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Introduction

The original intent of this work was to investigate an issue that is cur-
rently being debated among various groups of physicist. We hoped to find
a new angle of approach that might shed light on the issue. Complemen-
tarity is the principle that a system, such as an electron, can be described
either in terms of particle or in terms of wave motion. Marlin Scully and his
colleagues have proposed theoretical as well as experimental work in which
they claim that the principle of complementarity is upheld by some, as yet
undefined and poorly understood, information law that is more fundamental
than the uncertainty pl'inciple. This proposal deviates from the traditional
explanation that complementarity is enforced by invoking the uncertainty
principle ultimately through some physical momentum kick. Walls and his
colleagues argue that Scully’s work fails to accomplish its objectives and that
physical momentum kicks are indispensable in explaining complementarity.
Although it seemed at times that the whole debate was a matter of splitting
hairs, we find the related question exciting and very challenging. For details
of Scully’s and Walls’ work we refer the reader to the original papers [1] [2]

and a subsequent review [5].

While researching the aforementioned issue, a paper written by Wootters
and Zurek (3] caught our attention. In this paper Wootters and Zurek
develop a scheme for quantifying complementarity. We saw this paper as a
useful tool to study the issue at hand and the field of atom optics in general.
We have extended their work to a general case and we relate our findings to

the uncertainty relation and the correspondence principle. Parts of this work
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were presented at the Fifth International Conference on Squeezed States and

Uncertainty Relations [7].




The Model

The model that Wootters and Zurek use is a slight variation of one of
the thought experiments that Finstein proposed in his attempts to disprove
complementarity {6]. Einstein proposed placing a single slit plate in front
of a traditional double slit experiment. The convention that we will use in
discussing this arrangement is to call the single slit plate, plate 1, the double
slit, plate 2, and the detector screen, the screen. Einstein argued that by
measuring the momentum of plate 1 one could know which path the photon
travelled and keep the interference pattern as well. Bohr shows that this
arguement fails because the initial momentum of plate 1 must be known to
within a certain accuracy to know the path of the photon. The knowledge
of the initial momentum, according to the uncertainty principle, neccessarily
introduces an uncertainty in the position of plate 1 that in turn destroys the

interference pattern. Thus Einstein fails to disprove complementarity.

Wootters and Zurek use this same experimental configuration. The only
modification is that plate 1 is attached to an ideal spring. Thus the posi-
tion and momentum of plate 1, and thus the single slit itself, are described
by the wavefunction of a simple harmonic oscillator (SHO). Wootters and
Zurek were not out to disprove complementarity but to develop a quantita-
tive statement of the principle. Whereas the principle is described as either
exclusively particle or exclusively wave, their treatment allows for interme-
diate situations. They treated only the case when the single slit is in the

ground state energy level, n = 0. We have extended this work to the case of

arbitrary n.




The uncertainty relation for a simple harmonic oscillator in the n = 0

state reads,

AzAp = % (1)

which satisfies the limiting equality of the general uncertainty relation

AzAp > f;; 2)

The uncertainty relation for the n th excited state is
1
AzAp = (n+ :?-)ﬁ (3)

This uncertainty relation can be derived by evaluating the variance of the
position and momentum operators for a system in the nth excited state of
the SHO: (Az)? =< 2® > — < z >% and (Ap)? =< p* > — < p >%. The
terms< 2® >and< p? > can be found by explicit integration but it is much

easter to use Dirac notation. We will return to this relationship and discuss

its importance in the final analysis.




Position Method

There are various ways to derive the interference pattern that will result
from this single+double slit configuration. The simplest method is the posi-
tion method. This technique is to determine the contribution to the pattern
that a subensemble of particles, all emitted from a given position, makes and
then to weight it according to the probability of the single slit being in that
position. This technique is conceptually and mathematically simple but also
has the disadvantage of not providing any *which-path’ information. In other
words, a measurement of the single slits position when a particle successfully
traverses the experiment tells us nothing about which slit of the cloiuble slit

it passed through.

