In other words, there

would be many Σi j = 0. For large sparse matrices, the Cholsky factorization, which decomposes

matrices into 2 lower-triangular matrices, is significantly faster at inverting matrices than the QR

decomposition, which uses an orthogonal and upper triangular decomposition and is the standard

implementation in the programming language R. For this reason, Furrer and Sain argued that

different computational methods should be instituted when working with sparse matrices (Furrer

and Sain 2010). Therefore, when sparseness is known or expected, computational implementation
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methods can significantly quicken computation time.

1.6 Gaussian Processes

Formally, Gaussian processes are “a natural generalization of the Gaussian distribution whose

mean and covariance is a vector and matrix, respectively. The Gaussian distribution is over vectors,

whereas the Gaussian process is over functions” or distributions (Rasmussen 2006). A Gaussian

process is a stochastic process where any finite collection of random variables have a joint Gaussian

distribution. A Gaussian process is fully specified by its mean function m(x) and covariance func-

tion k(x,x′) (Rasmussen 2006). Gaussian processes are normally denoted by GP(m(x),k(x,x′))

where the mean function defines the value about which the Gaussian process is normally dis-

tributed and the covariance function specifies the smoothness of the Gaussian process. However,

since Gaussian processes are distributed over functions or distributions, Gaussian processes de-

fined by the same m(x) and k(x,x′) will be different but will have similar forms (see Figure ]1.6).

The following is an example of a Gaussian process with m(x) = 000 and k(x,x′) = σ2 · eφ |x−x′|2 .

Because of their flexibility, Gaussian processes are an effective choice as a prior distribution in

non-linear Bayesian models. By selecting Gaussian process priors, draws from the posterior distri-

bution will be Gaussian processes that converge to the data by which they have been conditioned.

Importantly, Gaussian process regression performs very well when interpolating and poorly with

extrapolation. Gaussian processes are used widely in spatial statistics and machine learning.

1.7 Bayesian Statistics with Gaussian Process Prior

Bayesian statistics is a branch of statistics that makes use of Bayes’ rule,

P(A|B) = P(B|A)P(A)
P(B)

, (1.10)

to calculate the degree of belief in a hypothesis given observations; this is called the Bayesian

probability. Bayesian statistics calculates a posteriori probability P(A|B) by utilizing a priori prob-
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Figure 1.6 This is an example of five Gaussian processes that are generated using the
same mean m(x) and covaraince function k(x,x′). Note that each realization is different,
but similar in form.

ability for A, P(A) and a posteriori probability of B conditioned on A, P(B|A) (Casella and Berger

1990). Rather than limiting its application to events A and B, Bayesian statistics extends Bayes’

rule to distribution parameters θθθ because Bayesian statistics views distribution parameters as ran-

dom variables instead of fixed quantities. First, the prior distribution on θθθ , π(θθθ), is the analog to

the a priori probability P(A). The prior distribution allows previous knowledge about distribution

parameters to be incorporated into the model. The likelihood distribution L (yyy|θθθ) is the parallel

of the a posteriori probability P(B|A). Lastly, the posterior distribution p(θθθ |yyy), which is our de-

sired quantity, corresponds to the a posteriori probability P(A|B). By Bayes’ rule, we arrive at the

following:

p(θθθ |yyy) = L (yyy|θθθ)π(θθθ)
f (yyy)

, (1.11)

where

f (yyy) =
∫ +∞

−∞

L (yyy|θθθ)π(θθθ)dθθθ . (1.12)
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Because
∫+∞

−∞
L (yyy|θθθ)π(θθθ)dθθθ integrates out all parameters θθθ , f (yyy) =C, where C is some constant

function of yyy. Thus,

p(θθθ |yyy) ∝ L (yyy|θθθ)π(θθθ). (1.13)

Because of this proportionality, we can sample from the joint distribution L (yyy|θθθ)π(θθθ) when the

full posterior distribution cannot be sampled from directly.

By partitioning data wi ∈W and prediction points zi ∈ Z we arrive at a joint distribution:zzzp

wwwq

∼MVNp+q


µµµ p

µµµq

 ,

 Σzz Σzw

Σwz Σww


 , (1.14)

where data and grid points are used to populate our covariance matrices Σ using a covariance

function and MVN is the multivariate normal distribution. The form of the multivariate normal is

explicitly shown in Appendix A.

With this joint distribution, we can utilize the conditional model that give us the following

posterior distribution:

p(zzz|www)∼MV Np(µµµz +ΣzwΣ
−1
ww(www−µµµw),Σzz−ΣzwΣ

−1
wwΣwz), (1.15)

(Rencher and Schaalje 2008).

Though this is the form of the posterior distribution, if our parameters θθθ are unknown, we

cannot sample directly from the posterior distribution. Because p(θθθ | yyy) ∝ L (yyy | θθθ)π(θθθ), the pos-

terior can be sampled from indirectly using the likelihood and prior distributions on θθθ by Markov

chain Monte Carlo (MCMC) methods.

In Bayesian Gaussian process models, the same process that was described above is used. We

utilize Gaussian process priors such that

f (x)∼ GP(000,k(x,x′), (1.16)

where the smoothness of the Gaussian process is defined by the covariance function k(x,x′). A

corresponding likelihood function will be generated with the following parameters:

L (yyy | θθθ)∼MVN( f (xi),σ
2). (1.17)
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Upon application of the conditional model, the posterior distribution is:

p(zzz|www)∼MVNp(µµµz +ΣzwΣ
−1
ww(www−µµµw),Σzz−ΣzwΣ

−1
wwΣwz), (1.18)

where Σs are populated by a covariance function k(x,x′) that regulates the covariance between

points (Rasmussen 2006).

Figure 1.7 shows the appearance of Gaussian process priors and posteriors. Note how the

Gaussian process posteriors converges to data. Importantly, the Gaussian process posteriors are

very effective interpolators, but fail if used to extrapolate as can be seen by the boundary behavior

of the Gaussian process posteriors.
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Figure 1.7 Example of five Gaussian process priors and posteriors. Note that the Gaussian
process priors has similar form because they are generated from the same mean function
m(x) and covariance funtion k(x,x′). Gaussian posteriors conditioned on data converge to
the data.

To perform inference, the posterior mean and credible interval are accessed using thousands of

realizations from the posterior. Specifically, for every prediction location there are thousands of

realizations yyy. At each location, the posterior mean ȳ = mean(yyy) and the credible interval is ȳ±

qnorm(0.975,0,1) ·
√

var(yyy), where qnorm(0.975,0,1) is the 0.975 quantile of the standard normal

distribution and var(yyy) is the variance of the posterior realizations (Ebden 2008). To minimize
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Monte Carlo error, many posterior realizations should be taken. Figure 1.8 is a complete regression

example with posterior mean (blue) and 95% credible interval (red).
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Figure 1.8 In Gaussian process regression, we take many draws from the conditional
posterior distribution p(zzz|www) (gray). We then take the mean of the draws (blue) and solve
for the 95% credible interval (red).

1.8 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods are used to estimate a distribution when it cannot

plausibly be sampled from directly. By definition, a Markov chain is a stochastic or random process

that undergoes transitions between different states. The state transitions are made by a probabilistic

model. Because the current state of a Markov chain affects what the next state will be, each state

is statistically dependent and correlated with the previous state. While there are many variations

on MCMC methods, we will discuss the Metropolis-Hastings algorithm and the Gibbs sampler.



1.8 Markov Chain Monte Carlo Methods 19

1.8.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is an MCMC method used to sample from a target distribution

which cannot be sampled from directly. Instead of the full posterior, the joint density f (θθθ) =

L (yyy|θθθ)π(θθθ) is sampled from. A candidate distribution q from which we will make proposals

for a variable of interest is selected. This algorithm can be used for many variables, but we will

describe it for only one.

For some variable x we select an initial value x0. Then, for iterations i = 1,2, ..... complete the

following steps:

1. Draw a proposal xcand from the candidate distribution xcand ∼ q(xi|xi−1).

2. Calculate the acceptance ratio

α =
q(xi−1|xcand) f (xcand)

q(xcand|xi−1) f (xi−1)
. (1.19)

3. Draw u∼U(0,1).

4. If u < α , then accept the proposal so xi ← xcand . Otherwise, reject the proposal such that

xi← xi−1.

