
DEVELOPMENT OF AN AUTOMATED SEARCH ENGINE FOR

VARIABLE STARS IN LARGE CLUSTERS

by

Oliver L. Woodland

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

April 2006

Copyright c© 2006 Oliver L. Woodland

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

Oliver L. Woodland

This thesis has been reviewed by the research advisor, research coordinator, and de-
partment chair and has been found to be satisfactory.

Date Eric G. Hintz, Advisor

Date Jean-François Van Huele, Research Coord.

Date Scott D. Sommerfeldt, Chair

ABSTRACT

DEVELOPMENT OF AN AUTOMATED SEARCH ENGINE FOR

VARIABLE STARS IN LARGE CLUSTERS

Oliver L. Woodland

Department of Physics and Astronomy

Bachelor of Science

We develop an automated variable star search engine named VARFIND and coded

in the MATLAB language. Using a least squares method, VARFIND fits an expo-

nential function to an error vs. magnitude diagram for any given star cluster. It then

calculates a robust median statistic for each star and outputs the likely variable star

candidates based on this statistic. The search engine was tested on clusters NGC

6882/85, NGC 188, and NGC 6709, which have been previously searched for variable

stars. Results indicate that VARFIND is effective in narrowing a search to the likely

variable candidates, which can then be further analyzed to find variability. VARFIND

is especially suited to large clusters.

ACKNOWLEDGMENTS

I would like to thank Dr. Eric Hintz for his advice and direction in making this

project happen and his wife Maureen for her valuable help in editing and revising.

I appreciate Dr. Jean-Francois Van Huele and Dr. Justin Peatross for their help in

formatting and editing. I also thank Andrew Davis for the inspiration and framework

of VARFIND, Ben Rose for his patience and hard work in aligning his program with

my needs, Kathleen Moncrieff for the use of her data in testing, my family for their

support, and most of all my wife, Kelsey, and son, Jonas, for making it all worth it.

Contents

1 Background and Motivation 1
1.1 Accurate Distance Measurements . 1
1.2 CCDs and the Magnitude Scale . 2
1.3 Variable Stars . 3
1.4 Star Clusters . 6
1.5 Current Challenges in Variable Star Searches 7
1.6 Work Underway at BYU . 9
1.7 Outline of Program Development . 12

2 Development 13
2.1 MATLAB and Programming Techniques 13
2.2 Curve Finding . 14
2.3 Curve Fitting . 18
2.4 Robust Median Statistic . 19
2.5 Functional Limitations . 22

3 Results and Conclusion 25
3.1 Analysis Methods . 25
3.2 Analysis of NGC 6882/85 . 26
3.3 Analysis of NGC 188 . 27
3.4 Analysis of NGC 6709 . 30
3.5 Conclusions . 32

Bibliography 33

A Users Guide for VARFIND 35
A.1 The VARFIND Data CD:What is included 35

A.1.1 Running VARFIND . 36
A.1.2 CLUSTER . 36
A.1.3 Sample Data . 37
A.1.4 Formatting VARSTAR5 Data for Use in VARFIND 37

A.2 Tips For a Good Curve Fit . 37
A.2.1 Magnitude Intervals . 37

i

CONTENTS ii

A.2.2 Coefficient Approximation . 38

B MATLAB Code for VARFIND 39

List of Figures

1.1 Light curve of an eclipsing binary . 4
1.2 Light curve of AD CMi . 6
1.3 The Pleiades, an open cluster . 8
1.4 Globular cluster 47 Tuc . 9
1.5 Error vs magnitude plot . 11

2.1 Magnitude interval check . 16
2.2 Remove discontinuities . 17
2.3 Separate flat and curved parts . 18
2.4 Curve approximation . 20
2.5 Final Fit . 21

3.1 Histogram of η̃ values for NGC 6882/6885 27
3.2 NGC 188, an open cluster . 29
3.3 Histogram of η̃ values for NGC 188 30
3.4 Histogram of η̃ values for NGC 6709 31

iii

List of Tables

2.1 Typical output file upon completion of VARFIND 23

3.1 η̃ Comparison: Manual vs. Automated 28

iv

Chapter 1

Background and Motivation

1.1 Accurate Distance Measurements

Modern astronomy depends upon accurate distance measurements. The most accu-

rate method involves measuring the motion of a star in the sky due to the earth’s

revolution around the sun and then calculating geometrically the distance to that

star. Unfortunately, as we study more distant stars, this motion called parallax be-

comes increasingly small until measuring it becomes impossible due to instrumenta-

tion limitations. It is this problem that leads us to seek other methods of determining

distances. As we’ll see in this work, studying variable stars in stellar clusters helps

us to find distances to objects that might be otherwise unmeasurable and is therefore

critical to improving our understanding of the universe.

Clusters are a good place to look for variable stars because they consist of stars

at a similar distance and of similar age and composition. However, clusters may

consist of thousands of stars and finding variable stars individually takes a lot of

time. Technology has improved aspects of variable star research, yet large clusters

remain difficult to study as variable stars are found solely by rigorously studying

1

CHAPTER 1. BACKGROUND AND MOTIVATION 2

individual light curves. An example of a light curve from a typical variable star is

shown in Fig. 1.2. BYU focuses on variable star research and searches in clusters are

common yet time consuming. This research develops an automated search engine that

locates variable star candidates and improves the efficiency of cluster searches. These

candidates must then be examined rigorously to confirm variability and determine

type. This search engine named VARFIND is based on a statistical approach and is

coded in the MATLAB language.

1.2 CCDs and the Magnitude Scale

While the human eye has been the primary method for astronomical imaging for

thousands of years, more efficient techniques have been developed recently. The

most significant of these uses a Charge-Coupled Device (CCD), a semi-conducting

electronic device that counts photons as they come in.

Currently, the CCD is nearly universally used for counting photons that enter

a telescope. There are several reasons for this: efficiency and linearity in counting

photons. The human eye is able to detect about 1 out of every 100 photons giving it

a quantum efficiency of 1%. In contrast, a CCD boasts a quantum efficiency of nearly

100%. [1] Smaller telescopes become much more valuable with CCD cameras that

capture more light. CCDs have a linear response across a wide range of frequencies,

so intensities can be measured very accurately.

A CCD is a matrix of pixels that act as “wells” for collecting electrons. It works

by a process very similar to the photoelectric effect in that when a photon strikes a

semi-conducting pixel, it excites an electron which is then stored in the well. The

number of electrons stored in the well is proportional to the brightness of the image

at that particular location on the CCD. A single pixel on a CCD chip may store as

CHAPTER 1. BACKGROUND AND MOTIVATION 3

many as 70,000 electrons before becoming saturated. [2] The brightness of multiple

stars can be found simultaneously using CCD photometry, making it an invaluable

tool in the search for and study of variable stars.

The human eye has a logarithmic response to changes in brightness and is therefore

fairly insensitive to changes in brightness. The Greek astronomer Hipparcos estab-

lished the original magnitude scale by ranking stars by the numbers one through six;

one being the brightest and six being the faintest. Traditions die slowly in astronomy,

and so we continue this log10 scale for all stars: two stars that differ by five magni-

tudes actually differ 100 times in brightness. The CCD’s linear response explains its

popularity with astronomers.

1.3 Variable Stars

A variable star is a star whose brightness changes over time. We know a few reasons

why this can happen and so variable stars are classified accordingly. Variability is

generally tracked by the creation of light curves, which plot the star’s magnitude over

time. Astronomical times are usually recorded using the Heliocentric Julian Date

(HJD): a time system recorded by the number of days since the start of the Julian

calendar that is also corrected for the earth’s motion about the sun. The two main

types of variable stars are extrinsic and intrinsic variable stars.

