Do Frwiesin Vauihesle—

The Simulation of a Quantum Computer

on a Classical Computer

by
Zerubbabel A. Johnson
July 1997

Submitted to Brigham Young University in partial fulfillment

of graduation requirements for University Honors

Advisor: Jean-Frangois Van Huele  Honors Dean: Steven E. Benzley

Signature: ?7% \éu. “H&)\fé Signature:! s’
A




Abstract

Recent developments in physics and theoretical computer science indicate the
potential for highly efficient computing using quantum principles. Specific problems
of interest out of the reach of current computers, such as the factoring of very large
numbers, would become feasible using quantum techniques. 1 give a brief background
on quantum computing, and examine its fundamental concepts. 1 cover these concepts
in comparison and contrast with the concepts fundamental to conventional computing.
In order to provide a way of exploring quantum computing, I write a program for a
classical computer that simulates a quantum computer. The writing of this simulation
provides a means of comparison between quantum and classical computing, and
provides a platform for the exploration of quantum computing. Because quantum
computing includes conventional computing, however, significant limitations are
present in the simulation. I present the details of these limitations, and suggest possible
reasons for their existence. I also present results obtained in the execution of the

simulation, and provide suggestions for the use and expansion of the simulation.
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1 Introduction

Quantum computing is a relatively new and rapidly growing field. As an

L application of quantum physics to computer science, its focus is on overcoming current

limitations on the abilities of computers. To do so, both new computational hardware and
new computing algorithms based on quantum mechanical principles are envisioned.

This work is a report on my attempts at understanding the fundamental principles
behind quantum computing. The best way to understand the workings of a quantum
computer would be to observe one directly. However, as explained below, constructing
an operating quantum computer is currently impractical. A natural alternative is to build
a simulation. While previous research into quantum computing has used mathematical
models, I chose to simulate a quantum computer using a conventional computer, That is,
I wrote a program for a conventional digital computer that simulates quantum computing
information and operations. It is this simulation effort that I report on here.

In this first chapter I present the motivations for this work and give an outline of
it. The second chapter is a brief background on the field of quantum computing in
general. As this work contains only an overview of some of its basic concepts, the
background gives a broader outlook on the field, both on its development and future
prospects as well as its current difficulties and points of research. In addition, as much of
this .work is based on the ideas of others, I give references to previous work which I used

?: in my research.

The third chapter covers the implementation of information in both the digital and
quantum computing models. As the quantum information model has both strong parallels
and distinct differences with the digital information model, the two are 'presented
together, along with comparisons where appropriate. In addition, I give an explanation of
the notation standard to the quantum model. The fourth chapter uses a similar format to
cover the operations used in both models. Again, I compare and contrast the digital and

quantum models, and detail the notation for quantum computing operators.



In the fifth chapter I present the central issue of this work, the task of simulating a
quantum computer on a conventional computer. T review the parallels and differences in
the two models which pertain to the simulation, and establish some methods available to
handle them. 'The methods I actually used or experimented with in my program are
explained, and 1 discuss their mutual advantages and disadvantages. In this chapter I also
review the methods used by Damian Menscher [1] in his efforts to solve the same
problem. 7

The sixth chapter is a presentation of the results. I discuss the strengths and the
limitations of my program, both from a general and a numerical point of view. I detail
the errors I encountered in my simulation, along with some possible explanations. 1
compare my findings with Damian Menscher’s [1], noting strengths and weaknesses of
both programs. In the seventh chapter I give my conclusions. Ireview briefly the overall

implications of my research, and I identify some possibilities for continued research.



2 Background

The field of quantum computing comes as a direct outgrowth of the field of
computer science. As conventional computing is based on classical mechanics (and is
referred to in quantum computing literature as classical), quantum computing proposes to

utilize quantum mechanics to perform computations. Logistically the two approaches are

similar. In both approaches, a set of information, divided into basic units of information,

or bits, is subjected to a set of operations, or gates, which change the information in well-

defined ways. In contrast, however, the classical and quantum computers use different
models for the implementation of information and operations, as will be detailed in this
work.

The first step from the classical model of computing to the quantum model was in
the recognition that classical computing could be made reversible [2]. A basic
requirement of any computational system is that there exist a set of operations that are
adequate; that is, a set of gatcs which are sufficient for the representation of any arbitrary
operation. If a single gate fulfills that requirement, that gate is said to be universal; the
NAND gate is an example of a gate universal to the conventional computer. For
reversible computations, Fredkin and Toffoli [3] demonstrated the existence of a
universal gate operating on three bits. The application of reversibility to computing led to
the possibility of using quantum systems for computation. The evolution of elementary
quantum systems is usually described by a unitary (reversible) operator in a Hilbert space.
Consequently, implementations of universal reversible three—bi.t gates were p1'0posed [4]
using quantum systems.