In a special case of the Metropolis-Hastings algorithm, when q is symmetric, q(x|y) = q(y|x), the

acceptance ratio is

α =
f (xcand)

f (xi−1)
. (1.20)

This special case is called the Metropolis algorithm.

Unlike some samplers, like rejection sampling, high acceptance rates do not assure optimal

mixing and convergence. High acceptance rates may indicate that the sampler is not exploring the

entire support of the target distribution, f . Conversely, very low acceptance rates can indicate that

the candidate draws are moving across the support too quickly and are missing important features

of the target density (Robert and Casella 2004). Roberts et al. suggested that a 0.234 acceptance

ratio is asymptotically optimal. It should be noted that each situation is different and that the ideal
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ratio is a flexible guideline (Roberts et al. 1997). Interestingly, lower than ideal acceptance rates are

preferable to acceptance rates that are higher by the same magnitude (Robert and Casella 2004).

The scale of the candidate distribution also impacts the acceptance rate as it controls the size

of the jumps between candidate proposals. If the scale of the candidate distribution is too large,

acceptance rates will be low and features of the target distribution may be poorly resolved. In

contrast, if the scale of the candidate distribution is too small, the acceptance rate will be too high

and the support of the target distribution will likely be left unexplored. Gelman et al. proposed

that the ideal scale of the the candidate distribution is 2.4√
d

times the scale of the target distribution

where d is the dimension of the target distribution (Gelman et al. 1996). However, the scale of the

target distribution is frequently unknown and can only be approximated prior to the algorithm.

1.8.2 Gibbs Sampler

The Gibbs sampler is a special case of the Metropolis-Hasting algorithm where every draw is

accepted. Instead of sampling for all dimensions simultaneously, the Gibbs sampler samples for

each dimension separately from the others. Because of the incremental variations, mixing occurs

faster for the multidimensional Gibbs sampler than for the Metropolis-Hastings algorithm.

The Gibbs sampler relies on writing the the full or complete conditional for each variable

θi for i ∈ {1,2,3, ...,n}. Thus, we must know how the parameter θi is distributed. Expressly,

the complete conditional is p(θi|θθθ jjj,yyy) where j ∈ {1,2,3, ...,n} such that i 6= j. The complete

conditional is frequently written in the form [θi] where [θi]≡ p(θi|θθθ jjj,yyy)

For all variables, θθθ select initial values θ
(0)
i where the super script (k) indicates that the algo-

rithm is on iteration k. For each iteration, k in k ∈ 1,2,3, .... we compute the following:

• generate θ
(k)
1 ∼

[
θ
(k)
1

]
where

[
θ
(k)
1

]
is the complete conditional of θ

(k)
1 .

• generate θ
(k)
2 ∼

[
θ
(k)
2

]
where

[
θ
(k)
2

]
is the complete conditional of θ

(k)
2 .

...

• generate θ
(k)
n ∼

[
θ
(k)
n

]
where

[
θ
(k)
n

]
is the complete conditional of θ

(k)
n
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This process is repeated many times. Note that the complete conditional updates using the most

recent value of θi. The convergence of the Gibbs sampler to the target density, in this case the joint

distribution, was shown by Casella et al. (Casella and George 1992). Because the Gibbs sampler

converges to the joint distribution and p(θθθ |yyy) ∝ L (yyy|θθθ)π(θθθ), the Gibbs sampler can be used to

generate posterior distribution draws since it is proportional to the joint posterior.
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Chapter 2

Methods and Models

Many different groups have modeled Antarctic SMB because SMB is currently the best metric to

track changes in ice sheets (Monaghan et al. 2006a; Van de Berg et al. 2006; Vaughan et al. 1999).

Most models for SMB, however, have had two major shortcomings: they have not used advanced

statistical methods to interpolate SMB in data-poor regions and they have based their conclusions

on unreliable data. Because travel, and thus data acquisition, is difficult on the Antarctic Ice Sheet,

most data are clustered and there are many data-poor regions (as shown in Figure 2.1). Thus,

statistical interpolation is the only way to comprehensively analyze SMB over the whole surface

of Antarctica.

Projecting the future of the Antarctic ice sheet is especially important to geophysicists and cli-

matologists because the Antarctic ice sheet can dramatically affect sea levels. However, scientists

have not found statistically significant trends (Monaghan et al. 2006a; Wingham et al. 2006). By

using more reliable data and new methods, our research goals are to first, to construct Markov

random fields through Gaussian process models for the SMB in Antarctica to interpolate between

SMB measurement locations, and second, to quantify our prediction uncertainty. These methods

enable us to model SMB and our prediction uncertainty over the entire Antarctic ice Sheet.

23



24 Chapter 2 Methods and Models

2.1 Description of Data Set

Using the reliability critiques suggested by Magand et al., Favier et al. compiled about 5500 data

from over 90 sources. For all data, a reliability rating of “A,” “B,” or “C” was given depending

upon the method and the duration of measurement (Favier et al. 2013; Magand et al. 2007). To

decrease measurement uncertainty, we have chosen to include only “A” rated data points in our

model. This selection criterion reduces available data from 5564 to 3529 (the “A-rated” data are

plotted in Figure 2.1). Most previous models have compared their model prediction to fewer than

1000 in-situ measurements for verification (Lenaerts et al. 2012). Furthermore, many models have

verified their SMB predictions using unreliable data (Bromwich et al. 2011). Also, many models

did not compare their predictions to regions with anomalous surface mass balance values (Van de

Berg et al. 2006; Vaughan et al. 1999). We, on the other hand, will compare our model predictions

with all 3529 “A-rated” data regardless of the region where the measurement was taken. In the data

set, important information like elevation was missing. Because elevation is important quantities

in projecting SMB values, we will use geospatial databases to query the elevation for coordinates

with missing elevation data Wingham et al. (2006).

Using the reliability critiques suggested by Magand et al., Favier et al. compiled about 5000

data from over 90 sources. For all data, a reliability rating of “A,” “B” or “C” was given depending

upon the method and the duration of measurement (Favier et al. 2013; Magand et al. 2007). To

decrease prediction uncertainty, we have chosen to include only “A-rated” data points in our model.

This selection criterion reduces available data from 5564 to 3529 (the “A-rated” data is plotted in

Figure 2.1).

Most previous models have compared their model prediction to fewer than 1000 in-situ mea-

surement data for verification (Lenaerts et al. 2012). Furthermore, many models have verified their

SMB predictions using unreliable data (Bromwich et al. 2011). Also, many models did not com-

pare their predictions to regions with anomalous surface mass balance values (Van de Berg et al.

2006; Vaughan et al. 1999). We, on the other hand, will compare our model predictions with all

3529 “A-rated” regardless of the region where the measurement was taken. In the data set, impor-
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SMB Measurement Location

Reliable Data

Figure 2.1 This map shows the location of “A” rated measurements in Favier et al.’s ag-
gregate data set. All data in this data set has been given on of the following reliablity
ratings: “A,” “B,” or “C.” “A-rated” data is deemed acceptable, “B-rated” data is consid-
ered conditionally acceptable, while “C-rated” is unacceptable.

tant information like elevation was missing. Because elevation is important quantities in projecting

SMB values, we will use geospatial databases to query the elevation for coordinates with missing

elevation data (Wingham et al. 2006).

2.2 Distance Model

Previous SMB models on Antarctica have relied on Euclidean distances when interpolating model-

simulated SMB. Utilization of Euclidean distances are potentially problematic when the distance

spans bays. When locations are separated by a bay, Euclidean distances will exaggerate the prox-

imity of these locations. If proximity is exaggerated, predictions in peninsular regions will be

inaccurate. For this reason, several models excluded peninsular regions in their models to obtain

a better fit to measurements on the remainder of the Antarctic ice sheet (Van de Berg et al. 2006;

Vaughan et al. 1999). We will attempt to remedy this problem by adjusting euclidean distance by
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including elevation in our distance metric.

We will also be using euclidean distance by means of the haversine formula which calculates

great circle arc length, however we will augment this distance using difference in elevation between

points to more accurately capture the spatial distance between prediction locations. Great circle arc

length is the shortest distance between two points on the surface of a sphere, though on a Mercator

projection it appears longer than other routes (as illustrated in Figure 2.2).

