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Preface

Although these are much more feelings in hindsight and perhaps belong in here as a
' sort of epilogue, it seems appropriate to comment on my experience with this honors
i thesis in general. It has certainly not been without its frustrations and headaches,
‘ having been drawn out over a rather long period of time. But when I say that it
took me much longer than I had originally thought or intended, I would have o say
that I am grateful for that because of what I have learned in that time. For one
| | thing, I have come to realize how unprepared I was to undertake this research. By

that, I am referring not merely to my understanding of the sub ject matter but to my

knowledge of even the background necessary to approach the problem. It took me
]‘ several months of study and reading to get to the point where I felt that I understood
‘

what the main articles that T was working with were saying. In fact, I didn’t feel that B

I was even asking the right questions until about two or three months ago. I give a lot i
of credit and thanks to my advisor, Dr, Jean-Francois Van Huele, who very patiently

helped me along. He recognized the gaps in my understanding when I did not and

kindly helped me address them and then point me in the direction I needed to go. I

T e T T o

have appreciated the relationship T have had with him and the mentor he has been

' to me.

I'would also like to thank Dr. William E. Dibble, Dr. William E. Evenson, and
Dr. S. Neil Rasband for having read the manuscript and provided helpful comments

and suggestions,

Whether this thesis will have served as the capstone and highlight of my un-
dergraduate experience remains to be seen. I believe time will be the best determiner

of that. But it certainly has been a rich and varied learning experience, similar, I

i




hope, to what future research may hold for me.
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1 Introduction

The separation of white light into its constituent colors by a glass prism is one of
the oldest and more dramatic examples of the effects on light of material substances.
This phenomenon is Rnown as dispersion and is usually explained by the spreading
out and slowing down of light, or any other kind of electromagnetic signal, on going
from air (or vacuum) into a material. Dispersion is a consequence of the fact that the
index of refraction of most materials, far from being constant, is dependent on the
frequency of the incoming signal. Thus a complete description of the development of
a wave or signal in a dispersive medium must take into account this complexity.

By the beginning of the twentieth century, it was recognized that there are
at least two types of velocities which can be associated with light, or any other type
of electromagnetic signal. Thes;a are the phase and the group velocities. The phase
velocity gives the speed at which the wavelets within the profile of the wave move. It

is given as

= &
Sl

’Up:

where w and k are the angular frequency and the propagation number of the wave,
respectively. ¢ is the speed of light in vacuum, and n is the index of refraction.
" The other motion to be considered in connection with the signal is the speed of any
modulation of the wave. This modulation appears as a change in amplitude of the
wave train. The rate at which this amplitude change travels is known as the group

velocity and is defined in general as

dw
dk’

'Ug:

A “dispersion relation” relates w and k such that v, and vy can be determined. For
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example, for a monochromatic wave in vacuum

w = ke.

It is easy to show that when the phase velocity is a constant, as in the above example,
phase and group velocity will be identical. However, for dispersive media this will
no longer be the case as the index of refraction and hence the phase velocity will be

frequency dependent.

Further, in certain frequency regions for many materials, regions of so-called
anomalous dispersion, both the phase and group velocities may be greater than c,
seemingly in contradiction to special relativity. In the first few years after 1905 when
Einstein’s work on special relativity was published, this fact was used to argue against
the speed of light in vacuum being an upper limit at which signals could travel. In
an effort to resolve the deba,te,‘ArnoId Sommerfeld and L.éon Brillouin investigated
the velocities associated with a signal in a dispersive dielectric and the shape of the
signal for all times. They proved that no signal could travel faster than ¢ although
the wavefront itself (which we identify with the beginning of any kind of signal at a
point z in the medium due to the input signal) traveled at the velocity ¢ in all media.
In addition, they showed that the main part of the signal arrives after the wavefront
and that there are very weak signals present at a given point in the medium between
the arrival of the wavefront and the beginning of the main signal. These weak signals
they called forerunners or precursors. For a medium with a single resonance frequency,
they were able to identify two precursors. The first to arrive after the wavefront (the
Sommerfeld precursor) is of very high frequency and is followed by a low frequency
precursor (the Brillouin precursor). After these two precursors, the main portion of
the signal arrives. This work enabled them also to define a third velocity, the signal

velocity, that at which the main portion of the signal travels.
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! To evaluate the integrals which describe the time evolution of the signal, and
in particular the precursors, requires asymptotic approximations. In recent work,
Kurt Oughstun, George Sherman, and others have made improvements to the ap-
proximations in the original theory, They have verified many of these improvements
numerically and have been able to use them in more precisely defining the signal

velocity.

Our work has been an investigation into the structure and development of
these precursors. Thus a more formal and rigorous development of their form and
time evolution is left to the text. The attempts we have made to extend this work have
i centered partly in confirming numerically the improvements to the approximations
involved. In addition, we have examined some of the parameters of the dispersive
medium and attempted to generalize what can be said about the time evolution of
the precursors for a broader range of materials. We have also begun to examine
L the implications of media that possess more than a single resonant frequency to the
development of the precursors. By no means have all our questions been answered,

and in a real sense, we now have more questions than when we began our research.

More work could still be done, and several additional questions could be ad-

dressed. TFor example, the dispersion with which we deal here is entirely tempo-

ral dispersion. What complications arise in the theory when a spatially dispersive
. medium is considered? We could try to determine what adjustments must be made
| for non-normal incidence. We could continue our investigations of a multiple reso-
nance medium and consider more closely the effect of the medium parameters on the
precursors which develop in such a matertal. A number of related numerical problems

could also be pursued, We could attempt a numerical integration of the integrals in-

volved and compare these with the results of both sets of researchers. Some of this has
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been done by Oughstun and Sherman, but they have not solved for all the precursors
in this way. In addition, it would be nice to simply iron out a few minor numerical

problems that we encountered.

What follows in the remainder of this thesis is a background on the dispersive
model we have used, the Lorentz model, brief summaries of the work and results of
the two sets of researchers whom we have considered, and a description of the work we
have done. The appendices contain a section on complex analysis and the asymptotic

integration method used as well as graphs, tables, and programs referred to in the

text.




2 'The Lorentz Model

An analytic expression for the complex index of refraction of a dielectric material,
n{w), can be derived by modeling the atoms in the dielectric as classical harmonic
oscillators, as was first done by H.A. Lorentz. We consider a material as a collection
of a very large number of atoms. Each atom consists of a small, positive center
with a symmetric “cloud” of electrons surrounding it. The center, or nucleus, i‘s very
massive compared to the electrons. An electromagnetic wave impinging on such an
atom will cause the electron cloud to vibrate or oscillate with respect to the nucleus.
A displacement of the electron cloud will cause the atom to be polarized. The wave

(partly an oscillating electric field) will force this polarization to oscillate similarly.

Two possiblities arise as to the behavior of the atom when an electromagnetic
wave impinges on it. In addition to the behavior just described, where the oscillating
atom will reradiate the energy of the wave which is “absorbed” to cause the vibration
of the atom, the energy of the incoming wave may exactly match the energy needed
to raise an electron to a higher energy level. This excitation energy given to the
atom is not radiated away but transferred through collisions into thermal energy
within the material. Hecht calls this dissipative absorption, whereas the first he terms

nonresonant scattering (Hecht 1987, 57).

Modeled thus, the atom is envisioned as a driven classical harmonic oscillator.
The external electric field arising from the electromagnetic wave becomes the forcing
function. There is assumed to be a linear restoring force on the electron cloud which
tends to pull the oscillating electrons back towards equilibrium. We include a damping
term proportional to velocity to account for energy loss within the atom due to

“frictional” forces and energy loss when the atoms reradiate at the frequency of the




i

total electric field. That this term is linear in velocity is a result of the fact that we

linearize the general damping problem in order that we can put it into a form which
we can solve. The equation of motion for a driven classical harmonic oscillator is:
ko qBr(t)

B e (1)

m m 1

In this equation m and ¢ are the mass and charge of the particle, @ and k are the pro-
portionality constants for the damping term and the linear restoring force respectively
and Ep(t) is the total electric field felt by the particle. (In general, Er will include
not only the external driving force of the incoming wave but also the electric fields of
neighboring atoms,) The form of Er will be assumed to be a uniform harmonic wave

of frequency w:
Er(t) = Ege™™t.

This can be considered a general solution since a superposition of these solutions with
different freuquencies can give any driving function.

With this as the form of the driving function, a solution to eq. { 1) can be
found which is of the form:

z(t) = zoe”

On substitution of this into eq. ( 1) and solving for xo, one obtains:

:B(t) =— qu/m

X —fwt 9
wou-w2—26iwe @

In eq. ( 2) we have set § = a/2m, the phenomenological damping constant and
w? = k/m, the square of the natural frequency of oscillation. This relationship for

z(t) then enables us to find the polarization density P(t) which is given by:
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P(t) = (t)Nq

Here, N is the density of particles of charge ¢. We assume a linear, isotropic dielectric

such that the polarization and the external electric field are proportional:
P(t) = xE(t)

where vy is known as the electric susceptibility and is given in terms of the permittivity
of the material, €, and the permittivity of free space, ¢ (which in turn allows us fo

define the dielectric constant, K'):

x=¢e¢—e and K:-f-=1+2§-.
€ €o
Thus,
B) = (1) ®)
X T omowd—w? - 26w d
| For an isotropic medium the total electric field can be shown to be (Reitz et
al, 493):

Er(t) = E() + —C%P(t) (4)

where v is a local correction factor which is introduced to account for the fields and
mutual interactions of the surrounding particles. For an isotropic, nonpolar dielectric,
: a good approximation for v is » & }. For a metal, » = 0. Substituting the relation

for the polarization density, we get

mm=ﬂma+gm (5)



On substitution of this into eq. ( 3), we get

X N¢’ 1
14 = m wi —w? — 26w

Since x = €(K — 1), this can be expressed in terms of K:

K-1  N¢ 1 (6)
1+ (K —1)  emwd—w?— 26w

It should be noted that this equation holds for a material with only one resonant
frequency, namely wp. A material may easily be composed of a number of different
particles each having different properties (i.e. different charge or mass) but which will
individually still obey tlhe above relation. Thus, it is seldom the case that in physical
situations a material will have a single resonant frequency. In the more general case

where the material has ¢ resonances, eq. ( 6) becomes:

L Nig? 1 -
1+ v(K-1) < em; wf —w?—26iw

In this paper we will mostly consider materials with only one resonant fre-
quency and so we will use eq. ( 6). However, a problem arises in Shen and Oughstun’s
1989 paper which considers a multiple resonance medium. Because they leave out v,
the local field correction factor, we believe they get a result which is not applicable
to most dense media (Hecht, 61). This will be seen later, however, For now, solving

for K in eq. ( 6) yields:

w2

- __ 8
K 1+w§—w§v—w2—26iw ®)

where w? = N¢*/meg is the square of the so-called plasma frequency. The index of

refraction can now be found. It is defined as:




2
n?(w) = (E) = KK

v €ollo

We have taken c as the speed of light in vacuum and v as the speed of light in
the medium being modelled. K. and X, are the relative permittivity and relative
permeability respectively. For the vast majority of non-ferromagnetic materials, Ko,
differs only a very small amount from 1. We therefore make the approximation that
n?(w) = K, which is the K we found above in eq. ( 8). Combining these relationships,
we find that the complex index of refraction for a dielectric according to the Lorentz

model is given by:

we

1/2
n(w) = (1 T W= (Wi — :.Zgu) + 25iw) ®)

Note that Qughstun and Sherman do not consider the local field correction

factor, v in their 1988 paper when considering a single resonance medium. For a

single resonance medium this is no real problem since the term in eq. ( 9), w§ —wiv
will behave as a natural frequency w§ and can be considered as such. Oughstun and
Sherman, however allow » to be zero and so they simply use the square of the natural
frequency, w2. Thus their expression for the complex index of refraction for a Lorentz

medium is

2 1/2
nw) = (1 W —wi Zﬁiw) (10)

where they set b% = w2, This is also the expression we will use in considering a single

resonance medium in most of what follows.

|
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3 The Theory of Sommerfeld and Brillouin

In order to derive an analytic expression which would describe the behavior of an
electromagnetic wave in a dispersive medium, Sommerfeld assumed the following
(Brillouin 1960, 23-24). A uniform, isotropic, single resonance, dispersive medium
extends from z = 0 to 2z = oo. A monochromatic wave is incident normally on the
medium at z = 0 at time ¢ = 0. To insure convergence in the Fourier integrals used in
the theory, Sommerfeld further assumed a finite wave. The signal was a superposition
of two semi-infinite waves, one beginning at ¢ = 0 and the other beginniﬁg att=1T
(where T > 0). The wave which starts at ¢ = T is assumed to have a phase opposite
to that of the wave which begins at ¢ = 0. In this way, the two superposed waves

cancel for t > T

Thus, on the boundary (at z = 0%), the wave is given mathematically as

0 for t <0,
f{t) =4 sinwt for 0<t<T (11)
0 for t>T

where w, is the frequency of the incoming wave. The Fourier transform of f(t),

g(w) = -51;-; f_ o:o F(t)e™dt

can then be used to express f(i) as

fit) = -217;[" o:o ( f_ D:O f(t’)e"‘“'dt’) e~ dw

oo pT . ;
= —l—f f sin wet'e ") dt' dw, (12)
TJo Jo

If T is taken to be an integral multiple of the period T' = 2xm /w,, where m is

an integer, on integrating with respect to ¢/, f(?) becomes
10



f(t) = We ./;oo dw (eniw(t—T) _ e-—-iwt) .

w2 —w?
By using the residue theorem from complex analysis, this can be shown to be

equal to

() = -;— (sinwet + sinwo(t — T)). (13)

By recalling that 7' = 2rm/w, we can see that this is the original function f(t) =
sinw,? as defined at z = 0% between ¢ = 0 and ¢t = T'. Again, by using the calculus

of residues, eq. { 13) can be shown to be identical to

f) = 51;%{ . 1 (e_gw(t-T) _ B-—iwt) dw} (14)

—oo W — W

where ® tells us that we should take the real part.

If w is taken as purely real, there is a singularity in each individual term in the
integrand of eq. { 14) as w — w,. At this point in each term, both the numerator and
the denominator individually go to zero. However, the integrand in this limit is finite
and nonzero so long as the two exponentials are not evaluated separately. Sommerfeld
remedies the problems: caused by the singularity by moving the path of integration
(Brillouin 1960, 26). As the above equation indicates, the path of integration is
originally the real axis extending from negative infinity to positive infinity. To avoid
the singularity, the path is deformed off the real axis into the upper half of the complex
plane. In this way, we can separate f(t) into two separate integrals each of which

represents a semi-infinite wave:

. 1 __1_ amfiud 1 __1_ - fw(t—1")
f(t)_%rm/c'w—wce du 21‘r§fa cw—wce du

11




where we take the contour C to extend from +oo +ia to —co +ia. Since the original

contour (the real axis) extended from —oc to +o0, this explains the change in signs
of the two integrals. The positive constant a is the distance above the real axis
the contour is deformed. Since both our integrals now converge independent of the
other, the second, which represents a semi-infinite wave beginning at ¢ = T', can be

discarded. We are then left with a signal beginning at ¢ = 0 and extending to infinity.

One might ask why we added the second wave if we were only going to get rid
of it in the end. The answer is that we did not have to begin with such a formulation.
Had we begun with a signal which began at ¢ = 0 and extended to infinity, in eq. (12)
we would have had to replace the T in the limit of the integral over dt’ with co. With
these limits, the integral would not have converged for ¢’ under the assumption that
w was real. We could then have assumed that w was complex in order to insure the
convergence of the Fourier integral. As it turned out, by using the method presented
here, that is what we were forced to accept to regain our semi-infinite signal. Either

way, the results would have been the same.

Our signal on the boundary z = 0% is then expressed as a contour integral of

the form

Ft) = - /+°°+i“ Loy, (15)

_g —oodin W — We
Now that we have the signal on the boundary, we want an expression for the
signal for all time and for all points in the medium. It is known that a wave traveling

through a medium will have the form

e—z’wt-l—ikz
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where z is the distance into the medium which the signal has propagated, and k& is

the wave number given by
w
k= — .
. n{w)

Here, c is the speed of light in vacuum and n(w) is the complex index of refraction

characteristic of the dispersive medium.

It is therefore reasonable to assume that our signal in the medium, f(z,1), will

be of this same form. Hence, we construct our signal to be

1 ootia 1 wfiotfikz
f(Z,t) = _E%.[—oc%ia w—w ¢ e o

i Foo-ia z
= §R/ 1 ¢ F8(wib) 7.,y (16)

27 Jocotin W — W,

where
Hw, 8) = twn(w) — 0]

and @ is a dimensionless parameter given as § = ct/z. As it will be important in
our later discussions, it would be well to discuss this parameter. For a fixed z,
is a scaled time variable. If § = 0, the signal has arrived at the boundary. ¢ = 1
corresponds to the amount of time needed for light in vacnum to travel the distance
z. On the other hand, for fixed ¢, € is proportional to the inverse distance from the
boundary. For 8 = 0, z is at infinity and at # = oo, z = 0 or at the boundary. The
distance traveled by light in time ¢ is given by é = 1. Returning to our equations,
we note that for large values of z, eq. (16) is in such a form as can be evaluated
asymptotically by using the method of steepest descent. “Large” values of 2z can be
on the order of 1 x 10™* cm since this is large in comparison to the absorption depth,

¢/é, of the medium (Oughstun and Sherman 1988, 840).
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In the original papers by Sommerfeld and Brillouin, Sommerfeld obtains an
expression for f(z,t) in a medium given by an n(w) as we calculated in the section
on the Lorentz Model. However, Sommerfeld makes the simplifying assumption that
damping is negligible and hence he sets the damping coefficient in n(w) equal to zero
(Brillouin 1960, 40). This assumes a nonabsorbing medium which is, at best, an
approximation to a physical gituation. It is left to Brillouin, using the method of
steepest descent, to find analytic expressions for the more general case of a dispersive

and absorptive medium.

To use the method of steepest descent, it is necessary to know the behavior
of the real part of the phase function in the complex w plane. In particular, we
must know the location of any branch points or saddle points of this complex phase
function. To evaluate the integrals, it is assumed that the major contribution to the
integral comes at these saddle points. Thus, in addition to knowing the location of
any branch points, it becomes imperative to find the location and behavior of the

saddle points.

To begin, we rewrite the complex index of refraction which we found in the

section on the Lorentz Model:

o) = (1- 5y )m (1)

2 — w4 26w

-l s
e =il -

where wi = w 4 b* and the four points, w} and wy, are the locations of the branch

points and are given by

14



wh =+ (w? - )2 4§
wy = (Wl — 62 - 5.

At w}, the real part of the phase function, ¢(w, ) is zero. At ws, the real part
of ¢ goes to infinity. We note at this point that Brillouin’s analysis as well as that
done by Oughstun and Sherman consider only the case where § < wp {Oughstun and

Sherman 1988, 847).

To find the location of the saddle points of the phase function for values
of w near the origin, Brillouin expands n(w) (Brillouin 1960, 51). Setting, a =
w?+126w, and assuming that the relevant frequencies are much less than the resonance

frequency: |a| < wi(< w?), we find

52
2 = 1
n(w) t Wi — w? — 26w
_ wi-a
Wi -o

N PR N P
Wl wi wi o wh '

On multiplying this series expansion through, taking the square root (by using
the binomial expansion), and neglecting terms in w of third order and higher, the

approximation for n{w) gives

2

2w

n(w) ~ % + w(w + i26). (20)
0
Oughstun and Sherman correctly point out that this approximation does not actually

contain all the second order terms which come out of the series expansion for n{w)

(Oughstun and Sherman 1988, 821). We were able to verify that an extra second
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order term should appear in the above equation if all are to be taken into account.

The approximation for n(w) then becomes

wy b? : &*6%(dwf — 1%)
n(w) & o + 2w§w1w(w +i26) — .

2wl
However, we performed a further calculation of the order of this term and found that

using the parameter values which Brillouin considers, this additional second order

term is only 1/60 of the next larger term. Thus, it can be reasonably neglected.

Using eq. ( 20), we are still able to approximate the location of the saddle
points. Taking the derivative of the phase function ¢ with respect to w,
O(w, 8)

— = in{w) — 10 + twn’(w) (21)

substituting the approximation for n(w) into this equation, and setting it to zero (the

condition for a saddle point) yields a quadratic equation in w

Aot
P dibw + (<2 - gy
3w’ zw—}-(wo 8) 2 0
which has roots
2 1 [£33] 6w3w1 1/2 -
Wep,, = wzgé 4 *3- ((9 - w—o)jf—z—“ — 452) . (22)

Three possible cases result, depending on the sign under the radical in eq. ( 22).
If the expression under the radical is negative, the two saddle points in the region
about the origin are located on the imaginary axis. They are sitnated symmetrically
about the line w” = --2§ and the lines of steepest descent run through the saddle

points parallel to the imaginary axis.

For values of § which make the expression under the radical positive, the saddle

points are off the imaginary axis, although they remain on the line w” = —25 and

16




are symmetric with respect to the imaginary axis. For the saddle point which leaves
the imaginary axis moving towards the branch cut on the right, the path of steepest
descent makes an angle of £ with the real axis. For the saddle point which leaves
the imaginary axis moving towards the branch cut on the left, its path of steepest

descent makes an angle of 2 with the real axis.

For the single value of § which makes the radical zero,

¢

262 62 wn
= 3 + —
3w0w1 Wwo

there is only one saddle point found. It is on the imaginary axis at

2

Wep, — “55

This is a second order saddle point since both the first and second derivatives of the

phase function are zero.

In general, the saddle points near the origin are located at first on the imag-
inary axis. As time increases, they move towards each other coalescing into a single
saddle point of higher order. They then separate, moving into the complex frequency

plane, perpendicular to the imaginary axis.

To find the location of any saddle points for large values of w, Brillouin assumed
w? > wd, or in other words, that for these saddle points, the frequencies of interest
are much larger than the resonant frequency. Doing this, we can then approximate

n?(w) as

b?
2 e —
W) =1 w? — wg + 126w
b2
— ———— 23
! w(w + i26) (23)
17




Assuming the denominator in eq. ( 23) is large compared to b2, one can further

approximate n{w) as

n(w) ~ 1 b? 1

Wy Rl — e,
2 w(w + :28)

On substitution of this approximation for n(w) into the equation for the first

derivative of the phase function, eq. ( 21), and setting that equal to zero, after some

rearranging, we get the following quadratic equation in w

w2+i46w—452—93-1——0
20—-1

On solving this for the distant saddle points, we find

1
* 94 -
w%, 3:1:1)1/2(0_‘1)

which tells us that there are two saddle points which begin at a distance from the
origin and approach each other symmetrically with respect to the imaginary axis.
Though the equation would indicate that these saddle points remain on the line
w" = —26, Brillouin acknowledges that as the saddle points approach the region
about the origin, the approximations made above are no longer valid (Brillouin 1960,

55). In actuality, these saddle points move off this line and approach the ends of the

branch cuts farthest away from the origin, .