The tmplementation of computation using quantum systems led to the possibility
of using quantum properties as a fundamental part of'the computation |2, 5]. Deutsch [6]
proposed the use of distinctly quantum phenomena in computation to obtain a higher
efficiency in simulating quantum systems. He also suggested that the use of quantum
phenomena might also be able to solve some conventicnal problems faster than classical
methods. Shor [7] subsequently used Deutsch’s methods to develop quantum computing

algorithms for factoring numbers and calculating logarithms. Shor’s algorithms are
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significant in that they are, in theory, significantly faster than any algorithms used by
classical computers. Shor’s discovery established the ability of the theoretical quantum
computer to operate at a higher efficiency than the classical computer, and led to the level
of interest quantum computing currently enjoys,

A subject of interest in quantum computing was the search for a universal
quantum gate. Deutsch [8] showed that a simple modification of the Toffoli [9] gate was
universal for the quantum computer. While Deutsch’s gate operated on three quantum
bits, later papers showed that a universal two-bit gate exists [10], and even that a wide
.variety of universal two-bit gates exist [11]. |

With the basic properties of the quantum computer established and universal gates
identified, subjects of current research are in developing practical aspects and in
countering potential problems. Specifically, in developing practical aspects, work is
being done in the designing of quantum computing networks and in the building of
quantum computing components. In designing computing networks two subjects of
interest are the decompositioil of larger operations into component gates [2, 12] and the
development of networks that efficiently implement Shor’s algorithms [13, 14]. In the
building of actual quantum computing gates a variety of methods are being used, some
with limited success [15, 16, 17].

Countering potential problems is the subject of most interest at this point. While
some actual implementations of quantum computing theory have been proposed, and a
few prototype gates have been built, fundamental problems remain in the quantum

phenomenon of decoherence. In a quantum computer, decoherence would randomly

change stored information [18], resulting in the regular appearance of errors. While some
| ~ believe that the problem of decoherence renders the quantum computer impractical [19],
others are optimistic that it can be overcome [13, 16, 18]. In the absence of solid
evidence verifying one viewpoint or the other, however, much of the current effort in

quantum computing is toward developing efficient error correction code [12, 20].



3 Information Models

As explained above, the field of quantum computing comes as an outgrowth of the
field of computer science. In the literature on quantum computing, conventional
computers are referred to as classical, in reference to the fact that they utilize phenomena
associated with classical mechanics. The quantum computer’s name appropriately
reflects the fact that it is based on quantum mechanics.

In the development of quantum computers, some effort has been made to retain a
link with conventional computer science. In particular, the notation used in depicting
information and gates parallels that used in computer science. These parallels highlight
similarities that do exist between the two fields as well as differences that distinguish
: them. This comparison of quantum computing with classical computing is not only a
fairly standard approach, but bears significance in my attempt to use one to simulate the
other. As such, I will use the following approach in my presentation of the information
and operation models: the format for the classical approach will be presented first,

followed by the format for the quantum approach,

3.A Quantum Bits Versus Classical Bits

3.A.1 Classical Bits

In classical computing the fundamental unit of information is the bit. The bit is

binary; that is, it always has one of two distinct values, called on or off, labeled as one or

zero. Information about a two-state system can be stored on one bit; larger pieces of
information are stored on groups of bits. In particular, numbers are represented using the
binary numbering system, with the range of possibilities being limited to integers within a
range that is exponential in the number of bits. For instance, a set of eight bits,

commonly called a “byte,” has a range of 256 possible values. Since each component bit



in the computer can only be in one state at any given time, the computer’s information,

viewed as a whole, can consequently be in only one state at a given time.
3.A.2 Quantum Bits

The quantum computer stores its information through the use of quantum states.
This model has some similarities to the classical computing model; the information is
stored on basic units of storage called qubits. Each of these qubits has a finite number of
basis states available; in most quantum computing models this is set at two available
states to parallel the classical binary system. Again in parallel with the classical model,
the available states are labeled as one and zero, or, less commonly, up and down. One
gubit can hold information about a quantum two-state system; larger pieces of

information are stored on groups of qubits,
3.B Notation
3.B.1 Dirac Notation
Several written representations of quantum states are available. The most general

of these is Dirac notation, where a state N is written as IN). Computational states arc

generally represented in binary; for instance, a portion of memory representing decimal

13 would be 1101 in binary, and so the state would be written as 11101). This particular
state would occupy four bits of memory. Individual bits are referred to by counting from
the right, starting at zero. In the above example the first order bit would be in the 10)
state, and the zeroeth, second, and third bits in the i1} state. In Dirac representation
occupation coefficients are placed to the left of the state; the coefficient ay of a state IN)

would be written as anIN).