Figure 2.2 Great circle distance is the shortest path between two points on a sphere and is
important in modeling distance between points on the earth. The red line represents great
circle distance between Paris and Tokyo
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The haversine distance d is calculated as follows:

d = 2Rarctan
( √

a√
1−a

)
(2.1)

where a = sin2(
∆φ

2
)+ cos(φ1)cos(φ2)sin(

∆λ

2
)

and, ∆φ is the change in latitude between points,

∆λ is the change in longitude between points,

φ1 and φ2 are the latitudes of the first and second points.

As stated above, we will augment the haversine distance to an R3 distance that it includes

change in elevation between data points. For every prediction point, we will query elevation using

an elevation database that has 200 m grid-coarseness. Namely, we will find the grid location that

is closest to our prediction point using the haversine distance and will then set the elevation of

the prediction point to be the elevation of the nearest grid point. Then, by scaling the difference

in elevation ∆E and haversine distance d between locations such that both have minimum of 0

and maximum of 1, we will weight the distance and elevation equally. We will then compute the

augmented distance (dR3) as follows:

dR3 =
√

d2 +∆E2. (2.2)

By including elevation changes in the model, we will more accurately represent spatial relation-

ships between locations.

2.3 Bayesian Spatial Model

We will construct a Markov random field through Gaussian process models to predict SMB over

the Antarctic ice sheet. Gaussian Process models allow a flexible non-linear model that allows

accurate interpolation in regions where data is unavailable. Though we initially used a squared

exponential covariance function, we found that its semivariogram poorly matched the SMB spatial

process. Furthermore, the squared exponential covariance function caused the covariance matrix to
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become nearly-singular and computationally unstable. For this reason, we use Matérn covariance

functions to regulate the smoothness of our Gaussian Processes.

Matérn covariance functions also increase computational stability as they are a general covari-

ance function that can represent nearly any semivariogram by adjusting its parameters ρ and ν In

our model, we denote our model’s covariance function as k. We argue that the covariance depends

only, or mostly, upon the distance between points. So, we will make our covariance function to be

a function of d where d = |x− x′| and x, x′ are two locations. Because k is only a function of d, it

is isotropic. We are working under the following model:

Our Prior distribution will be represented by the following Gaussian process:

f (x)∼ GP(000,k(x,x′)), (2.3)

where

k(x,x′) = σ
2 1

Γ(ν)2ν−1

(
d
ρ

)ν

Kν

(
d
ρ

)
, (2.4)

and d is distance between points x and x′, Kν is a Modified Bessel function of the second kind, and

σ2, ν , and ρ are unknown parameters. Our unknown parameter ρ is the smoothing parameter, ν

alters the the order of the Bessel K function which alters the structure of the covariance function,

and σ2 is a scale parameter.

To account for surface mass balance variability between nearby measurements, we will use a

spatial nugget, δs, to adjust the minimum autocorrelation of our spatial process. Since we make

no assumption that σ2, ν , ρ , and δs are known, we will set prior distributions on σ2, ν , ρ , and δs.

We will use sampling, in this case the Metropolis algorithm that we will update parameter-wise, to

solve for σ2, ν , ρ , and δs.

We will use the following priors on ν , ρ , σ2, and δs:

σ
2 ∼ Gamma(10,50),

ρ ∼ Gamma(12.5,4),

ν ∼ Gamma(5, .1), (2.5)

δs ∼ Gamma(8,1),
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where we are using the shape-scale parameterization of the Gamma distribution (this pdf is also

shown explicitly in Appendix A).

We selected these priors based upon the anticipated semivariogram. Using random draws from

the prior distributions on σ2, ν , ρ , and δs, we can develop a prior semivariogram using the prior

predictive distribution

p(ynew | θ) =
∫

θ

L (ynew | θθθ)π(θθθ)dθθθ , (2.6)

where π(θθθ) represents the prior distributions on σ2, ν , ρ , and δs. Based on our prior predictive

distribution, we would expect to see the semivariogram displayed in Figure 2.3.

Figure 2.3 Semivariograms γ with units of variance are used to represent spatial correla-
tion. We plot semivariograms corresponding to prior distribution selection (gray lines are
possible semivariograms). Black in the mean of the possibilities The sill is the maximum
value of γ , the nugget is the minimum of γ , and the range is the distance from the nugget
to the sill.

Note that correlation is high within 75 km and almost is 0 by 200 km. However, the range

≈ 300 km, but the correlation is extremely weak at this distance. The large range will enable

weak conditioning over data poor regions so that all grid predictions will be informed by reliable

measurements. Van de berg et al. proposed using 55 km as the conditioning boundary, but showed

their best fit enabled weighting data within 193 km (Van de Berg et al. 2006). Thus, our prior
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selection has a range similar to van de berg et al.’s best fit model with strong correlation within

75 km, moderate correlation between 75 km and 150 km, and very weak correlation from 150 km

to 300 km. Importantly, as demonstrated by the prior semivariogram, our semivariogram is very

flexible and will allow the estimated process to converge to the true semivariogram of the Antarctic

SMB process.

The Likelihood function will be generated as follows:

L (yyy | θθθ)∼MV N( f (x),σ2). (2.7)

Given this prior distribution and Likelihood function, we arrive at the following posterior distribu-

tion:

p(xxx|yyy)∼MV Np(µµµx +ΣxyΣ
−1
yy (yyy−µµµy),Σxx−ΣxyΣ

−1
yy Σyx), (2.8)

where our Σs are populated by k(x,x′) using data yyy and grid points xxx where we make predictions.

Instead of the full posterior, we will sample from the joint density f (θθθ) = L (yyy|θθθ)π(θθθ). As

discussed previously, we will use a Gibbs sampler where the parameters are iteratively updated

using the Metropolis-Hastings algorithm to sample from the posterior distribution.

We will evaluate our SMB model on Antarctica by selecting four grids that will be evauluated

using four data partitions discussed previously. Though our model can be evaluated at any location

on Antarctica, the model must be evaluated at a finite number of locations. We will evaluate our

model at a completely spatially random (CSR) grid such that the whole ice sheet is well repre-

sented. We will use a stereographic projection of Antarctica to create a polygon that will be used

to create a CSR grid. An example of such a grid is displayed in Figure 2.4.

We will use the model described to draw from the posterior distribution

p(ynew | θ) =
∫

θ

L (yyynew | θ)p(θθθ ,,,yyy), (2.9)

to predict SMB at all prediction locations on the CSR grid. For every prediction location, we

will calculate the posterior mean using thousands of realizations yyy from the posterior predictive

distribution

ȳ = mean(yyy) (2.10)
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Spatially Random Grid

Figure 2.4 Selecting the grid we evaluate our model at is important because we must
make global conclusions based on a finite number of grid points. For this reason, we want
to select a grid that will fill the Antarctic ice sheet. We plot a complete spatially random
(CSR) grid to demonstratet that it fills the ice sheet well.

and the 95% credible interval

ȳ±qnorm(.975,0,1) ·
√

var(yyy), (2.11)

where qnorm(.975,0,1) is the .975 quantile of the standard Normal distribution and var(yyy) is

the variance of the posterior realizations (Ebden 2008). The credible interval will be used to

quantify our prediction uncertainty and quantify the convergence of our predictions. We will create

an uncertainty surface over the Antarctic ice sheet to visualize what spatial regions have high

uncertainty.

Using the predicted SMB grid values, we will estimate the mean SMB (SMB) and a 95%

credible interval about SMB using the means of all posterior draws:

SMB±qt(.975,n−1) · s√
n

(2.12)

where qt(.975,n−1) is the 0.975 quantile of the t distribution with n−1 degrees of freedom, n is

the number of grid predictions, and s is the sample standard deviation. We estimate total surface
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mass balance by integrating over the predicted SMB with respect to our surface

∫
system

SMBdAAA = total SMB. (2.13)

We then quantify our uncertainty using a 95% credible interval about total balance and compare

our results for the SMB surface and total balance to previous results to contextualize our results.

2.4 Computational Considerations

2.4.1 Data Partitions for Computational Speed

Because N = 3529, using all of our data in Gaussian process regression would require us to invert a

3529×3529 covariance matrix Σ multiple times. Because large matrix inversion is computationally

expensive, we ran diagnostic speed tests on our model. We found that to complete enough iterations

to model SMB effectively, we would need to run our model for more than 500 days. Because 1.5

years of computation was unfeasible for this project, we decided to partition our data into four

subsets and run these four models separately.