Now that we have the expressions for the approximations of the locations of

the saddle points, we can evaluate the integral which we derived in eq. ( 16):

1 1 2y
flz,t) = — /G RLCOFR (24)

2r Jo wy — w
where C is the contour of integration. It is given a general label in anticipation that

we will further deform the contour. Again, we define the complex phase function as

18




Bw, 0) = iwn(w) — 0).

We will consider the contributions of the saddle points to the integral in reverse
order to the way we calculated their location. This is because, as we shall discover,
the distant saddle points will contribute to the first, or Sommerfeld precursor and the
near saddle points will be the predominant contribution to the second precursor, the
Brillouin precursor. Using the approximations for the locations of the distant saddle

points, the complex phase function and its second derivative become

£ ok oy iBE/2
‘;‘f’(wapd? 0) - ?’wspd(l 9) wg;_.’d + 125 (25)
¢ _ =i
Bu? [“=%a ~ (w + 126)8

wg,, is found in the right half of the plane, w, , 18 in the left half of the plane and the

two are located symmetrically about the imaginary axis and are given as

. [ 1
wf;,d = =24 + b m (26)

We can now use the result from the method of steepest descent where we
assume that the integrand rapidly goes to zero as we move along C' away from the
saddle ﬁoint in either direction. For the distant saddle points, in the asymptotic limit
as z gets large, our infegral becomes (see the appendix on dealing with the method

of steepest descent)

z —~b?

¢ (wE +1426)3

Spe

Fnt) ~ 51—%

T

V2w 12 i
(e [Zet ity -5 5],

um}

(27)
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The total contribution to the integral from the distant saddle points is given

by adding the two parts together and taking the real part of the sum. The result is

1/2
2¢,/2(0 — 1 .
f(z,t) = —%c— (w-m-q-r-(l;——l) e~ H-1)% cog (2b(t9 —_ 1)% + -g) . (28)

This is the expression describing the first, or Sommerfeld precursor and immediately

follows the arrival of the wavefront which travels at ¢, the velocity of light in vacuum.

We do a similar thing for the near saddle points using the appropriate approx-
imations for both the complex index of refraction and the complex phase function.
Using these, the phase function and its second derivative at the values for the near

saddle points are given as

iwf w ib2 2 R .
qb(wfpn, 8) = LZ: S w;‘;ﬂ (w;tp" +126) — zw;';"t? (29)
0% 1b? .
Bt lumes, = 5 (B3 +20) (30)

where the near saddle points are found in eq. ( 22)

3 1/2
ot = ity -:1,; (( _ w1 Bty _452) . (31)

o 3 wp' b?

‘As mentioned before, this equation for the near saddle points indicates that
these saddle points begin on the imaginary axis at # = 1 and symmetrically approach
each other about the line w” = —i2§. They then coalesce into a single saddle point
after which they separate and move off the axis into the complex plane. During

the time the saddle points are on the imaginary axis, the lower saddle point is not
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included in the calculation and the path of integration (the path of steepest descent)

through the upper saddle point is parallel to the real axis.

Thus, using our expression for the asymptotic expansion of f(z,t) for the

interval that the upper saddle point remains on the imaginary axis, we get

1 V2r
f(z,i)~g§}f{m+—'

8Pn

-1/2
-'mn +126) }

(32)

exp [Zu, (nlih) = 0)] |

wa

On simplification, this becomes

2(np + 25)])
(33)

We 2udwne z b?
f&0= (w2+n?)4mb2(3np+26)ex"(c[”’”“’ o) " B

where 5, is

1/2
??p = -—§-6 + % (462 (9 - Gwowl)

733 b2

Once the saddle points have coalesced and moved off the imaginary axis, both
saddle points are considered in the evaluation of the integral, and we get an oscillatory

solution which we present in its final form:

1/2
Yoy e 262w 95262 55
f(z,t) = € (3“(3 a:b?) exp [ 3 oy 0 163w )] (cosd + 3z — &) 3(w? - &) sin¥)

(34)

where §, is

and we have given 9 as
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These final equations thus describe the form of the second precursor, or the

Brillouin precursor as derived by Brillouin using the method of steepest descent. We

have plotted f(z,1) in these equations versus the parameter § for a fixed distance

* into the medium. This graph (figure 2) is located in the graph appendix and given
the title “Precursors for a modified sine wave - B.” It should help give an idea of the

general field structure of these precursors.
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4 The Developments of Oughstun and Sherman

In their reexamination and development of the original theory of precursors, Oughstun
and Sherman begin by making a slight generalization in formulating the problem of
an electromagnetic signal in a dispersive dielectric (Oughstun and Sherman 1988,
818). Considering the medium to be in the region z > 0, any scalar component of

the electric field can be given in the form

Alz,1) = ch(z,w)e‘i“’tdw (35)

where A(z,w) is the spectral amplitude and satisfies the Helmholtz equation

VA(z,w) + B (w)A{z,w) = 0 (36)

and where k(w) is the complex wave number and is given in terms of the complex

index of refraction n{w) and the speed of light in vacuum
k(w) = E;—n(w).

As before, we assume a knowledge of the field at z = 0 for all time and that
the field is nonzero for ¢ > 0 and is identically zero for ¢ < 0. This behavior at
z = 0 we call f(£). As in our previous derivation of the shape of the signal in a
dielectric, to insure convergence of eq. ( 35), we take the frequency to be complex.
Thus, the contour of integration, ¢ is taken off the real axis and into the upper half

of the complex plane. Solution of eq. ( 36) gives
Alz,w) = Ape™ + A_e™*

which is the superposition of two traveling waves, one of which (A4 ) is traveling in

the positive z direction and the the other in the negative z direction. Since we are
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only interested in the waveform within the medium, we ignore any reflection from the

surface at z = 0 and set A_ = 0. Thus the scalar field is

Alz,t) = / Ay (w)e =D, (37)
Knowing the initial behavior, we find that .
A(0,1) = f(t) = f Ay (w)e“dw.

The inverse transform gives

_ 1 o fwt 30 _L 3 :
Ay(w) = 5= [T 10 bt = - f(w) (38)
which, on substitution into eq. ( 37), gives the integral form of the propagation of a

plane wave through a dispersive dielectric with index of refraction n(w)

Az 1) = 217: [ Fyexp (e, 0)) do (39)

where we have reintroduced the complex phase function H(w, 8) 1

H(w,0) = 1w (n(w) — 0)

and the dimensionless parameter ¢ i

The complex index of refraction must obey
n(~w) = n*(w") |
and the inverse transform of the signal at 2 = 0 satisfies a similar equation

fl-w) = F(w").
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Using these relations one can show that the field for all z > 0 is given by

A(z,t) = '2%;% {mea F(w) exp (—z-d)(w,ﬁ')) dw} (40)

—cotia
which, like eq. ( 39), is in a form which can be evaluated asymptotically.
In their analysis, Oughstun and Sherman consider two forms for the initial
time behavior (Qughstun and Sherman 1988, 819). These are the delta pulse at a

timet =1, >0

F(t) = (¢ —to) (41)

and the semi-infinite sine wave with carrier frequency w, which is the unit step-

modulated signal

f(t)={ 0 i< (42)

sinw,t t>0

To be able to evaluate the integrals, the locations of the saddle points of this
complex phase function ¢(w, ) must be found for all # > 1. Thus, all the theory in
the Sommerfeld and Brillouin section preceding the approximations for the location of
the saddle points is applicable. This requires that we differentiate the phase function

with respect to w and set it equal to zero:
n(w) +wn'(w) — 8 =0.

The roots of this equation will yield the location of the saddle points as functions
of §. Using the expression for the complex index of refraction given in eq. ( 10) in

Section 2, we get the following

Boo(w + i6)
2 — wi + 261w

2
{wz — w? -+ 261w + - } — 0 (w? ~ w? 4 26iw) (W — Wk 4+ 26iw) =0 (43)
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where wi = w§ + ¥*. On expanding, this becomes an eighth order polynomial in the

complex variable w. An approximate solution of this equation must be found. As
found by Brillouin, there are four saddle points (Brillouin 1960, 50-54). Two of these
are distant saddle points which lie in the lower half of the complex frequency plane
and which begin at infinity and symmetrically approach the far branch points as
increases. The other two are near saddle points (located about the origin) which begin
on the imaginary axis, approach each other as § increases, coalescing into a single
saddle point (at a # value which is defined as # = #,) and then move off the imaginary
axis into the complex plane. The derivations of the locations of these saddle points
in Qughstun and Sherman’s analysis involve a considerable amount of algebra. For
this reason we will only present the final expressions for the approximations of the

saddle points.

For w? >» w?, the distant saddle points are given as

Wipy(0) = ££(0) — i6(1 + n(0)) (44)

where we have

202 1/2
_ 2 2
5(8)_ (wﬂ—(s +92_1) b

/2T (0% - 1)
- £2(0)

For the region w? < wg, the near saddle points are approximated to be

7(0)

8Pn

Wt m:lm/;(@)—z‘%ﬁ((é?) (49)

where we have

9 2 22 oq1/2
%W—%)_y(G—%+%)
bl

2 2 4. 302
f 90-|~wga
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¢(0) = 1R Ba
0
and « is a constant defined as (different from the & which we used in the Brillouin

section to expand the index of refraction)
o] (4?4 1)
- 3wiw? ! '

With approximations for the locations of the saddle points, the asymptotic
expansion of the field can be given. The original contour, ¢ in eq. (9) which is in the
upper half of the complex frequency plane at the value w” = a must be deformed to a
new contour we call P(#) so as to pass through the saddle points. Because Oughstun
and Sherman use the asymptotic method of Olver which does not require that we know
the path of steepest descent through the saddle points, the chosen paths become a
bit less rigid. These paths must still satisfy certain, albeit less restrictive, conditions
given by Olver (Olver 1970, 229). Any poles of the spectral function F(w) which are
crossed by the deforming of ¢ will, by the Cauchy residue theorem, contribute to the

integral in eq. ( 40)
Alz,t)=1(z,0) - R [2%i2(1‘esidues of poles crossed by P(G)]

where the integral I(#) has the same form as before, only the contour has been
changed from ¢ to P(0). The minus sign before the sum is a result of the fact that all
the poles which are crossed will be encircled in a clockwise direction as the contour

is deformed from the upper half of the complex plane to the lower half plane.

The integral I(z,0) is composed of the contributions from the saddle points
which P(0) crosses. For § < 61, there are three of these, the two distant saddle points
and the upper near saddle point. The lower near saddle point for § < 6, cannot be

reached by an appropriately deformed contour and is thus neglected. For all 4 > 6,
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the saddle points originally on the imaginary axis have moved into the complex plane

and all four saddle points contribute to the integral I(z,#). This can be expressed as

A(z,1) = As(z,t) + Ap(z,1) + Ac + R(z,1).

Here, Ag is the field component known as the Sommerfeld precursor and arises from
the contributions from the distant saddle points. Ap is the Brillouin precursor and
comes about from the saddle points near the origin. For § < 8y, only the upper near
saddle point on the imaginary axis contributes to this term while for 6 > 6;, both
near saddle points will contribute. A, is the sum of the value of the poles as given

above and R(z,t) is the remainder in the asymptotic approximation.

That these saddle points contribute to the various precursor fields in the way
that we have said can perhaps be seen by considering the value of the real part of
the phase function, X(w,#), at each of these saddle points as 8 varies. We do this
because it is X (w, 0) that makes the largest contribution to the asymptotic expression
of the integral in the method of steepest descent. For § < 6,, only the upper near
saddle point For # just barely larger than one, X(w, 0) is largest at the lower near
saddle point, but since this saddle point is never crossed by the contour, we ignore it.
At the distant saddle points, X(w, ) has its next largest value and is the same for
both saddle points. As § increases, the value of X (w,8) at the distant saddle points
decreases in a steady manner while the‘value of X at the upper near saddle point,
which was originally the least, increases until § = 6; when the two near saddle points
coalesce. For 8 > 8y, the value of X (w,8) at the two near saddle points is the same for
the two and decreases in a continuous manner. What all this means is that for a short
time, the distant saddle points contribute predominantly to the integral describing

the field after which the near saddle points are the most important contributions. We
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therefore associate the first, or Sommerfeld precursor with the earliest contributions
to the field which happen to made by the distant saddle points. Similarly, the next
\ contributions to the field are given by the near saddle points and are associated with
{ the Brillouin precursor. Depending on the strength and location of the poles in the
| transform of the initial time behavior, these precursors will likely be followed by the

arrival of the main signal.

We will show in general terms how to get the form of the Sommerfeld precur-
sor from what we now know. For the Sommerfeld precursor, we have the following

expression

1 wlpy & Wipg
Ag(z) = —.5}?:{/ ™ fw)e @ dw +/ o f(w)ei"’(“'s)dw} (46)
2 by bo
where b, and by are points along the path which satisfy Olver’s conditions {see the

section on Olver's method in the appendix on complex analysis). Using the method

of Olver, we can express the first term in the asymptotic expansion as

. .

As(z) ~ —1—§R {efqﬁ(wfpd,e)r(l) 11/2 f1(wspd39) . + e%qﬁ{w;},d,ﬁ)r(l) 11/2 f(wspdsa) . } )
2n 2z 2[_'5';6”(""’:1-9:!)]2 2z 2[”%¢"(‘*"5¢d)]§

(47)

To write out the general solution then requires us to calculate the second derivative

of the phase function, ¢{w,8), with respect to w and to evaluate it along with the

phase function itself at the two distant saddle points using the approximations found

earlier in this section. Since f (w), and the phase function will be complex, we will

have some kind of oscillatory behavior in 0.

The above expression is practically general for both the Brillouin and Sommer-

feld precursors since we have calculated the field contribution from two saddle points.
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A few changes, however, will apply to the Brillouin precursor since we must account

for the changes in the number of appropriate saddle points as 4 increases. For 8 < 8,
there is a single first order saddle point so that the second term above is zero and the
first term applies so long as the approximation for the upper near saddle point, w,p,
is used everywhere. At 6§ = 6, we have a second order saddle point. This will require
that the third derivative of the phase function with respect to w be taken, evaluated
at the point where the saddle points have coalesced, multiplied by — %, and its cube
root taken instead of the term involving the second derivative which we now have in
the denominator above. In addition, we will have a gamma function of 1 and we will
have z to the —3 instead of to the —2. Of course the point at which we evaluate
everything is the w value at which the two saddle points have come together. Finally,

for § > 0; we have two saddle points and two contributions as in the Sommerfeld

precursor and our equation is as given above where the approximations for the near

+
SPn

+

are used everywhere instead of wi, .

saddle points, w

The way we have presented these results allows for new or different approx-
imations for the locations of the saddle points. This is a slight generalization over
Oughstun and Sherman who, quite naturally, use their own expressions for the loca-

tions of the saddle points in the above equations.

We should comment that Oughstuﬁ and Sherman acknowledge that this ex-
pansion is not good for certain values for #. One of the restrictions of the Olver
method (and the method of steepest descent) is that our variable be bounded away
from certain critical points. Two such in the problelﬁ at hand are for # = 1% and the
point when the saddle points on the imaginary axis coalesce. In the first case, the
distant saddle points are at infinity causing the integral in the expansion to diverge.

For the case that the saddle points coalesce, the contribution to the integral is an
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increasing exponential before they coalesce and then oscillatory afterwards. Because

the variable must be bound away from this critical point, for very small values of ¢
around it, the expansion is no longer uniform. A third case arises for the modified sine
wave for certain values of the carrier frequency, w.. The form of the transform of this
signal has a simple pole singularity on the real axis at w. (We saw this in the original
formulation of the problem by Sommerfeld in Section 3). If this carrier frequency is
small, thus making the singularity near the imaginary axis, there will be a resonance
peak in the Brillouin precursor as one of the near saddle points will pass near it. For
these reasons, Oughstun and Sherman call their analysis the non-uniform expansion
of the signal. In a subsequent paper they attempt to solve for these # regions, but as

of yet we have not spent much time with that paper.

In the appendices, we have included graphs of both precursor fields for the two
signal forms which Oughstun and Sherman consider, the delta pulse and the modified
sine wave. The second serves as a comparison with the same signal considered by
Brillouin (figures 1-3). Again, we have plotted the amplitude of the signal versus the

scaled time parameter, # for a fixed distance z into the medium.
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5 Numerical Calculation of the Location of the
Saddle Points of the Phase Function

The original method of determining the behavior of precursors developed by Som-
merfeld and Brillouin as well as the more recent improvements of Oughstun and
Sherman have as a vital characteristic the need for calculating (at a given position
in a medium), as a function of time, the location and behavior of the saddle points
of the complex phase function. These saddle points are then used in the method of
steepest descent which is used to give an asymptotic solution for the behavior of the
precursors. For this reason, both pairs of researchers spent a significant amount of
effort in calculating the number and position of these saddle points as a function of
time. In fact, it is basically the improvement in their approximation of the position
of the saddle points (and their aBilit.y to check these results with computer based
numerics) that enables Qughstun and Sherman to claim a better analytic expression

for the form which the precursors take.

Similarly, we found it necessary to calculate numerically the location of these
saddle points. Among the FORTRAN programs found in the appendix is one which
was developed to calculate the position of the saddle points of the complex phase

function ¢(w, 8), given by

(w, ) = iw[n(w) — 0] (48)

where w is a complex variable and @ is a dimensionless parameter given by ¢ = ct/2.
z is the distance into the medium, ¢ is the speed of light in vacuum, and t is the

elapsed time.

The complex index of refraction, n(w) in eq. ( 48) is given as
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n(w) = (1 — o )1/2 (49)

w? — wd + 28iw
This is the equation which we derived in Section 2 using the Lorentz Model. It
should be emphasized that b, wp, and é are real parameters which describe physical
characteristics of the medium. The complex frequency w is the same as that in eq.
( 48). Note again that the local field correction factor » discussed in Section 2 has

been set equal to zero.

The numerical method used is Newton’s method for two equations in two
unknowns (the two unknowns being the real and imaginary parts of the complex
f'requency). The procedure for arriving at the two equations to be solved is as follows:
To find the saddle points, the first partial derivative of the phase function ¢ with

respect to w is taken and set equal to zero
n(w) — 0 + wn'(w) = 0.

Substituting the expression for n{w) given in eq. ( 49), we get

Bw(w + 67) 17
2 — wE 4 265w

w? — w? 4 280w + - ~ 0 (w? + w? + 26iw) (wW? — Wi + 26iw) = 0 (50)

where w? = wi+b%. Rearranging this yields an eighth order polynomial in the complex
variable w. From the theory of complex variables, we know that for this equation to

be satisfied its respective real and imaginary parts must be equal to zero. If we let
w=w 4w’

two eighth order polynomials arise from setting the real and imaginary parts of eq.
( 50) equal to zero. Both of these polynomials will involve the variables w' and w” as

well as the parameter f. These equations are
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et —Réw’! )4 2w (8420 I w! (54w ))
(W —w? w3 2801 )2 (w54 w'T))3

2
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, T S (U € ) i W T T Pt o Al G2 T ) C i et
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where F' is the real part of eq. ( 50) and G is the imaginary part. As mentioned,

both of these equations must be equal to zero

F(J',W",0) =0, G(w',w",8) = 0. (51)

The mutual solutions of these simlutaneous equations for w' and w” will then
give the locations of the saddle points as functions of . We will set £ = w' and

y = w" in all that follows.

Our aim is to find a solution point (g, y0) which will make both F(z,y) and
G(z,y) zero. This point will then solve the condition that the derivative of the
complex phase function be zero which is the condition for a saddle point. Thus, if we

can find (g, yo), we have found a saddle point,.

To derive Newton’s method, we begin with a point which we assume is an

approximate solution (zy,yx). We want to expand about this point in order to find a
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better approximation to the solution. The Taylor’s series expansion of F(z,y) (and

similarly G(z,y)) is given by

Flz,y) = F(zk,y5) + (& — zp) Fe(r, y) + (v — ) Fy(ar, i) + - (52)

where the subscripted = and y on F' represent partial differentiation with respect to
those variables. For our approximation, we neglect all terms involving derivatives of
second order and higher, Ideally, we would like a point which we call (41, ykt1) to
cause the F*(z,y) in eq. ( 52) to vanish. As an approximation to this, we say that

this point (2g41,Yr41) makes

F(2pg1, Ure1) = Flar, yr) + (Bre1 — 26) Folzre, vr) + Wk — v6) Fy(zr, y6) = 0

or,

— F(og, yr) = (2re1 — 26) Fo(@rs vi) + Wrrr — yu) (s, 92) (53)

Upon solving the above equation for #j4y and yry1, we should get a better
approximation for the value of (o, yo), which would make F(z,y) and G(z,y) both
equal to zero. To improve the accuracy of our approximation, we calculate a new
solution point. The ;41 we just calculated becomes the 4 in the new calculation
and similarly, ¥z bec;omes the new y,. This iterative process is then continued until

a certain predetermined accuracy is obtained.

Returning to our problem, we need a second equation in x4y and yxy; to solve
eq. ( 53). This second equation is provided by a similar equation for G((z,y) which

is obtained by the same manipulations as those which gave us eq. ( 53)

— G(zr, yx) = (Tpp1 — ) Galrs yi) + W1 — ye) Gy (e, Yie)- (54)
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With these two equations, we can then solve for the increments or steps in the two

variables:

F,G-FG,

Az = x4 — 2 =
* J

(55)

and

FGy — F.G

7 (56)

Ay = Yhl — Y =

where, as before, the subscripts = and y represent partial differentiation with respect

to 2 and y and where J is defined as

J = F,G, — F,G,. (57)

Using the above relations, we were able to calculate numerically values for the
position of the saddle points for different values of the parameter 8. The change in
each variable tended to become smaller after each iteration, but to insure convergence
we set the condition for accepting a value as that of a saddle point at a particular 8
to be Az/z < 0.0001 (and similarly for y, Ay/y < 0.0001). In this way, we knew that

Az wasn’t just getting small because the value of 2 was very small to begin with.