3.B.2 Matrix Representation



arbitrary state

would be, in vector form

1Py =

would look, in vector form

110} =

vector, with column elements corresponding to the available basis states,

= 3 dn m <=L ™R

(0
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Most of the literature on quantum computing, however, chooses to use the matrix

representation. In this representation, the entire state is depicted as being a column

The

occupation, or complex coefficient, of each of the basis states is found in the
corresponding place. The available states themselves are given in binary. For instance,

the numbers zero through seven could form the basis for a matrix representation; an

W) = o 1000) + B 1001) -+ 1010) +8 101 1) +& 1100Y +& NOD) +1 110y + 1 [111) (1)

(2)

If a piece of memory was in the state [110) (corresponding to decimal six), that state

(3)



3.C Superposition and Entanglement in Quantum Information

3.C.1 Superposition

The primary difference between the classical and quantum models, however, is in
the quantum effect of superposition. Each qubit can occupy not only one of the two
available states, but can occupy both states to a limited extent simultaneously. This
occupation of states is analog; while it has a limited range, it may occupy any value
within that range. In addition, the number specifying the occupation can be complex,
with both a magnitude and a phase. If the occupation is of one state only, then the system
is said to be in a basis state; if not, it is said to be in a superposition. For instance, a

single qubit could be in one of several states:

10)
or ¢°10) (4)
or al0)+BI1)

In the first instance the qubit is in a basis 10) state; in the second it is also in a basis 10)
state, but with an added phase; in the third it is in an arbitrary superposition of the i0) and
11) states, with o and  complex numbers. A constraint on the coefficients is that the sum
of their modulus squared be equal to unity; that is, for an arbitrary state

Y = alu )+ a,luy ) +aslug) +. . +a,lu,) )

the coefficients must satisfy

la, P Ha, P Ha, P+ ... Ha, P =1 (6)



3.C.2 Entanglement

In systems of more than one qubit, however, the quantum phenomenon of
entanglement mandates the model used for viewing the information of the system. In a
quantum system composed of subordinate elements, it is the state of the system as a
whole that bears relevance. That is, in such a system it may not be meaningful to inquire
‘ after the state of a subordinate element; that element exists as a part of the whole rather
| than as an individual entity. The basis states that are available are those which cover the
entire system; the degree of freedom is on the level of the system as a whole rather than
on its constituent elements. For instance, in a system with three qubits the state vector

might look like

0
0.193
0.580i
0
| 0.774
f 0
0.097 +0.135i
0

(7

In this case, the state of the system is clearly defined, but the state of the three individual

qubits is not; it is not possible to identify the state of, say, the first qubit.

3.C.3 Composition and Decomposition

The implication of this for the quantum computer is that the computer’s state must
be viewed as a whole, rather than by examining individual qubits. In the classical
computer, both the state of the computer as a whole and the state of its individual bits’

bear relevance, the bit as having the degree of freedom and the system as being




constructed from constituent bits. In the quantum computer, the system carries the degree-
of freedom, and the individual qubits do not necessarily have a definable state.

In particular, the state of a quantum computer can be constructed from constituent
qubit states, while the reverse process may not be possible. As conventional computers
have only one state, composition and decomposition are trivial operations. For the
quantum computer, the value of a system’s basis state can be found by simply multiplying
together the qubit basis states of which it is composed. In a simple two qubit system, the

two qubits may occupy an arbitrary superposition of the up and down states:

o0} + B 1

vIi0) +611) ®

The state vector that defines this system is then:

€

In light of the above constructions, it may occasionally be possible to decompose a state
vector into constituent substate vectors. In some cases, however, this is clearly not

possible, as in the apparently simple case below:

1

7 (10)

y_a;._ap_.o

Because of the zero in the 100) state, the status of individual bits cannot be determined. In

other words, no o, B, ¥, & can be found such that ay=0, fy=1, ad=1,pd= 1.
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3.D Measurement in Classical and Quantum Systems

An additional distinction between the classical and the quantum information
models is in the measurement of the state of the system. In a classical computer, the act
of measuring a bit to determine its state has a negligible effect on the state of the bit.
Therefore, the bits can be examined as often as necessary with no effect on the
information as a whole.

"In the quantum computer, however, as the information is stored in a quantum
system, the act of measurement does interfere with the state of the system. In particular,
the system will be measured as being in only one state. The probability of a given state
being measured is the modulus squared of its (complex) occupation value, or coefficient.
In this way individual qubits can be measured, although they would only be found to be in
the 10) or I1) state. All information about other states the system was occupying is
permanently lost; the system is said to have collapsed to one value. Thus, the system can
only be measured once before losing the depth of its quantum characteristics. The
implication of this for quantum computing is that a measurement of the system can only
be made once, after the calculations are finished. However, while the inherent
parallelism of the system is not directly accessible, the action of gates is not considered a
measurement., Consequently, the system does maintain its superposition through series of

operations, which gives the quantum computer its distinct qualities.