Because Gaussian process regression is interpolative, we decided to not exclude data at bound-

ary locations. Thus, to prevent interpolative issues, we chose 503 boundary data points to include

in every partition, displayed in Figure 2.5. We then partitioned the remaining 3026 data points by

dividing each point’s row index by 4 modularly and placed that data into four groups depending

upon whether the modular division result was zero, one, two, or three. This process selects every

fourth data point from the remaining data. Because data set is grouped by location, modular divi-

sion will space the data in the four partitions such that each partition will fill the continent which

ensures that all predictions will be well-conditioned by data.

Thus, instead of running a single algorithm that would take about 500 days to complete, we

run four algorithms simultaneously that each take about 30 days to complete. We then combine

and compare the results from the four algorithms. Although an ad-hoc approach, this solution will

save time while still allowing us to use all of the “A” rated data.
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Figure 2.5 We select data points near the boundary of the continent for every data partition
so that we prevent extrapolation issues for all algorithm runs.

2.4.2 Inclusion of Computational Nugget in Model

Because our data are unevenly spaced and clustered, it is likely our covariance matrix will be nearly

singular. As discussed in section 2.4, a computational nugget can be used to increase computational

stability due to near-singular matrices. We add a small computational nugget to assure that this

matrix remains invertible for all values of ρ , ν , and σ2. The computational nugget will be between

approximately 5 and 7 orders of magnitude smaller than our spatial nugget δs, so we do not expect

it to introduce any artificial modes. Thus, it should have no confounding effects upon our posterior

distributions.
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Chapter 3

Results and Discussion

This results section will discuss preliminary results using a random sample of 1259 “A” rated data

points from Favier et al.’s database. Using these data, we have predicted SMB at 601 spatially

random grid points over the continental Antarctic ice sheet. Our grid does not cover ice shelves

over bays, however future analyses will include these regions.

3.1 Metropolis-Hastings Algorithm Result

We used the Metropolis-Hastings algorithm to solve for the spatial nugget δs, the range parameter

ρ , the spatial variance σ2, and the smoothing parameter ν of the Matérn covariance function used

to model our spatial process. We have iterated over the algorithm 20 000 times to assure that

we have sufficient draws from the posterior distribution for each parameter. To insure that the

algorithm has converged before using solutions, we will discard the first 2000 algorithm iterations;

these iterations are called the “burn-in.” The results for each parameter are summarized in Table

3.1 below.

As discussed in Section 1.8.1, acceptance rates between 0.234 and 0.5 suggest that the param-

eters are mixing well, that is that the support of each parameter is being explored. Note that all

parameters have acceptance rates between 0.234 and 0.5 (see Table 3.1), which suggests that the

parameters have converged well. We illustrate parameter values with trace plot that plot the value
35
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Parameter Mean Acceptance Rates Candidate Distribution Variance Initial Value

ρ 56.3 0.42 100 50

δs 10.2 0.29 8.00 8.00

ν 0.47 0.43 0.005 0.5

Using Gibbs sampler, we approximate σ2 = 59.2.

Table 3.1 Results from Metropolis-Hastings algorith for each parameter

of a parameter at every iteration. These plots are used to show whether the algorithm has converged

for a parameter of interest. For our parameters, the algorithm has clearly converged to a range of

values (see Figure 3.1).
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Figure 3.1 Trace plots for algorithm parameter values. Note that all of the trace plots have
converged to a specific range suggesting that the whole parameter support is explored and
represented.

Given our trace plots and acceptance rates, we infer that our algorithm has successfully con-

verged to posterior distribution of each parameter. Thus, the parameters found in the algorithm can

be used to predict SMB.
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3.2 Surface Mass Balance and Error Surface Results

Using the posterior draws from the Metropolis-Hastings algorithm, we use the posterior predictive

distribution to predict SMB over the Antarctic ice sheet. Specifically, we get predictions using

p(yyynew | θθθ) =
∫

θ

L (yyynew | θθθ)p(θθθ ,,,yyy), (3.1)

where θθθ are draws from the posterior distribution and ynew are SMB predictions at grid locations.

We predict SMB for all 18000 post-burn-in draws from the posterior distribution. With all 18000

predictions, we predict total SMB, average SMB, and create SMB surfaces. We obtain the follow-

ing SMB predictions:

Estimate C.I. Lower Bound C.I. Upper Bound Units

Total SMB 1.75·1012 1.41·1012 2.08·1012 m3 ·w.e. ·yr−1

Average SMB 124.80 100.95 148.66 mm ·w.e. ·yr−1

Average 95% Credible Interval Margin for SMB predictions: 114.66 mm ·w.e. ·yr−1

Table 3.2 Total and average SMB estimates and 95% credible interval results. Note that
C.I. signifies a 95 % credible interval.

Using the mean of each grid prediction, we create a SMB heat map over the Antarctic ice sheet.

With calculated credible interval margins, we map our prediction uncertainty spatially to identify

regions where we have high prediction uncertainty. We map both high SMB and high uncertainty

with red and low SMB and low uncertainty in blue (see Figure 3.2).

Our SMB surface yielded higher spatial variation and more negative values than expected;

however, we believe that this will be remedied when we use more grid predictions. As expected,

using Gaussian process regression yielded highest uncertainty at the boundaries.
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Figure 3.2 SMB surface plotted in units of mm w.e yr−1 and SMB error surface is in units
of scaled percent error. Note that high values in SMB and uncertainty are in red while
low values are in blue. As expected, we have high uncertainty at the ice sheet boundaries.

3.3 Discussion and Conclusions

Because the algorithm results have acceptance rates in the ideal range, 23.4%–50.0%, and the trace

plots have no clear maxima or minima, we conclude that our Metropolis-Hastings algorithm has

converged to the solution. Even though the results suggest convergence, the parameter ν does not

diverge from the prior distribution meaning that the data had no impact on ν . For this reason, we

conclude that the data actually does not inform the parameter ν and we will simply fix ν = 0.5 in

the future.

Our predicted average SMB, 124.80 mm ·w.e. ·yr−1, is lower than previously estimated values

by Vaughan et al., 146 mm ·w.e. ·yr−1, and Van de Berg et al., 167.9 mm ·w.e. ·yr−1. Specifically,

Vaughan et al.’s prediction is 17.00% higher than our estimate and Van de Berg et al.’s estimate is

34% larger (Van de Berg et al. 2006; Vaughan et al. 1999). Vaughan et al.’s estimate is within our

prediction error bounds, so we cannot say that our prediction varies significantly. Van de Berg et

al.’s result, however, is far larger than ours, but their larger result is expected because they include

ice shelves in their analysis which generally have higher SMB than continental regions. Thus, our

result is reasonable in the context of previous results.

When compared to other SMB surfaces, our SMB surface has higher spatial resolution. Ad-
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vantageously, this surface enables us to identify small variations which is helpful in identifying

the borders of SMB accumulation regions. However, due to high spatial variation, our model pro-

duced more negative SMB regions than is likely plausible. Unlike any previous analyses, we have

created a prediction uncertainty surface which allows us to identify regions where predictions are

more likely to be biased. We will focus on gathering data in regions of high prediction uncer-

tainty to minimize future prediction error. In future analyses, we will create a much finer grid

with approximately 6000 grid points which will reduce total SMB and average SMB prediction

uncertainty.

To make more general climate conclusions, we will meld our results with modeled Antarctic

calving. Because

Total Mass Balance≈ Total SMB− calving, (3.2)

we will be able to discuss whether the Antarctic ice sheet is growing or shrinking. Modeling total

mass balance will allow us to predict sea level change.