The standard wavefunction for a simple harmonic oscillator provides the

probability distribution of the single slit that is needed for this procedure.

Pa(e) = 2772 (nl)

T me _ mws?
"ﬁ)l/‘iﬂn((“{)l/zw)e 2 (4)
h

By defining a® = - we simplify the expression a little and we note that
y g oy p

the variable 'a’ is related to the spring constant of the harmonic oscillator
as follows: a = ((k—m’t‘)—,f—,‘;)lf2 . Thus a small '@’ corresponds to a large spring

constant k. The expression becomes:
3:2
Bolz) = 22 () A1 g (DR (5)
a

The contribution to the final pattern made by a subensemble of particles,
all originating from a given vertical position ¢, is found from the standard
optics expression:

L&) =1 + cos(2k, (€ + x)) (6)
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Now to find the total interference pattern we simply sum up the weighted

contributions of the subensembles by integrating over all positions along plate

L.
Ful) = [ Wal)PLi)de ()

The following trigonometric identity is used to solve the integral.
08 2k, (€ + ) = cos 2k, ¢ cos 2k,x — sin 2k,¢ sin 2k, (8)

By using an integral table, Ref [4], and defining 8 = ko1/2L we solve the

Tl

integrals and arrive at the formula for the interference pattern
Fall) =1+ e“kgaan(ZkE(tz) cos(2k,¢) (9)

where L, (z) represents the nth Laguerre polynomial.




~

Momentum Method

The momentum method is another technique that allows us to determine
the final interference pattern produced from this experiment. The momen-
tum method is conceptually and mathematically more complex than the
position method but it is advantageous because it also provides 'which-path’
information. We derive the interference pattern in this section and discuss
how the 'which-path’ information is obtained in the next.

The momentum method is implemented in the following manner. Because
we model plate 1 as a simple harmonic oscillator its momentum is described
by the SHO wavefunction in kspace. The wavefunction in k-space is obtained

by taking the Fourier Transform of 9(z) .

o -—zk:z: 1
bll) = = [ (10)

9-nf2(pn1—1/2 1/4 oo _mug?
Pnlk) = (2&)1)/2(7#53?2) /_mHn((T;{_d)mm) e dz (11)

By making a change of variable ¢ = /%#z and defining y = 1/%]{: we

put the integral into a form that can be solved using an integral table, Ref [4].

2112 () )12 o Y14 .
wﬂ(k) - (27]_ 1/2 Wh)1/4 f 2 e dO' (12)

"o nfz(n|) 1/2(h)1/4 h 2 _
- (mrw/ H”(V;n";k)e ™ (13)

2,2
= 7,"”“2“”"2(n!)"1/27r”1/4a1/2Hn (ak)e™

- (14)

H we measure the momentum of plate 1 just after a particle registers on

the screen its momentum will consist of two parts. The measured momentum
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of plate 1 will be the sum of the initial momentum of plate 1, some k specified

by #(k), and the momentum, -k, , imparted to plate 1 by the particle.
Because the particle has to go through one of the two slits, the magnitude of
k. is defined by the geometry of the system. Thus the measured momentum
K is:

£ =ktk, (15)

The total distribution D{x) of wave numbers is the sum of all the par-
tial distributions Dy (), weighted by |4(k)]>. We recall that k, is fixed by
the geometry of the system and that the partial distribution Dy(x) is the
distribution of the «’s for a fixed k.

Da() = 16((s + ) — K) + 8((x — k) — k)] (16)
Da() = [ [a(k) Da()ak (an
D) = Sy ST ai + k)e 4 4 7 (a(s — b)) (19

The interference pattern generated by a subensemble corresponding to a
given K is:
1:(6) = 14 2P % (k) Pa* () cos(2k,£) (19)

Py(x) = H2(a(s + k,))e= (ko)
AT W2 alk + o)Jem Rl 4 H2{a(x — ky))e— e (ho?