The brightness of an extrinsically variable star only changes as a result of our

line of sight to the star. For example, a common type of an extrinsic variable is an

eclipsing binary. An eclipsing binary system is a set of two or more stars that orbit

each other and happen to cross each other’s path from our point of view. The total

brightness of the system changes as one star passes in front of another and blocks

some of the light. Often, these objects are much too distant to resolve the stars

CHAPTER 1. BACKGROUND AND MOTIVATION 4

Figure 1.1 An example light curve of a full eclipsing binary

(http://homepage.smc.edu).

visually and so we find that they are eclipsing binaries from their light curves. Full

eclipsing light curves will generally be flat with sudden drops where one star passes

behind another as is shown in Fig. 1.1. If the stars are of different sizes, the light

curve will have two different minimum heights as shown. It may seem unlikely that

many stars line up so perfectly as to eclipse each other. The chances of running into

eclipsing variables is quite high in a variable star search because approximately half

of the visible stars belong to multiple star systems.

Intrinsically variable stars vary in brightness because the stars themselves are

inherently unstable and change brightness on their own. Intrinsically variable stars

can be further categorized into cataclysmic variables and pulsating variables.

Cataclysmic variability occurs when a star goes through some type of violent

change that rapidly affects its brightness. These variable stars include supernovae

and recurring novae and are very valuable to understand the distance ladder of the

universe and its composition. They also give us information on stellar evolution, as

the stars approach the end of their lives and run out of elements to fuel their nuclear

CHAPTER 1. BACKGROUND AND MOTIVATION 5

fusion. Unfortunately, the likelihood of catching one on a CCD from start to finish

is quite slim. Automated sky searches are aiding in studying these objects.

Pulsating variable stars are fascinating; they change brightness due to actual phys-

ical pulsation going on within the stellar atmosphere. Gravity pulls to implode the

star into a black hole while the outward pressure from the nuclear fusion tends to

explode the star into the surrounding area. Pulsators are stars that are unable to

achieve a steady equilibrium between gravity and radiation pressure but pulsate on

some regular interval. An example of a pulsating variable of the RR Lyrae type can

be found in Fig 1.2. Note that the magnitude scale on the left of the plot is inverted;

indicating that the peak is a time of maximum light. The curve is asymmetric as is

common in pulsating variables, indicating complicated physical processes in the atmo-

sphere of the star. High amplitude pulsating stars are generally easily recognizable,

while short-period and smaller-amplitude pulsators require a much closer look.

Most stars go through several phases of variability as they evolve. For some stars,

one of these phases may be the Cepheid stage named after δ Cephei; the prototype

of this type of variability. Cepheid variables are important because of their key role

in finding stellar distances.

In 1912 while at Harvard University, astronomer Henrietta Leavitt discovered

that in the Small Magellanic Cloud (SMC), a small companion galaxy that orbits our

own, visible from the southern hemisphere, the Cepheid’s apparent magnitudes were

related to their periods of pulsation. Because these stars were all approximately the

same distance away in the SMC, this meant that their luminosity was related to their

period. This relationship between the period and luminosity of a Cepheid variable is

simply known as the Period-Luminosity (P-L) relation. The relation was calibrated by

measuring the parallax of Polaris, the nearest typical Cepheid. The result is that one

can find the brightness of a Cepheid by simply measuring its period. By comparing

CHAPTER 1. BACKGROUND AND MOTIVATION 6

AD CMi

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

1616.72 1616.74 1616.76 1616.78 1616.8 1616.82 1616.84 1616.86 1616.88

HJD

ap
p

ar
en

t m
a

g
n

itu
d

e
m

10 Mar 00

Figure 1.2 A light curve of pulsating variable AD CMi by Mana Vautier.

the apparent brightness of a star to its actual brightness if it were ten parsecs away,

distances can be calculated according to the following relation,

m−M = 5 log (d)− 5. (1.1)

The quantity m−M in Eq. 1.1 is the distance modulus, where M is the absolute

magnitude, or the magnitude the star would be if it were 10 parsecs away, m is the

apparent magnitude as observed through the telescope, and d is the distance to the

star in parsecs.

1.4 Star Clusters

A star cluster is simply a group of stars that formed around the same time, from the

same condensing gas cloud. The members of the cluster are gravitationally bound to

CHAPTER 1. BACKGROUND AND MOTIVATION 7

each other and are at approximately the same distance from us. Star clusters contain

stars that are roughly the same age and chemical composition, yet of all different

masses and evolutionary stages. They provide us with a great opportunity to study

stellar evolution and how size and mass influence that evolution. Finding variable

stars and using the P-L relation gives distances to clusters. Knowing the distance can

give luminosity values for the surrounding stars, helping determine accurate sizes for

stars.

There are two types of star clusters: open or galactic clusters and globular clusters.

Open clusters are loosely bound gravitationally and generally contain on the order of

a few hundred stars. They typically contain young, hot stars; less than 108 years old

with temperatures of 20,000 to 50,000 K. [2] Open clusters should have fewer stars

approaching the unstable stages of evolution than globular clusters. They are located

generally in the spiral arms of our galaxy. One well known example of an open cluster

is the Pleiades, as shown in Fig. 1.3.

Globular clusters are much older, some dating back billions of years. They can

contain thousands of stars and are much more densely packed than open clusters.

There are around 200 known globular clusters in our galaxy and they may each

contain hundreds of thousands of stars. They are generally located in the galactic

halo, the spacious region outside the disk of the galaxy, or in the galactic center. One

example of such a cluster may be seen in Fig. 1.4.

1.5 Current Challenges in Variable Star Searches

Traditionally, variable star searches in clusters are conducted by collecting data on a

cluster over a few different nights, performing photometry on the images, and then

studying the individual light curves. Each star for each night must me analyzed for

CHAPTER 1. BACKGROUND AND MOTIVATION 8

Figure 1.3 The Pleiades, a well-known open cluster

(NASA/ESA/AURA/Caltech).

trends of variability. Noisy data and long period variability can make identifying

variability a difficult task indeed. Sometimes an error magnitude plot can be created

for the cluster (detailed in section 1.6) and stars with high error can be given specific

attention.

Difficulties arise in searching for variable stars in star clusters for a number of

reasons. First, the sheer number of stars in some clusters can be overwhelming.

If the cluster is a globular cluster or some other unusually crowded cluster, one can

spend months sorting through the multitude of light curves for each star in the cluster

and reviewing and analyzing each curve. Second, low amplitude variable stars are

easily overlooked as they are upstaged by larger amplitude stars. Current methods

make it difficult to pick out the small amplitude variables from a large data set as

CHAPTER 1. BACKGROUND AND MOTIVATION 9

Figure 1.4 47 Tucanae, a bright globular cluster (APOD and South African

Large Telescope).

the methods are based on the amount of error in the magnitude as will be discussed

in the section 1.6. Third, statistical methods for finding variable stars in clusters are

only beginning to be developed.

1.6 Work Underway at BYU

The BYU astronomy research group is heavily involved in variable star research. One

emphasis is on finding low-amplitude variable stars in clusters. The primary approach

to finding these variables is through differential photometry. Differential photometry

CHAPTER 1. BACKGROUND AND MOTIVATION 10

involves comparing light curves to the intensity of a few stars deemed as non-variable

and then coming up with magnitudes that are relative to this standard. These non-

varying stars form an ensemble which is averaged and subtracted from the magnitudes

of each star in the field to give differential magnitudes. VARSTAR5 is a program

created by Eric Hintz in order to find these differential magnitudes. [3] An updated

version of the program was written by Ben Rose and is entitled CLUSTER. CLUSTER

works by allowing the user to choose the ensemble or set of stable stars based on an

initial error per observation calculation for each star in the cluster. “Error” as it is

used in this work will be defined as the standard deviation per observation

σ =

√√√√√√
N∑

i=1

(mi − m̄)2

N − 1
, (1.2)

where mi is the observed magnitude of the individual star and m̄ is the average

observed magnitude of the star. N is the number of observations or data points.