3.4 Further Research

In the future we have four primary goals: First, we will implement a full data model and reanalyze

the results. Second, we will analyze how SMB is changing over time. In analyzing how SMB

is changing over time, we will need to develop a new model that integrates time into our spatial

model. Third, we will consider including “B-rated” or “conditionally acceptable” data in our model

in regions where “A- rated” data is sparse (Magand et al. 2007). Because “B-rated” data would

have higher variance, we would have adjust prediction uncertainty that uses “B” rated data. Lastly,

we will propose new measurement locations using integrated mean square error (IMSE); if carried

out, then we can monitor how these measurements stabilize prediction errors. We will write a grant

proposal to fund an expedition to Antarctica to install these stakes.
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Appendix A

Referenced Distributions

A.1 The Gamma Distribution

We will use the shape (α) and scale (β ) parameterization of the gamma distribution:

PDF: f (x|α,β ) =
1

Γ(α)β α
xα−1e−

x
β

CDF: F(x|α,β ) =
1

Γ(α)
γ(α,

x
β
)

E(X) = αβ

Var(X) = αβ
2

where α > 0, β > 0, x ∈ (0,∞), γ(·) is the lower incomplete gamma function, and Γ is the gamma

function.
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A.2 The Inverse Gamma Distribution

We will use the shape (α) and scale (β ) parameterization of the Inverse-gamma distribution:

PDF: f (x|α,β ) =
1

Γ(α)β α
x−α−1e−

1
xβ

CDF: F(x|α,β ) =
Γi(α, β

x
Γ(α)

)

E(X) =
1

β (α−1)

Var(X) =
1

β 2(α−1)2(α−2)

where α > 0, β > 0, x ∈ (0,∞), Γ is the gamma function, and Γi is the incomplete upper gamma

function.

A.3 The Multivariate Normal Distribution

We will use a parameterization with a k-dimensional location parameter (µµµ) and k×k-dimensional

covariance matrix Σ:

PDF: f (xxx|α,β ) = (2π)−
k
2 |Σ|−

1
2 e−

1
2 (xxx−µµµ)′Σ−1(xxx−µµµ)

E(X) = µµµ

Var(X) = Σ

where µµµ ∈Rk, Σ ∈Rk×k, and x ∈ (−∞,∞).



Appendix B

Referenced R Code

B.1 Metropolis-Hastings Algorithm to solve for ρ , ν , and δs

library(MASS)

library(graphics)

library(maps)

library(mapdata)

library(mapproj)

library(pscl)

library(splancs)

library(geoR)

library(fields)

library(corpcor)

rm(list=ls(all=TRUE))

## define distance and covariance functions

hd <- function(long1, lat1, long2, lat2,len) {

R <- 6371 # Earth mean radius in km - I should change to something else

d_long <- (long2 - long1)*pi/180

d_lat <- (lat2 - lat1)*pi/180

a <- sin(d_lat/2)^2 + cos(lat1*pi/180) * cos(lat2*pi/180) * sin(d_long/2)^2

c <- 2 * atan2(sqrt(a),sqrt(1-a))

d <- R * c

return(d) # Distance in km

}

Matern <- function (d, scale = 1, range = 1, alpha = 1/range, smoothness = 0.5,

nu = smoothness, phi = scale) {

if (any(d < 0)) stop("distance argument must be nonnegative")

ind <- which(d == Inf)

d <- d * alpha

d[d == 0] <- 1e-10

con <- (2^(nu - 1)) * gamma(nu)

cov <- phi * con * (d^nu) * besselK(d, nu)

cov[ind] <- 0

return(cov)

}

write("",file="reps.txt")

#### read in data

ice <- read.csv("ant_loc.csv")

names(ice) <- c("latitude","longitude","SMB","year","method","pub","temp","el")

cord <- cbind(ice$longitude,ice$latitude,ice$SMB)

## create grid and parse out data

group1<-cord[cord[,1]>=39.4 & cord[,1]<=50 & cord[,2]>=(-69.028) & cord[,2]<=(-65),]

cord_left<-cord[(cord[,1]<39.4 | cord[,1]>50) | (cord[,2]<(-69.028) | cord[,2]>(-65)),]

group2<-cord[cord[,1]>=50 & cord[,1]<=67 & cord[,2]>=(-68.76) & cord[,2]<=(-65),]
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cord_left<-cord_left[(cord_left[,1]<50 | cord_left[,1]>67) | (cord_left[,2]<(-68.76) | cord_left[,2]>(-65)),]

group3<-cord[cord[,1]>=75 & cord[,1]<=80 & cord[,2]>=(-70.09) & cord[,2]<=(-65),]

cord_left<-cord_left[(cord_left[,1]<75 | cord_left[,1]>80) | (cord_left[,2]<(-70.09) | cord_left[,2]>(-65)),]

tiny<-cord_left[(cord_left[,1]<=(74) & cord_left[,1]>=(67)) & (cord_left[,2]<=(-65) & cord_left[,2]>=(-73)),]

cord_left<-cord_left[(cord_left[,1]>74 | cord_left[,1]<67) | (cord_left[,2]>(-65) | cord_left[,2]<(-73)),]

group4<-cord[cord[,1]>=20 & cord[,1]<=27 & cord[,2]>=(-70.37) & cord[,2]<=(-69),]

cord_left<-cord_left[(cord_left[,1]<20 | cord_left[,1]>27) | (cord_left[,2]<(-70.37) | cord_left[,2]>(-69)),]

group6<-cord[cord[,1]>=110 & cord[,1]<=134 & cord[,2]>=(-67.55) & cord[,2]<=(-66),]

cord_left<-cord_left[(cord_left[,1]<110 | cord_left[,1]>134) | (cord_left[,2]<(-67.55) | cord_left[,2]>(-66)),]

group7<-cord[cord[,1]>=(-180) & cord[,1]<=(-100) & cord[,2]>=(-81) & cord[,2]<=(-75),]

cord_left<-cord_left[(cord_left[,1]<(-180) | cord_left[,1]>(-100)) | (cord_left[,2]<(-81) | cord_left[,2]>(-75)),]

group7b<-cord[cord[,1]>=(159) & cord[,1]<=(180) & cord[,2]>=(-81) & cord[,2]<=(-75),]

cord_left<-cord_left[(cord_left[,1]<159 | cord_left[,1]>180) | (cord_left[,2]<(-81) | cord_left[,2]>(-75)),]

group7<-rbind(group7,group7b)

group9<-cord[cord[,1]>=134 & cord[,1]<=142 & cord[,2]>=(-66.706) & cord[,2]<=(-65),]

cord_left<-cord_left[(cord_left[,1]<134 | cord_left[,1]>142) | (cord_left[,2]<(-66.706) | cord_left[,2]>(-65)),]

group10<-cord[cord[,1]>=(-90) & cord[,1]<=(-38) & cord[,2]>=(-85) & cord[,2]<=(-55),]

cord_left<-cord_left[(cord_left[,1]<(-90) | cord_left[,1]>(-38)) | (cord_left[,2]<(-85) | cord_left[,2]>(-55)),]

group11a<-cord_left[(cord_left[,1]<=(20) & cord_left[,1]>=(0) & cord_left[,2]>=(-72) & cord_left[,2]<=(-55)) ,]

cord_left<-cord_left[(cord_left[,1]>20 | cord_left[,1]<0 | cord_left[,2]<(-72) | cord_left[,2]>(-55)),]

group11b<-cord_left[(cord_left[,1]<=(0) & cord_left[,1]>=(-10) & cord_left[,2]>=(-72) & cord_left[,2]<=(-55) ),]

cord_left<-cord_left[(cord_left[,1]>0 | cord_left[,1]<(-10) | cord_left[,2]<(-72) | cord_left[,2]>(-55) ),]

group11c<-cord_left[(cord_left[,1]<=(-10) & cord_left[,1]>=(-20)& cord_left[,2]>=(-75) & cord_left[,2]<=(-50)),]

cord_left<-cord_left[(cord_left[,1]>(-10) | cord_left[,1]<(-20) | cord_left[,2]<(-75) | cord_left[,2]>(-50) ),]

group11d<-cord_left[(cord_left[,1]<=(-20) & cord_left[,1]>=(-40) & cord_left[,2]>=(-80) & cord_left[,2]<=(-50)),]

cord_left<-cord_left[(cord_left[,1]>(-20) | cord_left[,1]<(-40) | cord_left[,2]<(-80) | cord_left[,2]>(-50)),]

group11<-rbind(group11a,group11b,group11c,group11d)

group8a<-cord_left[(cord_left[,1]<=(110) & cord_left[,1]>=(80) & cord_left[,2]>=(-70) & cord_left[,2]<=(-50)),]

cord_left<-cord_left[(cord_left[,1]>(110) | cord_left[,1]<(80) | cord_left[,2]<(-70) | cord_left[,2]>(-50)),]

group8b<-cord_left[(cord_left[,1]<=(160) & cord_left[,1]>=(155) & cord_left[,2]>=(-78) & cord_left[,2]<=(-50)),]

cord_left<-cord_left[(cord_left[,1]>(160) | cord_left[,1]<(155) | cord_left[,2]<(-78) | cord_left[,2]>(-50)),]

group8c<-cord_left[(cord_left[,1]<=(180) & cord_left[,1]>=(160) & cord_left[,2]>=(-75) & cord_left[,2]<=(-50)),]

cord_left<-cord_left[(cord_left[,1]>(180) | cord_left[,1]<(160) | cord_left[,2]<(-75) | cord_left[,2]>(-50)),]

group8 <- rbind(group8a,group8b,group8c)

group <- rbind(group1,group2,group3,group4,group6,group7,group8,group9,group10,group11,tiny)

ind <- which( 1:length(cord_left[,3]) %% 4 == 0)

griddy <- data_use <- rbind(group,cord_left[ind,])