_ H2(a(s — k,))e ek’ (21)
" H a(k + ko))e= R | H{a(n — ky))e (s RoT

The final interference pattern is found by summing the partial interference

(20)

PB(K‘,)

patterns after weighting them with the momentum distribution.
Ful&) = [ Dalw)in(€)ds (22)
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Ful) = 14 €75 L,,(2k2a%) cos(2ko) (23)

We see that the position and momentum methods produce the same re-
sult. The final pattern is a simple cosine function with a coeflicient in front.
We see that the coeflicient portion depends on %, , @, and the energy level n.
The coefficient can vary between 0 and I and thus determines the sharpness

of the pattern. We define a sharpness variable accordingly.

S = 7% [ (2k2a?) (24)
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Information Approach

As mentioned earlier, the momentum method provides more than just the
formula describing the resulting interference pattern. In the derivation of the
interference pattern we came across the terms P4(x) and Pgp(x). Those are
the probabilities of passing through slit A or slit B given a certain x. This
indicates that we have access to some ’which-path’ information. Again we
follow the example of Wootters and Zurek and use the Shannon formulation
of information to quantify the amount of information we have, The basic

formula being:
N

o = =Y (Pin(F)) (25)

1=1

H in this formula represents the amount of information we lack from a
system with N possible outcomes where P; are the probabilities of the various
outcomes. As an example, if there are two slits and it is equally probable that
the particle will go through either then [n(2) is the amount of information

that is obtained if one discovers which slit was traversed.

Ho = ~(5In(5) + 5in(5)) = In(2) (26)

Wootters and Zurek outline four different variations of this experiment
and show that even though the Sharpness, S, in all four cases is the same the
amount of *which-path’ information obtained can vary. What this tells us is
that the amount of information obtained depends on the cleverness of the
experimenter. Wootters and Zurek prove that one of the experiments (not the
SHO model) they outline provides the most information theoretically allowed

given the constraint of a specified sharpness, S. They develop an inequality,
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H > H(S), to defined that theoretical limit. The H term represents the

amount of information given up in any given experiment. The H(S) term
is the theoretical limit defining the least amount of information that has to
be lost. So the inequality says that nobody can devise an experiment and
give up less information than H(S). For the details of this work we refer the
reader to Ref [3].
With the SHO experiment the average information we give up per particle
is:
H=- /_Z[PA(m)ln(PA(&)) + Pg(s)ln(Pg(&))]|Dn(x)ds (27)
We solved this integral numerically. We note that the sharpness S, and
the 'which-path’ information H, are similar to the conjugate variables z and

p. Sis a measure of the wavelike nature aud H measures the particle nature.
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Analysis

As noted earlier, the uncertainty principle for an object in the ground state of
a SHO is the equality AzAp = % For any higher energy level n, it becomes
AxAp > (n-+31)h. Figure 1 is a plot of the equality AzAp = % . We see that
the line divides the theoretically forbidden and allowed regions of phase space.
Figure 2 shows the inequality developed by Wootters and Zurek. Figure 1 and

2 present the same information but in a different language. We intuitively

A
P

relate f to the Az and, knowing DeBroglie’s relation X = &, we relate S to
Ap. As demornstrated in the previous section we can now determine H,(.5),
for an arbitrary n by numeric integration. Figures 3 and 4 show H,,(5). Note
that the curves of Figures 3 and 4 fall within the theoretically allowed region
as expected. We see that as n increases the data points fall farther away
from the theoretical best curve. Thus we see that the ground state is the
best case for giving up as little information as possible.

What remains to be done is to find (if possible) an analytic form for
H.,(S) that would then be analogous to AzAp > (n+ %)?i, We briefly looked
at the possibility of curve fitting to try and obtain an analytic form from the
plots obtained for several values of the parameters. This analytic form still
eludes us.

The results do not show any unexpected behavior but they do provide
us with the quantitative changes as n increases. We also believe it would be

interesting to repeat this work while allowing ¥(z) to be a coherent super-

position of states.
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