11




4 Operation Models

In both the classical and quantum computing models, the computer’s operation
involves performing some sort of defined transformation on some input information.
Unlike the information part of the model, however, the parallel between quantum and
classical computing with respect to the transformations, or operations, is not strong. By
comparison, classical computing remains a subset of quantum computing with respect to
operations as well as information. The operations are identical, but the representations of

operations are vastly different.
4.A Operation Representation

In keeping with the matrix representation most commonly used for the quantum
computer, the operations themselves are represented as matrices. As in the quantum
formalism, the state is given as a column matrix and the operation is given as a square
matrix multiplied to the left of the state. A sample one-bit operation that flips a bit might
look like this:

[ o)) ®

In a sense, the quantum computing operators can be seen as truth tables. Matrix
elements select a source basis state and specify how that state will contribute to a selected
destination basis state. Columns in the operator matrix specify how a given source basis
state will contribute to the destination state as a whole. In the following example, an
arbitrary operator acting on a basis state demonstrates the relationship between matrix

elements and basis states

12



= (12)

=
=)
o
&
)
D
S
o = O O
=
I

4.B Operator Properties

" 'With this notation, the classical operations can be represented in operator formi,
though some significant differences remain. Primarily, in classical operations there is
usually a fundamental loss of information; in classical gates, two bits are often used as
input for only one bit of output. Because of this loss of information, the process is
irreversible. Classical gates can be adapted to the quantum formalism, however, by
adding one or more output bits, thus preserving information and allowing reversibility.
Reversible classical computing as developed by Fredkin and Toffoli [3] uses this
approach to maintain reversibility. In addition, for a classical gate to be addpted to the
quantum domain, it must meet criteria unique to quantum operators.

In order for a quantum computing operation to be implemented by a physical
process, the operator falls under the same constraints as quantum mechanical operators.
Reversibility is one of those properties; however, the matrix operator must also be
unitary. In practice, this maintains normalization from the initial to the final state vector.
As with the state vector elements, matrix clemenfs can be complex.

The most distinct difference in the quantum and classical operators is in the type
of state the two can operate on, Classical operators can only act on a basis state; they
cannot operate on a sﬁperposition. Quantum operators, on the other hand, do operate on
superpositions, When a quantum operator acts on a superposition, it automatically acts
on each element of the superposition. Because it acts on multiple pieces of information
simultancously, the quantum operation is a truly parallel computation. While only one
element of the superposition will eventually be measured, the parallel processing provides

for the possibility of interference effects. These interference effects are what render

13



Shor’s algorithms [7] significantly faster than any algorithms known for classical

computers.

4.C Universal Gates

The XOR gate, although not universal to classical digital computing, can be made
reversible by preserving one of the input bits. The reversible XOR gate can be

represented in the {100}, (01}, [10}, I11)} basis as follows

1 000
0100

XOR=0001 (13)
0010

The Toffoli gate [9], universal to reversible computing, is a three-bit variation on the
reversible XOR gate, In effect, it flips the third bit if the first two are in the 11) state. In
; the {1000), 1001}, ..., 1111)} basis it is

10000000
010000000
00100000
00010000
T=lo0001000 (14)
00000100
000000O0O 1
00000010

The first gate universal to quantum computing was discovered by Deutsch [6]; it is a

variation on the Toffoli gate, and is also a three-bit, or rather three qubit, gate. It is, in the

[1000), 1001), . .., 1111)} basis

14




(13)

c o o O O
o O o O o

0 0
icos§ sind

o0 0 = O O o @

0
0
0
0
0
1
0
0

o O O O O C O
o O O C O o - O
Cc O o C o = o O
(R e R e e = B i

sin® icosH

with /7 irrational. The first of the universal two-bit gates for quantum computing was
‘ discovered by Barenco [10], and is a variation on the Deutsch gate. In the {l00}, 101),
110}, 111)} basis it is

1 0 C 0
01 0 0

AR 4O=15 o eRcosd  —ie sing (16)
0 0 —ie®®ging e™ cosh

with ¢, o, and O are fixed irrational multiples of T and of each other.
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5 Simulation