The stars with the lowest error are then selected as the ensemble stars. Their

brightness is averaged so that they can be used as the basis for comparison for all the

other stars. CLUSTER then outputs a file including the star number, final error, and

average differential magnitude for each star. From this information, an error versus

magnitude plot may be created. See Fig. 1.5 for an example of such a plot. Note how

the average error begins to increase as stars become fainter and fainter, producing

a well defined curve. This occurs because fainter stars provide fewer photons for

the detector to count, so the error bars in the observations will be greater. From

this point forward, m can be assumed to be differential magnitude unless otherwise

specified.

Error magnitude curves are frequently used to find variable stars in a cluster as

there is a distinct curve to the graph and any star with an unusually high error will

CHAPTER 1. BACKGROUND AND MOTIVATION 11

−2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Initial Data

differential magnitude m

er
ro

r
in

 m

Figure 1.5 An Error vs Magnitude plot created from data analyzed using

CLUSTER.

be well above the curve and may be variable. This approach is helpful for finding

variables of large amplitude. It is less effective for finding variables of low amplitude as

they will not be far off the curve and may be mixed in with stars that are not variable

but simply have a large amount of noise in their observed differential magnitudes.

Enoch et al. (2003) developed a Robust Median Statistic (RoMS) further ex-

plained in Section 2.4 for the purpose of finding variability in L/T dwarfs. [4] L/T

dwarfs are considered brown dwarfs, or stars that never had enough mass to burn hy-

drogen, so they do not radiate strongly and are very faint. [2] The RoMS is therefore

adept at finding variability in low amplitude and faint stars. We have used MATLAB

to create a program called VARFIND that builds on what is achieved by CLUSTER

CHAPTER 1. BACKGROUND AND MOTIVATION 12

and uses output files from CLUSTER. VARFIND finds a function for the bottom of

the curve of an error vs. magnitude plot for a cluster, applies the RoMS to the data,

and then gives the statistic which can be used to determine which stars are good

variable candidates. VARFIND is especially well suited for large clusters.

1.7 Outline of Program Development

The next chapter outlines the development of VARFIND. It discusses MATLAB and

the techniques used to create the program. It covers curve finding and curve fitting as

well as more detail about the RoMS. Finally it discusses complications and difficulties,

including the functional limitations of the program. In chapter 3, we explain the

procedures for testing the program on actual clusters. We then give our conclusions

and discuss the impact on future research at BYU and elsewhere as well as notes for

further development of the ideas behind VARFIND.

Chapter 2

Development

2.1 MATLAB and Programming Techniques

The software developed in this project was coded in MATLAB, a powerful program-

ming language produced by The MathWorks, Inc. MATLAB was selected for reasons

including its ability to handle large arrays of data with relative ease, its versatility

and adaptability, and our familiarity with the software from previous coursework.

These factors made it an invaluable tool in analyzing large clusters.

The main advantage gained in using MATLAB in this project as opposed to C

or other more traditional languages is its capability to manipulate large sets of data.

In other languages, large arrays require complicated code to be written. MATLAB

treats nearly everything as an array or matrix and receives its name for that reason.

It can easily perform intricate operations on large matrices without a hiccup. This

is especially useful for our project since we seek to make finding variable stars in a

crowded cluster simpler and more accurate. Analyzing 1000+ light curves by hand

can prove a very tedious process and using MATLAB as a tool saves hundreds of

hours.

13

CHAPTER 2. DEVELOPMENT 14

While MATLAB is most useful for working with arrays and matrices, it is also

a very versatile stand alone programming language. It can be coded to do nearly

anything other languages can do, although working with strings can be challenging

because all variables in MATLAB are treated as matrices and so we must be very

mindful of the dimensions of those matrices in order to perform operations with them.

Despite this, MATLAB’s adaptability allowed us to create a user-friendly interface,

capable of fitting a variety of different clusters.

VARFIND was created keeping in mind that all clusters differ in the number of

stars they contain and in the shapes of error magnitude curves. Therefore, it requires

a fair amount of interaction from the user in order to tailor it to a particular cluster.

Default values work generally for the clusters tested, however, the strength of this

project lies in its adaptability to all clusters. The actual MATLAB code written for

VARFIND can be found in appendix B.

2.2 Curve Finding

The main purpose of VARFIND is to identify the likely variable star candidates

in a star cluster. For VARFIND to function correctly, raw observation data must

first be processed through CLUSTER, mentioned in section 1.6, to produce an error

versus average magnitude data file and an HJD versus magnitude file. Error versus

magnitude plots such as Fig 1.5 show a distinct curve as stars become fainter and

the standard of deviation in the observations increases. This happens because fewer

photons are collected for the fainter stars and so the error bars in the magnitudes

become greater. The bottom of this curve is of particular interest as it represents

the line along which the most stable stars should lie. Stars that lie above this curve

have a larger error in their measured magnitudes and therefore may be variable stars.

CHAPTER 2. DEVELOPMENT 15

Programming VARFIND to find the bottom of this curve was the first task.

When VARFIND is run, the error vs magnitude file created by CLUSTER is

loaded. It then plots the error vs the magnitude and displays the plot for the user

in a format like Fig. 1.5. Next, the program asks the user to choose a magnitude

interval for finding the bottom of the curve. The default interval in m is set to 0.18

as this proved a convenient interval for most clusters.

VARFIND approximates the bottom of the curve by finding the minimum error

value from the data set in each m interval set by the user and saving it to a new array.

This new array is then plotted in red circles on top of the original error magnitude

diagram as shown in Fig. 2.1.

The goal is to have the red circles mimic the bottom of the actual data set, but

since this method is simply an approximation of the bottom of the curve—depending

on the interval chosen—some of the red points may not be right along the bottom of

the error curve. A number of error checks have been put in place to correct for this

problem.

Once the new plot is automatically opened, the user is asked if this interval is

acceptable. The user is able to change m interval repeatedly until a suitable interval

can be found and a decent approximation of the bottom of the curve has been found.

Next, the user is given the opportunity to correct for large discontinuities in the

approximated curve. Fig. 2.2 is an example of a plot with such discontinuities.

VARFIND asks the user to give a maximum error difference value that can exist

between two consecutive points on the graph. Any large discontinuities in the plot

will then not be plotted. In the current version, this maximum error value cannot be

increased without rerunning the program from the beginning.

Alternately, individual points can be removed from the curve plot if they seem

to make the plot discontinuous. This is done by counting the number of points from

CHAPTER 2. DEVELOPMENT 16

−2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

differential magnitude m

er
ro

r
in

 m
Interval Check

Raw Data
Curve Fit

Figure 2.1 An error magnitude diagram of a cluster superimposed with

points found along the bottom of the curve. The m interval is set by the

user.

the left to the point to be removed. This number is then input into the program by

the user and that particular point will be removed. As with the other discontinuity

removal, once a point has been removed it cannot be put back in without rerunning

the program. At this point, a suitable approximation plot for the bottom of the curve

should be in place.

Traditionally, an error magnitude plot has what is considered a flat part on the left

where the faintness of the star is not affecting the standard deviation in its magnitude.