In the initial stages of developing this program, it would sometimes alternate
between two values for = or y. When this happened, convergence was not reached.
To remedy this, after about 50 iterations, we added the last two calculated values
(the offending values between which we found the program alternating) and divided
by two. In other words, we took the médian of the two recurring values. Using this
“trick,” we were then able to get convergence according to the conditions which we

had set. It should be noted that calculating the location of the saddle points for @
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values between about 1 and 2 usually entailed upwards of 100 iterations. This was

true even after the inclusion of our “trick.” The values for the saddle points which
we got using this method agree with the values obtained by Oughstun and Sherman

to within the accuracy given in their paper.

This program calculates the position of the saddle points for specific values
of 8. This series of § values begins at values just barely greater than § = 1 and
continues for increasing # until the saddle points begin converging towards the ends
of the branch cuts. To facilitate the process of finding saddle points for this series
of @ values, once we had achieved convergence to a point for a single vaiue of 8, we
would use that point as our initial point for calculating the next higher & value. For
the most part, this worked very well and kept us from having to input new initial

points every time we wanted to calculate the location of a saddle point for a different

0.

It is important to keep in mind that the program which we wrote does not
itself distinguish between the different types of saddle points (the near and distant
saddle points which are defined in the section on the original theory of Brillouin
and Sommetfeld). After the main debugging of the programs was finished, we would
always get convergence for the distant saddle points for all possible values of & which
we wanted to calculate if our choice of the initial point, (z1, 1), was relatively close
to the value of the saddle point. In other words, if we wanted to find the distant
saddle points for a 8 value of 1.05, we recognized that the distant saddle points were
going to be a little below the real axis and fairly far away from the origin. So if an
initial point of (25, —0.5) was chosen, we had no problem getting convergence. Even
if we chose initial points at random, we would often obtain convergence to the distant

saddle points. However, we had no guarantee that the points that we would find in
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using random initial points would be values for the distant saddle points since the

program calculated the location of a saddle point without being able to determine
what kind of saddle point it was locating, They may have been initial points in the
complex plane which ended up converging to values for one of the two near saddle

points,

In general, calculating the near saddle points for all § values proved to be a bit
more problematic. Like the distant saddle points, on judicious choices of initial points
(such as initial points very near the imaginary axis and relatively close to the origin),
we got convergence to a point for most values of #. The problem was twofold. First,
as Brillouin has already shown, the path of steepest descent for the lower saddle point
on the imaginary axis runs along the axis. This means that a local maximum exists
along the imaginary axis for this saddle point. The increment in Newton’s method
for the imaginary variable y will thus tend to get larger as approximate points move
down the “hill” which is this local maximum. Convergence for the real variable was
no problem since it found itseif in a local minimum and guickly found convergence to
the imaginary axis. This problem was in part remedied by our calculating the median
of the two last calculated points. This assumes that the increasing increment which

is halved is centered about the saddle point.

Further, we found that as f increased, the near saddle points approached
each other, coalesced into a higher order saddle point at a single & value, and then
separated, moving apart from each other into the complex plane. Finding the location
of the saddle points on the imaginary axis for @ values close to the value at which
the saddle points coalesced (# = 1.5) proved to be more difficult. For & values in this
vicinity, the saddle points are very close together, either on the imaginary ais or just

barely off it. A very small change in the variable in the program, say Az, could cause
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the next value of the variable, x4y, to be much farther away from the saddle points
than the prior value of the variable z;. As a result, obfaining convergence in this
region was nearly impossible, and of this writing, we haven’t completely solved the

problem.

The only means we had of comparing our results with that of Oughstun and
Sherman was to compare my computed values for the saddle points with the graphs of
the locations of the saddle points for the six specific & values which they attached with
their paper (Oughstun and Sherman 1988, 822-823). The precision of our numerical
values is about 1 in 10,000. Thus the final digit in the  and y values listed in the
tables of the appendix may not always be in agreement with a similar run of the
program which begins at a different # value. Approximating a point on the graphs in
QOughstun and Sherman’s papér had a precision of about 1 in 20. Trying to compare
the two in this way is an admittedly crude method (especially considering the limited
number of graphs they gave when we had a much broader range of ¢ values), but
to within the accuracy which such a method may allow, we consistently agreed with
their results for the locations of the saddle points. We further tested our results by
varying the initial points used in beginning the program. Regardless of what those
initial points may have been, we consistently calculated the same points for the saddle
points for all values of @ to within the precision given above (excepting of course the
region about the imaginary axis where the near saddle points coalesced as mentioned

above).

Tables 1-6 in the appendix give the locations of the saddle points in the com-
plex frequency plane for specific & values, The heading on each group gives the initial
points which were used to begin that run of the program. For Table 1, we had &

increase by 0.05. For Tabel 2, # increased by 0.02. As can be seen, by choosing an
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appropriate initial point the approximation found convergence. These first two tables

are the numerically calculated locations of the distant saddie points, and one can see
that they are situated ezactly symmetrically about the imaginary axis. This is true

even though the initial points are not exactly the same.

The next four tables (Tables 3-6) are calculated points for the saddle points
(both “upper” and “lower”) located near the origin. To get Tables 3 and 5 we used
an increment in @ of 0.05 and Tables 4 and 6, an increment of 0.02. As can be seen,
very good agreement is obtained in comparing the tables which locate the position
of these saddle points while the;lr are on the imaginary axis. At about # = 1.5, the
saddle points move off the axis into the plane. Beginning at this # value, all four
tables give excellent agreement with each other. It should be noted that although
each table only gives positive values for z once the saddle points have moved off
the axis, the near saddle points are located symmetrically about the y-axis so that
the other saddle point is easily found. The reader will note that in the vicinity of
§ = 1.5, there is at least one asterix in each of these last four tables. It is at this
point that the two near saddle points coalesce into a single second order saddle point
and we have trouble gaining convergence even after 1000 iterations. In this # range,
the saddle points are so close together that the program has difficulty distinguishing
them and hence converging to one or the other. After @ = 1.5 the problem is resolved,
but this illustrates the difficulty mentioﬁed in getting appropriate convergence to the

appropriate saddle point in this vicinity.

As can be seen in the tables, we have included the values of the real and
imaginary parts of the phase function at each of these saddle points. One can then
compare the relative importance of these saddle points as # increases. Finally, the

printout of the program which calculated these near and distant saddle points is
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included in the appendices.

In comparing the two approximations with the numerical results graphically,
we can see that the approximations due to Oughstun and Sherman are indeed better
than those of Brillouin. The graph (figure 4) in the appendix gives the locations of
the distant saddle points for increasing #. The dotted line is the approximation due to
Oughstun and Sherman, the straight solid line is the approximation due to Brillouin
which he acknowledges breaks down as one approaches the region of the branch cuts.
The curved solid line is our numerical result,

In conclusion, to find and verify the location of the saddle points of the phase
function, we have developed FORTRAN programs based on Newton’s method to nu-
merically calculate these points. Qur results reveal a general agreement with the
numerical results presented by Oughstun and Sherman. To facilitate and speed con-
vergence, we found it necessary to include a “trick” which took the median of the
last two calculated values as the next trial value. However, this was still not sensitive
enough for us to achieve convergence for values of 8 close to that where the saddle
points on the imaginary axis coalesce. This, as well as the dependence on initial con-
ditions in determining which saddle points were found revealed the complexity of the
structure of the analytic functions involved in the Lorentz model. Thus, except for
the region mentioned, this is a valid method for numerically calculating the location
of the saddle points for 1 < @ < co. Using this we also confirmed the improvements in

the approximations to the locations of the saddle points by Oughstun and Sherman.
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6 The Value of the Damping Constant

Understanding some this background, we can address the question of the parameter
values. Brillouin gives certain parameter values for a dispersive dielectric and does not
consider how a change in those values may affect his asymptotic analysis (Brillouin
1960, 56). Qughstun and Sherman similarly consider only these parameter values, and
at one point mention that their analysis assumes §% < wg (Oughstun and Sherman
1988, 847). A natural question arises as to how the precursor fields would develop for
different values of the parameters, and particularly for values for WlhiCh this condition

was no longer true.

We first consider the changes to the complex frequency plane as the damping
constant, § became larger. We find in general, five domains for the value of 6 for a

single resonance. These are

6>LU1.

We recall that w? = wi + 0% and thereby note that wy will always be larger than wp
for a non-zero plasma frequency. The equations for the branch cuts remain the same
since they arise from defining the critical points in the original form of the complex

index of refraction (given by eq. ( 10)) independently of the parameter values,
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wh o= (w2 —6HV2 45 (58)

wi = (Wl — Y2 — i

The graphs found in the appendix (figures 5-9) give an indication of where
the branch cuts are in these five domains. For small §, the branch cuts are situated
symmetrically about the imaginary axis and slightly below the real axis along the
line y = —§. As § increases these branch points and the corresponding cuts which
connect them, move away from the real axis and approach the imaginary axis until
8 = wo. At this point they coalesce, in effect forming a single branch cut situated on
the line y = —ié. At this point, it is interesting to note that the index of refraction

can be written:

As § continues to increase, the branch points continue to move, two moving
up and down the imaginary axis and the other two remaining off the imaginary axis
until § = wy when the branch cuts again meet, this time on the imaginary axis and
at the point (0, ~6). As with the special case of § = wy, there is a simplification in

the expression for the index of refraction when § = wy.

= (- rirrm)

Finally, as § increases away from w;, the branch cuts move away from each

other, the one approaching the real axis and the other —oco in the limit as § — oo.

Next, we want to find the location of the saddle points for these different do-
mains. The program used for the special case of § < wy can again be used to calculate
the saddle points for the new parameter values since it will calculate numerically the

exact locations of the saddle points for all values of the parameters.
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At this point, however, we find it worthwhile to retrace in some detail how

we came to understand our original search for the saddle points. In the process,
we discovered a few things which we had previously overlooked. In the course of
attempting to find the saddle points for larger values of the damping constant, we
discovered that the program would converge to six different points for the two regions
8 = wp and & = w, and eight points for the two other regions included in 6§ > wp.
We naturally wondered how this could be seeing how we had found only four saddle
points in the region we first considered, namely § < wp (and of course, Oughstun as
well as Brillouin only mention four saddle points). Since with our program we were
finding solution points to an eighth order equation (see Section 5 on Numerics for its
form), in retrospect we thought we should find four additional solutions to it. After
some additional analytical and numerical work, we located four more solutions to
this equation. In the right half plane, for the case of § < wp, one of these solutions
was just above the cut line, and the other was just below it. Symmetrically placed
solutions were found in the left half of the plane making a total of four additional
solutions. After this rather astounding discovery we were disturbed that what we
were calling four more saddle points were either ignored or completely unknown to
previous researchers. On closer examination of this eighth order equation, we noticed
that to put it in the form in which we were using it, we had squared both sides of
the equation. By doing this we had introduced additional solutions in the following

manner:



The equation squared represents our eighth-order equation. In this final equation

we have solutions which are true solutions of the original equation and hence are
saddle points. However, by squaring we introduce additional solutions which, in the
above example, are solutions of f(z) + ¢g(z} = 0 and not the equation in which we
were originally interested. Thus, these extra solutions we found numerically are not
true saddle points of the complex phase function and are irrelevant to evaluating the

behavior of the precursors.

After finding these extra solutions, it became necessary to know which of the
solutions the program was converging to, in the various regions, were saddle points
and which were not. It seemed reasonsable that if all the other parameters and
variables were constant, the locations of the saddle points should vary continuously
with increasing §. Many runs of the program confirmed this which we double checked
by substituting these solutions back into the original saddle point equation and finding

which solutions satisfied it.

Having settled this subtle point, we were able to find numerically the location
of the saddle points in all five regions of the parameter §. In all cases there are
four saddle points for all 4 values larger than one except for the single § value when
§ < wo at which two of the saddle points coalesce into a single saddle point. These
saddle points (for a value of § = 1.25) have been added to the graphs (figures 5-9)
showing the location of the branch cuts for the five domains. Also included (as circles
as opposed to the “X”’s for the saddle points) are the additional solution points to
which the program converged but which are not actual saddle points. Of these four
saddle points, two always begin at infinity and as # increases, approach the far branch
points (wh) for the three regions where § < wy, For § > wy, both of these distant

saddle points approach the branch point lowest on the imaginary axis, wy. Asin the
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case where § < wq, all the other cases for § also have two saddle points which begin
on the imaginary axis., However, in these other cases these saddle points will never
actually meet and move off into the complex plane, rather they will approach the
nearest branch point to them on the axis. Thus, the upper saddle point will approach

w_ and the lower saddle point will approach wy with increasing 0.

At this point we can make some qualitative predictions about the evolution and
behavior of the precursors. To get asymptotic expressions for the precursors under the
conditions mentioned in the additional four domains of the damping constant it would
be necessary to rederive the analytic approximations for the location of the saddle
points. Using the experience which we have gained in analyzing previous precursor
forms will help us to get a general idea of what form these precursors will take. _If we
were to take a contour similar to the ones we have used before, one which goes from
minus infinity to plus infinity through the available saddle points, only three saddle
points would contribute for the cases where § > wy. We will not be able to deform
our contour in such a way that it will take in the lower saddle point on the imaginary

axis.

In addition, we must note the relative values of the saddle points. In other
words, we must know the value of the real part of the phase function at the saddle
points. The computer program gi\;es us these values. We have not included any ta-
bles of these as there would have been several for purposes of comparison. Therefore,
we simply present the results of many runs of the computer program for increasing
8. As we saw for 6 < wy, the distant saddle points are the largest contributions to
the integral for § values slightly larger than one and the near saddle points become
predominant after a period of time. This difference in the relative values of the saddle

points gives the distinction between the first and second precursor fields. For large
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values of the damping constant, several things are changed. First, for 8 just slightly

larger than wy, the distant and near saddle points have nearly the same value. How-
ever, the value of the distant saddle points immediately begins to decrease whereas
the upper near saddle point increases in value for a short time period. What this
means is that the distant saddle points will contribute very little to the asymptotic
expression for the precursor fields. If we can relate this to the precursor fields with
which we are already familiar, we might say that the Sommerfeld precursor is ex-
tremely damped out with its amplitude and duration both being less than in the

examples considered by both Brillouin and Qughstun.

Further, since the contour will never pass through the lower near saddle point,
that contribution will not enter the equation. We note that it was the sum of the
contributions of the two near saddle points after they had left the imaginary axis
that gave the Brillouin precursor its oscillatory shape. It should also be pointed out
that in the case é < wyp, the initial exponential behavior of the Brillouin precursor
is a result of the single upper near saddle point contribution before the two saddle
points coalesce and leave the axis. Though this is only a prediction and would need
to be checked more carefully with further numerical and analytical work, it certainly
seems a possibility that in the cases we are considering, since the lower saddle point
will not be included, the Brillouin precursor will have an exponential increase for a
short time and then an exponential decrease giving the whole precursor a somewhat

Gaussian type of shape.

In conclusion, we see that a study of the analytic structure of the complex plane
can be generalized without much difficulty for different values of the parameters. The
more global perspective has enabled us to better understand the original case for

§ < wp. However, whether these “supercritical” values of the damping constant can
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be associated with physical media remains an open. question. Nonetheless, we believe

that our analysis has its place in the overall assesment of the applicability of the

Lorentz model to realistic media.
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7 A Double Resonance Medium

Until now we have only considered a material with a single resonance frequency. In
general, most media will have several resonance frequencies and corresponding absorp-
tion bands. Brillouin speculated that in generalizing to the case of several resonances,
additional precursors would arise with each additional resonance (Brillouin 1960, 81).
In a paper by Shen and Oughstun, they confirm the presence of another precursor
for a material with two resonances and give its shape graphically. They arrive at
this through mostly numerical work as the index of refraction for two resonances and
the resulting phase function in the integral for the signal become intractable to solve
analytically. It is not our purpose to analyze too closely their numerical work, but

we would like to extend what they have done.

Shen and Qughstun give the following for the index of refraction of a medium

with two resonances (Shen and Oughstun 1989, 949):

B B2

2
=1- - .
n(w) w? — wE + 26w w? — wi + 286w

(59)

This follows from eq. ( 7) in the section on the Lorentz model. However, as was
pointed out there, this itself is a simplification in that the local field correction factor,
v, is assumed to be zero. This correction factor allows one to take into account
the electric fields a particle in a material will feel which are exerted by neighboring
particles. It is therefore a characteristic parameter of a material. Assuming that
this correction factor is zero is not a serious problem in a material with a single
resonance as the effect is to shift the resonant frequency (see Section 1). However,

this simplification is not true for a multiple resonance medium.

We can take the general form we presented in the Lorentz section and show
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that the above index of refraction does indeed follow when v = 0,

K-1 _ Z Niq? 1
1+v(K—1) S emi wi —w?—2i6w

(60)

By multiplying both sides by the denominator on the left hand side and combining

the i — 1 terms, we get

b2
L
E‘ wgi—uﬂ — 288w

K=n*w)=1+ v (61)

—_— y ——,
1 v z’ wg‘, — w2 —246;w

where we have set

" oy
If ¥ = 0 in the above equation, it reduces to the eq. { 59). However, this approxima-

tion is only good for gases and other rarefied media. In general v will not be zero for

more dense materials.

We then ask, how will the inclusion of this local field correction factor affect
the location of the branch points and of the saddle points in the complex frequency
plane, and ultimately the resulting precursor behavior? To begin to answer this it

may be well to put eq. ( 61) into a different form for two resonances.

1+ (1 = ) { ot + oot |
v wi —w? —2ibpw Wi —w? =2y
1 { b b3 }
-V wi ~w? — 2w + Wi —w?—2ibaw

From this it can be seen that for ¥ = 0 there will be four singularities at the w values

n*(w) = (62)

which satisfy the two equations

w? 4+ 2ifpw — wi =0 (63)
w? 4 26w — wE =0
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However, for v 3 0, these will no longer be singularities of the complex index of

refraction since the zeros in both the numerator and denominator of eq. ( 62) cancel

each other out. Simplification of eq. ( 62) leads to

w4+iaw3—[c+(1—-t/)d]w2—i[e-l—(l-—-y)f]w—l-g-i-(lwu)h.

2 —
i) = wt+iawd —(c—vd)w? —ile—vflw+g—vh

(64)

where a, ¢, d, e, f,g and h are combinations of the parameters of the material and are

positive constants given by

a = 2(60 -+ 62)
—_ 2 2
cC = Wy + W + 4:(50(52
d = bg -+ bg
e = 2(60&)% + 62&03)

Fo= 2026, + b26)

- 42,2
g = Woly

- 322 12,2
b = biws + bywg.

Shen and QOughstun give the following parameter values which we will use as well

(Shen and Oughstun 1989, 949)

8o = 0.1 x 10'%ec™?
8, = 0.28 x 10"%sec™!
wp = 1x10%sec™?

we = Tx10%sec™?
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b2 = 5 x 10%sec™?

b2 = 20 x 10%%sec™?

To find the branch points and hence branch cuts of the above equation we must
solve for the zero points of both the numerator and denominator of eq. { 64). To
do this exactly requires solving two complex quartic equations in a complex variable.
With some work, this can be done exactly since methods for finding analytic solutions
to these equations are known and available (see, for instance a CRC Math Handbook).
But doing this will not give us much more information than solving them humerically

since the resulting expressions are very complicated algebraically.

To garner some information, we again resort to numerics. To get an idea of
the structure of the complex frequency plane, we graph the real part of the complex

phase function which is given by
R, 0) = R (iwln(w) — ).

We let w = w' + tw" and separated eq. ( 64) into real and imaginary parts. We wrote
a program incorporating a 3 dimensional plotting subroutine to plot the real part
of this phase function as a function of the real and imaginary parts of the complex

frequency.

Several graphs (figures 12-24) are included in the appendix for increasing values
of ¥. We also include a graph of the real part of the phase function for a single
resonance, showing that our derivation and the program does indeed reduce to that
case when b2 = 0, as it should (figure 11). This is, of course, no guarantee that our
derivation and resulting program are correct, but it does provide a certain amount of

validation for them.



For a double resonance medium with » = 0 there are two pairs of branch cuts

which are situated symmetrically about the imaginary axis and which are below the
real axis. One is relatively close to the imaginary axis for the parameters we are
using, extending along the line y = —§p from z ~ 1 to z = 1.9. The other is further
away from the axis and extends along the line y = —8&; from z &= 7 to z =~ 8. If we
extend what we know from the case of a single resonance medium, we know that on
each of the four branch cuts the branch point farthest away from the imaginary axis
is the w value which makes the index of r{efraction zero. The other end of the branch
cut is thus the point that causes the denominator in the index of refraction to go to
zero. ‘These last four points are readily identifiable on the graphs as the peaks. They
actually go to infinity since there are no maxima or minima in the complex plane,

but since we are doing numerical work and dealing with finite intervals, the points

that should go to infinity are effectively truncated and appear as peaks.

On ‘inspection of the graphs one notices that as v increases away from zero,
two of the peaks (which are the ends of the branch cuts closest to the imaginary axis)
begin to “move.” In a manner not dissimilar to how the branch cuts moved for a
single resonance as § increased, these branch points approach the imaginary axis and
at about the value v = 0.2 seem to become a single branch point on the imaginary
axis. It may be that the branch points come together at the origin, but we are not
sure of that at this point. There would seem to be some indication of this because
as v continues to increase, there appears to be a kind of separation as a peak in the
lower half of the complex plane moves down the imaginary axis and a valley or “hole”
in the upper half of the complex plane moves up the imaginary axis, each moving
away from the point where they came together on the axis. By graphing the negative

of the real part of the phase function, it appears that this valley is the mirror image
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of the peak moving away from it for increasing ».

To be able to say' anything at all about the precursors we need to know the
location of the saddle points and the value of the real part of the phase function
at these saddle points. We have written a program to find the saddle points. Our
methodology is the same as for a single resonance medium excepting that our index
of refraction is more complicated. We set the first derivative of the phase function
to zero, separated real and imaginary parts and were left with two equations in two
unknowns, namely the real and imaginary components of the complex frequency.
Using Newton’s method for two variables, we are again able to calculate the solutions

to these equations and thereby find the saddle points.

For v = 0, we are able to confirm the saddle point locations that Shen and
Oughstun found. These include the original four saddle points for a single resonance
medium plus four additional saddle points. A pair of saddle points are located between
the branch cuts in both halves of the complex plane. For & not much larger than one,
in the right half of the complex plane, there is a saddle point approximately above
and another below and to the right of the cut line closest to the imaginary axis. As
0 increases away from one, these saddle points move onto the cut lines, the upper
middle saddle point moving towards the far brénch point on the cut closest to the
imaginary axis and the lower middle saddlé point moving towards the near branch
point on the cut furthest away from the imaginary axis. As Shen and Oughstun
point out, the importance of these middle saddle points depends on the parameters
of the medium (Shen and Qughstun 1989, 960). For the previous choice of medium
parameters, these saddle points will be of significance for a finite interval of time
allowing for the evolution of an additional precursor which arrives after the end of

the Sommerfeld precursor and the onset of the Brillouin precursor. Using our previous
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interpretation, this is because the middle saddle points which contribute to a possible
precursor are predominant over all other saddle points in a time period between the

end of the Sommerfeld precursor and the arrival of the Brillouin precursor.