Qur problem of interest is the simulation of a quantum computer on a classical
computer. In particular, our goal is to write a program on an existing platform that
simulates both the quantum computer information storage and operations. The result we
hope to obtain is a program that executes this simulation within the limits of available
computing resources, is flexible enough to allow some experimentation, and can give
concrete data on errors and resource usage. In the programming of this simulation,
however, several unique challenges present themselves. Most of the difficulties
encountered involve the fact that the operations available to us on the classical computer
are a subset of the operations we are attempting to simulate. The difficulty could be
compared to attempting to perform multiplication or division using only addition; the

simulation is possible but not necessarily efficient.
5.A Programming Approach

Wiiting the program can be separated into two significant tasks. The first is the
most difficult, that of devising an algorithm, or set of instructions, to perform the desired
operations. The second task is the actual coding of the algorithm, where the set of
ins&uctions is written out in computer language, in a format ready for compilation. As
the actual programming language used is not as important as the algorithm, I will not
make reference to any details specific to the language used. I refer the reader to
Appendix A for a complete listing of the program, as well as a few notes specific to the
programming language. Rather, general programming approaches serve our purpose in
providing techniques for implementing concepts involved in the simulation. While the
construction of the algorithm usually precedes the coding of the program, certain issues
specific to the coding have a profound effect on the algorithm, and consequently will be
discussed first.

As discussed in Chapters 3 and 4, the quantum computer contains both

information and operators. The most direct method of representing these in a program is

16




through the use of arrays, which fortunately are a direct counterpart to matrices.
Although the quantum matrices have complex elements, this again is not a problem, as
arrays can be built of complex elements, and computing operations for complex numbers
are available. In implementing complex numbets, however, the first of the limitations
inherent to the simulation becomes apparent. Because of the digital néture of the
computer, true analog numbers cannot be represented; rather, the numbers are digitized,
and so have a limited accuracy. In particular, complex numbers are generally represented
using floating point numbers, wherein an exponent and a specific number of significant
figures are retained, with the remainder being discarded. The limited accuracy of these
numbers results in rounding errors, which typically are small but have the potential for

causing larger problems.
5.B Scaling the Simulation

While implementing'mafrices as arrays has no inherent problems, the size of the
arrays is a potentially critical problem. The column matrices used to represent the
quantum state grow exponentially with the number of qubits; in particular, the size of a
column vector corresponding to N qubits is oN elements. The problem is that the program
must use computer memory for each element of the array; with the number of elements
growing exponentially in the number of qubits, the program will be capable of simulating
only a very small number of qubits. Unfortunately, this problem is inherent in the
simulation, The quantum computer uses superposition to carry an exponential amount of
information on its qubits, while the classical computer is inherently linear in its memory
model.

A more severe problem is in the representation of the operator matrices, Quantum
computing operators are defined with respect to their action on a specified number of
qubits, often three or less. Specifically, operator matrices are given in terms of the set of
basis states corresponding to the number of qubits acted upon. When a larger number of
qubits, and hence a different set of basis states, is used, the appearance of the operator

matrix is not well defined. Therefore, before an algorithm for applying an operator can

17
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be designed, a decision must be made as to how relatively small operators are to act upon
relatively large sets of qubits.

The approach used by Damian Menscher [1] in his simulation is to create a new
operator matrix appropriate to the new set of basis states, but based on the original
matrix. In this approach, the new matrix is square in the size of the new set of basis
states; the original matrix elements are repositioned in the expanded matrix so as to retain
the effect of the original operation with respect to specific qubits (specific details on this
transformation are given in [1]). The primary strength of this approach is that the
algotithm for applying the matrix is fairly straightforward; the operator matrix and the
state matrix are simply multiplied together to produce the result. In addition, since
operator matrices can themselves be multiplied together, scveral operations can be
performed at once. Its primary weakness is in the usage of memory. Since the size of the
expanded operator array is quadratic in the size of the state array, the memory usage for
one operation on N qubits is 22N The time used for executing operations can also
become a limiting factor, as each application of a matrix to a state requires a number of
machine instructions on order of the size of the operation matrix (2™ for N qubits).

Rather than take this approach, however, I chose to fix the size of the operator
matrices. In particular, I chose to fix the gate size at two bits, as most quantum
computing gates are two-bit gates or can be decomposed [2, 12} into two-bit gates, By
fixing the operator, necessary adjustments for disparity in the size of the operation and the
information would have to be made elsewhere, namely in the information.

A two-bit gate’s action is defined only within the set of two-bit basis states. A
basis state from a basis having a large number of qubits, however, can be decbmposed
into basis states involving fewer numbers of qubits. For instance, the basis state
10110100) from a seven qubit system can be decomposed into a three qubit basis state and
a four qubit basis state to give 101 1)10100); it can also be decomposed into other
combinations of basis states (101)1031100), for instance). This is similar to the way in
which other quantum states can be decomposed; the spin basis states for a system of
particles, for instance, can be decomposed into spin basis states corresponding (o