In Fig. 2.3, the actual curving doesn’t usually begin until around m = 1. Therefore,

at this point VARFIND splits the flat and curved portions of the plot so that actual

CHAPTER 2. DEVELOPMENT 17

−2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

differential magnitude m

er
ro

r
in

 m
Discontinuity Check

Raw Data
Curve Fit

Discontinuities

Figure 2.2 An error diagram fit with a plot that contains discontinuities

removable by setting a max error value.

mathematical functions may be fit to the curve. VARFIND splits the curve at a

default m of 2.5 plus the m of the brightest star. It then opens a new graph with the

flat portion plotted in black dots and the curved portion plotted in red dots as can

be seen in Fig. 2.3. The user is then asked if the default split value is acceptable and

may test different split values until an appropriate split m is established. The plot is

now ready to be fit with an exponential function on the right and a flat function on

the left.

CHAPTER 2. DEVELOPMENT 18

−2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

differential magnitude m

er
ro

r
in

 m
Separate Flat and Curved Portions

Raw Data
Flat
Curve

Figure 2.3 An error diagram fit with a plot separated into flat and curved

portions taken from VARFIND.

2.3 Curve Fitting

To obtain a mathematical function for the error curve, a least squares approach was

used. Adapted from “An Introduction to Matlab,” two additional MATLAB scripts

are called in the curve fitting process: leastsq.m and leastsqb.m. [5] The curve is

approximated using coefficients

a = [a1, a2, a3] (2.1)

in the following expression

σi = a1e
a2xa3 . (2.2)

CHAPTER 2. DEVELOPMENT 19

We found a can usually be initially approximated to be a = [1, 1, 1], corresponding to

σi = ex, provided that enough at least 10 data points exist on the curve. VARFIND

can then find reasonable values for the actual coefficients of a from this general ap-

proximation. With fewer data points, more trials may be needed in order to fit the

curve. a = [.01, 1, 1] is a good choice to try if the default [1, 1, 1] doesn’t work.

The flat portion is also approximated in a similar but less complex fashion: the

error value of the star with the lowest error. The function value for the flat portion is

saved to a variable b. Fig. 2.4 shows an example of an error curve successfully fit with

VARFIND. If the fit is successful, the red curve will match the underlying data points

quite well as in Fig. 2.4. Note that the flat and curved parts of the approximation

will not always meet exactly. This occurs because the flat fit is simply the minimum

m value of the stars on that side of the plot. The curve approximation cannot be

forced to meet this minimum value. The jump is exaggerated by the fact that this

plot is on a narrower scale.

If VARFIND is unable to successfully fit a function to the curve then two things

will happen. VARFIND will output an error message and the plots that are automat-

ically opened will show a function in red that obviously doesn’t fit the data points. In

this case, new approximations for a will need to be made until a proper fit is achieved

based upon the plot opened by VARFIND. Once this fit is achieved and the user

is satisfied, the equations found will be plotted onto the error magnitude plot as is

shown in Fig 2.5 .

2.4 Robust Median Statistic

When a function has been successfully fit to the curve and the coefficients in a and b

have been identified, the RoMS may be used to find the likely variable star candidates

CHAPTER 2. DEVELOPMENT 20

−2 −1 0 1 2 3 4 5
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

differential magnitude m

er
ro

r
in

 m
Curve Approximation

data pts
data pts
y = 0.0105

y = 0.0140e0.0503 x
2.2197

Figure 2.4 An error curve fit with VARFIND. The equations found by

VARFIND are listed on the plot.

from the data set. This statistic was first outlined in Ref. [4]. Enoch et al.(2003)

developed the statistic for detecting small variations in magnitude of L and T dwarf

stars. These are stars of cooler temperature for which the amplitude of variability is

small enough to prove very challenging to detect by conventional methods. In 2005,

Eric Hintz and Ben Rose expanded the use of the RoMS by applying it in a general

search for variable stars and found it to be very effective. [6]

Enoch et al.(2003) define the RoMS in the following manner:

η =
N∑

i=1

∣∣∣∣mi −median(m)

σi

∣∣∣∣ . (2.3)

The mi refers to the differential magnitude value of the ith observation of a star and

CHAPTER 2. DEVELOPMENT 21

−2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

differential magnitude m

er
ro

r
in

 m
Final Fit

Original Data
Flat
Curve

Figure 2.5 An error magnitude plot superimposed with plots of the equa-

tions found by VARFIND for use in the RoMS

median(m) is the median differential magnitude value for the whole set of observations

of that star. σi is defined in Eq 2.2 and is the value of the error curve at the average

m for that star. N is the number of observations in the set. Reduced η is defined

as η̃ = η/d where d is the number of degrees of freedom or N − 1, and Enoch et

al.(2003) establish that those stars with a reduced RoMS η̃ less than one are not

likely to be varying. A value of η̃ ≈ 1 or larger indicates that the star is probably

a variable star. [4] Hintz et al. state also that an η̃ value of 0.8 has a 50% chance

of being variable. [6] For VARFIND, some calibration of these previously published

values may be needed as is explained further in section 3.4.

This robust statistic is implemented in VARFIND by first asking the user to in-

CHAPTER 2. DEVELOPMENT 22

put another CLUSTER output file that contains one column of data containing the

HJDs for the observation period followed by columns for each star containing their

differential magnitude m at their corresponding HJDs. Using this file in accordance

with equation 2.3, VARFIND can then take the mi for each each star and subtract

from it the median(m) and divide that value by the corresponding σi using the coef-

ficients in a for the curved portion and b for the flat portion. For more details on the

implementation of this statistic, see the MATLAB code in appendix B.

A value for η̃ is then calculated for each of the stars in the cluster and entered into

a text file named by the user. The file is opened automatically and formatted with

columns containing Star ID, η̃ (called reta in VARFIND for reduced eta), average

m, and likelihood of being variable. Currently, a η̃ > 1 is listed as “probable”,

0.9 ≤ η̃ ≤ 1 produces the “suspected” designation, and η̃ < 0.9 is left blank. An

example of the output file produced by VARFIND can be found in Tab. 2.1.

At the conclusion of VARFIND, a histogram of the η̃ values may be produced at

the user’s discretion. This information can be useful if any calibration of the values

is needed as is discussed in Chapter 3.

2.5 Functional Limitations

VARFIND is capable of handling a cluster with as many stars as can be found in

clusters, provided that CLUSTER can do the same beforehand. There is definitely a

limit to how few stars would be statistically rigorous. Obviously, enough stars need

to be present so that a well defined error curve can be established. This value may

vary between clusters, but approximately 50 stars are needed in order to define this

curve.

VARFIND is severely limited by the fact that the user must give an approximation

CHAPTER 2. DEVELOPMENT 23

Table 2.1 Typical output file upon completion of VARFIND

Star ID m̄ η̃ Variable? Star ID m̄ η̃ Variable?