#### allot memory for distance matrices # note the weird notation phi= sigma^2 # range =rho , and nu=nu

sigma_mat <- d_mat_gg <- matrix(1,nrow=length(griddy[,1]),ncol=length(griddy[,1]))

d_mat_gd <- matrix(1,nrow=length(griddy[,1]),ncol=length(data_use[,1]))

d_mat_dd <- matrix(1,nrow=length(data_use[,1]),ncol=length(data_use[,1]))

## populade distance matrices

for(i in 1:length(griddy[,1])){

d_mat_gg[,i] <- hd(griddy[i,1],griddy[i,2],griddy[,1],griddy[,2],length(griddy[,1]))

}

for(i in 1:length(griddy[,1])){

d_mat_gd[i,] <- hd(griddy[i,1],griddy[i,2],data_use[,1],data_use[,2],length(data_use[,1]))

}

for(i in 1:length(data_use[,1])){

d_mat_dd[,i] <- hd(data_use[i,1],data_use[i,2],data_use[,1],data_use[,2],length(data_use[,1]))

}

### throw away distance that are too long - create sparseness

d_mat_gg <- d_mat_dd <- ifelse(d_mat_gg > 1200,Inf,d_mat_gg)

d_mat_gd <- ifelse(d_mat_gd > 1200,Inf,d_mat_gd)

# d_mat_dd <- ifelse(d_mat_dd > 1200,Inf,d_mat_dd)

d_mat_dg<-t(d_mat_gd)

y <- data_use[,3]

##### metropolis-hastings

## set initial values

runs <- 20000

nu <- rho <- sigma <- nug <- numeric(runs)
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nu[1] <- .5

rho[1] <- 50

sigma[1] <- 100

nug[1] <- 8

var_n <- 0.15

var_r <- 1200

var_nug <- 2

cnug <- countn <- countr <- 0

n <- length(griddy[,1])

astar <- n/2

bstar <- 9e-6

sol <- matrix(0,nrow=length(griddy[,1]),ncol=runs)

nug1 <- 4e-1

nug2 <- 2e-4

for( i in 2:runs)

{

draw <- diag(2)

while(!is.vector(draw) || !is.matrix(invdd)){

comgg <- comdd <- Matern(d_mat_gg,phi=sigma[i-1],nu=nu[i-1],range=rho[i-1])

#comdd <- Matern(d_mat_dd,phi=sigma[i-1],nu=nu[i-1],range=rho[i-1])

comdg <- Matern(d_mat_dg,phi=sigma[i-1],nu=nu[i-1],range=rho[i-1])

comgd <- t(comdg)

invdd <- try(solve(comdd+nug2*diag(length(comdd[,1]))),silent=TRUE)

post_mean <- try(comgd %*% invdd %*% (y),silent=TRUE)

post_sig <- try( comgg - comgd %*% invdd %*% comdg , silent =TRUE)

post_sig <- try((post_sig+t(post_sig))/2 + (nug1+nug[i-1])*diag(length(comgg[,1])),silent=TRUE)

draw <- try(mvrnorm(1,post_mean,post_sig,tol=1e-2),silent=TRUE)

sol[,i-1] <- draw

bstar <- ((sum((y-sol[,i-1])^2)/2)^(-1))

sigma[i] <- 1/rgamma(1,astar,scale=bstar)

log.norm <- -.5*sum(log(eigen(post_sig,only.values=T)$values))-

0.5*t(sol[,i-1]-post_mean)%*%solve(post_sig)%*%(sol[,i-1]-post_mean)

}

met.rat <- NaN ## loop entrance condition

######### draw on nu #########

while(is.nan(met.rat) || !is.matrix(invdd) || !is.numeric(rat_num) || !is.numeric(met.rat) ){

n.draw <- rgamma(1 , shape = (nu[i-1])^2 / var_n , scale = var_n/nu[i-1] )

rat_den <- (dgamma(nu[i-1],5,scale=.1,log=T)+

dgamma(n.draw,shape =(nu[i-1])^2/var_n,scale=var_n/nu[i-1],log=T)+log.norm)

comgg <- comdd <- Matern(d_mat_gg,phi=sigma[i],nu=n.draw,range=rho[i-1])

# comdd <- Matern(d_mat_dd,phi=sigma[i],nu=n.draw,range=rho[i-1])

comdg <- Matern(d_mat_dg,phi=sigma[i],nu=n.draw,range=rho[i-1])

comgd <- t(comdg)

invdd <- try(solve(comdd+nug2*diag(length(comdd[,1]))),silent=TRUE)

post_mean_nu <- try(comgd %*% invdd %*% y,silent=TRUE)

post_sig_nu <- try(comgg - comgd %*% invdd %*% comdg,silent=TRUE)

post_sig_nu <-try( (post_sig_nu+t(post_sig_nu))/2 + (nug1+nug[i-1])*diag(length(comgg[,1])),silent=TRUE)

rat_num <- try((dgamma(n.draw,5,scale=.1,log=T)+dgamma(nu[i-1],shape=(n.draw)^2/var_n,scale=var_n/n.draw,log=T)-

.5*sum(log(eigen(post_sig_nu,only.values=T)$values))-

0.5*t(sol[,i-1]-post_mean_nu)%*%solve(post_sig_nu)%*%(sol[,i-1]-post_mean_nu)),silent=TRUE)

nu[i] <- nu[i-1]

met.rat <- try(rat_num - rat_den,silent=TRUE)

try(if( met.rat >= log(runif(1)) ) { nu[i] <- n.draw ; countn <- countn+1 },silent=TRUE)

}

met.rat <- NaN ## loop entrance condition

######## draw on rho ##########

while(is.nan(met.rat) || !is.matrix(invdd) || !is.numeric(rat_num) || !is.numeric(met.rat) ){

r.draw <- rgamma(1 , shape = (rho[i-1])^2 / var_r , scale = var_r/rho[i-1] )

rat_den <- (dgamma(rho[i-1],12.5,scale=4,log=T)+

dgamma(r.draw,shape=(rho[i-1])^2/var_r,scale=var_r/rho[i-1],log=T)+log.norm)

comgg <- comdd <- Matern(d_mat_gg,phi=sigma[i],nu=nu[i],range=r.draw)

# comdd <- Matern(d_mat_dd,phi=sigma[i],nu=nu[i],range=r.draw)

comdg <- Matern(d_mat_dg,phi=sigma[i],nu=nu[i],range=r.draw)

comgd <- t(comdg)

invdd <- try(solve(comdd+nug2*diag(length(comdd[,1]))),silent=TRUE)

post_mean_rho <- try( comgd %*% invdd %*% (y),silent=TRUE)

post_sig_rho <- try( comgg - comgd %*% invdd %*% comdg,silent=TRUE)

post_sig_rho <- try( (post_sig_rho+t(post_sig_rho))/2 + (nug1+nug[i-1])*diag(length(comgg[,1])),silent=TRUE)

rat_num <- try((dgamma(r.draw,12.5,scale=4,log=T)+dgamma(rho[i-1],shape=(r.draw)^2/var_r,scale=var_r/r.draw,log=T)-

.5*sum(log(eigen(post_sig_rho,only.values=T)$values))-

0.5*t(sol[,i-1]-post_mean_rho)%*%solve(post_sig_rho)%*%(sol[,i-1]-post_mean_rho)),silent=TRUE)

rho[i] <- rho[i-1]

met.rat <- try(rat_num - rat_den,silent=TRUE)
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try(if( met.rat >= log(runif(1))) { rho[i] <- r.draw ; countr <- countr+1 },silent=TRUE)