Having found the saddle points for a double resonance medium for v = 0, it is
then necessary to find these saddle points for » > 0 and to determine roughly their
behavior and their contribution to any expression for the precursor fields. As we did
for a single resonance medium, we have listed in the appendices some of the locations
for these saddle points as # increases along with the values of the real and imaginary
parts of the phase function. After some investigation it was found that the distant
saddle points are barely affected by the increase in v. They still approach the most
distant branch cuts as @ increases and the relative positions of these saddle points
for any given @ is nearly the same. Similarly, the value of the real part of the phase
function X(w,®d) remains very nearly the same for a given # value as v increases.
A look at the tables included in the appendices for the distant saddle points for a
double resonance medium with v included will bear this out (see Tables 7-9 in the

appendices).

There is also not much change to the location of the middle saddle points. For
small @ values, these saddle points begin and are found in approximately the same
vicinity for v # 0. As 8 increases these saddle points continue to move onto one of the
nearby branch points. One difference is that the “upper” middle saddle point begins
to converge to the branch cut farther away from the imaginary axis as v becomes
larger than about 0.4 rather than to the branch cut closer to the imaginary axis. The
values of X(w, #) at these middle saddle points remain about the same for increasing

v (again, see Tables 10-14 in the appendices).

On the other hand, there are some real changes to the near saddle points.
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For all v less than about 0.2 for the parameter values we are considering, the near

saddle points still begin on the imaginary axis, move towards each other, coalesce,
and move apart into the plane for increasing f. However, for 0 < v < 0.2 these
saddle points begin closer to each other but take a longer time before coalescing.
Further, the relative values of X(w,0) are more pronounced. For example, for a
given value of 8 not much larger than one, X(w,8) at the “upper” near saddle point
becomes more negative as v increases away from 0 to about 0.2. Thus, a longer time
passes before these saddle points are of significance in comparison to the other saddie
points. At v & 0.2 the branch points come together after which they move away from
each other along the imaginary axis. This “motion” of the branch points along the
axis for increasing v effectively prevents the near saddle points from coalescing, For
v greater than about 0.2, the near saddle points still begin on the imaginary axis,

however, they merely approach the branch points which are now located on the axis

(see Tables 15-20).

As we did with the cases where & increased, we can make a few predictions
as to the resulting behavior and evolution of the precursors. Since the distant saddle
points remain nearly unchanged in their position and contribution in terms of the
value of the real part of the phase function as v increases, we expect that the resulting
Sommerfeld precursor fields should remain similar to those for » = 0. This would also
appear to be true for the middle saddle points. Since their locations do not change
much for increasing » nor do the values of X (w, #), we expect that the precursor fields
arising from the extra resonance condition will also be close to those for v = 0. There
is the question of whether there will be much change arising for larger values of v
(values greater than about 0.6) when one of the saddle points changes trajectories

and converges to a different branch point. Additional numerical research would be
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needed to answer this problem more carefully.

Though the other two precursors seem to remain largely the same with the
inclusion of v, this will not be true for the Brillouin precursor which arises from the
contributions of the near saddle points. For values of v such that 0 < » < 0.2, the
Brillouin precursor will arrive later than when v = 0. Further, this delay in its arrival
will increase as v increases towards 0.2. The main signal may then overshadow this

precursor if the delay is long enough.

A troubling result, however, is the fact that for large enough », the upper near
saddle point remains in the upper half of the plane. This is because one of the branch
points (the “valley”) is on the imaginary axis in the upper half of the plane and is
actually the point to which the saddle point will converge. This is strange because it
implies that the contribution from this saddle point will blow up as # — co. We can

show this by looking at the phase function

Hwr0) = iwln(w) =0
= yf—an; —yn, + i(zn, — yni — x8)
where z and y are the real and imaginary parts of the complex frequency and n,

and n; are the real and imaginary parts of the complex index of refraction. We are

interested in the real part, so we have

R(¢) =X =y —yn,

where the term involving x has been set to zero since we are dealing with a saddle
point on the imaginary axis. Because the saddle point never moves below the real axis,

as in all the cases with which we have dealt before, the first term remains positive and
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goes to +oo with 8. In both the method of steepest descent as well as the method of

Olver, the asymptotic expansion will now have a continuously increasing exponential

term.

T we were to interpret this as before, we would have to say that the precursor
field to which this saddle point makes its contribution (the Brillouin precursor) will
have an exponentially increasing amplitude for increasing time. This would ultimately
dwarf any possible signal which may follow. For example, in the case of the delta
function which gives the impulse response of the medium, the Sommerfeld and second
precusors would be followed by a Brillouin precursor which, instead of damping out,

would increase in amplitude.

In conclusion, we have been able to incorporate a consideration of the local field
correction factor present in the Lorentz model into an analysis of a double resonance
rﬁedium. With numerical analysis we have been able to examine the structure of the
complex plane. We have also given qualitative results for the forms of the precursors.
A rather unphysical result does come out of the numerics for the Brillouin precursor,
however. We strongly question this result, but at this time do not know the reason
for it. Additional research will be necessary to determine the cause of this problem.
But a significant start has been made to generalizing the analysis of precursors to a

more complete Lorentz model of dielectrics.
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A Complex Analysis

In this appendix, we present some basic results from complex analysis. We will
also sketch a derivation of the method of steepest descent as well as briefly present
the asymptotic technique of Olver which was used by Oughstun and Sherman in
their calculation of the contribution of the saddle points. The results of complex
analysis and the method of steepest descent can be found in chapters six and seven
of Mathematical Methods for Physicists, by George Arfken as well as in other texts
on complex analysis. The basic results which we present here are found discussed at

greater length in those references,
A.1 Basic results

The complex variable z is defined in terms of two real variables,  and y

z=1x+1y

where i = +/=1 and z is called the real part of z and y is the imaginary part of z.
The complex conjugate is 2 — iy and can be expressed as z*. It is found by simply
replacing ¢ with —z everywhere, Complex variables also have a polar representation.
If 2z is taken to be a vector, it can be graphed in the complex plane where the y-axis
becomes the imaginary axis and the z-axis is the real axis. z can then be expressed
in terms of its magnitude, r (often written as |z|), and the angle # it makes with the

real axis:

where

59



r=lel = ot 4

g = arctan 2.
T

Complex functions defined in terms of the complex variable z can always be

separated into the sum of two real functions, one comprising the real part and the

other the imaginary part of the complex function.

f(z) = R[f(2)} + iSf(2)] = u(z,y) + iv(,y)
The complex conjugate of a complex function, f*(z), is found by simply replac-
ing ¢ with —i everywhere ¢ is found in the original function. The Schwarz reflection
principle equates the complex conjugate of a function with the function of the conju-

gate of the complex variable:

fi(2) = f(z")
provided that the function f(z) is analytic in a region which includes the real axis

and is real on the real axis.

In analogy with the complex variable z, f(z) can be given a polar representa-

tion:

where

=

F@I = =) £ @F = (0 +0?)
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When dealing with multivalued functions such as logarithms or functions in-

volving powers of noninteger value, it becomes desirable to make the function single

valued in the complex plane. Take, for example, the function

f(z)= 2 = rkei?,

Assume for simplicity that r is 1. At 8 = 0, f(2) will be 1 whereas f(z) will be —1 at
0 = 2. The significance of this is that the phase of the complex variable z has gone

through an angle of 27 while the phase of the complex function

flz) =t
has only gone through an angle of #. The following table illustrates this more clearly

by showing values of z and f(2) = z% at various points in the complex plane. If a

0 0f w/2 T 3r/2 2 5w /2 37| Tr/2 |4x
1 -1 —1 1 7 -1 —1 1

F2) =221 (0 +d)]| i | (148 |-1]|HE(-1-8)|—i|F(1-1)] 1

0
—

function f(z) is multivalued, we require that the phase of the function, 8, be restricted
to an interval of 27 in order that the function be single-valued. Further, a branch point
is created together with a line (called a cut line) in the complex plane (extending from
the branch point) which no line integral may cross. For f(z) = 2%, or more generally,
f(z) = z* where a is not an integer, the origin becomes the branch point and the
positive (or negative) real axis may be taken as the cut line. (The choice of the cut
line is arbitrary so long as we connect either two branch points or a branch point with
infinity. We could have chosen the negative imaginary axis or any line beginning at

the origin and extending to infinity to be the cut line.) In general, a function will not
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be continuous across a cut line. Thus, the phase of the function on one side of the

cut line will most likely be different from the phase on the other side. For functions
which may have more than one compatible branch point, the cut lines can either be
taken to infinity from the branch points or drawn between branch points. This is the
case for the expression for the complex index of refraction where two branch cuts are

found in the lower half of the complex plane.

Necessary and sufficient conditions for the differentiability of a complex func-

tion, f(z), are the Cauchy-Riemann conditions,

Ju v Jdu v

gr 8y’ By Oz
The importance of these conditions lies in the fact that they tell us whether or not a
complex function, f(z), is differentiable, That in turn tells us if a function is analytic,
which is a condition for almost all significant operations in the complex plane and

therefore a condition for almost all mathematical models of physical systems.

If a function is analytic, several properties of that function are then immedi-
ately known. Both the real and imaginary parts (u and v respectively) of an analytic
function are harmonic. In other words, they satisfy Laplace’s equation. Analyticity of
a function also gnarantees the existence of all derivatives of that function. A function
which is both analytic and finite over the entire complex plane can be shown to be
a constant. If a function is analytic in a given region of the complex plane, though
they may have saddle points, the real and imaginary parts of the function will have
no minimums or maximums in that region. The last two conditions imply that any
function which is not a constant will have at least one singularity somewhere in the
complex plane. Further, if a function is continuous and analytic on the boundary

which defines a region within which the function is also analytic, the line integral of
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the function along that contour (taken in a couterclockwise direction) will be zero:

z)dz =0
4 1)
where C is a closed contour. This is known as Cauchy’s integral theorem.

Another significant result is the Cauchy integral formula. It gives the value of
the function at a specific point within a given closed contour once the value of the
integral on the contour is known. The condition for this formula is that the function
f(z) be analytic everywhere within and on a closed contour C'. Then, if 2o is a point

within C,

—L;fl-dz = 2mif(20)

Cz— %o

where again the contour is iraversed in a counterclockwise direction. (If the contour
is followed clockwise, a negative sign would be introduced.) For the above, if z is on
the outside of the contour, the integrand remains analytic on and in C, and hence,

by the Cauchy integral theorem, the integral is zero.

By using the Cauchy integral formula, higher order derivatives of f(z) can be

found. The equation for finding the nth order derivative at z, is given by

n g ()

27t Jo (2 — zo)

f(ﬂ] ( Zo) —

Using the Cauchy integral formula, a Taylor series expansion can be derived

for functions of a complex variable:

o0 (n) %o
£(s) = 3oz — 2o 20

n=0
For annular, analytic regions in the complex plane, a series expansion known as a

Laurent series can be found from the Cauchy integral formula:
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(=)

fl2)= 2 an(z—2)"

==00

where

1 fo F(2)de'

an = (o — T

T o
If the Laurent series given above is integrated term by term over a region
enclosed by € in which f(2) is analytic except for an isolated singularity zp, all the

terms integrate to zero except the n = —1 term. This term is given by

f;} f(z)dz = a—-lf dz = 2mia_y

¢ zZ—2p

and a_; is called the residue of f(z) at 2z and is

_ L Ny’
a_y = 21m'}§cf(z Ydz'.

For a region, ', which encloses n singularities the residues of f(z) at each of

those singularities add towards giving the integral of the function around C’

fg: flz)dz = 27mi(a_y, +an, +---+a,,)

= 2xi-) (enclosed residues).

This result is known as the residue theorem. Tt is extremely important in evaluating
definite integrals through contour integration. Basically, the process of integration is
reduced to choosing an appropriate closed contour C' and finding the residues at the
singular points enclosed by this contour. By appropriate we mean a contour which,
when the integral is evaluated, will cause the integral to go to zero (or be otherwise

easily evaluated), except along the portion of interest (often the z-axis).

64




A.2 The method of steepest descent

At this point we introduce the method of steepest descent. This is a method which
determines the asymptotic behavior of a function when it can be expressed in an

integral form of the following type:

I(s):/cg(z)e’f(z)dz

where s is assumed to be real, large, and positive and f(2) and g(z) are complex
functions of the complex variable z and independent of s. (Born and Wolf point out
that the method can still be derived for s complex, but since in our physical problem,
for which we are using the method of steepest descent, this parameter is real, we will
derive it only for the real case.) In this way the exponential involving s and f(z)
will dominate the function g(z). It is further assumed that f(2) is analytic along the
contour. The contour is chosen in such a way that it is independent of s and that the
real part of f(z) (which we will call u(z,y) from now on) goes to minus infinity at
both limits of the contour. Hence the integrand goes to zero and does not contribute
to the integral in those points. Since s is large and positive in the asymptotic domain,
the main contribution to the integrand comes when u is large and positive. We require
that the imaginary part of f(z) (to be called v(z,y) from now on) is constant in the

region where % attains its maximum.
A maximum in % means that the first derivative of f(z) will be zero:

bu_tu_ A _ou, ou_
meay“[):’ dz '_3m+28y_0'

This implies that we have a saddle point since Laplace’s equation V*u = 0 gives

Pu_ o

Ozt~ By
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which shows us that u (and similarly v since it also satisfies Laplace’s equation)
cannot have an absolute maximum or minimum. This (;ondition, that we demand
that u have a maximum at the saddle point restricts how we can pass through the
saddle point with our contour. We further restrict this to a single path by requiring
that along this contour v{z,y) be constant, namely the value of v at the saddle point,
v(zo, o). That only a single curve satisfies this is a result of the fact that the curves
u = constant are orthogonal to the curves v = constant. We can show this by using

the gradients of the two functions:

Oudv Judv

_ u( ), (o
T dz \ Oy oy \ Oz

= 0

Thus, if the gradients are perpendicular for all z and y, the curves are orthogonal,
which is the same as saying that the gradient of  is tangent to a curve of constant
v. In our problem, remaining on a contour where v is constant is identical to moving
along the gradient, i.e. in the direction of most rapidly decreasing (or increasing)
u. By our previous condition that we go through the saddle point such that u will
have a maximum there, we must go throughr the saddle point in the direction of most

rapidly decreasing u. Hence, we have the path of steepest descent.

On expanding f(z) in a Taylor series about our saddle point at 2o, we see that
the first derivative vanishes and for a small region around the saddle point f(z) can

be approximated by
£(2) % J(z0) + 5.7"(z0) - (2 = 20"

66




such that the integral over the contour can, in turn, be approximated as being entirely

made up by the contribution at this saddle point at zp:
0 1 en 2
I(s) wg(zo)esf(zo)f ehof (o) z=20)? g,
-0

The term involving the second derivative can be shown to be purely real since
we are taking the path of steepest descent. This is equivalent to keeping the imaginary

part of f(z) constant along the contour.

f(z) - f(ZO) = u(:c,y) + Z"U(.’B, y) - U(a‘:o,yo) - iv(mﬂayﬂ)
= u’(m! y) - 'u’(wﬂs yU)

377(60) (2 = 2"

2

We then set the term involving the second derivative equal to —t?/2s where s is real
according to our original assurnption and hence t is also real. By expressing z — 2

and f"(zp) in polar form

(z—20) =6 ["(z) = |f"(20)l€”,
where o and /3 are arbitrary phase constants, we can then rewrite our substitution as

llfﬁ(zn)|et'ﬁ62ei2a — ea'vrﬁ
2 2s

The phases on both side of this equation must be equal so we can write
ei(2a+ﬁ] — ei‘il‘ __\7_ v + ﬂ =,

where we have taken only the first branch of the function. We can now express the

integral in terms of ¢ rather than z by using
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tet'(‘-'l’—-,ﬁ}/2

4 ——
s|f"(20)|

(2 — 20) =
where the exponent of the exponential of this last equation is simply 1. We set

dz e

dz=— dt = —/——=-dt
dt s|f(z0)]
and rewrite our integral as
sf(zo)em o0 .
~ L
I(s) ~ Sf” PG / 124t

This gives, on recognizing the remaining integral as the error integral, the final result

for the method of steepest descent.

V21 g(zp)et/ ()i
BRI

A few things should be pointed out. It is critical that the correct path is

I{s) ~

chosen, in this case the path of steepest descent. This is done by correctly choosing
a, the phase factor which indicates the direction taken through the saddle point.
The location of the saddle point zp is determined for a given f(2) by setting its first
derivative equal to zero and solving for z. This must be the maximum for u(zo, o),

the real part of f(z). Therefore,

RIf(2)] < R[F(2)]]s=z0

for all the rest of the points on the contour C where z # zp. Substituting z =
Zo + 6 into the left hand side of the above equation makes it possible to solve for

the appropriate value of the phase factor, a.

Should it be the case that the contour passes through more than one saddle
point, the final result for the integral will be the sum of the contributions to the

integral of the individual saddle points.
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The method of steepest descent, originally due to P. Debye is related to the

method of stationary phases due to Stokes and Kelvin, which was later set on firmer
foundation by Watson, For more details see Born and Wolf (Born and Wolf 1970,
747). All these methods give asymptotic approximations to integrals by choosing a
path of integration such that the integrand only contributes to the integral in certain
critical points where the integral can be evaluated exactly, In the method of steepest

descent these points are the saddle points.
A.3 The Olver method

Oughstun and Sherman use in their analysis the asymptotic expansion derived by
Olver (Olver 1970, 228). The most significant improvement of this method over that of
steepest descent is that it does not require a knowledge of the path of steepest descent
through the saddle points to evaluate the appropriate integral. In addition, Olver’s
paper presents the entire asymptotic series for an integral given in the above form.
His derivation is also more general in that it is applicable to saddle points of higher
order. (A higher order saddle point is one where, in addition to the first derivative,
higher order derivatives in the Taylor expansion of f(z) go to zero.) Although, I have
not shown them, these last two results of Olver can be found using the method of
steepest descent. I will not attempt to reproduce Olver’s derivation, but I do want
to show that for the conditions of a first order saddle point, the first term of his
asymptotic expansion does reduce to the expression derived here using the method

of steepest descent.

Consider a contour integral of the form .

b
1(2) = [ ),
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where p(t) and ¢(t) are analytic functions of the complex variable ¢ and the following

conditions are met:

1) p(t) and ¢(t) are independent of z, single-valued, and analytic in an
open domain which we will call T.

2) The contour is independent of z, e is finite, b is finite or infinite, and
the interval between a and b is in the open domain T.

3) Around @, p(t) and ¢(¢) can be expanded in convergent series of the
form ' |
p(t) =pla) + Dope(t —a)'™,  q(t) =3 ¢t — a)***,
8=0 g=0
where p;, and g, are coeflicients in the expansion and py # 0 (we will take

¢ and A as positive integers although Olver has conditions which include

a more general range for the two).

4) z ranges along a ray or over a subsector given by #, < § < 8, and
|2| > Z where 8 is defined as the phase of 2, 8; — 6; < 7, and Z > 0. I(z)
converges at its upper limit absolutely and uniformly with respect to z.
5) R [ewp(t) - e"ap(a)] is positive when ¢ is on the contour and is bounded

away from zero uniformly with respect to 8 as ¢ — b along the contour.

If these conditions hold for an integral of the form given above, Olver shows:

¢ -3 —zpla = S+/\ ay
I(z)=fb e~ Wg(t)dt ~ e p()z_%l“( p )z(-"“")/ﬂ

uniformly with respect to # (the phase of z) where |z| — co. In addition, the coefli-

cients a, are given by reverting the series for p(¢) and ¢(2).

The first term of this asymptotic expansion is given by ‘
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—zp(a A o 1
e r (;;) —7 o
H#Po

where Olver has given ap = go/sps’*. By expanding p(t) and ¢(¢) in terms of power
series we can determine pp and go. Olver’s definition of p(?) is
p(t) = pla) +po(t — o) + p1(t — a) ™ + pa(t — @) + - .-

For a first order saddle point, which is what we considered in deriving the method of

steepest descent, the Taylor’s expansion of p(t) will be

p(t) = p(a) + p(a) - (= @) 4 3:9"(0) - (£ = a)° 4

since for a first order saddle point the first derivative is zero. For higher order saddle
points, correspondingly higher order derivatives will also vanish. By the uniqueness
of power series, we can then say that pp = 2p"(a) and 4 = 2. Expanding ¢(t) in like

manner, we get

g(t) = gt —a)* 4+ gt — a)* + ot — )Mt 4.

= 40)+ (@) (t = a) + 50"(@) - (= &) 4+

where again, by the uniqueness of power series, we can say that ¢o = ¢(a) and A = 1.

Using these values, the first term in Olver’s expansion becomes

—zpla l Q(a) 1 . E q(a)e"’zi”(“)
e () (2) 2 (“;'p”(a))l/z ' 21/2 \/; [Zp”(a)]“i'

Referring back to our discussion of the method of steepest descent and using

our prior notation, we see that a and zg are the same point, in this case a first order
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saddle point. g(a) is the same as g(zp), p(a) becomes f(z), and —z corresponds to

3. However, if we write —z as €'"z, we can set

Substituting this into Olver’s first term yields

N LT S O L
2 (e~ims f"(20))"/? 2 ¢=in/2¢1812 |5 f1(20) [/

where we have used our earlier notation in putting f”(zp) into polar representation.