1 3.1507 1.09071 probable 24 2.3173 1.09777 probable

2 2.4162 0.84505 25 0.2598 1.60064 probable

3 3.5232 0.8162 26 3.7471 0.85024

4 2.7542 0.92241 suspected 27 2.9237 0.89644

5 2.3144 0.91508 suspected 28 3.3683 0.89445

6 3.7408 0.79904 29 2.931 0.9415 suspected

7 3.468 0.83966 30 2.4633 1.32931 probable

8 1.9134 1.20959 probable 31 2.6543 0.93264 suspected

9 3.9467 0.83797 32 3.7937 0.79237

10 3.7877 0.86946 33 0.343 1.32823 probable

11 3.2315 0.92119 suspected 34 3.0797 0.95643 suspected

12 3.9679 0.81646 35 2.5926 1.16327 probable

13 3.9937 0.81298 36 3.2034 0.85572

14 2.5053 0.96033 suspected 37 2.951 0.97539 suspected

15 2.2367 1.02476 probable 38 2.8363 0.87362

16 2.3628 0.95076 suspected 39 2.3874 1.08156 probable

17 1.472 1.10869 probable 40 2.0733 0.89723

18 3.4708 0.84807 41 2.1044 1.01862 probable

19 2.3062 1.1053 probable 42 0.5316 1.28535 probable

20 3.4257 0.801 43 3.0117 0.91956 suspected

21 2.7803 1.04239 probable 44 3.0673 0.98187 suspected

22 3.3403 0.84735 45 1.8817 1.14339 probable

23 3.9581 0.866 46 1.3041 1.07977 probable

CHAPTER 2. DEVELOPMENT 24

for the coefficients in a. Approximating the function can be somewhat of an art

and may require some practice on the part of the user. With trial and error in

approximation, we are confident that this program will be able to fit error curves for

nearly all types of clusters. Multiple attempts at the approximation may be needed,

but the plots that VARFIND produces demonstrate the success or lack of success of

the fit with clarity. If the fit is unsuccessful, it will be obvious from the plot because

the red line of the fit will not match up at all with the data points beneath it. At

this point, another guess should be attempted.

Working with strings and letters in MATLAB can be more of a challenge than

with other programming languages. MATLAB treats everything it deals with as a

vector, matrix, or other type of array. A string is not a word or sentence, it is an

array containing numbers corresponding to specific characters. This treating brings

problems as matrix operations require that the dimensions of each array correspond

exactly. Error checking and input commands become more difficult due to these

factors. Through trial and error, sufficient error checking and string handling was

coded into VARFIND.

Chapter 3

Results and Conclusion

3.1 Analysis Methods

We chose to analyze several clusters that were previously well studied and researched

for variable stars and compare our η̃ values with previously published variable stars

and η̃ values. These clusters were originally analyzed using traditional methods which

include studying light curves on an individual basis and looking for variability in the

data. Where possible, we reprocessed the exact data used for the original study of

the cluster. This was done in an effort to avoid inconsistencies due to the method of

data collection, photometry, or data reduction.

Potential problems in the analysis lie in preparation of the data for VARFIND.

As is mentioned earlier, data must be processed through a program called CLUSTER

prior to being analyzed with VARFIND. CLUSTER establishes differential magni-

tudes and the final standard deviation in the magnitudes of each star. This informa-

tion is key to the proper function of VARFIND and so problems with this software

may be propagated through our results.

We mention the above because CLUSTER is yet in the development stages and has

25

CHAPTER 3. RESULTS AND CONCLUSION 26

not been fully debugged or finalized. CLUSTER is designed to be an improved ver-

sion of VARSTAR5, the traditional differential photometry software used at BYU in

variable star research. While flaws in CLUSTER will propagate through VARFIND,

VARFIND is designed to function as if the data provided were correct and so as

improved versions of CLUSTER arise, data collected from VARFIND should have

improved accuracy as well. Some of the data were also analyzed after being run

through VARSTAR5 to ensure that VARFIND is functioning as designed.

3.2 Analysis of NGC 6882/85

This cluster is an interesting one in that it is unclear at this point whether all the

stars in the field belong to one cluster or if it is actually two clusters in the same

line of sight. Despite this, the cluster has been well researched and documented for

variable stars by Hintz et al.(2005). Also, the RoMS was utilized in finding variable

stars, however it was not calculated automatically and therefore provides valuable

comparison values.

Hintz et al.(2005) studied over 92 stars in the cluster and established three new

variable stars on top of the three already published. In our analysis, we only compare

the first 41 stars because the data file provided us only contained data for those stars.

Using VARFIND, 14 of 41 stars were found to have η̃ > 0.9. VARFIND identified

five of six previously established variable stars as potential candidates: stars 1, 8, 23,

28 and 41. However, it also identified two of six previously established non-variables

as candidates: stars 9 and 16. It identified two of four previously suspected variables,

stars 25 and 38, as suspected candidates. Fig. 3.1 shows a histogram of η̃ values.

The peak in the histogram occurs at approximately 0.7, which indicates that the

values are calibrated quite well because this is the predicted value where the peak

CHAPTER 3. RESULTS AND CONCLUSION 27

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14
Histogram of RoMS

reduced η

nu
m

be
r

of
 s

ta
rs

Figure 3.1 A histogram produced by VARFIND of the η̃ values for NGC

6882/6885.

should occur. In order to further compare our automatically calculated values with

those manually calculated by Hintz et al(2005), see Tab. 3.1.

3.3 Analysis of NGC 188

NGC 188 is an open cluster in the northern sky and is one of the oldest open clusters

known. The cluster is fairly close, having a distance modulus of m−M = 11.43±0.08

or approximately 1.93 kpc. [7] Fig 3.2 shows a photograph of the cluster. As of July

2005, only 9 variable stars are known in the cluster, however it is noted that lower

amplitude variable stars may have been overlooked. [8] We used the data obtained by

CHAPTER 3. RESULTS AND CONCLUSION 28

Table 3.1 η̃ Comparison: Manual vs. Automated

Star ID η̃ [6] η̃(VARFIND) Variable? [6]

1 1.022 1.27655 Yes

8 0.993 0.93743 Yes

9 0.801 1.06877 No

13 0.912 0.68098 Yes

15 0.847 0.8653 No

16 0.848 1.12161 No

19 0.71 0.73575 No

23 0.857 0.88722 Susp.

25 0.844 1.03164 Susp.

28 1.02 3.40058 Yes

29 0.811 0.72867 Susp.

34 0.834 0.80853 No

38 0.851 0.90874 Susp.

39 0.844 0.73877 No

41 0.869 55.80936 Susp.

CHAPTER 3. RESULTS AND CONCLUSION 29

Figure 3.2 NGC 188, an open cluster used in the development and testing

of VARFIND.

Davis et al. to compare the previously known variables with those that are suspected

by VARFIND.

This cluster was heavily used in the design of this program as it contains 513 stars

and has a well defined error curve. Most of the figures taken from VARFIND in this

work are error vs. magnitude plots for NGC 188. Andrew Davis, who performed a

search in this cluster, first attempted a semi-automated method to calculate the RoMS

using this cluster [8]. VARFIND was inspired by Davis’ work, and with permission we

adapted his MATLAB code for the least squares approximation portion of VARFIND.

Unfortunately, Davis et al.(2005) does not specify how the variable stars he found

correspond to the Star IDs from his data files and we are therefore unable to compare

our results effectively with his. VARFIND found 104 of 513 stars had a η̃ > 1. Further

study is needed to determine if this is in error or if there are low-amplitude variable

CHAPTER 3. RESULTS AND CONCLUSION 30

stars that have been overlooked. A histogram of these values can be found in Fig. 3.3.

Note that the peak bin is centered around about 0.8, a reasonable value.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180
Histogram of RoMS

reduced η

nu
m

be
r

of
 s

ta
rs

Figure 3.3 A histogram produced by VARFIND of the η̃ values for NGC

188.

3.4 Analysis of NGC 6709

Located in the constellation of Aquila, NGC 6709 is a young star cluster. It is a

fairly densely packed cluster with 136 stars included in a 2005 survey conducted by

Kathleen Moncrieff. [9] Moncrieff et al. found 24 suspected variable stars with two

pulsating variables previously known by individually studying each light curve in the

field . Again, the same data used to conduct this 2005 survey was processed through

CHAPTER 3. RESULTS AND CONCLUSION 31

VARFIND to establish a comparison.

A problem seemed to arise with this cluster that did not occur with the others.