}

met.rat <- NaN ## loop entrance condition

######## draw on nug ########

while(is.nan(met.rat) || !is.matrix(invdd) || !is.numeric(rat_num) || !is.numeric(met.rat) ){

nug.draw <- rgamma(1 , shape = (nug[i-1])^2 / var_nug , scale = var_nug/nug[i-1] )

rat_den <- (dgamma(nug[i-1],8,scale=1,log=T)+

dgamma(nug.draw,shape=(nug[i-1])^2/var_nug,scale=var_nug/nug[i-1],log=T)+log.norm)

comgg <- comdd <- Matern(d_mat_gg,phi=sigma[i],nu=nu[i],range=rho[i])

# comdd <- Matern(d_mat_dd,phi=sigma[i],nu=nu[i],range=rho[i])

comdg <- Matern(d_mat_dg,phi=sigma[i],nu=nu[i],range=rho[i])

comgd <- t(comdg)

invdd <- try(solve(comdd+nug2*diag(length(comdd[,1]))),silent=TRUE)

post_mean_nug <- try(comgd %*% invdd %*% (y),silent=TRUE)

post_sig_nug <- try(comgg - comgd %*% invdd %*% comdg,silent=TRUE)

post_sig_nug <- try((post_sig_nug+t(post_sig_nug))/2 + (nug1+nug.draw)*diag(length(comgg[,1])),silent=TRUE)

rat_num <- try((dgamma(nug.draw,8,scale=1,log=T)+

dgamma(nug[i-1],shape=(nug.draw)^2/var_nug,scale=var_nug/nug.draw,log=T ) -

.5*sum(log(eigen(post_sig_nug,only.values=T)$values))-

0.5*t(sol[,i-1]-post_mean_nug)%*%solve(post_sig_nug)%*%(sol[,i-1]-post_mean_nug)),silent=TRUE)

nug[i] <- nug[i-1]

met.rat <- try(rat_num - rat_den,silent=TRUE)

try(if( met.rat >= log( runif(1) ) ){ nug[i] <- nug.draw ; cnug <- cnug+1 },silent=TRUE)

}

if(i %% 1000 ==0){

write(c("we're on: ",paste(i)),file="reps.txt",append=TRUE)

}

if(i %% 1000 ==0){

# mean

sol_tot <- sol[,1:i]

sol_mean <- apply(sol_tot,1,mean)

cred_lo_95 <- cred_hi_95<-seq(0,0,length=length(griddy[,1]))

for(i in 1:length(griddy[,1])){

lo_hi <- qnorm(c(.025,.975),mean=sol_mean[i],sd=sd(sol_tot[i,]))

cred_lo_95[i] <- lo_hi[1]

cred_hi_95[i] <- lo_hi[2]

}

per_error <- ((sol_mean-griddy[,3])/griddy[,3])*100

per_error[per_error==Inf | per_error==-Inf] <- 0

avg_error <- mean(abs(per_error))

griddy_out <- cbind(griddy,cred_lo_95,sol_mean,cred_hi_95,per_error,avg_error)

colnames(griddy_out) <- c("longitude","latitude","measured_SMB","95_cred_int_low",

"pred_mean","95_cred_int_hi","percent error", "avg error" )

accept_nu <- countn/(i-1) # acceptance for nu

accept_rho <- countr/(i-1) # acceptance for rho

accept_nug <- cnug/(i-1)

parameter <- cbind(sigma,rho,nu,nug,accept_rho,accept_nu,accept_nug)

write.csv(griddy_out,file="d_pred.csv")

write.csv(parameter,file="parameter.csv")

write.csv(sol,file="full_sol.csv")

write(c("we're on: ",paste(i)),file="reps.txt",append=TRUE)

}

}

# compute the final solution for the algorithm

draw <- diag(2)

while(!is.vector(draw) || !is.matrix(invdd)){

comgg <- comdd <- Matern(d_mat_gg,phi=sigma[i],nu=nu[i],range=rho[i])

# comdd <- Matern(d_mat_dd,phi=sigma[i],nu=nu[i],range=rho[i])

comdg <- Matern(d_mat_dg,phi=sigma[i],nu=nu[i],range=rho[i])

comgd <- t(comdg)

invdd <- try(solve(comdd+nug2*diag(length(comdd[,1]))),silent=TRUE)

post_mean <- try(comgd %*% invdd %*% (y),silent=TRUE)

post_sig <- try(comgg - comgd %*% invdd %*% comdg,silent=TRUE)

post_sig <- try((post_sig+t(post_sig))/2 + nug[runs]*diag(length(comgg[,1])),silent=TRUE)

draw <- try(mvrnorm(1,post_mean,post_sig,tol=1e-2),silent=TRUE)

sol[,runs] <- draw

}

sol_mean <- apply(sol,1,mean) # mean

cred_lo_95 <- cred_hi_95<-seq(0,0,length=length(griddy[,1]))

for(i in 1:length(griddy[,1])){ #credible interval

lo_hi <- qnorm(c(.025,.975),mean=sol_mean[i],sd=sd(sol[i,]))

cred_lo_95[i] <- lo_hi[1]

cred_hi_95[i] <- lo_hi[2]
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}

per_error <- ((sol_mean-griddy[,3])/griddy[,3])*100 #percent error

per_error[per_error==Inf | per_error==-Inf] <- 0

avg_error <- mean(abs(per_error)) #absolute mean per. error

griddy_out <- cbind(griddy,cred_lo_95,sol_mean,cred_hi_95,per_error,avg_error)

colnames(griddy_out) <- c("longitude","latitude","measured_SMB","95_cred_int_low",

"pred_mean","95_cred_int_hi","percent error", "avg error" )

accept_nu <- countn/(runs-1) # acceptance for nu

accept_rho <- countr/(runs-1) # acceptance for rho

accept_nug <- cnug/(runs-1) # acceptance for nugget

### output results

parameter <- cbind(sigma,rho,nu,nug,accept_rho,accept_nu,accept_nug)

colnames(parameter) <- c ("sigma","rho","nu","nugget","accept_rho","accept_nu","accept_nug")

write.csv(griddy_out,file="d_pred.csv")

write.csv(parameter,file="parameter.csv")

write.csv(sol,file="full_sol.csv")

B.2 Creating SMB and SMB Uncertainty Surface on Antarc-

tica

library(MASS)

library(graphics)

library(maps)

library(mapdata)

library(splancs)

library(mapproj)

rm(list=ls())

gridp<-read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/SMB prediction/g_pred.csv")

gridp<-gridp[gridp$pred_mean<2000 & gridp$pred_mean>(-200),]

xg<-gridp$longitude

yg<-gridp$latitude

zg<-gridp$pred_mean

gridxy<-mapproject(xg,yg,projection="stereographic",orientation=c(-90,0,0))

datap<-read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/SMB prediction/d_pred.csv")

xd<-datap$longitude

yd<-datap$latitude

zd<-datap$pred_mean

dataxy<-mapproject(xd,yd,projection="stereographic",orientation=c(-90,0,0))

xp<-dataxy$x

yp<-dataxy$y

zp<-abs(datap$percent.error)

data<-datap$measured_SMB

scale.needed<-which(abs(zd)<abs(30))

zp[scale.needed]<-zp[scale.needed]*data[scale.needed]/30

x<-c(gridxy$x,dataxy$x)

y<-c(gridxy$y,dataxy$y)

z<-c(zg,zd)

require(akima)

require(fields)

b1<-(14:0)

b2<-1:47

bb<-c(-5000,-500,-(b1^2),b2^1.95,10000000)

this<- Krig(cbind(x,y),z,cov.function="stationary.cov")

png("smb_heat_krig.png")

surface.Krig(this,type="I",nx=500,ny=500,breaks=bb,zlim=c(-400,1990),

legend.args=list( text="",col="black", cex=1, side=3, line=1),

ylim=c(-.4,.4),xlim=c(-.5,.5),yaxt="n",xaxt="n",xlab="",ylab="",

main="Projected SMB (mm w.e a-1)",cex.main=1.7)

map("worldHires","Antarctica",xlim=c(-180,180),ylim=c(-90,-60),

col="black",lwd=3,fill=F,projection="stereographic",orientation=c(-90,0,0),add=T)

dev.off()
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bbe2<-c(seq(-1000,-0,length=20),seq(0,10,length=15),seq(11,20,length=10),

seq(21,100,length=15),seq(100,100000,length=5))

bbe1<-c(seq(-500,-0,length=20),seq(0,10,length=35),seq(11,20,length=8),

seq(21,100,length=1),seq(100,100000,length=1))

this2<- Krig(cbind(xp,yp),zp,cov.function="stationary.cov")

png("error_heat_krig.png")

surface.Krig(this2,type="I",nx=500,ny=500,breaks=bbe1,zlim=c(0,20),

legend.args=list( text="",col="black", cex=1, side=3, line=1),

ylim=c(-.4,.4),xlim=c(-.5,.5),yaxt="n",xaxt="n",xlab="",ylab="",

main="Projected Uncertainty(Scaled |% Error|)",cex.main=1.7)

map("worldHires","Antarctica",xlim=c(-180,180),ylim=c(-90,-60),

col="black",lwd=3,fill=F,projection="stereographic",orientation=c(-90,0,0),add=T)

dev.off()