Olver’s theorem calculates the integral over a contour which begins at the critical
point (in this case a saddle point) and extends to a point where the integrand goes
uniformly to zero. Since we took our original contour between two points (between
—oo and +00) at which the integrand vanished uniformly with the saddle point on
the contour, we must multiply Olver’s result by two to account for the difference in
contours. We can consider Olver’s method as having calculated half the contribution
of the saddle point since we “went down” iny one side of it. We also recognize that
the sum of the phases in the denominator above, (—7 + )/2, is identical to the «
which we had defined earlier in our derivation of the method of steepest descent.
With these substitutions, the first term of Olver’s asymptotic expansion is seen to
be identical to the approximation which we calculated using the method of steepest

descent:

N \/Q—W‘q(z{})e’f(z")ei"‘
|5 £(z0)|'*

I(s)
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B Graphs

The following are various sets of graphs which we felt would be appropriate to include.
The first set of three graphs (figures 1-3) are amplitudes of the Sommerfeld and
Brillouin precursors versus # {or two types of signals: a delta pulse and a sine wave
modulated by the Heaviside function. The graph for the delta pulse is to give an
idea of the general shape of the precursors. We graphed it using the formulation
of Qughstun and Sherman. The first graph of the sine wave is using the equations
of Brillouin while the second is using those of Oughstun and Sherman. They are
distinguished by the “O” or “B” which follow them to indicate either Oughstun or
Brillouin. The two graphs of the two sine waves disregard the arrival of the signal
itself in order that we may compare the two formulations by Brillouin and Oughstun
and Sherman. One should note on Ithe graphs that they do not exactly begin at § = 1
since we are working with the non-uniform expansion. The Sommerfeld precursor goes
to infinity at that # value. So we begin at # = 1.02 for the delta pulse and at & = 1.05
for the two sine waves. The Brillouin precursor also seems to have a discontinuity at
@ ~ 1.5. This is again because we are using the non-uniform expansion at the point
where the near saddle points coalesce and separate. We used the parameter values
set forth in the text for these graphs. We considered the distance into the medium
as z = 1 x 10~* cm making ¢/z 0.03x10' sec™ and the carrier frequency for the

modified sine wave as 5 x 101¢ sec™1.

Figure 4 is a graph comparing the approximations for the distant saddle points
with the numerically calculated values. The curved solid line leading to the far ends
of the branch cuts are the numerical values while the dotted line is the approximation

of Oughstun and Sherman and the straight solid line is the approximation due to
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Brillouin. These are graphed in the complex plane with the real part of the frequency

(which we also call z) along the horizontal axis and the imaginary part of the frequency
(also called y) along the vertical axis. The graph shows the trajectories of the saddle

points and how they approach the branch cuts for increasing 8.

The next graphs (figures 5-9) are graphs of the complex frequency plane for a
medium with a single resonance showing the locations of the branch cuts, the saddle
};oints (given as “X”’s) and the extra solutions (given as “O”’s) to which our programs
would converge but which are not saddle points. We have also included a graph of

the complex plane for a double resonance medium with » = 0 (figure 10).

The remaining graphs are three dimensional plots for both a single and a
double resonance medium which show the real part of the phase function (which we
have called X(w,®)) for a given value of @ plotted against the real and imaginary
parts of the complex frequency (which we have called z and y respectively). There
are 13 of these three dimensional plots. All of them were calculated for a 0 value
of 1.25. The parameter values are those listed in Section 7 for a double resonance
medium. The first three are for v values from 0 to 0.2 showing a broad view of the
plane. In these, both # and y extend from —10 to +10. The next five are plots for
v values from 0.2 to 0.6 where # and y extend from —5 to +5. The final five plots
are identical to the previous five except that instead of looking along the +y axis,
the viewer is looking along the —z axis. In effect, we have turned the graph around
to get a “reverse” view of the surface of the complex plane. The programs to graph
these three dimensional plots used a subroutine found in the p6 library on the VAX

used in the Physics Department at BY'U.
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C Tables

The following pages are tables which contain locations of the saddle points for in-
creasing § under various conditions. They also show the relative importance of these
saddle points by giving the real and imaginary parts of the phase function at these
saddle points. The calculations for single resonance media show differences in both

the initial values and the increment of 8.

For double resonance media, we changed the value of » and the initial values
while keeping the increment in § the same. It should be noted that we had difficulty
in getting convergence for the middle saddle points for a double resonance medium
for 8 < 1.6 so we started the tables at this value. This is actually not so terrible
since the importance of these saddle points comes shortly after this # value for the

parameters we used.

Also, any asterisks indicate that we had a problem with convergence. This
happened in particular for certain € values for the near saddle points as they coalesced.

This is discussed in the text.
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TABLE 1:
The distant saddle point in the right half
for a single resonance medium.

initial x = 40.00
initial y = -0.10
theta x-value y-value
1.05 16.03171 -0.48565
1.10 12.38877 ~0.44927
1.15 10.84923 -0.42659
1.20 9.96039 -0.41066
1.25 9.36848 -0.39865
1.30 8.94024 -0.38917
1.35 8.61309 -0.38141
1.40 8.35340 -0.37451
1.45 8.14128 -0.36934
1.50 7.96413 -0.36449
1.55 7.81358 -0.36022
1.60 7.68379 -0.35642
1.65 7.57055 ~0.35300
1.70 7.47077 -0.34990
1.75 7.38208 -0.34707
1.80 7.30268 -0.34447
1.85 7.23112 -0.34208
1.90 7.16627 -0.33986
1.95 7.10721 -0.33779
2.00 7.05317 -0.33586
2,05 7.00353 -0.33405
2.10 6.95776 -0.33235
2.15 6.91543 -0.33075
2.20 6.87616 -0.32924
2.25 6.83962 -0.32780
2.30 6.80554 -0.32644
2.35 6.77369 -0.32515
2.40 6.74385 -0.32392
2,45 6.71583 -0.32274
2.50 6.68949 -0.32162
2.55 6.66467 -0.32055
2,60 6.64125 -0.31852
2.65 6.61912 -0.31854
2.70 6.59818 -0.31760
2.75 6.57833 -0.31669
2.80 6.55950 -0.31582
2.85 6.54161 -0.31498
2,90 6.52460 ~0.31417
2.95 6.50840 -0,31338
3.00 6.49297 -0.31263
3.05 6.47824 -0.31190
3.10 6.46419 -0.31120
3.15 6.45075 -0.31053
3.20 6.43790 -0.30987
3.25 6.42561 -0.30924
3.30 6.41383 -0.30863
3.35 6.40253 -0.30803
3.40 6.39170 -0.30746
3.45 6.38130 -0.30690
3.50 6.37131 -0.30636

Re phi
-0.02587
-0.04916
-0.07102
-0.09193
-0.11215
-0.13183
-0.15169
-0.17000
-0.18860
-0.20694
-0.22506
-0.24297
~0.26071
-0.27828
-0.29570
-0.31299
-0.33015
-0.34720
-0.36414
-0.38098
~0.,39773
~-0.41439
-0.43097
-0.44747
-0.46389
-0.48025
~0.49654
-0.51276
-0.52893
-0.54504
-0.56109
-0.57709
~0.59304
-0.608595
-0.62481
-0.64062
-0.65639
-0.67212
~0.68780
~-0.70346
-0.71907
-0.73465
-0.75019
-0.76570
~-0.78118
-0.79663
-0.81204
-0.82743
-0.84279
-0.85812

of the plane

Im phi
-1.48110
-2.17518
-2.75201
-3.27055
-3.75290
-4,21010
-4.64859
~5.07252
~5.48472
-5.88723
-6.28158
-6.66893
-7.05023
-7.42621
-7.79749
-8.16458
-8.52789
-8.88780
~9,24462
-9,.59861
-9.95001

-10.29902
~10.64584
-10.99062
-11.33350
~11.67462
-12.01409
-12.35202
-12,68851
-13.02363
-13.35748
-13.69012
-14.02163
-14.35205
-14.68146
-15.00990
~15.33743
-15.66408
-15.98990
~16.31493
-16.63921
-16.96276
-17.28563
-17.60785
-17.92943
-18.25042
-18.57082
-18.89068
-19,21000
-19.52881




TABLE 1:
The distant saddle point in the right half of the plane
for a single resonance medium.

initial x = 40.00

initial y
theta x-value
1.05 16.03171
1.10 12.38877
1.15 10.84923
1.20 9.96039
1.25 9.36848
1.30 8.94024
1.35 8.61309
1.40 8.35340
1.45 8.14128
1.50 7.96413
1.55 7.81358
1.60 7.68379
1.65 7.57085
1.70 7.47077
1.75 7.38208
1.80 7.30268
1.85 7.23112
1.90 7.16627
1.95 7.10721
2.00 7.05317
2,05 7.00353
2.10 6.95776
2.15 6.91543
2.20 6.87616
2.25 6.83962
2.30 6.80554
2.35 6.77369
2.40 6.74385
2.45 6.71583
2.50 6.68949
2.55 6.66467
2.60 6.64125
2.65 6.61912
2.70 6.59818
2.75 6.57833
2.80 6.55950
2.85 6.54161
2.50 6.52460
2.95 6.50840
3.00 6.49297
3.05 6.47824
3.10 6.46419
3.15 6.45075
3.20 6.43790
3.25 6.42561
3.30 6.41383
3.35 6.40253
3.40 6.39170
3.45 6.38130
3.50 6.37131

-0.10

y-value
-0.48565
-0.44527
-0.42659
-0.41066
-0.38917
-0.38141
-0.374591
-0.36934
-0.36449
-0.36022
-0.35642
-0.35300
-0.34990
~-0.34707
-0.34447
-0.34208
~0.33986
-0.33779
~-0.33586
-0.33405
-0.33235
-0.33075
-0.32924
-0.32780
-0.32644
-0.32515
-0.32392
-0.32274
-0.32162
-0.32055
-0.31552
-0.,31854
~-0.31760
-0.31669
-0.31582
-0.31498
-0.31417
-0,31338
-0.31263
-0.31190
-0.31120
-0.31053
-0.30987
-0.30924
-0.30863
-0.30803
-0.30746
-0.30690
-0.30636

Re phi
-0.02587
-0.04%916
-0.07102
-0.09193
-0.11215
-0.13183
-0.15109
-0.17000
-0.18860
-0.20694
-0.22506
-0.24297
-0.26071
-0.27828
-0.29570
-0.,31299
-0.33015
-0.34720
-0.36414
-0.38098
-0.39773
-0.41439
-0.43097
~0.44747
-0.46389
-0.48025
-0.49654
-0.51276
-0.52893
-0.54504
-0.56109
-0.57709
-0.59304
-0.60895
-0.62481
-0.64062
-0.65639
-0.67212
-0.68780
-0.70346
-0.71907
-0.73465
-0.75019
-0.76570
-0.78118
-0.79663
-0.81204
-0.82743
-0.84279
-0.85812

Im phi
-1,48110
-2.17518
-2.75201
-3.27055
-3.75290
-4,21010
-4.64859
-5.07252
-5.48472
-5.88723
-6.28158
-6.66893
-7.05023
~-7.42621
~-7.79749
-8.16458
-8.52789
-8.88780
-9.24462
-9.59861
-9.95001

-10.29902
-10.64584
-10.99062
-11.33350
-11.67462
-12,01409
-12.35202
-12.68851
~13.02363
-13.35748
~13.69012
-14.02163
-14.35205
~14.68146
-15.00990
-15.33743
-15.66408
-15.98990
-16.31493
-16.63921
-16.96276
-17.28563
~17.60785
-17.92943
-18.25042
~-18.57082
-18.89068
-19.21000
-19.52881



TABLE 2:
The distant saddle point in the left half of the plane
for a single resonance medium.

initial x =-30.00
initial y = -4.00

theta
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
.88
1.90
1.92
1.94
1.96
1.98
2.00

x-value

-23.66715
~17.54819
-14.92805
-13.40601
-12.38877
~11.65087
-11.08590
-10.63643
~10.26844

-9.96039
-9,69790
-9.47095
-9.27236
-9.09680
-8.94024
-8.79955
-8.67231
-8.55654
-8.45067
-8.35340
-8.26367
-8.18057
-8.10336
-8.03140
-7.96413
-7.90109
-7.84188
-7.78612
-7.73352
-7.68379
-7.63670
-7.59204
-7.54961
-7.50923
-7.47077
-7.43408
-7.39903
-7.36551
-7.33343
-7.30268
-7.27318
-7.24486
~7.21765
~-7.19147
-7.16628
-7.14200
-7.11860
-7.09602
-7.07423
~-7.05317

y-value
-0.52205
-0.49598
-0.47662
-0.46151
-0.439095
-0.43044
-0.42297
-0.41644
~0.41066
-0.40549
-0.40083
-0.39659
-0.39273
-0.38918
-0.38590
-0.38286
~-0.38003
-0.37739
-0.37491
-0.37258
-0.37039
-0.36832
-0.36636
-0.36450
-0.36273
~0.36104
-0.35943
~0.35789
-0.35642
-0.35501
-0.35366
-0.35236
-0.35111
-0.34990
-0.34874
-0.34762
-0.34653
-0.34549
-0.34447
-0.34349
~0.34254
-0.34162
-0.34073
-0.33986
-0.33801
-0.33819
-0.33740
~-0.33662
-0.33586

Re phi
-0.01079
-0.02096
-0.03068
-0.,04005
-0.04916
-0.05804
-0.06673
-0.07526
-0.08366
-0.09193
-0,10009
-0.10815
-0.11612
-0.12402
-0.13183
-0.13958
-0.14727
-0.15490
-0.16247
-0.17000
-0.17747
-0.18490
-0.19229
-0.19963
-0.20694
-0.21421
-0.22145
-0.22866
-0,23583
-0.24297
-0.25009
-0.25717

- -0.26423

-0.27127
-0.27828
-0.28526
-0.29223
~0.29917
-0.30609
-0.31299
-0.31987
-0.32673
-0.33357
-0.34039
-0.34720
-0.35399
-0.36076
-0.36752
-0.37426
-0.38098

Im phi

0.91236
1.31364
1.63564
1.91783
2.17518
2.41522
2.64235
2.85942
3.06835
3.27055
3.46707
3.65871
3.84610
4.02975
4.21010
4,38747
4.56217
4.73444
4,90450
5.07252
5.23868
5.40311
5.56594
5.72728
5.88723
6.04588
6.20330
6.35957
6.51477
6.66893
6.82213
6.97442
7.12583
7.27642
7.42621
7.57526
7.72359
7.87123
8.01822
8.16457
8.31033
8.45551
8.60013
8.74422
8.88780
9.03088
9.17348
9.31563
9.45733
9.59860




initial x
initial y

theta
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
*

*

1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2,30
2.35
2.40
2.45
2.50
2.556
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2,95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50

En

x-value
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.75420
1.05429
1.26614
1.43221
1.56909
1.68538
1,78625
1.87509
1.95429
2.02555
2.09019
2.14921
2,20340
2.25341
2.29976
2,34289
2.38315
2.42086
2.45628
2.48963
2.52110
2.55087
2.57908
2.60588
2.63137
2.65565
2.67881
2.70095
2,72212
2.74241
2.76186
2.78054
2.79849
2.81576
2.83239
2.84842
2.86388
2.87881
2.89323
2.90718

TABLE 3:
The "upper" near saddle point for a single

-0.05
4.00

y-value
3.67312
3.12691
2.69509
2.32577
1.99233
1.67736
1.36594
1.03972

-0.19057
-0.19414
~0.19732
-0.20019
-0.20279
-0.20517
-0.20735
-0.20835
-0.21121
-0.21294
-0.21455
-0.21605
-0.21747
-0.21879
-0.22005
-0.22123
-0,22235
-0.22341
-0.22442
-0.22538
-0.22630
~0.22718
_Ou 22801
-0.22881
-0.22958
-0.23032
-0.23103
-0.23171
-0.23237
-0.23300
-0.23361
-0.23420
-0.23476
-0.23531
-0.23585
-0.23636
-0.23686
-0.23734
-0.23781
~-0.23826

Re phi
-0.83841
-0.66906
-0.52385
-0.39852
-0.29068
-0.19899
-0.12289
~-0.06263

~0.00909
-0.01871
-0.02850
-0.03844
-0.04851
-0.05871
-0.06903
-0.07944
-0.08996
-0.10056
-0.11125
-0.12202
-0.13285
~0.14376
-0.15473
-0.16576
-0.17685
-0.18800
-0.19919
~-0.21044
-0.22173
-0.23307
-0.24445
-0.25587
-0.26733
-0.27883
-0.29036
-0.,30193
-0.31353
-0.32517
-0.33683
-0.34853
-0.36025
-0.37200
~0.38378
-0.39559
-0.40742
-0.41927
-0.43115
-0.44305

resonance medium.

Im phi
0.00000
€.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-0.02401
-0.06977
-0.12802
-0.19563
-0.27076
-0.35220
-0.43904
-0.53062
-0.62639
-0.72592
-0.82884
-0.93484
~1.04368
-1.15511
-1.26896
~1,38503
-1.50320
-1.62331
~1.74524
~-1.86890
-1.99418
~-2.12098
-2.24924
-2.37887
-2.50980
~2.64198
-2.77535
-2.90985
-3.04543
-3.18204
-3.31965
~3,45822
-3.73805
~-3.87926
-4.02128
-4.16409
~4.30766
-4.45196
-4.59698




TABLE 4:
The "upper" near saddle point for a single resonance medium

jnitial x = 1.00

initial y = 6.00
theta x-value y-value Re phi Im phi
1.02 0.00000 4.10450 -0.95480 0.00000
1.04 0.00000 3.80502 -0.87580 0.00000
1.06 0.00000 3.55041 -0.80230 0.00000
1.08 0.00000 3.32714 -0.73357 0.00000
1.10 0.00000 3.12691 ~-0.66906 0.00000
1.12 0.00000 2.94426 ~-0.60838 0.00000
1.14 0.00000 2.77532 -0.55120 0.00000
1.16 0.00000 2.61729 ~0,49729 0.00000
1.18 0.00000 2.46801 -0.44645 0.00000
1.20 0.00000 2.32577 -0.39852 0.00000
1.22 0.00000 2.18918 -0.35338 0.00000
1.24 0.00000 2.05705 ~-0,.31093 0.00000
1.26 0.00000 1.92834 -0.27108 0.00000
1.28 0.00000 1.80208 ~0.23378 0.00000
1.30 0.00000 1.67735 -0.19899 0.00000
1.32 0.00000 1.55323 -0.16668 0.00000
1.34 0.00000 1.42871 -0.13686 0.00000
1.36 0.00000 1.30263 -0.10954 0.00000
1.38 0.00000 1.17359 -0.08477 0.00000
1.40 0.00000 1.03972 -3.06263 0.00000
1.42 0.00000 0.89835 -0.04323 0.00000
1.44 0.00000 0.74513 -0.02677 ¢.00000
1.46 0.00000 0.57201 -0.01356 0.00000
1.48 0.00000 0.35928 -0.00415 0.00000

*
1.52 0.46335 -0.18822 -0.00341 -0.00535
1.54 0.67329 ~0.18981 -0.00719 -0.01686
1.56 0.82576 -0.19132 -0.01100 -0.03192
1.58 0.94925 -0.19276 -0.01484 -0.04970
1.60 1.05429 -0.19414 -0.01871 -0.06977
1.62 1.14623 -0.19545 -0.02261 -0.09179
1.64 1.22821 -0.19671 ~0,02653 -0.11555
1.66 1.30231 ~0.19792 -0.03047 -0.14087
1.68 1.36996 -0.19908 -0.03444 -0.16760
1.70 1.43221 -0.20019 -0.03844 -0.19563
1.72 1.48988 -0.20126 -0.04245 -0.22486
1.74 1.54357 -0.20229 -0.04649 =-0.25520
1.76 1.59379 -0.20329 -0.05054 -0.28658
1.78 1.64095 -0.20424 -0.05462 -0.31893
1.80 1.68537 -0.20517 -0.05871 -0.35219
1.82 1.72735 -0.20606 ~0.06282 ~-0.38633
1.84 1.76712 -0.20692 -0.06695 -0.42127
1.86 1.80489 ~0.20776 -0.07110 -0.45700
1.88 1.84083 -0.20857 ~0.07526 —0.49346
1.90 1.87509 -0.20935 -0.07944 -0.53062
1.92 1.90782 -0.21011 -0.08364 -0.56845
1.94 1.93913 -0.21085 -0.08785 -0.60692
1.96 1.96913 ~0.21157 -0.09207 -0.64601
1.98 1.99791 -0.21226 -0.09631 -0.68568
2,00 2.02555 -0.21294 -0.10056 -0.72592




|

TABLE 5:
The "lower" near saddle point for a single resonance medium.

initial x = 0.05

initial y = =7.00
theta x-value y~value Re phi Im phi
1.05 0.00000 -3.80870 0.97394 0.00000
1.10 0.00000 -3.33469 0.79584 0.00000
1.15 0.00000 -2.94768 0.63904 0.00000
1.20 0.00000 -2.60966 0.50026 0.00000
1.25 0.00000 -2.29968 0.37761 0.00000
1,30 0.00000 -2.00314 0.27007 0.00000
1.35 0.00000 -1.70672 0.17729 0.00000
1.40 0.00000 -1.39300 0.09968 0.00000
1.45 0.00000 -1.02575 0.03885 0.00000

*
1.55 0.75420 -0.19057 ~-0,00909 -0.02401
1.60 1.05429 -0.19414 -0.01871 -0.06977
1.65 1.26614 -0.19732 -0.02850 =0.12802
1.70 1.43221 -0.20019 ~-0.03844 -0.19563
1.75 1.5690% -0.20279 -0,04851 =-0.27076
1.80 1.68538 ~-0.20517 -0.05871 -0.35220
1.85 1.78625 -0.20735% -0.06903 ~0.43904
1.90 1.87509 -0.20935 -0.07944 -0.53062
1.95 1.95429 -0.21121 -0.08996 -0.62639
2.00 2.02555 -0.21294 -0.10056 -0.72592
2.05 2.09019 -0.21455 -0.11125 -0.82884
2,10 2.14921 -0.21605 -0.12202 -0.93484
2,15 2.20340 -0.21747 -0.13285 -1.04368
2.20 2.25341 -0.21879 -0.14376 -1.15511
2.25 2.29976 ~-0.22005 -0.15473 ~1.26896
2,30 2.34289 -0.22123 -0.16576 -1.38503
2.35 . 2.38315 -0.22235 -0.17685 -1.50320
2.40 2.42086 -0.22341 -0.18800 -1.62331
2.45 2.45628 -0.22442 -0.19919 -1.74524
2.50 2.48963 -0.22538 ~0.21044 -1.86890
2.55 2.52110 -0.22630 -0.22173 -1.99418
2.60 2.55087 -0.,22718 -0.23307 -2.12098
2.65 2.57509 -0.22801 -0.24445 -2.24924
2,70 2.60588 -0.22881 -0.25587 -2.37887
2.75 2.63137 -0.,22958 -0.26733 ~-2.50980
2.80 2.65565 -0.23032 -0.27883 -2.64198
2.85 2.67881 -0.23103 -0.29036 -2.77535
2.90 2.70095 -0.23171 -0.30193 =-2.90985
2.95 2.72212 -0.23237 ~0,31353 -3.04543
3.00 2.74241 -0.23300 -0.32517 -3.18204
3.05 2.76186 -0.23361 -0.33683 -3.31965
3.10 2.78054 -0.23420 -0.34853 -3.45822
3.15 2.79849 -0.23476 -0.36025 -3.59769
3.20 2.81576 -0.23531 ~0,37200 -3.73805
3.25 2.83239 -0.23585 -0.38378 -3.87926
3.30 2.84842 -0.23636 -0.39559 -4.02128
3.35 2.86388 -0.23686 -0.40742 -4.16409
3.40 2.87881 -0.23734 -0.41927 -4.30766
3.45 2.89323 ~-0.23781 -0.43115 -4.45196
3.50 2.90718 -0.23826 -0.44305 -4.59698