The η̃ values from VARFIND seem to have an offset from what would be expected. In

Fig. 3.4, note that the peak value is centered around 1.5 and the width of the spread

seems to be much broader than in the other histograms. More analysis and research

1 2 3 4 5
0

2

4

6

8

10

12

Histogram of RoMS

reduced η

nu
m

be
r

of
 s

ta
rs

Figure 3.4 A histogram produced by VARFIND of the η̃ values for NGC

6709.

is needed to understand if these values can simply be calibrated and trusted, or if the

data are unusable. The 14 of 24 the previously established variable stars exhibited a η̃

value of approximately 2.0 which is much higher than the histogram peak of 1.5 or the

median value of 1.734. This may indicate that a simple calibration could render the

data useful for variable star searches after all. The remaining previously established

CHAPTER 3. RESULTS AND CONCLUSION 32

variables had values closer to 1.5.

CLUSTER found errors much higher in NGC 6709 than those of the other two

clusters used. Perhaps excessive noise in the data are offsetting our statistics.

3.5 Conclusions

While VARFIND proves a valuable tool for finding variable stars in clusters, more

testing and analysis is required in order to validate the significance of the RoMS

used, and the accuracy of VARFIND. At this point this program will not replace

the traditional method of scrutinizing light curves, however we have established that

VARFIND is effective in narrowing down the search to stars that have an increased

probability of being variable.

Due to the automated nature of the software developed, equations found for an

error curve may be offset from the actual curve. This produces an offset in the η̃

values for each star in the cluster from η̃ values calculated manually. NGC 6882/85

and NGC 188 showed reasonable peaks in their η̃ histograms, while the histogram of

NCG 6709 may be an example of such an offset.

An interesting project would be to look for trends in variability type based on the

RoMS. This addresses the following questions: Do eclipsing binaries lie on the his-

togram at a different location than do pulsators? How will novae or other cataclysmic

variables affect results? If trends are found, VARFIND may be even more valuable

than previously anticipated.

Further research and testing also might include using VARFIND on a well-studied

globular cluster. This could affirm our claims that the software is well-suited for very

large clusters and that it can actually handle thousands of stars, as we were unable

to verify in this research.

Bibliography

[1] B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics (Addison-

Wesley Publishing Company, Inc., Reading, Massachusetts, 1998).

[2] M. Zeilik and S. A. Gregory, Introductory Astronomy and Astrophysics, 4th ed.

(Harcourt Brace College Publishers, Orlando, FL, 1998).

[3] E. G. Hintz, M. D. Joner, D. H. McNamara, K. A. Nelson, J. W. Moody,

and C. Kim, “Time-Series Ensemble Photometry of SX Phoenicis Stars. I. BL

Camelopardalis,” Publications of the Astronomical Society of the Pacific 109,

15–20 (1997).

[4] M. L. Enoch, M. E. Brown, and A. J. Burgasser, “Photometric Variability at the

L/T Dwarf Boundary,” The Astronomical Journal (2003).

[5] R. Spencer, An Introduction to MATLAB (Brigham Young University, Provo, UT,

2000).

[6] E. G. Hintz and M. B. Rose, “Variable Stars in the Field of NGC 6882/6885: The

Case of V381 Vulpeculae and V382 Vulpeculae,” Publications of the Astronomical

Society of the Pacific (2005).

[7] T. von Hippel and A. Sarajedini, “WIYN Open Cluster Study. I. Deep Photometry

of NGC 188,” Astronomical Journal 116, 1789 (1998).

33

BIBLIOGRAPHY 34

[8] A. J. Davis, A CCD Photometric Search for Variable Stars in the Open Cluster

NGC 188 (Brigham Young University, Provo, UT, 2005).

[9] K. E. Moncrieff, A Photometric Search for Variable Stars in the Open Cluster

NGC 6709 (Brigham Young University, Provo, UT, 2005).

Appendix A

Users Guide for VARFIND

Appendix A is a short tutorial for using VARFIND. It discusses what files are included

on the VARFIND Data CD, and gives a few tips on approximating curves.

A.1 The VARFIND Data CD:What is included

The data CD includes everything that is needed in order to get started with VARFIND,

complete with example data and other data formatting programs. The following files

are include on the data CD:

• UsersGuide.pdf (This document)

• VARFIND1_3.m

• flatfit.m

• funcfit.m

• leastsq.m

• leastsqb.m

35

APPENDIX A. USERS GUIDE FOR VARFIND 36

• cluster_5.0.c

• MagError.txt

• HJDmag.out

• varstarFormat.m

A.1.1 Running VARFIND

VARFIND1_3.m is the main program script which must be run inside MATLAB. You

can then follow the instructions on the screen. The scripts flatfit.m, funcfit.m,

leastsq.m, leastsqb.m are other MATLAB scripts that must be in your project

folder, but do not need to be run independently.

A.1.2 CLUSTER

cluster_5.0.c is the updated version of VARSTAR5 entitled CLUSTER, written by

Ben Rose. CLUSTER receives an “.lst” file and outputs an average magnitude versus

error file and an HJD versus magnitude file in the format needed by VARFIND.

When VARFIND is run, it will prompt you to input these two files from CLUS-

TER. The magnitude versus error file will be asked for first, and the HJD versus

magnitude file will be asked for later on in the program. This .c script can be

compiled in LINUX by the following command:

“gcc -lm -o cluster cluster_5.0.c.”

This will compile CLUSTER in your current folder. To run it, type “.\cluster”

while in that folder, or type the path to the folder in which CLUSTER is located

(i.e. “\home\research\cluster”. It will then prompt you to input your “.lst” file

APPENDIX A. USERS GUIDE FOR VARFIND 37

as well as the names for the two output files mentioned above. For more information

on CLUSTER, contact Ben Rose.

A.1.3 Sample Data

MagError.txt is an example magnitude versus error file created by CLUSTER and

HJDmag.out is an example HJD versus magnitude file created by CLUSTER. These

files may be used as sample or test data in order to learn to use VARFIND.

A.1.4 Formatting VARSTAR5 Data for Use in VARFIND

The file varstarFormat.m is a MATLAB script I created in order to reformat VARSTAR5

data for use in VARFIND. It opens each of the “.dat” files created by VARSTAR5 and

compiles them into one single HJD versus magnitude file as is needed by VARFIND.

CAUTION: this script is a bit rough and may require some knowledge of MATLAB

to run effectively.

A.2 Tips For a Good Curve Fit

A.2.1 Magnitude Intervals

When selecting a magnitude interval overwhich to find the bottom of the error curve,

choose one that gives the most possible data points and yet still represents the curve

effectively. This allows VARFIND to fit the data points more effectively and your

coefficient approximation to be much less accurate. Remember that you can easily

remove stray points later by setting a maximum error between consecutive points or

manually removing specific points.

APPENDIX A. USERS GUIDE FOR VARFIND 38

A.2.2 Coefficient Approximation

Approximating the coefficients for the curve is definitely the most difficult part of

using this program. Trial and error is really the only way to always get a good fit,

however I have provided a few suggestions on where to begin.

A good place to start is always with “[1,1,1]”. If this guess yields a flat red line on

the graph or if VARFIND notifies you that the fit was unsuccessful, the next guess I

suggest you try is “[.01,1,1]”. You will know that the fit is successful when the red

plot fits the red data points and the VARFIND doesn’t say anything weird to you.

GOOD LUCK!!!