individual particles. Since a two-bit gate’s action is dependent only on the condition of
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the two bits it applies to, the remainder of the bits in a larger set of information are
irrelevant. If the basis states in the larger set of information were to be decomposed into
smaller basis states, some of the smaller basis states would contain only bits unaffected
by the operation, and could safely be set aside. It is possible to decompose these larger
basis states in such a way that only two smaller basis states are formed: a two bit basis
state that contains the two bits relevant to the operation, and a basis state containing the
remainder of the bits. To apply a two-bit gate to a larger basis state, then, a two-bit basis
state is decomposed from, or extracted from, the larger basis state, and the gate is applied

to the extracted state,

5.C Executing the Gates

Using the above approach, a two-bit gate can be applied to a state involving more
than two qubits. As explained in Chapter 3, the state can be expressed in terms of basis
states with weighted coefficiénts. The gate is successively applied to each basis state, and
the result is weighted by the appropriate coefficient. In reconstructing the result,
however, some care must be taken. The gate in question may be operating on qubits that
are not adjacent; in decomposing the basis state, then, the ordering of bits must be
retained. For instance, say a gate was operating on the first and third bits of the basis
state 11101); the relevant two bit state would then be 1150,), and the remainder state would
be 11,1¢), where the subscripts designate position in the larger state. After acting on the
extracted state, the gate will produce an output state, which must then be added to the
remainder state, and the larger state is recomposed. For instance, if the gate in the above
example were the XOR gate (from Chapter 4), the result would be 1151,), which, after
recomposition with [131), would be 1111 1), In the case of more complex gates, however,
one input state could result in an output as complex as a superposition of four basis states.
In this case, each output basis state would be “spliced” into the remainder state, with the
final result being a superposition.

To illustrate the overall approach a complete example follows. In this example,

the input state
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¥ = - (11 110)+0010)) (17

is in an even superposition of the states 11110} and 10010). In this instance, the status of

the individual qubits is discernible; the zeroeth and first qubits are in the 10) and [1) states

respectively, while the second and third qubits are in an even superposition of 10) and I1).

The input state is operated on by the gate

10 0 0

A(0,0,%) oL o0 (18)
TET0 0 f -idy
0 0 ~i+ %

acting on the zeroeth and second input bits. Note that this gate [10] rotates the zeroeth
qubit to the extent that the first qubit is in the I1) state. Note also that the gate is not
symmetric with respect to input bits, so the ordering of the input bits is important. In this
case, the zeroeth bit corresponds to the zeroeth input bit, and the second bit corresponds
to the first input bit. First, the basis states are decomposed into relevant and remnant

states:
Y :"1,71"_{“1200)”311>+|0200)l0311>) 1

The two extract states are then separately operated on by the gate:

10 0 0 Yo 0
01 0 0 o 0 20
00 & -zl | %
0 0 -i4x + A0) \-igs
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1 0 0 0 Y1 1
01 0 0 o] o ,
00 & -iklo|7|o =
00 -igx H Ao L0
Both resuits are then spliced into the remnant:
Y= f((—jgﬂzoo) — i1, 1151, ) + (10,0, DI0, 1)) (22)
to obtain the result.
¥ =3I1110) - i311111) + 5510010} (23)

The output state is, like the input state, a normalized superposition. However, the
operation has transformed the state into an entangled one, where the status of the
individual qubits is not discernible.

The primary advantage of this general approach is in the memory and time saved
when relatively large amounts of qubits are simulated. Using this approach, a minimal
amount of storage is required for the gates (sixteen array elements) and the number of
machine instructions executed is on the order of the size of the state array (2~ for N
qubits). Conversely, its primary weakness is in the extra time needed when small
numbers of qubits are involved, as expanding the operator matrix may be quicker than

splitting, evaluating, and recombining each of the individual basis states.
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6 Results

In general, my simulation efforts were successful; in particular, the results
obtained with my program were in harmony with theoretical predictions. In running the
simulation, T was able to observe not only the desired quantum computation, but also the
limitations inherent in my simulation. The most notable limitations observed were in

program execution time, memory limitations, and rounding errors.

6.A Observed Quantum Effects

In running the program, the most directly observed quantum effect was that of
superposition. The program was written specifically to handle a general state that could

be any arbitrary combination of basis states. Even the initial state could be set as a

superposition. The quantum effect of entanglement was observable as well, in that the -

final state could not be decofnposed into component qubit states. For instance, consider

the following operation (the gate used is identical to the one in the Chapter 5 example)

10 0 0 0 0
0 1 0 0 111 1 1
00 & -iFllol V2|-ig @4
00 -igy - 1 s

The initial state contains equal amounts of 101) and I1 1); by observation, the zero order
qubit is in the pure state |1) while the first order qubit is in an equal superposition of 10)
and 1). In accordance with the mathematical prediction, the simulation produced a result
of 0.7071101% + (-0.5)110) + 0.5111). As can be seen by comparison with the example in

section 3.C.3, the result cannot be decomposed into qubit basis states.
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6.B Execution Time

I used standard programming procedures to record the execution time of the
program., In particular, I used the computer’s internal clock to time the processing cycle.
The time starts before the program enters the loop used to process the gates, and is
recorded after the program exits the loop. As an identical set of instructions is executed
regardless of the gate in question, the time used for any gate operation is expected to be
fixed. Some variable factors do exist in the computer’s internal timing and in the
operating system, however, so I used an average over several gates to get a standard time
for a gate operation. Running under MS-DOS on a Pentium chip 90 MHz I recorded

average gate times as shown in Table 1.