B.3 Plots on Antarctica

library(MASS)

library(graphics)

library(maps)

library(mapdata)

library(splancs)

library(mapproj)

graphics.off()

rm(list=ls(all=TRUE))

ice.bad <- read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/ant_bad.csv")

names(ice.bad)<-c("latitude","longitude","el","SMB","method","pub")

ice<-read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/ant_loc.csv")

names(ice)<-c("latitude","longitude","SMB","year","method","pub","temp","el")

long<-ice$longitude

lat<-ice$latitude

cord<-cbind(ice$longitude,ice$latitude)

grid_l<-15

lat_grid<-seq(-90,-62,length=grid_l)

long_grid<-seq(-180,180,length=grid_l)

ant<-map("worldHires","Antarctica",fill=TRUE,plot=FALSE)

ant_mat<-cbind(ant$x,ant$y)

br<-which(is.na(ant_mat[,2]))

mainland<-ant_mat[(br[1]+1):(br[2]-1),1:2]

l<-length(mainland[,2])

bottom<-cbind(seq(-180,-180,length=500),seq(-90,-84.305,length=500))

top<-cbind(seq(180,180,length=500),seq(-84.3023,-90,length=500))

left<-cbind(seq(180,-180,length=1000),seq(-90,-90,length=1000))

mainland<-rbind(mainland[1:11973,1:2],top,left,bottom,mainland[11974:l,1:2])

# this recreates mainland so that is has a full border along the south pole.

# 1. Plot with all measurements with grid

pdf("ant_good.pdf")

map("worldHires","Antarctica",xlim=c(-180,180),lwd=3,ylim=c(-90,-60),col="gray",fill=T,

projection="stereographic",orientation=c(-90,0,0))

map.grid(c(-180,180,-90,-60),col="black",nx=20,ny=10,labels=F)

all_obs<-mapproject(ice$longitude,ice$latitude,projection="stereographic",orientation=c(-90,0,0))

points(all_obs,pch=1,cex=.6,col="red")

title(main="SMB Measurement Location",cex.main=2.1)

legend("bottomleft",c("Reliable Data"),lty=c(1,1),lwd=c(15,15)

,col=c("red"),cex=1.5)

dev.off()

B.4 Create Trace Plots and Data Analysis

graphics.off()

data<-read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/SMB prediction/data_sim/d_pred.csv")

parameter<-read.csv("C:/Users/Phil/Dropbox/Stats/stats research/ice/SMB prediction/data_sim/parameter.csv"
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,header=T)

rho <- parameter$rho

nu <- parameter$nu

nugget <- parameter$nug

pe <- data$percent.error

smb <- data$measured_SMB

cat("Absolute percent error is: ", mean(abs(pe)),"% \n")

scale.needed<-which(abs(smb)<abs(30))

pe[scale.needed]<-pe[scale.needed]*smb[scale.needed]/30

cat("Scaled absolute percent error is: " , mean(abs(pe)),"% \n")

cat("correlation between predicted and measured SMB is: ",

cor(data$measured_SMB,data$pred_mean)," \n")

cor(nu,nugget)

cor(rho,nugget)

cor(nu,rho)

parameter$accept_nu[1]

parameter$accept_nug[1]

parameter$accept_rho[1]

x11()

#pdf("trace_rho.pdf")

plot(parameter$X,rho,xlab="iteration",ylab="rho value",type="l")

#dev.off()

x11()

#pdf("trace_nu.pdf")

plot(parameter$X,nu,xlab="iteration",ylab="nu value",type="l")

#dev.off()

x11()

#pdf("trace_nug.pdf")

plot(parameter$X,nugget,xlab="iteration",ylab="nugget value",type="l")

#dev.off()

B.5 Create Semivariograms

graphics.off()

library(MASS)

library(graphics)

library(ggplot2)

library(grid)

curly <- function(N = 100, Tilt = 1, Long = 2, scale = 0.1, xcent = 0.5,

ycent = 0.5, theta = 0, col = 1, lwd = 1, grid = FALSE){

ymin <- scale / Tilt

y2 <- ymin * Long

i <- seq(0, pi/2, length.out = N)

x <- c(ymin * Tilt * (sin(i)-1),

seq(0,0, length.out = 2),

ymin * (Tilt * (1 - sin(rev(i)))),

ymin * (Tilt * (1 - sin(i))),

seq(0,0, length.out = 2),

ymin * Tilt * (sin(rev(i)) - 1))

y <- c(-cos(i) * ymin,

c(0,y2),

y2 + (cos(rev(i))) * ymin,

y2 + (2 - cos(i)) * ymin,

c(y2 + 2 * ymin, 2 * y2 + 2 * ymin),

2 * y2 + 2 * ymin + cos(rev(i)) * ymin)

x <- x + xcent

y <- y + ycent - ymin - y2
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x1 <- cos(theta) * (x - xcent) - sin(theta) * (y - ycent) + xcent

y1 <- cos(theta) * (y - ycent) + sin(theta) * (x - xcent) + ycent

##For grid library:

if(grid){

grid.lines(unit(x1,"npc"), unit(y1,"npc"),gp=gpar(col=col,lwd=lwd))

}

##Uncomment for base graphics

else{

par(xpd=TRUE)

points(x1,y1,type='l',col=col,lwd=lwd)

par(xpd=FALSE)

}

}

c0 <- 8

ck <- 100

a <- .5

ak <- 50

semi <- function(h,nug,var,nu,rho){

nug + var * (1 - (1/(2^(nu-1)*gamma(nu)))*(h/ak)^a*besselK(h/rho,nu))

}

nug <- rgamma(1000,4,scale=2)

var <- rnorm(1000,100,10)

nu <- rgamma(1000,5,scale=.1)

rho <- rgamma(1000,12.5,scale=4)

h <- seq(0.000001,450,length=1000)

gam <- semi(h,c0,ck,a,ak)

gam.pos <- matrix(0,ncol=1000,nrow=1000)

for(i in 1:1000){

gam.pos[,i] <- semi(h,nug[i],var[i],nu[i],rho[i])

}

par(mar=c(5,5,1,1))

plot(h,gam,type="l",ylim=c(0,150),xlim=c(0,500),xaxs="i",yaxs="i",ylab="",xlab="",cex.lab=1.75,lwd=2.5)

title(ylab=expression(gamma),xlab="distance (km)",cex.lab=2)

for(i in 1:1000){

lines(h,gam.pos[,i],lwd=.5,col="lightgray")

}

lines(h,gam,lwd=2.5)

text(475,110,"Sill",cex=2,col="black")

text(70,5,"Nugget",cex=2,col="black")

arrows(300,0,300,gam[710],length = 0.0,lty=2,lwd=2,col="red")

text(140,15,"range",cex=2,col="black")

arrows(190,15,285,15,length = 0.2,lty=1,lwd=3,col="black")

arrows(90,15,10,15,length = 0.2,lty=1,lwd=3,col="black")

curly(N=100,Tilt=.9,Long=0.4,scale=0.011,xcent=0.16

ycent=.175,theta=0,col="red",lwd=2,grid=TRUE)
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