Appendix B

MATLAB Code for VARFIND

clear all; close all; clc; fprintf(’\n’)

disp(’ ________ _________________________________ ’)

disp(’ | __ / /__ ____ ____ _ _ _ ___ |’)

disp(’ | \ \ / // \ | o \| __|| || \| || o \ |’)

disp(’ | \ \/ // /\ \ | /| _| | || || / |’)

disp(’ | __//_/ _\|_|\ \|_| |_||_|_||__/ |’)

disp(’ |___________________\ _____________________|’)

fprintf(’\n Welcome to VARFIND version 1.3!\n’) fprintf(’

by Oliver Woodland\n\n’) fprintf(’This software will help you find

and fit the bottom of your\n’) fprintf(’error vs magnitude curve and

utilize the Robust Median\n’) fprintf(’Statistic to calculate the

probable variable star candidates. \n’) fprintf(’It is especially

useful for large clusters or fields of many \n’) fprintf(’stars.\n’)

%loads the data file from the user and saves it to the variable ’magVerror’

fid=0; while fid < 1

fprintf(’\nInput error vs magnitude file name’)

datafile=input(’(.err from CLUSTER): ’, ’s’);

[fid,message] = fopen(datafile, ’r’);

if fid == -1

fprintf(’Filename not found in project folder.\n\n’)

end

end copyfile(datafile,’magVerror’); load magVerror;

%**

%**

%

% The following section receives the data file from the user and fits the

% bottom of the data curve with a flat portion of the graph and a curved

39

APPENDIX B. MATLAB CODE FOR VARFIND 40

% portion.

%

%**

%**

sorted=sortrows(magVerror,[2 3]); mag=sorted(:,2); err=sorted(:,3);

plot(mag,err,’b*’) title(’Initial Data’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16); ylabel(’error

in \itm’,’fontsize’,16);

magmin=min(mag); magmax=max(mag); createcurve=0;

while createcurve == 0

fprintf(’Enter a magnitude interval overwhich to fit curve(def 0.18)’)

dx=input(’: ’);

if isempty(dx) == 1

dx = .18;

end

close

curvex=magmin:dx:magmax;

curvey=zeros(1,int16((magmax-magmin)/dx));

i=1; % increments along ’sorted’ array locations

ii=1; % increments through ’small’ array locations

n=1; % increments through ’curvey’ array locations

step=magmin; % increments along stepsize set by user

% This loop loads the array ’curvey’ with stars from the bottom of the

% curve

while step <= magmax

ii=1;

%small=ones(1,50);

clear small

small=10;

while sorted(i,2) < step+dx & sorted(i,2) >= step

small(ii)=sorted(i,3);

i=i+1;

ii=ii+1;

if i > length(sorted)

break

end

end

APPENDIX B. MATLAB CODE FOR VARFIND 41

curvey(n)=min(small);

n=n+1;

step=step+dx;

end

% corrects for discontiuities caused by matrix prealloccation to 10

% and deletes each point with a y value of 10

i=1;

while i <= length(curvey)

if curvey(i)==10

curvey(i)=[];

curvex(i)=[];

else

i=i+1;

end

end

plot(mag,err,’b*’)

hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Curve Fit’,’Location’,’NW’)

title(’\itm Interval Check’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

hold off

fprintf(’\nAre you satisfied with this step size?(y or n)’)

createcurve=strncmpi(input(’: ’,’s’),’yes’,1);

fprintf(’\n’)

end

close plot(mag,err,’b*’)

hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Curve Fit’,’Location’,’NW’)

title(’Discontinuity Check’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

hold off

% corrects for other discontinuities caused by spacing of dx

discont=1; while discont == 1

i=1;

APPENDIX B. MATLAB CODE FOR VARFIND 42

fprintf(’Enter max err between consecutive pts’)

fprintf(’ to correct large abnormalites.\n’);

fprintf(’If no large abnormalities exist press ENTER\n’)

fprintf(’(WARNING, this max err cannot be ’)

fixit=input(’increased afterwards): ’);

if isempty(fixit) == 1

fixit = 10;

end

while i < length(curvey)

if (curvey(i+1)-curvey(i)) > fixit

curvey(i+1)=[];

curvex(i+1)=[];

else

i=i+1;

end

end

fprintf(’\n’)

close

plot(mag,err,’b*’)

hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Curve Fit’,’Location’,’NW’)

title(’Discontinuity Check’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

hold off

fprintf(’Do you want to decrease your max err?(y or n)’)

discont=strncmpi(input(’: ’,’s’),’yes’,1);

fprintf(’\n’)

end

specific=1; while specific == 1

close

plot(mag,err,’b*’)

hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Curve Fit’,’Location’,’NW’)

title(’Discontinuity Check’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

APPENDIX B. MATLAB CODE FOR VARFIND 43

ylabel(’error in \itm’,’fontsize’,16)

hold off

fprintf(’Are there any other specific points that must be deleted?’)

specific=strncmpi(input(’(y or n): ’,’s’),’yes’,1);

if specific == 1

close

plot(mag,err,’b*’)

hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Curve Fit’,’Location’,’NW’)

title(’Discontinuity Check’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

hold off

i=input(’Enter point # counting from left(pos integer): ’);

curvey(i)=[];

curvex(i)=[];

end

fprintf(’\n’)

end

close plot(mag,err,’b*’) hold on

plot(curvex,curvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

title(’Discontinuity Check’,’fontsize’,18) xlabel(’differential

magnitude \itm’,’fontsize’,16) ylabel(’error in \itm’,’fontsize’,16)

hold off

%**

% This portion splits the fit into a flat portion and a curve portion. The

% user then can accept the default split, or enter a magnitude value where

% the split should occur.

%**

close splitcurve=0; seppoint=magmin + 2.5; j=1; while splitcurve==0

clear newcurvex flatx

clear newcurvey flaty

i=1;

while curvex(i) <= seppoint

flatx(i)=curvex(i);

i=i+1;

end

APPENDIX B. MATLAB CODE FOR VARFIND 44

ii=1;

while curvex(i) <= magmax

newcurvex(ii)=curvex(i);

i=i+1;

ii=ii+1;

if i > length(curvex)

break

end

end

flatytemp=curvey(1:length(flatx));

errormin=min(flatytemp);

for i=1:length(flatx)

flaty(i)=errormin;

end

newcurvey=curvey((length(flatx)+1):length(curvey));

plot(mag,err,’b*’)

hold on

plot(flatx,flaty,’ko’,’MarkerFaceColor’,’k’,’MarkerSize’,3.2)

plot(newcurvex,newcurvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Flat’,’Curve’,’Location’,’NW’)

title(’Separate Flat and Curved Portions’,’fontsize’,18)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

hold off

fprintf(’Separate the flat portion from the curved portion.\n’)

fprintf(’Be careful not to move the split too far left, as\n’)

fprintf(’the curve may become difficult to fit.\n’)

if j==1

fprintf(’Is the default split satisfactory? (y or n)’)

splitcurve=strncmpi(input(’: ’,’s’),’yes’,1);

fprintf(’\n’)

else

fprintf(’Is this split satisfactory? (y or n)’)

splitcurve=strncmpi(input(’: ’,’s’),’yes’,1);

fprintf(’\n’)

end

APPENDIX B. MATLAB CODE FOR VARFIND 45

j=j+1;

if splitcurve==0

seppoint=input(’Enter magnitude value where split should occur: ’);

if isempty(seppoint) == 1

seppoint = magmin + 2.5;

end

end

close

end

%**

% This portion fits the flat part with a function

% ***

plot(mag,err,’b*’) hold on

plot(flatx,flaty,’ko’,’MarkerFaceColor’,’k’,’MarkerSize’,3.2)

plot(newcurvex,newcurvey,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

legend(’Raw Data’,’Flat’,’Curve’,’Location’,’NW’) title(’Separate

Flat and Curved Portions’,’fontsize’,18) xlabel(’differential

magnitude \itm’,’fontsize’,16) ylabel(’error in \itm’,’fontsize’,16)

hold off

%this part connects the dots so that we don’t have a gap in the fit

flatx(length(flatx)+1)=flatx(length(flatx))+dx;

flaty(length(flaty)+1)=flaty(length(flaty));