—

TABLE 63 ' ‘
The "lower" near saddle point for a single resonance medium.

initial x = -0.20

initial y -5.00
theta x~value y-value Re phi Im phi
1.02 0.00000 -4.16763 1.09339 0.00000
1.04 0.00000 -3.92007 1.01257 0.00000
1.06 0.00000 -3.70394 0.93638 0.00000
1.08 0.00000 -3.51067 0.86426 0.00000
1.10 0.00000 —3.33469 0.79584 0.00000
1.12 0.00000 -3.17217 0.73079 0.00000
1.14 0.00000 ~-3.02030 0.66888 0.00000
1.16 0.00000 ~2.87698 0.60992 0.00000
1.18 0.00000 -2.74055 0.55375 0.00000
1.20 0.00000 -2.60966 0.50026 0.00000
1,22 0.00000 -2.48320 0.44934 0.00000
1.24 0.00000 -2.36017 0.40091 0.00000
1.26 0.00000 -2.23971 0.35491 0.00000
1.28 0.00000 -2.12097 0.31131 0.00000
1.30 0.00000 -2.00314 0.27007 0.00000
1.32 0.00000 -1.88536 0.23118 0.00000
1.34 0.00000 -1.76671 0.19466 0.00000
1.36 0.00000 -1.64608 0.16053 0.00000 .
1.38 0.00000 -1.52212 0.12884 0.00000 |
1.40 0.00000 -1.38300 0.09968 0.00000 g
1.42 0.00000 -1.25607 0.07317 0.00000 i
1.44 0.00000 ~-1.10704 0.04951  0.00000 f
1.46 0.00000 -0.93786 0.02902 0.00000
1.48 0.00000 -0.72886 0.01226 0.00000
*

1.52 0.46335 -0.18822 -0.00341 -0.00535
1.54 0.67329 -0.18981 -0.00719 -0.01686
1.56 0.82576 -0.19132 -0.01100 -0.03192
1.58 0.94925 -0.19276 -0.01484 -0.04970
1.60 1.05429 -0.19414 -0.01871 -0.06977
1.62 1.14623 -0.19545 -0.02261 -0.09179
1.64 1.22821 -0.19671 -0.02653 =0.11555
1.66 1.30231 -0.19792 -0.03047 -0.14087
1.68 1.36996 —0.19908 -0.03444 -0.16760
1.70 1.43221 -0.20019 . -0.03844 -0.19563
1.72 1.48988 -0.20126 -0.04245 -0.22486
1.74 1.54357 ~0.20229 -0.04649 -0.25520
1.76 1.59379 -0.20329 -0.05054 -0.28658
1.78 1.64095 -0.20424 -0.05462 -0.31893
1.80 1.68537 =-0.20517 -0.05871 -0.35219
1.82 1.72735 -0.20606 -0.06282 =-0.38633
1.84 1.76712 -0.20692 -0.06695 =-0.42127
1.86 1.80489 -0.20776 -0.07110 -0.45700
1.88 1.84083 -0.20857 -0.07526 -0.49346
1.90 1.87509  —0.20935 -0.07944 -0.53062
1.92 1,90782 -0.21011 -0.08364 -0.56845
1.94 1.93913 ~0.21085 -0.08785 -0.60692
1.96 1.96913 -0.21157 ~0.09207 -0.64601
1.98 1.99791 -0.21226 -0.09631 -—0.68568
2.00 2.02555 -0.21294 -0.10056 —0.72592




——1
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TABLE 7: ‘ |
The distant saddle points for a double resonance medium.
(The points in the left half of the plane are the same
as these with a negative gsign in front of the x-value.)
initial x = 37.20
initial y = -0.47 nu = 0.00
theta x-value y—-value Re phi Im phi
1.02 27.45406 -0.44876 -0.00933 -1.03410
1.04 20.86954 -0.42546 -0.01805 -1.50548
1.06 18.08478 -0.40962 -0.02639% ~1.89204
1.08 16.47833 -0.39788 -0.03446 -2.23644
1.10 15.40925 -0.38881 -0.04233 -2.55468
1.12 14.63581 ~0,38146 -0.05003 -2.85476
1.14 14.04461 -0.37538 -0.05759 -3.,14132
1.16 13.57472 -0.37036 -0.06505 ~3.41734
1.18 13.19021 -0.36587 -0.07241 -3.68487
1.20 12.86837 -0.36198 -0.07969 ~3.94537
1,22 12.59408 ~0.35855 -0.08689 -4.19993
1.24 12.35686 -0.35550 ~-0.09403 -4,44938
1.26 12.14917 -0.35276 -0.10111 -4,69440
1.28 11.96544 -0.35028 -0.10814 -4.93551
1.30 11.80146 -0.34802 -0.11512 -5,17315
1.32 11.65399 ~-0.34594 -0.12206 -5.40767
1.34 11.52047 -0.34403 -0.12896 -5.63940
1,36 11.39887 -0.34227 -0.13582 -5.86857
1.38 11.28757 -0.34080 -0.14265 ~6.09542
1.40 11.18517 -0.33924 -0.14945 -6.32013
1.42 11.09058 ~-0.33778 -0.15622 -6.54288
1.44 11.00288 ~0.33642 -0.16296 ~-6.76380
1.46 10.92129 -0.33515 ~0.16967 -6.98304
1.48 10.84515 -0.33394 -0.17636 -7.20069
1.50 10.77387 -0.33281 -0.18303 -7.41687
1.52 10.70698 -0.33173 -0.18967 -7.63167
1.54 10.64405 -0.33071 -0.19629 -7.84518
1.56 10.58472 -0.32974 -0.20290 -8.05746
1.58 10.52865 -0.32882 -0.20948 -8.26859
1.60 10.47558 -0.32793 ~0.21605 ~8.47863
1.62 10.42524 -0.32709 ~0.22260 ~-8.68763
1.64 10.37742 -0.32629 -0.22913 -8.89565
1.66 10.33191 -0.32552 -0.23565 -9.10274
1.68 10.28855 -0.32478 -0.24215 -9,.30894
1.70 10.24716 -0.32406 -0.24864 -9.51430
1.72 10.20762 -0.32338 -0.25511 -9.71884
1.74 10.16978 -0.32272 -0.26157 ~9.92261
1.76 10.13354 -0.32209 ~0.26802 -10.12564
1.78 10.09879 -0.32147 ~0.27446 -10.32796
1.80 10.06543 -0.32088 ~-0.28088 -10.52960
1.82 10.03338 -0.32031 -0.28729 -10.73059
1.84 10.00254 ~-0.31976 -0.29369 ~-10.93095
1.86 9.97286 -0.31922 -0.30008 =-11.13070
1.88 9.94426 -0.31870 ~0.30646 ~—11.32987
1.90 9.91668 ~0.31820 ~0.31283 =-11.52847
1.92 9,89006 -0.31771 -0.31919 ~-11.72654
1.94 9,86436 -0.31724 -(.32554 -11.92408
1.96 9.83951 ~0.31678 ~0.33188 =12.12112
1.98 9,.81548 -0.31633 -0,33821 -12.31767




with a non-zero nu.

TABLE 8:
The distant saddle points for a double resonance medium

(An identical saddle point is found

reflected across the imaginary axis.)

initial x =
initial y =
theta x-value
1.02 26.97527
1.04 20.29582
1.06 17.46815
1.08 15.83907
1.10 14.75709
1.12 13.97604
1.14 13.38035
l.1l6 12.90790
1.18 12.52207
1.20 12,19972
1.22 11.92550
1.24 11.68871
1.26 11.48172
1.28 11.29887
1.30 11.13591
1.32 10.98952
1.34 10.85715
1.36 10.73673
1.38 10.62660
1.40 10.52541
1.42 10.43205
1.44 10.34555
1.46 10.26514
1.48 10.19015
1.50 10.12002
1.52 10.05426
1.54 0.96244
1.56 9,.,93419
1.58 9.87919
1.60 9,.82715
1.62 9.77783
l.64 9,73101
1.66 9.68648
1.68 5,64407
1.70 9.60362
1.72 9.56499
1.74 9.52805
1.76 0,49269
1.78 9,45879
1.80 0,42627
1.82 9.39503
l1.84 9,36501
1.86 9,.33611
1.88 9.30828
1.90 9.28146
1.92 9.25559
1.94 9.23061
1.96 5.20647
1.98 5.,18314

30.00
-1.00

nu = 0.40

y-value
-0.45763
~0.43726
-0.42241
-0.41085
-0.40168
-0.39405
-0.38765
-0.38235
-0.37750
-0.37326
-0.36951
-0.36615
-0.36312
-0.36037
~0.35785
-0.35554
-0.35340
-0.35142
-0.34958
-0.34786
-0.34639
-0.34485
-0.34340
~0.34204
-0.34075
-0,33953
-0.33837
-0.33727
-0.33622
-0.33522
-0.33426
-0.33334
-0.33246
-0.33162
-0.33081
-0,33003
-0.32928
-0.32855
-0.32785
-0.32718
-0.32653
~0.32590
-0.32529
-0.32469
-0.32412
-0.32356
-0.32302
-0.32249
-0.32198

Re phi
-0.00943
-0.01837
-0.02696
-0.03529
-0.04341
~-0.05137
~0.05918
-0.06688
-0.07447
-0.08198
-0.08940
-0.09676
-0.10405
-0.11129
~0.11847
-0.12560
-0.13269
-0.13974
-0.14675
~0.15372
-0.16066
-0.16757
-0.17445
~0.18130
-0.18813
-0.19493
-0.20171
~0.20846
-0.21520
-0.22191
-0.22861
-0.23528
-0.24194
-0.24858
-0.25520
-0.26181
-0.26840
-0.27498
-0.28154
-0.28809
-0.29463
-0.30116
~0.30767
-0.31417
-0.32065
-0.32713
-0.33360
-0.34005
-0.34650

Im phi
-1.02715
-1.48786
~1.86246
-2,19429
-2.49961
-2.78655
-3.05987
-3.32258
-3.57676
—-3.82389%9
-4.06507
-4.30116
-4.53282
-4.76059
-4.984901
-5.20613
-5.42458
~-5.64050
~-5.85412
-6.06562
-6.27519
-6.48295
-6.68905
-6.89359
-7.09669
-7.29842
-7.49888
-7.69814
-7.89627
-8.09333
-8.28937
-8.48446
-8.67863
-8.87193
-9.06440
-9.25609
-9,44701
~-9.63722
-9.82673

-10.01558
-10.20379
-10.39139
-10.57840
-10.76484
-10.95074
-11.13610
-11.32097
-11.50534
-11.68923




The distant saddle po
with a non—-zero nu.
reflected across the 1

initial x =
initial y = -1.00

theta
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
l.64
1.66
1068
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98

x-value
26.47458
19.68323
16.80292
15.14579
14.04804
13.25807
12.65749
12.18266
11.79605
11.47398
11.20070
10.96534
10.76006
10.57912
10.41818
10.27390
10.14367
14.02539
4,91739
9.81831
9.72700
9.64256
9.56414
9,49110
9.42287
9,35896
0,29894
9.,24245
9.18916
9.13880
9.09110
9.04586
9.00286
8.96195
8.92296
8.88576
8.85020
8.81619
8.78361
8.75238
8.72240
8.69359
8.66589
8.63923
8.61355
8.58879
8.56490
8.54183
8.51954

30.00

TABLE 9:
ints for a double. resonance medium
(An identical saddle point is found

nu =

y-value
-0.46768
~0.45155
-0.43839
-0.42726
-0.41806
-0.41008
~0.40323
-0.39724
-0.39208
-0.38731
~-0.38304
-0.37920
-0.37571
-0.37253
-0.36961
-0.36691
-0.36441
-0.36209
-0.35992
-0.35789
-0(.35599
-0.35436
-0.35265
-0.35104
-0.34952
-0.34807
~0.34670
-0.34540
-0.34415
-0.34297
-0.34183
-0.34075
-0.33971
-0.33871
~0.33775
-0.33683
-0.33594
-0.33508
-0.33426
-0.33346
-0.33269
-0.33195
-0.33123
~0.33053
-0.32985
-0.32919
-0.32856
-0.32794
-0.32734

maginary axis.)

Re phi
-0,00955
-0.01874
-0.02763
-0.03629
-0.04474
-0.05301
~0.06115
-0.06915
-0.07704
-0.08483
-0.09253
-0.10015
-0.10770
-0.11518
-0.12260
-0,12997
-0.13728
-0.14455
-0.15177
-0.15894
-0.16608
-0.17318
-0.18025
-0.18729
-0.19429
-0.20126
-0.20821
-0.21513
-0.22202
-0.22889
-0.23574
-0.24256
-0.24937
~0.25615
-0.26292
~0.26966
-0.27639
~0,28310
-0.28979
-0.29647
-0.30313
-0.,30977
~-0.31641
-0.32302
-0.32963
-0.33622
-0.34279
-0.34936
-0.35591

Im phi
-1.01999
-1.46941
-1.83118
-2.14940
-2.44067
-2.71334
-3.22047
~-3.46014
-3.69275
-3.91942
-4.14102
-4.35823
-4,.57159
-4.78153
-4,908843
-5.19258
-5.39425
-5.59367
-5.79101
-5.98645
-6.18013
~6.,37219
-6.56274
-6.75187
-6.93968
~-7.12625
-7.31166
-7.49597
-7.67924
-7.86154
-8.04291
-8.22339
-8.40303
-8.58188
-8.75996
-8.93732
-9,11398
-9,28998
-9,46533
-9.64008
-9.,81424
-9,08783

-10.16088
~-10.33341
-10.50543
-10.67696
-10.84803
-11.01864



medium,
initial x = 3.58
initial y = 0.42
theta x~-value
1.60 3.57979
1.62 3.58184
1.64 3.57895
1.66 3.56124
1.68 3.48177
1.70 3.34643
1.72 3.24771
1.74 3.17207
1.76 3.11104
1.78 3.05902
1.80 3.01364
1.82 2.97339
1.84 2.93723
1.86 2.90443
1.88 2.87443
1.90 2.84683
1.92 2.82129
1.94 2.79755
1.96 2.77540
1.98 2.75465
2.00 2.73516
2.02 2.71680
2.04 2.69947
2.06 2.68307
2.08 2.66752
2.10 2.65274
2.12 2.63869
2.14 2.62529
2.16 2.61251
2.18 2.60029
2.20 2.58860
2.22 2.57741
2.24 2.56667
2.26 2.55637
2.28 2.54647
2.30 2.53694
2.32 2.52778
2.34 2.51895
2.36 2.51045
2.38 2.50224
2.40 2.49431
2.42 2.48666
2.44 2.47926
2.46 2.47211]
2.48 2.46518
2.50 2.45848

TABLE 10:
The "upper" middle saddle point for a double resonance

y-vaiue

0.42358

0.33611

0.23599

0.11365
-0.03292
-0.09689
-0.11449
-0.12202
-0.12603
-0.12842
-0.12991
~-0,13084
-0.13141
-0.13174
-0.13191
-0.13185
-0.13191
-0.13180
-0.13164
-0.13145
-0.13122
-0.13098
-0.13072
~-0.13045
-0.13017
~0.12988
-0.12959
-0.12930
-0.12901
-0.12871
~0.12842
-0.12813
-0.12784
-0.12755
-0.12727
-0.12699
-0.12671
-0.12643
-0.12616
~0.12590
-0.12563
-0.12537
-0.12512
-0.12487
-0.12462
-0.12437

Re phi
-0.11201
~-0.10439
-0.09864
-0.09510
-0.09430
-0.09576
-0.09790
-0.10027
-0.10276
-0.10531
-0.10789
-0.11050
-0.11312
-0.11575
-0.11839
-0.12103
-0.12367
-0.12631
-0.12894
~-0.13157
-0.13420
-0.13682
-0.13944
-0.1420%
-0.14466
-0.14726
-0.14985
-0.15244
-0.15502
-0.15760
-0.,16017
-0.16274
-0.16530
-0.16785
-0.17040
-0.17294
-0.17548
-0.17801
-0.18054
-0.18306
~0.18557
-0.18808
-0.19059
-0.19309
-0.19558
-0.19807

Im phi
-1.92273
-1.99436
-2.06598
-2.13742
-2.20804
-2.27627
-2.34216
~-2.40633
-2.46915
-2.53083
-2.59154
~-2.65140
-2.71050
~-2.76890
-2.82669
-2.88389
-2.94056
-2.99675
-3.05247
-3.10777
~-3.16266
-3.21718
-3.27134
-3.32516
-3.37866
-3.43186
-3.48477
-3.53741
-3.58979
~3.64191
-3.69380
—3.74546
-3.79690
-3.84813
-3.89915
-3.94999
-4.00063
-4.,05110
-4.10139
-4,15152
-4,20148
-4.25129
-4.30095
-4.35046
-4,39983
-4.44907




The "upper"

medium.

initial x
initial y

theta
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2,02
2.04
2.06
2.08
2.10
2,12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2,40
2.42
2.44
2.46
2.48
2.50

x~value
3.14431
3.15160
3.15770
3.16298
3.16656
3.16409
3.09460
2.89531
2.78718
2.70835
2.64527
2.59245
2.54698
2.50713
2.47171
2,43993
2.41117
2.38515
2.36113
2.33902
2.31859
2.29965
2.28202
2.26558
2.25019
2.23577
2,22221
2.20945
2,19741
2.18603
2.17526
2.16506
2.15537
2.14616
2.13740
2.12905
2.12109
2.11349
2.10623
2.09928
2.09263
2.08625
2.08014
2.07427
2.06863
2.06321

TABLE 11:
middle saddle point for a double resonance

y-value

0.59266

0.51441

0.43123

0.34006

0.23556

0.10401
-0.11429
-0.16141
~0.16398
-0.16354
-0.16223
-0.16063
-0.15892
-0.15719
-0.15548
-0.15382
-0.15221
-0.15071
~0.14921
-0.14776
~0.14637
-0.14504
-0.14377
-0.14255
-0.14138
-0.14027
-0.13919
-0.13817
-0.13718
-0.13624
-0.13533
-0.13446
~0.13363
-0.13283
-0.13206
~0,13131
-0.13060
-0.12991
-0.12925
-0.12861
-0.12800
-0.12741
-0.12684
-0.12628
-0.12575
~-0.12524

Re phi
-0.13511
~0.,12403
-0.11456
-0.10683
-0.10105
-0.09759
-0.09745
-0.10046
-0.10372
-0.10700
-0.11026
-0.11349
-0.11668
-0.11985
-0.12297
-0.12606
-0.12912
-0.13215
-0.13515
-0.13812
-0.14106
~-0.14397
-0.14686
~0.14972
-0.15256
-0.15538
-0.15817
-0.16095
-0.16370
-0.16643
-0.16915
-0.17185
-0.17453
-0.17719
-0.17584
-0.18247
~0.18509
-0.18770
-0.19029
-0.19287
-0.19543
-0.19799
-0.20053
-0.20306
-0.20558
-0.20809

Im phi
-1.96311
-2.02607
-2.08917
-2.15238
-2.21568
-2.27900
-2.34196
-2.40157
-2.45833
-2.51325
-2.56677
-2.61913
-2.67051
-2,72105
-2.77083
-2,81994
-2.86845
-2.91640
~2.96386
-3.01085
~3.05742
~-3.10360
-3.14942
-3.19489
-3.24004
-3.28490
-3.32948
-3.37379
-3.41786
-3.46169
-3.50530
-3.54870
-3.59190
~-3.63492
-3.67775
-3.72042
-3.76292
-3.80526
-3.84746
-3,88951
-3.93143
-3.97322
-4.01488
-4.05642
-4.,09785
-4.13917




SO T

The "“upper"”
medium.
initial x = 2.54
initial y = 0.05
theta x-value
1.60 2.68335
1.62 2.80390
1.64 2.91268
1.66 3.01066
1.68 3.09922
1.70 3.17974
1.72 3.25318
1.74 3.32061
1.76 3.38283
1.78 3.44051
1.80 3.49421
1.82 3.54438
1.84 3.59141
1.86 3.63565
1.88 3.67738
1.90 3.71683
1.92 3.75423
1.94 3.78975
1.96 3.82355
1.98 3.85578
2.00 3.88656
2.02 3.91601
2.04 3.94421
2.06 3.97127
2.08 3.99725
2.10 4.02224
2.12 4.04629
2.14 4.06947
2.16 4.00183
2.18 4.,11342
2.20 4.13428
2.22 4,.15446
2.24 4.17399
2.26 4,19291
2.28 4,21125
2.30 4.22903
2.32 4.24630
2.34 4.26307
2.36 4.27937
2.38 4.2952]
2.40 4.31063
2.42 4.32564
2.44 4.34025
2.46 4.35449
2.48 4,36838
2.50 4.38191

TABLE 12:
middle saddle point for a double resonance

nu = 0.80

y-value
-0.03006
~0.06837
-0.09601
-0.11653
-0.13218
~0.14442
-0.15414
-0.16205
-0.16861
-0.17413
-0.17883
-0.18289
-0.18643
-0.18955
-0.19232
-0.19480
-0.19704
-0.19907
-0.20093
-0.20263
-0.20420
-0.20565
-0.20700
-0.20826
-0.20944
-0.21054
-0.2115%
-0.21257
~0.21350
-0.21438
-0.21522
~-0.21602
-0.21678
~-0.21751
~-0.21821
-0.21887
-0.21952
-0.22013
-0.22072
-0.,22129
-0.22184
-0.22238
-0.22289
-0.22339
-0.22387
~0.22433

Re phi
-0.08488
-0.08588
-0.08754
~0.08967
-0.09217
~0.09494
-0.09793
-0.10109
-0.10440
-0.10783
-0.11136
-0.11498
-0.11868
-0.12244
~0.12626
-0.13013
-0.13405
-0.13801
-0.14201
-0.14605
-0.15012
-0.15421
-0.15834
-0.16249
-0.16667
-0.17087
-0.17509
-0.17934
-0.18360
-0.18788
-0.19217
-0.19648
~0.20081
-0.20516
-0.20951
-0.21388
-0.21827
-0.22267
-0.22707
-0.23149
-0.23593
-0.24037
-0.24482
-0.24928
-0.25376
-0.25824