Table 1: Average Times for Q

Qubits i States | Average Time(ms)
2 1 4 0.430
3 | 8 0.930
4 116 1.75
5 1 32 3.36
6 | 64 6.59
7 1128 13.3
| 8 | 256 26.3
| o | 512 53.5
10 ! 1024 108
11 | 2048 215
i 12 1 4096 431

Between individual times a discrepancy of as much as 10% was observed, and under
Windows 935 times were around 25% higher. The error in both cases comes from
unknown variables in the operating system; the discrepancy in run times between
operating systems comes from the larger operating system overhead under Windows 93.

As can clearly be seen in Table 1, the time required per gate per basis state is on the order
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of one millisecond for every ten states. By way of comparison, a similar computation
involving twenty qubits (roughly a million basis states) and one gate would take roughly
100 seconds, or over a minute and a half. The average times for Damian Menscher’s
simulation QCompute [1] follow. As anticipated in Chapter 5, his algorithm is faster for
small numbers of qubits but slower for large numbers; the two are about equal when

simulating five qubits.

Table 2: Average Times for QCompute

Qubits i States | Average Time (ms)
2 1 4 0.394
3 1 8 0.792
4 116 1.60
5 132 3.27
6 1 64 6.69
7 1128 13.7
8 | 256 27.8
9 | 512 58.8
10 | 1024 122
11 12048 250
12 1 4096 512

6.C Memory Limitations

The principal memory limitation on the program was from the storage used to
record the basis states. FEach qubit added to the simulation doubled the program’s
memory requirements. Since current computers have memory available to programs on

the order of 2% bytes, this sets the maximum practical number of qubits at around twenty-

five., For functionality considerations, however, in particular functionality on older
machines, the maximum number of qubits available was limited to fifteen, giving a total
of 32768 basis states. Since the storage of each basis state used twelve bytes of storage,

the overall storage requirement for the set of basis states was 384 kilobytes (a kilobyte
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being 2'° bytes). By comparison, storage requirements for different numbers of ubits
g Y b p g q

| would be as set out in Table 2 (note that a gigabyte is 2% bytes).

Table 3: Memory Requirements

Qubits | Storage Needed
_ 5 384 bytes

! 10 12 kilobytes

: 15 384 kilobytes

! 20 12 megabytes

! 23 384 megabytes
i 30 12 gigabytes
35 384 gigabytes

Note that twenty-five or more qubits could be simulated by using hard disk drive storage
(which currently is on the order of 4 gigabytes); as access to memory on the hard disk
drive is significantly slower thén access to RAM (memory traditionally used by
programs), the program would run significantly, even prohibitively, slower. Memory
usage for the gates themselves was much lower than for the states. As each gate is
basically sixteen complex matrix elements, each gate took about the same room as sixteen
basis states; specifically, each took 130 bytes per gate. In addition, instructions for a
gating operation contained only an identifier of the gate to be used and identifiers for the
lines operated on. Consequently each instruction occupied twelve bytes of memory, the

same as one basis state.

6.D Rounding Errors

In order to obtain information on rounding errors, I allowed for the program to
check for normalization over the set of basis states. In addition, I had the program
automatically normalize the initial state vector. In the case of trivial input {a basis state,

for instance) in conjunction with relatively trivial gates, no rounding error was detected.
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With more complicated inputs and gates, however, rounding error appeared both before
and after the gate operation. The initial normalization produced an error in the seventh
significant figure; following a gate operation, the error appeared in the sixth significant
figure. As the variable type used to store the coefficients carries approximately seven
significant figures, the normalization error can most likely be attributed to limitations
inherent in the type. On the other hand, the error that appeared after gating operations,

being an order of magnitude higher, is likely to be a result of rounding off during

calculations.

e mogeez oo
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7 Conclusions

The correlation between the output of the program and the theoretical predictions
indicates that the program correctly simulates the presence of quantum effects. In
addition, the algorithm used to evaluate the quantum computing processes is not one that
has been considered independent of this paper. The fact that the results achieved were
consistent with theoretical predictions therefore indicates the validity of the approach
used. These successes indicate that overall the program is a fair simulation of a quantum
computer.