%**

%**

% End of curve finding portion

%**

%**

% this fits the curved portion

x=newcurvex;y=newcurvey; xmin=min(x);xmax=max(x); npts=1001;

dx=(xmax-xmin)/(npts-1); xplot=xmin:dx:xmax;

fit=0; ahoy=1; while fit == 0

if ahoy==1

fprintf(’Enter an initial guess for the function.\n’)

fprintf(’Fit is of the form a1*exp(a2*x)^a3 .\n’)

fprintf(’Enter parameters [a1,a2,a3] in vector form’)

a=input(’ [...].(def [1,1,1]): ’);

APPENDIX B. MATLAB CODE FOR VARFIND 46

fprintf(’\n’)

else

fprintf(’Enter another guess for the function.\n’)

fprintf(’Fit is of the form a1*exp(a2*x)^a3 .\n’)

fprintf(’Enter parameters [a1,a2,a3] in vector form’)

a=input(’ [...].(def [1,1,1]): ’);

fprintf(’\n’)

end

if isempty(a) == 1

a=[1,1,1];

end

option=optimset(’TolX’,1e-5,’MaxFunEvals’,10000);

a=fminsearch(@leastsq,a,option,x,y);

yplot=funcfit(a,xplot);

%prints the equation of the curve

fprintf(’\nCurve approximated to:\n\ty = %7.6f*exp(%7.6f x^%7.6f)’,a)

fprintf(’\n\n’)

%the next section fits the flat data

j=flatx; k=flaty;

jmin=min(j);jmax=max(j);

dj=(jmax-jmin)/(npts-1);

jplot=jmin:dj:jmax;

b=1;

b=fminsearch(@leastsqb,b,option,j,k);

kplot=flatfit(b,jplot);

fprintf(’Flat approximated to:\n\ty = %7.6f\n\n’,b)

%this file should have the real data

close

mag1=magVerror(:,2);rmser=magVerror(:,3);

plot(j,k,’ko’,’MarkerFaceColor’,’k’,’MarkerSize’,3.2)

hold on

plot(x,y,’ro’,’MarkerFaceColor’,’r’,’MarkerSize’,3.2)

plot(jplot,kplot,’k-’,’LineWidth’,2)

plot(xplot,yplot,’r-’,’LineWidth’,2)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

s=sprintf(’y = %5.4f\\ite^{%5.4f \\itx^{%5.4f}}’,a);

r=sprintf(’y = %5.4f’,b);

legend({’data pts’,’data pts’,r,s},’fontsize’,15,’Location’,’NW’)

APPENDIX B. MATLAB CODE FOR VARFIND 47

title(’Curve Approximation’,’fontsize’,18)

hold off

fit=strncmpi(input(’Are you satisfied with this fit?(y or n): ’,’s’)...

,’yes’,1);

fprintf(’\n’)

ahoy=ahoy+1;

end

close plot(mag1,rmser,’b*’) hold on

plot(jplot,kplot,’k-’,’LineWidth’,2)

plot(xplot,yplot,’r-’,’LineWidth’,2)

xlabel(’differential magnitude \itm’,’fontsize’,16)

ylabel(’error in \itm’,’fontsize’,16)

title(’Final Fit’,’fontsize’,18)

legend(’Original Data’,’Flat’,’Curve’,’Location’,’NW’)

hold off

%The following uses robust data i hope :)

fid=0; while fid < 1

filename=input(’Input HJD v mag (.OUT) file name from CLUSTER: ’,’s’);

[fid,message] = fopen(filename, ’r’);

if fid == -1

disp(’ ’)

disp(’Filename not found in project folder.’)

end

end

copyfile(filename,’HJDfile’); load HJDfile;

[N,n]=size(HJDfile);

%**

% The following contains the actual calculation of the Robust Median

% Statistic. The stat is saved to the variable reta.

%**

i=1; j=1; for i=1:n-1

if mag1(i) < seppoint

sigma(i) = b;

else

sigma(i)=a(1).*exp(a(2)*mag1(i).^(a(3)));

end

medm(i) = median(HJDfile(:,i+1));

for j=1:N

APPENDIX B. MATLAB CODE FOR VARFIND 48

delm(j,i)=HJDfile(j,i+1);

dif(j)=delm(j,i) - medm(i);

tot(j)=abs(dif(j)/sigma(i));

end

eta(i)=sum(tot);

reta(i)=eta(i)/(N-1);

if reta(i) < .9

vari(i,1:9)=’ ’;

elseif reta(i) > 1

vari(i,1:9)=’probable ’;

else

vari(i,1:9)=’suspected’;

end

end

%Printing output to file in format -- star id, mag, reta, variable?

disp(’ ’) outfile=input(’Input file name for VARFIND output file:

’,’s’); out(:,1)=1:n-1; out(:,2)=mag1; out(:,3)=reta;

fid=fopen(outfile,’w’);

fprintf(fid,’ %s\n’,outfile);

fprintf(fid,’***********************************\n’); fprintf(fid,’*

Star Avg Reduced Is it *\n’); fprintf(fid,’* ID mag

eta variable? *\n’);

fprintf(fid,’***********************************\n’); for i=1:n-1

fprintf(fid,’%5g %8.5f %8.5f %s\n’,out(i,:),vari(i,1:9));

end fclose(fid);

fprintf(’\nRobust statistic output to %s.\n\n’,outfile);

open(outfile);

%creates a histogram of the results

fprintf(’Would you like a histogram of the results?(y or n)’)

histo=strncmpi(input(’: ’,’s’),’yes’,1); while histo==1

N=input(’Enter number of bins needed for histogram: ’);

figure

hist(reta,N)

title(’Histogram of RoMS’,’fontsize’,18)

xlabel(’reduced \eta’,’fontsize’,16)

ylabel(’number of stars’,’fontsize’,16)

%xlim([0 10])

%ylim([-1.75 3.25])

fprintf(’Are you satisfied with the number of bins?(y or n)’)

histo=strncmpi(input(’: ’,’s’),’no’,1);

if histo == 1

close

APPENDIX B. MATLAB CODE FOR VARFIND 49

end

fprintf(’\n’)

end delete(’magVerror’) delete(’HJDfile’) fprintf(’...Done\n\n’)

	1 Background and Motivation
	1.1 Accurate Distance Measurements
	1.2 CCDs and the Magnitude Scale
	1.3 Variable Stars
	1.4 Star Clusters
	1.5 Current Challenges in Variable Star Searches
	1.6 Work Underway at BYU
	1.7 Outline of Program Development

	2 Development
	2.1 MATLAB and Programming Techniques
	2.2 Curve Finding
	2.3 Curve Fitting
	2.4 Robust Median Statistic
	2.5 Functional Limitations

	3 Results and Conclusion
	3.1 Analysis Methods
	3.2 Analysis of NGC 6882/85
	3.3 Analysis of NGC 188
	3.4 Analysis of NGC 6709
	3.5 Conclusions

	Bibliography
	A Users Guide for VARFIND
	A.1 The VARFIND Data CD:What is included
	A.1.1 Running VARFIND
	A.1.2 CLUSTER
	A.1.3 Sample Data
	A.1.4 Formatting VARSTAR5 Data for Use in VARFIND

	A.2 Tips For a Good Curve Fit
	A.2.1 Magnitude Intervals
	A.2.2 Coefficient Approximation

	B MATLAB Code for VARFIND