Im phi
-1.98248
-2.03737
-2.09455
-2.15380
-2.21492
-2.27772
-2.34206
-2.40780
-2.47485
-2.54309
-2.61244
-2.68283
-2.75419
-2.82647
-2.89960
~-2.97355
-3.04826
-3.12370
-3.19984
-3.27664
-3.35406
-3.43209
-3.51069
-3.58985
-3.66954
-3.74973
-3.83042
-3.91158
-3.99319
-4,07525
-4.15773
-4.24061
-4.32390
-4.40757
-4.49161
-4.57602
-4.66077
~-4,74586
-4,83129
-4,91704
-5.00309
-5.08946
-5.17612
-5.26307
-5,35030
-5.43780




The "lower"

medium.

initial x = 3.62
= -0.80

initial y
theta x-value
1.60 3.62934
1.62 3.65094
1.64 3.67655
1.66 3.71649
1.68 3.81684
1.70 3.97243
1.72 4,09061
1.74 4.18474
1.76 4.26439
1.78 4,33415
1.80 4.39660
1.82 4,45335
1.84 4,50548
1.86 4.55377
1.88 4.59880
1.90 4,64100
1.92 4.68074
1.94 4.71828
1.96 4.75386
1.98 4.,78769
2.00 4.81992
2.02 4,.85070
2.04 4.88014
2.06 4,90836
2.08 4.93545
2.10 4.96149
2.12 4,98655
2.14 5.01070
2.16 5.03401
2.18 5.05651
2.20 5.07827
2.22 5.09932
2.24 5.11971
2.26 5.13947
2.28 5.15864
2.30 5.17725
2.32 5.19532
2.34 5.21288
2.36 5.22996
2.38 5.24658
2.40 5.26276
2.42 5,27852
2.44 5,29388
2.46 5.30886
2.48 5.32348
2.50 5.33774

TABLE 13:
middle saddle point for a double resonance

nu = 0.00

y-value
-0.79927
-0.71149
~0.61131
-0.48879
-0.34214
-0.27808
-0.26023
~-0.25250
~0.24834
-0.24584
~0.24425
-0.24321
~-0.24241
-0.24200
-0.24175
-0.24161
-0.24157
-0.24159
-0.24166
-0.241717
-0.24191
-0.24207
-0.24225
-0.24245
-0.24265
-0.24286
-0.24308
-0.24330
-0.24352
-0.24375
-0.24398
-0.24421
-0.24443
-0.24466
-0.24488
-0,24511
-0.24533
~0.24555
~0.24576
-0.24598
-0.24619
-0.24640
-0.24661
~-0.24681
-0.24701
-0.24721

Re phi
-0.04956
-0.06468
-0.07794
-0.08899
-0.09728
~-0.10333
-0.10868
-0.13380
-0.11881
-0.12375
-0.12865
-0.13352
-0.13838
-0.14322
-0.14806
-0.15290
-0.15773
~-0.16256
-0.16740
-0.17223
-0.17707
-0.18191
-0.18675
-0.19160
-0.19645
~0.20131
-0.20617
-0.21103
-0.21590
~0.22077
-0.22565
-0.23053
-0.23542
-0.24031
-0.24520
-0.25010
~0.25501
-0.25992
-0.26483
-0.26975
~0.,27467
-0.27960
=0.28453
~0.28946
-0.29440
-0.29934

L E—

Im phi
-1.91090
~-1.98370
-2.05697
-2.13086
-2.20600
-2.28394
-2.36463
-2.44741
-2.53192
-2.61792
-2.70524
-2.79375
~2.88334
-2.97394
-3.06547
-3.15787
-3.25109
-3.34509
-3.43981
-3.53523
-3.63131
-3.72802
-3.82533
-3.92322
-4.02166
-4.,12063
~4,22011
~-4.32008
-4.42053
-4.,52144
-4.62279
-4,72456
-4.82676
-4.92935
-5.03233
-5,13569
-5.23942
-5.34350
-5.44793
-5.55269
-5.65779
~5.76320
~-5.86893
-5.97495
-6.08128
-6.18789




The "“lower"

medium.
initial x =
initial y =
theta x-value
1.60 3,12358
*
*
1.66 3.16241
1.68 3.17803
1.70 3.19906
1.72 3.28696
1.74 3.50428
1.76 3.63023
1.78 3.72658
1.80 3.80689
1.82 3.87664
1.84 3.93873
1.86 3.994901
1.88 4.04634
1.90 4,09383
1.92 4.13800
1.94 4,17932
1.96 4.21813
1.98 4.25475
2.00 4.28940
2.02 4,32230
2.04 4,.35360
2.06 4.38346
2.08 4,41199
2.10 4,43931
2.12 4.46551
2.14 4.49068
2.16 4,51488
2.18 4,53819
2.20 4.56066
2.22 4.58235
2.24 4,60331
2.26 4.62357
2.28 4,64319
2.30 4.66220
2.32 4.68062
2.34 4.69850
2.36 4,71585
2.38 4.73271
2.40 4,74911
2.42 4.76505
2.44 4.78057
2,46 4,79568
2.48 4.81041
2.50 4.82476

3.12
-1.00

TABL

nu =

y-value
-0.95760

-0.73957
-0.63350
-0.50019
-0.28030
~0,23151
-0.22732
-0.22627
-0.22615
-0.22638
~0.22677
-0.22724
-0.22764
-0.228195
-0.22873

-0.22927

-0.22980
-0.23032
-0.23082
-0.23132
-0.23180
-0.23226
-0.23272
-0.23316
-0.23359
-0.23402
-0.23442
-0.23482
-0.23521
-0.23559
-0.2359¢6
-0.23632
-0.23667
-0.23702
-0.23735
~0.23768
-0.23800
~-0.23831
-0.23862
-0.23892
~0.23921
~0.23950
-0.23978
-0.24005

E 14:

middle saddle point for a double resonance

0.40

Re phi Im phi

-0.01236 -1.96148
-0.06477 -2.15003
-0.07853 -2.21343
-0.08994 -2.27718
~-0.09798 -2.,34167
~0.10285 -2.40987
-0.10742 -2.48129
~0.11196 -2.55489
-0.11648 -2.63024
-0.12101 -2.70709
-0.12554 -2.78526
-0.13008 -2.86460
-0.13463 -2.94502
-0.13919 -3.02643
~0.14376 -3.10875
-0.14834 -3.19193
-0.15293 -3.27591
-0.,15753 -3.36064
-0.16215 -3.44609
-0.16677 -3.53221
-0.17140 -3.61897
-0.17604 -3.70634
-0.18069 -3.79430
-0.18535 -3,B88281
-0.19002 -3.97186
-0.19469 ~4.06143
-0.19938 -4.15148
-0.20407 -4,24201
-0.20877 -4,33301
-0.21348 -4.42444
-0.21820 ~-4,51629
-0.22292 -4.60856
-0.22765 -4.70123
-0.23239 -4,79429
-0.23713 -4,88772
~-0.24188 -4.98151
~0.24664 -5.07565
-0.25140 -5.17014
-0.25617 -5.26496
-0.26095 -5.36010
-0.26573 -5.45556
-0.27051 -5.55132
-0.27531 ~-5.64738
-0.28011 -5.74373




initial x =
initial vy = 2.12

theta
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1,24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00

x-value
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0,.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.01

TABLE 15:
This is the "upper" near saddle point for a double
resonance medium.

nu =

y-value

1.99701
1.78245
1.64568
1.54227
1.46011
1.39163
1.33288
1.28031
1.23343
1.19178
1.15285
1.11699
1.08369
1.05258
1.02337
0.99580
0.97022
0.94528
0.92149
0.89872
0.87689
0.85589
0.83564
0.81609
0.79717
0.77883
0.76102
0.74369
0.72681
0.71035
0.69427
0.67854
0.66314
0.64804
0.63322
0.61867
0.60435
0.59025
0.57635
0.56264
0.54911
0.53573
0.52249
0.50938
0.49638
0.48348
0.47068
0.45794

0.44527

0.43265

Re phi
-0.99017
-0.95268
-0.91855
-0.88676
-0.85679
-0.82832
-0.80111
-0.77501
-0.74990
-0.72567
-0.70225
-0.67957
-0.65758
~0.63622
-0.61547
-0.59529
-0.57564
-0.55650
-0.53784
-0.51965
-0.50190
-0.48458
-0.46768
-0.45116
-0.43504
-0.41528
-0.40389
-0.38884
-0.37414
-0.35977
-0.34573
-0.33200
-0.31859
-0.30548
-0.29267
-0.28015
-0.26792
-0.25597
-0.24431
~-0.23292
-0.22180
-0.21096
~0.20037
-0.19006
-0.18000
-0.17020
~-0.16066
-0.15137
-0.14234
-0.13356

Im phi
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000600
0.00000
0.00000
0.00000
0.00000
¢.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000




TABLE 16: ' 1
Phis is the "upper" near saddle point for a double
resonance medium with non-zer nu.

initial x = 0.01
initial vy = 2.12 nu = 0.40

theta x-value y-value Re phi Im phi
1.02 0.00000 1.59084 -2.31523 0.00000
1.04 0.00000 1.58740 -2.29190 0.00000
1.06 0.00000 1.58433 -2.26676 0.00000
1.08 0.00000 1.58134 -2.,24151 0.00000
1.10 0.00000 1.57840 -2.21631 0.00000
1.12 0.00000 1.57550 -2.19119 0.00000
1.14 0.00000 1.57264 -2.16615 0.00000
1.16 0.00000 1.56983 -2.14118 0.00000
1.18 0.00000 1.56706 -2.11628 0.00000
1.20 0.00000 1.56433 -2.09146 0.00000
1.22 0.00000 1.56163 ~-2.06670 0.00000
1.24 0.00000 1.55898 -2.04202 0.00000
1.26 0.00000 1.55636 -2.01739 0.00000
1.28 0.00000 1.55378 -1.99284 0.00000
1.30 0.00000 1.55124 -1.96834 0.00000
1.32 0.00000 1.54873 -1.943091 0.00000
1.34 0.00000 1.54625 ~-1.91954 0.00000
1.36 0.00000 1.54381 -1.89522 0.00000
1.38 0.00000 1.54139 -1.87096 0.00000
1.40 - 0.,00000 1.53902 -1.84676 0.00000
1.42 0.00000 1.53667 -1.82261 0.00000
1.44 0.00000 1.53435 ~1.79852 0.00000
1.46 0.00000 1.53207 -1.77448 0.00000
1.48 0.00000 1.52981 ~-1,75049 0.00000
1.50 0.00000 1.52758 -1.72654 0.00000
1.52 0.00000 1.52538 -1.70265 0.00000
1.54 0.00000 1.52321 -1.67881 0.00000
1.56 0.00000 1.52106 -1.65501 0.00000
1.58 0.00000 1.51894 -1.63126 0.00000
1.60 0.00000 1.51685 -1.60755 0.00000
1.62 0.00000 1.51478 -1.58388 0.00000
1.64 0.00000 1.51273 -1.56026 0.00000
1.66 0.00000 1.51072 -1.53668 0.00000
1.68 0.00000 1.50872 -1.51314 0.00000
1.70 0.00000 1.50675 -1.48964 0.00000
1.72 0.00000 1.50480 -1.46618 0.00000
1.74 0.00000 1.50288 -1.44276 0.00000
1.76 0.00000 1.50097 -1.41937 0.00000
1.78 0.00000 1.49909 -1.39603 0.00000
1.80 0.00000 1.49723 -1.37272 0.00000
1.82 0.00000 1.4953¢% ~1.34944 0.00000
1.84 0.00000 1.49357 -1.32620 0.00000
1.86 0.00000 1.4%9178 ~-1.30299 0.00000
1.88 0.00000 1.49000 -1.27982 0.00000
1.90 0.00000 1.48824 -1.25668 0.00000
1.92 0.00000 1.48650 -1.23357 0.00000
1.94 0.00000 1.48478 -1.21049 0.00000
1.96 0.00000 1.48308 ~-1.18744 0.00000
1.98 0.00000 1.48139 -1.16442 0.00000
0.00000 1.47973 -1.14144 0.00000

2.00




TABLE 17:

This is the "upper" near saddle point for a double

resonance medium with non-zer¢ nu.

initial x = -0.

initial v = 4.
theta x-value
1.02 0.00000
1.04 0.00000
1.06 0.00000
1.08 0.00000
1.10 0.00000
1.12 0.00000
1.14 0.00000
1.16 0.00000
1.18 0.00000
1.20 0.00000
1.22 0.00000
1.24 0.00000
1.26 0.00000
1.28 0.00000
1.30 0.00000
1.32 0.00000
1.34 0.00000
1.36 0.00000
1.38 0.00000
1.40 0.00000
1.42 0.00000
1.44 0.00000
1.46 0.00000
1.48 0.00000
1.50 0.00000
1.52 0.00000
1.54 0.00000
1.56 0.00000
1.58 0.00000
1.60 0.00000
1.62 0.00000
1.64 0.00000
1.66 0.00000
1.68 0.00000
1.70 0.00000
1.72 0.00000
1.74 0.00000
1.76 0.00000
1.78 0.00000
1.80 0.00000
1.82 0.00000
1.84 0.00000
1.86 0.00000
1.88 0.00000
1.90 0.00000
1.92 0.00000
1.94 0.00000
1.96 0.00000
1.98 0.00000

2.00

0.00000

nua =

y-value
2.76888
2.76501
2,76088
2.75687
2,.75291
2.74835
2.74525
2,74076
2.73772
2.73336
2.73040
2.72617
2.72329
2.71918
2.71637
2,71237
2.70964
2.70575
2,70237
2.69915
2.69599
2.69287
2.68980
2.68676
2.68377
2.68081
2.67788
2.67499
2.67214
2.66932
2,66653
2.66378
2.66106
2.65837
2,65572
2.65309
2.65049
2.64793
2.64539
2.64288
2.64040
2.63794
2.63551
2.63311
2.63074
2.62839
2.62606
2.62376
2,62149
2.61924

Re phi
~2.74130
-2.69200
-2.64578
-2.,59916
~-2.55273
-2.51252
-2.45929
-2,41982
-2.36724
-2.32780
—-2.27554
-2.23614
-2.18419
-2.14484
-2.09319
-2.05388
-2,00252
-1.96324
-1.91933
-1.87444
-1.82939
-1.78437
-1.73941
-1.69452
-1.64970
-1.60495
-1.56026
-1.51565
-1.47109
-1.42660
-1.38218
-~1.,33781
-1.29350
-1.24925
-1.20505
-1.16091
-1,11683
-1.07279
-1.02882
-0.98489
-0.94101
-0.89718
-0.85340
~-0.80967
-0.76598
-0.72234
-0.67874
-0.63519
-0.59168
~0.54821

Im phi
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0¢.00000
0.00000
0.00000
0.00000
0.00000
0.00000
6.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000




This is the

regsonance medium.

ijnitial x = 0.30
initial y =
theta x-value
1.02 0.00000
1.04 0.000600
1.06 0.00000
1.08 0.00000
1.10 0.00000
1.12 0.00000
1.14 0.00000
1.16 0.00000
1.18 0.00000
1.20 0.00000
i.22 0.00000
1.24 0.00000
1.26 0.00000
1.28 0.00000
1.30 0.00000
1.32 0.00000
1.34 0.00000
1.36 0.00000
1.38 0.00000
1.40 0.00000
1.42 ¢.00000
1,44 0.00000
1.46 0.00000
1.48 0.00000
1.50 0.00000
1.52 0.00000
1.54 0.00000
1.56 0.00000
1.58 0.00000
1.60 0.00000
1.62 0.00000
1.64 0.00000
1.66 0.00000
1.68 0.00000
1.70 0.00000
1.72 0.00000
1.74 0.00000
1.76 0.00000
1.78 0.00000
1.80 0.00000
1.82 0.00000
1.84 0.00000
l1.86 0.00000
1.88 0.00000
1.90 0.00000
1.92 0.00000
1.94 0.00000
1.96 0.00000
1.98 0.00000

2.00

0.00000

"Jower"

-3.00

TABLE 18:
near saddle point for a double

nu =

y-value
-1.69011
-1.,59210
-1.51521
-1.45120
-1.39752
-1.34979
-1.30809
-1.26951
~-1.23428
-1.20181
-1.17166
-1.14346
-1.11755
-1.09240
-1.06854
-1.04584
-1.02416

-1.00339

-0.98344
~-0.96423
-0.94570
-0.92778
~0.91042
-0.89357
-0.87719
-0.86124
-0.84569
-0.83051
~-(0.81566
-0.80113
-0.78689
-0.77291
-0.75919
-0.,74569
-0.73241
-0.71932
-0.70642
-0.69403
-0.,68142
-0.66895
-0.65661
-0.64438
-0.63226
-0.62022
-0.60827
-0.59638
-0.58455
-0.57277
-0.56101
-0.54928

Re phi

1.11121
1.07849
1.04749
1.01788
0.98942
0.96198
0.93542
0.90967
0.88465
0.86031
0.83658
0.81344
0.79084
0.76876
0.74716
0.72603
0.70534
0.68507
0.66521
0.64574
0.62665
0.60792
0.58954
0.57150
0.55380
0.53642
0.51935
0.50259
0.48613
0.46996
0.45408
0.43849
0.42317
0.40812
0.39334
0.37882
0.36457
0.35057
0.33682
0.32332
0.31007
0.29707
0.28431
0.27179
0.25951
0.24747
0.23566
0.22410
0.21276
0.20166

Im phi

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
¢.00000
0.00000
0.00000
$6.00000
0.00000
0.00000
0.00000
0.00000
0.000600
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000




initial x =
initial y = -5.00

theta
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00

x-value
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0,.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.02

TABLE 19:
This the "lower" near saddle point for a double
resonance medium wiht non-zero nu.

nu = 0.40

y-value
-1.86026
-1.85638
-1.85292
-1,84956
~-1.84626
-1.84301
-1.83980
-1.83665
-1.83353
-1.83047
-1.82744
-1.82446
-1.82152
-1.81862
-1.81576
-1.81294
-1.81015
-1.80740
-1.80469
-1.80202
-1,79938
-1.79677
-1.79420
-1.79166
-1.78915
-1.78668
~-1.78423
-1.78182
-1.77943
-1.77707
-1.77475
-1.77245
-1.77017
-1.76793
-1.76571
-1.76351
-1.76134
-1,75920
-1.75708
~1.75498
-1.75291
-1.75086
-1.74884
-1.74683
-1.74485
-1.74289
-1.74095
-1,73503
-1.73713
-1.73525

Re phi

2.48008
2.45267
2.42305
2.39322
2.36345
2.33375
2.30414
2.27462
2.24518
2,21583
2.18655
2.15735
2.12822
2.09917
2.07019
2.04128
2.01244
1.98366
1.95495
1.92630
1.89772
1.86919
1.84073
1,.81233
1.78398
1.75568
1.72745
1.69926
1.67113
1.64304
1.61501
1.58703
1.55909
1.53120
1.50336
1.47556
1.44781
1.42009
1.39242
1.36480
1.33721
1.30966

©1.28215

1.25468
1,22725
1.19985
1.17249
1.14517
1.11788
1.09062

Im phi

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000




'::lif'

TABLE 203
This is the "lower near saddle point for a double
_resonance medium with non-zero nu.

initial x = 0.05

initial y = -4.00 nu = 0.80

theta x-value y-value Re phi Im phi

1.02 0.00000 ~3.03531 2.90616 0.00000
1.04 0.00000 -3.03123 2,85079 0.00000
1,06 0.00000 -3.02679 2.80034 0.00000
1.08 0.00000 -3.02252 2.74885 £.00000
1.10 0.00000 -3.01829 2.69774 0.00000
1.12 0.00000 -3.01413 2.64669 0.00000
1.14 0.00000 -3.01002 2.59576 0.00000
1.16 0.00000 -3.00598 2.54494 0.00000
1.18 0.00000 -3.00134 2.50130 0.00000
1.20 0.00000 -2.99818 2.44232 0.00000
1.22 0.00000 -2.99358 2.39964 0.00000
1.24 0.00000 -2.99046 2.34158 0.00000
1.26 0.00000 ~2.98600 2.29888 0.00000
1.28 0.00000 -2.98297 2.24112 0.00000
1.30 0.00000 -2.97863 2.19845 0.00000
1.32 0.00000 -2,97568 2,14102 0.00000
1.34 0.00000 -2.97145 2.09837 0.00000
1.36 0.00000 ~2.96858 2.04127 0.00000
1.38 0.00000 -2.96447 1.99863 0.00000
1.40 0.00000 -2.96167 1.94184 0.00000
1.42 0.00000 -2.95766 1.89922 0.00000
1.44 0.00000 -2.95494 1.84273 0.00000
1.46 0.00000 -2.95104 1.80011 0.00000
1.48 0.00000 -2.94764 1.75234 0.00000
1.50 0.00000 -2.94517 1.69443 0.00000
1.52 0.00000 -2.94141 1.65196 0.00000
1.54 0.00000 -2.93814 1.60429 0.00000
1.56 0.00000 -2,93502 1.55543 0.00000
1.58 0.00000 -2.93196 1.50636 0.00000
1.60 0.00000 ~2.92895 1.45729 0.00000
1.62 0.00000 ~2.92597 1.40827 0.00000
1.64 0.00000 -2.92303 1.35931 0.000060
1.66 0.00000 -2.92013 1.31041 0.00000
1.68 0.00000 -2.91725 1.26158 0.00000
1.70 0.00000 -2.91441 1.21281 0.00000
1.72 0.00000 -2.91161 1.16410 0.00000
1.74 0.00000 -2.90883 1.11545 0.00000
1.76 0.00000 ~2.90609 1.06686 0.00000
1.78 0.00000 -2.90337 1.01832 0.00000
1.80 0.00000 ~2.90069 0.96984 0.00000
1.82 0.00000 -2.89804 0.92141 0.00000
1.84 0.00000 -2.89541 0.87304 0.00000
1.86 0.00000 -2.89282 0.82472 0.00000
1.88 0.00000 -2.89025 0.77645 0.00000
1.90 0.00000 -2.88771 0.72823 0.00000
1.92 0.00000 ~-2.88520 0.68006 0.00000
1.94 0.00000 -2.88271 0.63194 0.00000
1.96 - 0.00000 -2.88026 0.58387 0.00000
1.98 0.00000 -2.87782 0.53584 0.00000
2.00 0.00000 -2.87541 0.48786 0.00000




|

D FORTRAN Programs

The following programs are programs which we wrote to (1) calculate the locations
of the saddle points for a single resonance medium, (2) calculate the real part of the
phase function for a double resonance medium and draw it graphically versus z and

y, and (3) calculate the locations of the saddle points for a double resonance medium.
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Program to calculate the saddle point p051t10ns for a single
resonance medium,

10

20

real x,y,j,tht,f,g,fx,fy,wo,del,b,ul,wl,uo
real d1,d2,d43,d44,d45,d6,9x,9y,x1,yl,dx,dy,v0
real vl,v2,al,a2,a3,cl,c2,el,e2,e3d,ed,i,t
real aa,cc,nn,ss,XxX,yy,n,1,Jjo

open(2,file='farsad',status="new')
open(4,file='farinit',status='old’')

w0=4
del=0.28
b=20
wl=(w0**2)+b

do 100 n=1,4
read(4,*)x,y

write(2,5)x
write(2,7)y
write(2,%*)

format{9x,'initial

x =',£6.2)
format(9x,'initial y =

', £6.2)

write(2,10)

format (8x, 'theta',4x, 'x-value',6x,'y-value',10x,
'Re phi',5x,'Im phi')

do 90 i=0.02,1,0.02

kount=0
kount1=0

tht=1+i

kount=1+kount
kountl=1l+kountl

This if-then is to help the program converge in the
area around the point where the saddle points coalesce.

if (tht.gt.1.499.and.tht.1t.1.502.and.abs(x).1lt.
0.0001) then

x=0.0005

y=-0.18

endif

ul=x**2-y*4%2-w0**2-h-2*%del*y
uf=ul+b

vO=x*(del+2*y)
vl=x*(del+y)
v2=x*kQ-ykkJ-ykdel




.

al=v2*ul0+2*v0*vl
a2=v0*ud-2*%yliy2
a3=uQ**2+4%yl**2

cl=ul+{b*al/a3)
c2=2*yl+{b*a2/a3)

FeglA*2-c2%*2~ (tht**2)* (ul*u0-4*v1**2)
G=cl*c2~(tht*#2)*v1*(ud+ul)

dl=2*x*u0+2*v2*x+2*vl*(del+2*y)+2*v0*(del+y)
dz=4*uQ*x+8*vl*(del+ty)
d3=u0*(del+2*y)+2*v0*x—4*x*v1—2*v2*(del+y)

el=2*x+(b*(dl*a3—al*d2)/a3**2)
e2=2*(del+y)+(b*(d3*a3—a2*d2)/a3**2)

Fx=c1*el~02*e2—(tht**2)*(uO*x+ul*x-4*Vl*(del+y))
Gx=02*el+cl*e2~(tht**2)*((del+y)*(u0+ul)+v1*4*x)

d4=—u0* (2*y+del)—2+y2* (y+del) +A*xkv1+2Fx*v0
a5=-4%u0* (y+del) +8*v1lkx
dﬁ=2*x*u0~2*v0*(y+del)—2*x*v2+2*vl*(2*y+del)

e3=—(2*(y+del))+(b*((d4*a3)—(al*d5))/a3**2)
e4={2*x)+(b*((ds*a3)—(a2*d5))/a3**2)

Fy=(e3*cl)~(e4*02)+((tht**Z)*({y+de1)*(u0+ul)+4*vl*x))
Gy=(02*e3)+(cl*e4)—((tht**2)*(x*(u0+u1)—4*vl*(y+del))

J=Fx*Gy-Fy*Gx

Dx=(Fy*G-F*Gy)/J
Dy=(F*Gx-Fx*G)/J

if (abs(x)}.lt.1E-35) then
dx=0
x=0
endif

x1=Dx+x
yl=Dyty

This sequence calculates the value of the real and
imaginary parts of the phase function at the saddle
point that we calculate.

noa

aa= b*(b-2*ul)

co=u0**2+(4*% (v1*x*2})
nn=sqrt(sqrt(1+(aa/ec)))
sg=atan((2*b*vl)/(cc~b*ul))

Xx=—(y)*(nn*cos(ss/2)~tht)*(x)*[nn*sin(ss/Z))
YY=[x)*(nn*cos(ss/2)~tht)—(y)*nn*sin(ss/E)




S

if (x.eq.0) then
if (abs(dy/y1).1t.0.0001) then
write (2,30)tht,x,(yl+y)/2,xx,yy |
x=x1
y=yl
go to 90
endif
else

if {abs(dx/x1).1t.0.0001.and.abs(dy/y1).1t.0.0001) then
write{2,30)tht, (x1+x)/2,(yl+y)/2,xx,yy
x=x1
y=yl
go to 90
end if
endif

30 format(6x,£6.2,2x,f12.7,1x,£12.7,5x%,£10.6,1x,£10.6)
I have taken 1000 to be the upper limit on the number

of iterations the program should perform before giving
up hope of getting convergence.

Q00

if (kount.gt.1000) then
goto 90
endif

c This is my trick to speed convergence when the program 't
c begins to alternate between two values.

if (kountl.eq.40) then
x=(x+x1)/2

y=(y+yl)/2

kountl=0

else

x=x1
y=yl

endif
go to 20
90 continue

write(2,%*)
write(2,%*)

100 continue

close(4)
close(2)

110 stop
end
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This program calculates the value of the real part of
the phase function for a double resonance medium with
nu, the local field correction factor included.

dimension x(201),y(201),2(201,201)

real th,w0,del0,del2,b0,b2,nu,a,al,a2,c,c0,c2,aa,cc
real sl,s2,tl,t2,1i,3,1,k,w2,psi,alp,bet
real zl1l,z2,zz,w,nup,div

w0=1

w2=7
del0=0.2
del2=0.56

The values for the deltas are actually twice those
oughstun and shen use, but, I leave off a two in my
derivation necessitating that my deltas are multiplied
by two.

b0=5
b2=20

nu=0
th=1.25

call begplt(l,'dubl.tek',' ')

do 101 nup=0’0-7,0-1
div=10

The following will give me graphs at values for nu
from 0 to 0.2 on a scale from -10 to 10 in x and y
and two sets of graphs for nu from 0.2 to 0.6 on a
scale from -5 to 5 in x and y - a total of 13 graphs.

if (nup.gt.0.2) then
if (nup.gt.0.8) then

nu=nup-0.6
div=2*div
else

nu=nup-0.1
div=2*div
endif
elase
nu=nup
endif

do 25 i=1,201
x(i)=(i-101)/div
y(i)=(i-101)/div
continue

do 35 j=1,201
do 30 1=1,201 i

o




I EEEEE—————————S———————.

a0=wO**2-x (§)**2+y (1) **2+del0*y (1) ' |
a2=w2%x*k2-x () *%2+y{1)**2+del2*y (1)

cO=2*x(j)*y(1l)+delo*x(])
c2=2*x () *y(1)+del2*x(])

aa=b0*a2+b2*al
co=hi*c2+b2*c0

alp=al*a2-c0%c2
bet=a2*c0+al0*c2

tl=aa*{bet-(nu*cc))mcc*(alp-(nu*aa))

t2=((alp—(nu*aa))*(a1p+aa*(1—nu)))+((bet—(nu*cc)}*
(bet+cc*(1-nu))}

psi=atan(tl/t2)

sl=(alp—(nu*aa))**2+(bet~(nu*cc))**2
g2=sqrt (t1**2+£2*%*2)
zz=sqgrt(s2/sl)

z(j,l)=y(l)*th—x(j)*zz*sin(psi/Z)—y(l)*zz*cos(psi/Z)

c This truncates the peaks so that we can get a view of

c the rest of the plane - they go to infinity anyway
if (z(j,1).gt.10) then
z(3,1)=10
endif !
if (2z(j,1).1t.-10) then
z{j,1)=-10
endif

30 continue

35 continue

c The if-then here gives me "reverse" viewing on the same

C graphs.

if (nup.gt.0.8) then
call def3d(—150.0,60.0,0.0,0.0,0.0,0.0,0.0,0.0,0,0,0,
0,0,0,0)
else
call def3d(—30.0,60.0,0.0,0.0,0.0,0.0,0.0,0.0,0,0,0,
0,0,0,0)
endif
call plot3d(x,y,z,201,-201,—201,—3,—3,‘x',1,'y',l,
lzi'l'l 'Il),

101 continue
call endplt

110 stop
end




I

Program to calculate the location of the saddle p01nts for a
double resonance medium.

real x,y,j,tht,£,g,£fx,£fy,w0,del,b,gx,gy,a0,a2,c0,c2,
aDy,a2y,cOx c2x

real pr,pl,qr,ql,prx,plx,qrx gix,pry,ply.qry.qiy.prp:
pip,grp,qip

real prpx,prpy,pipx,pipy,qrpx,drpy,qipx,qipy,ri,r2,
r3,r4,r5,r6

real sl, 52,93 s4,s5,86,al,be,alx,aly,bex,bey,rel,re2,
iml,im2, relx

real rely,rer,re2y,1m1x,1mly,1mlyl relyl,relxl,imlxl,
aax,aay,cex

real ccy,dx dy,i,k,1,pipl,pip2,nu,im2x,im2y,g0,92

real aa,cc,nn,ss,xXx, yy,eks,tl t2,s0l,s802,psi

open(2,file='tworesad.dat’',status="new')
open(4,file="twoinit’,status="'cld")

w0=1
w2=7
g0=0.2
g2=0.56
b0=5
b2=20
nu=0.35
c The following makes a "grid" of points in the plane in
c order to find all the solution points to our equations for
o] a given nu. Once this is done we then have a good idea
o] what initial points to put into our initial file which
c will thereafter be read by the program.
c do 110 k=0,40
c do 105 1=-15,15
c The following is used after we have an idea where to
c find various saddle points.
do 100 n=1,4
read(4,*)x,y
' write(2,5)x,90/2
write(2,7)y,nu
write(2,%)
5 format(7x,'initial x =',£6.2)
7 format(7x,'initial y =',£6.2,2x,"' nu="',£5.2)
write(2,10)
10 format (6x, 'theta’',4x,'x-value',4x,'y~value’',8x, 'Re phi')

dO 90 i=0-02'l;0302




20

kount=0
kountl=0

th=1+i

kount=1+kount
kountl=1+kountl

a0=wO**2-x**2+y**2+g0*y
c0=2*x*y+g0*x
a2=w2hk2—xkAk2+yhk2+g2ty
c2=2%x*y+g2*x

c0x=2%y+g0
c2x=2*y+g2

a0y=2*y+g0
al2y=2*%y+g2

aa=b0*az2+bh2*al
cc=b0*c2+b2*cl

al=al0*a2-c0*c2
be=a2*c0+al*c2

pr=al+(l-nu)*aa
pi=—-be-(1l-nu)*cc

gr=al-nu*aa
gi=-betnu*cc

prp=-2*x*(a0+a2+(l—nu)*(b0+b2))—2*y*(cO+c2)—c0*g2—cZ*gD
pip1=2*x*(cO+cZ)*2*y*(aO+32)—a0*g2—a2*gO

pip2=-(1-nu)* (b0*(2%y+g2)+b2*(2*y+g0))

pip=pipltpip2

qrp=—2*x*(a0+a2~nu*(b0+b2))~2*y*(cO+c2)—cO*gZ—c2*gO
qip=2*x*(cO+cZ)—2*y*(a0+a2)—aO*gZ-az*g0+nu*(bO*{z*y+gZ)
_ +b2%(2*y+g0})

rel=(x*qr+y*qi)/(2*(qr**2¥qi**2))
iml={y*qr-x*qi)/(2*(gqr**2+qi**2))

re2=prp*qr-pip*qi-pr*qrp+pi*qip
im2=pip*qr+prp*gi-pi*qrp-pr*qip

F=(pr+rel*re2-iml*im2)**2—(pi+iml*re2+im2*rel)**2
-{th**2)*(pr*qr-pi*qi) -

G=2* (pr+rel*re2-iml*im2)*(pit+iml*re2+im2*rel)
~(th**2)* (pi*qr+pr*qi)

alx=-2*x*{a0+a2)-cO0x*c2-c2x*cl
aly=-2*x*(c0+c2)+aly*a2+a2y*al
bex=-2*x*(c0+c2)+cOx*a2+c2x*al
bey=2*x*(a0+a2)+a2y*co+a0y*c2




aax=-2%*x*(b0+b2)
aay=b0*a2y+b2*aly
ccx=b0*c2x+b2*c0x
coy=2*%x*(b0+b2)

prx=alx+{l-nu)*aax
pix=-bex~-{l-nu)*ccx
pry=aly+(l-nu)*aay
piy=-bey~-(1l-nu)*ccy

grx=alx-nu*aax
gix=-bex+nu*ccx
gry=aly-nu*aay
giy=-~bey+nu*ccy

prpx=—2*(a0+a2)+8*x**2—2*(l-nu)*(b0+b2)—2*y*(cOx+c2x)
~c0x*g2-c2x*qg0

pipx=2*(cO+cZ)+2*x*(cOx+ch)+8*x*y+2*x*(90+92)

prpy=—2*x*(a0y+a2y)~2*(cO+cZ)—8*x*y—2*x*(g0+g2)

pipy=8*x**2—2*(a0+a2)—2*y*(a0y+a2y)—a0y*gz-a2y*g0 ;
~2%(1l-nu)*{b0+b2)

qrpx=—2*(a0+a2)+8*x**2-2*(-nu)*(b0+b2)~2*y*(00x+c2x)
-c0x*g2-c2x*gl

qipx=2*(cO+02)+2*x*(cOx+c2x)+8*x*y+2*x*(g0+92)

qrpyz—z*x*{a0y+a2y)#2*(cO+cZ)—8*x*y—2*x*(gO+g2)

qipy=8*x**2—2*(a0+a2)—2*y*(a0y+a2y)—a0y*92—a2y*go
-2%(~nu) *(b0+b2)

relxl=(qr+x*qrx+y*qix)*(qr**2+qi**2)
~(x*qr+y*qi)* (2*qr*qrx+2*gi*qix)
relx=relxl/((2*{qr**2+qi**2)**2)}

imlxl=(y*qrx—qi-x*qix)*(qr**2+qi**2)
~(y*qr-x*qgi)* (2*%qr*qrx+2*qi*qix)
imlx=imlxl/(2* (qr*x*2+qi**2)**2)

re2x=prpx*qr+prp*qrx—pipx*qi—pip*qix—prx*qrp—pr*qrpx

tpix*gip+pi*qipx . L/
im2x=pipx*qrtpip*qrx+prpx€bi*prp*qix,pix*qrpﬂ,ﬁ*qrpx
-prx*piprpr*aip // X
e ‘

rl={pr+rel*re2-iml*im2)
r2=(prx+relx*re2+rel*re2x~im1x*im2—iml*im2x)
r3=(pi+iml*re2+im2*rel)
r4=(pix+im1x*re2+im1*re2x+im2x*rel+im2*relx)
r5=th**2# (prx*qr+pr*qrr-pix*qi-pi*qix)
r6=th**2* (pix*qr+pi*grx+prx*qi+pr#*qix)

relyl=(qgi+x*qryty*qiy)*(qr¥**2+qi**2)
—(x*qr+y*qi)*(2*qrrqryt+2*qgi*qiy)
rely=relyl/(2*{qr¥*2+qi**2)*+2)

imlyl=(y*qry+qr—x*qiy)*(qr**2+qi**2)
—(y*qr-x*qi)*(2*qrrqry+2*qi*qiy)
imly=imlyl/(2*(qr**2+qi**2)**2)




re2y=prpy*qr+prp*qry-pipy*qi-pip*qiy-pry*qrp-pr*qrpy
+piy*qip+pi*qipy
im2y=pipy*qr+pip*gry+prpypiyprp*qiy-piy*qrp-pi*qrpy
~pry*pip-pr*qipy®;
ar
sl=(pr+re1*re2—iml*im2)
32=(pry+rely*re2+rel*re2y—imly*im2~iml*im2y)
g3=(pi+iml*re2+im2*rel)
s4=(piy+imly*re2+iml*re2y+im2y*rel+im2*re1y)
g5=th**2% (pry*qr+pr*qry-piy*qi-pi*qiy)
36=th**2*(piy*qr+pi*qry+pry*qi+pr*qiy)

Fx=2%rl#*r2-2*%r3*r4-r5
Gx=2*(rl*rd+r2*r3)-ré

Fy=2%gl*g2-2*g3*%s84-s5
Gy=2*%(8l*s4+52%33)-56

J=FPx*Gy-Fy*Gx

Dx=(Fy*G-F*Gy)/J
Dy=(F*Gx-Fx*G)/J

if (abs(x).lt.1E-25) then
dx=0
x=0
endif

x1=Dx+x
yl=Dy+y

tl=aa* (be-(nu*cc))-cc*({al-(nu*aa))
t2=((al-{nu*aa))*(al+aa*(l-nu)))+

({be-(nu*cc))*{bet+cc*(1-nu)))
psi=atan(tl/t2)

sol=(al-{nu*aa))**2+(be~{nu*cc))**2
s02=sqrt (t1**2+4£2%%2)
eks=sqrt(so2/sol}

xx=y*th—x*eks*sin(psi/2)—y*eks*cos(psi/Z)
yy=-x*th—y*eks*sin(psi/2)+x*eks*cos(psi/2)

if (x.eq.0) then
if (abs(dy/yl).1t.0.0001) then
write (2,30)th,x,(yl+y)/2,Xx,yy
x=x1
y=yl
go to 80
endif
else

if (abs(dx/xl).lt.0.000l.and.abs(dy/yl).1t.0.0001) then
write(2,30)th, (x1+x)/2,(y1+y)/2,xX,yY




30

90

100

cl05
cllo

120

x=x1
y=yl
go to 90
end if
endif

format(5x,f8.3,2x,f12.7,lx,f10.7,5x,f13.7,2x,f13.7)

if (kount.gt.1000) then

write(2,*)' * !
goto 90
endif

if (kountl.eg.100) then

x={x+x1)}/2
y=(y+tyl)/2
kountl1=0
else

x=x1

y=y1l
endif

go to 20

continue

write({2,%)
write(2,%*)

continue

continue
continue

close(4)
close(2)

stop
end




E Annotated References

Aaviksoo, J., J. Lippmaa, and J.Kuhl, Observability of optical precursors, Journal of the
Optical Society of America B 5,8,1631 (1988).

This paper is a theoretical consideration of the feasibility of experimental detection of
precursors in the optical region. An experiment is also proposed which would separate
the precursors from the main signal. We used this paper as a help in getting a physical
understanding of precursors.

Arfken, George, Mathematical Methods for Physicists, 3rd ed, (Academic Press Inc., 1985).

We relied very heavily on chapters six and seven of this book for learning complex analysis
and the method of steepest descent.

Born, M. and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford 1970), Appendix IiL

This appendix dealt with the method of steepest descent and we used it as a reference for
that method. '

Brillouin, Léon, Wave Propagation and Group Velocity, (Academic Press, New York and London
1960).

This contained reprints of the original papers by Sommerfeld and Brillouin as well as some
later papers by Brillouin. We used this fairly extensively as a reference to the original
theory upon which Oughstun and Sherman improved.

Buerger, David J., LATEX for Enginéers and Scientists, (McGraw Hill, New York 1990).

This proved to be an invaluable book in teaching us how to use Latex. This was perhaps
only incidental to this thesis, but it still helped immensely.

Hecht, Eugene, Optics, 2nd ed, (Addison-Wesley, Reading MA 1987).

We used this book as an introduction to dispersion theory and relied on it in part for the
derivation of the complex index of refraction as based on the Lorentz model of the atom.

Loudon, R, The Propagation of electromagnetic energy through an absorbing dielectric, Journal
of Physics A. 3,233 (1970).

An improved derivation for the energy velocity is presented which the author claims offers
a correction to Brillouin’s analysis of the energy velocity. QOughstun uses this paper as his
starting point for his analysis of the energy velocity. Since our concern was more with
Oughstun’s original paper, this issue, and hence the paper, was secondary to us.

Olver, F.W.J. Why steepest descents?, SIAM Review 12,2,228 (1970).

This is a rigorous analysis of the saddle-point method or method of steepest descent which
includes a modified derivation, examples using the method, and a consideration of the
bounds on the error involved in the approximation. The method presented here is the one
used by Oughstun and Sherman and was for that reason important for us to understand.

Oughstun, Kurt E. and Shioupyn Shen, Velocity of energy transport for a time-harmonic field in
a multiple resonance Lorentz medium, Journal of the Optical Society of America B 5,11,2395
(1988).

[




Loudon’s treatment of the energy velocity is generalized to the case.of a dispersive medium
having several resonance frequencies. This was again secondary to our main interest, namely
the shape of a pulse traveling in a Lorentz medium, so we read this article mainly out of
curiosity, but did not use it explicitly.

Oughstun, Kurt E. and George C. Sherman, Propagation of eleciromagnetic pulses in a linear
dispersive medium with absorption (the Lorentz medium), Journal of the Optical Society of
America B, 5,4,817 (1988).

This is the main paper we considered. Sommerfeld and Brillouin’s theory of pulse propaga-
tion in a dispersive medium is reconsidered and improved using higher order approximations
verified with modern computer techniques. The precursor fields for two specific pulses are
calculated using the improved approximations and a modified interpretation is given to the
signal velocity.

Oughstun, Kurt E. and George C. Sherman, Uniform asymptotic description of electromagnetic
pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),
Journal of the Optical Society of America B, 6,9,1394 (1989).

This paper is an extension and in part a correction to their 1988 paper which considered
only the nonuniform expansion of the field and which therefore described a field that was
not continuous under certain conditions.

Pleshko, Peter and Istvan Palocz, Ezperimental observation of Sommerfeld and Brillouin pre-
cursors in the microwave domain, Physical Review Letters 22,22,1201 (1969).

This paper reports the experimental verification of electromagnetic precursors. It includes a
description of the experimental set up and pictures of the signals taken from an oscilloscope.
We used this mostly as a help in gaining a physical understanding of precursors.

Reitz, John R., Frederick J. Milford, and Robert W. Christy, The Foundations of Electromagnetic
Theory, (Addison-Wesley, Reading MA 1979).

We used this as an introduction to dispersion theory and relied in part on this for the
derivation of the Lorentz model of the index of refraction.

Shen, Shioupyn and Kurt E. Oughstun, Dispersive pulse propagation in a double-resonance
Lorents medium, Journal of the Optical Society of America B 6,5,948 (1989).

This is another offshoot of the original paper and uses numerical analysis to calculate the
medium response to a pulsed signal. An additional precursor is found for each additional
resonance frequency beyond the first. We considered some of the work done here.

Smith, W. Allen, Elementary Numerical Analysis, Harper & Row, Publishers, Inc. 1979.

We used this book fairly exclusively in helping us discover an appropriate approximation
technique which could be used to calculate the locations of the saddle points of the phase
function. The derivation of Newton’s method for two functions of two variables found in
the section on the numerical calculation of the saddle points follows Smith’s fairly closely.
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