Errors are present in the simulation, but the errors encountered were not
unexpected. The presence of these errors does limit the accuracy of the simulation on the

one hand, but on the other it verifies the problems present in the transition. The errors

present in the simulation can be countered but not completely overcome. For instance,
rounding error can be countered by using a larger storage type and by introducing error
correction code. While this would result in higher accuracy, precision would still be
limited and rounding errors would still occur, though with less of an effect.

The simulation’s central problem, memory limitations, is again a limitation that
serves to highlight problems inherent in the transition. Memory problems can be eased
by allocating more memory or using compression schemes, but memory usage would still
rise exponentially with added bits, albeit at a somewhat slower rate. Time problems as
well can be reduced by more efficient algorithms; checking for and handling trivial
calculations, for instance. In all cases, however, fundamental problems remain.

The persistence of problems inherent in the simulation indicates that the
difficulties are at a deeper level than the programming. Indeed, the difficulty is in the fact
that the hardware is simply not suited for the calculations performed. As long as the
hardware is digital, analog numbers will not be correctly represented; as long as the
hardware uses a linear model for instructions, it will be unable to perform the needed
calculations without a disproportionate use of time and resources. These limitations

highlight the fact that only a true quantum computer will be capable of performing




quantum computing operations with the efficiency and accuracy expected in theoretical

work.

Although the simulation fails to match the expected efficiency and accuracy of a
quantum computer, it nonetheless has potential for work in quantum computing research.
As much of the work done is quantum computing is relatively abstract, the simulation
provides a way for more concrete observation of expected results. In addition, the
simulation provides a potentially faster way of exploring quantum algorithms and
networks than written calculations. The simulation could also be used as a demonstration
tool in showing the unique properties and potential benefits of a quantum computer.

As noted above, the simulation could be expanded by adding code, available
memory, and so forth; such expansions would provide moderate increases in efficiency
and accuracy, but would not overcome fundamental errors. On the other hand, more
significant progress could be made against these problems by using different hardware.
For instance, analog computers have the potential of more accurately representing analog
numbers, avoiding rounding error, and parallel processing could be used to reduce time
limitations. 'These improvements, however, are no more than steps toward a true
quantum computer. Only a computer based directly on quantum principles can make full
use of the computing power available in the physical world. While such a computer has
not yet been built, its advantages, both known and unknown, make its development an

issue of paramount importance in both the fields of physics and computer science.
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Appendix A : Program Code

My program Q was written in Modula-2 and was compiled on the Stony Brook Modula-2
compiler [21] for both MS-DOS and Microsoft Windows 95 (as a console application). It

has three component modules:

0.MOD (the main program)
QuantumGateLibrary DEF (the definition file for the library module)
QuantumGateLibrary.MOD (a library of procedures used by Q)

A complete listing of the program’s code follows. The program does use some standard
code; specifically, some functions and procedures are imported from the Modula-2 ISO
standard libraries, with the exception of the timing functions in the main program, which
are imported from the Stony Brook library. Exceptions to the Modula-2 ISO standard
syntax are noted where they occur. Note also that the program uses a gatespec.ixt file for

gate specifications; a sample follows the code listing.

MODULE Q:

(* File : Q.MOD
Author ;1 Z. Johnson
Compiler : Stony Brock MODULA-2
180 : Partly; see below
Date : May 21, 1997 *}

{* General Notes on the Operation of Q:

This program simulates the operation of an ideal quantum
computer using matrix format. This program ig written
specifically for use with two-bit guantum gates; one-bit
guantum gates can be represented fairly trivially, and larger
gates can be decomposed into sets of two-bit and one-bit gates.
The information is represented in terms of basis states; the
maximum number of qubits is currently hard-coded at 10; the
number of basis states is 27 (no. of qubits), but calculating the
upper bound on the basis states is automatically handled, and
the procedures are perfectly general. To change the upper bound
on the number of qubits, simply change the constant MaxStates.
Note that the gates must be read in from "gatespec.txt"'; format
for this file can be found with the initialization code in the
QuantumGateLibrary.MOD file. The program will prompt for all
relevant information; note that the coefficients for the basis
states must be entered in standard REAL format. The input can
be read in from the "settings.txt" file, which follows a format
identical to that of the expected input. Output states are
written using the WriteFixed procedure, which does round them
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off; if this is nct a desired effect, WriteFloat can be
substituted. Output can alsc be dumped to any text file (which
will be overwritten): output i1s as it weuld appear on the
screen. The input state is automatically normalized, and both
it and the output state are checked for normalization; this is
to check for rounding errors. The gate matrices are not,
however, automatically unitary, and non-unitary matrices will
affect the normalization on the cutput state.

*)

FROM QuantumGateLibrary IMPORT Extract, Process, Restore,
Reset, State,
ExtractState, Gatebpec,
Initialize, WriteResult;

FROM SWholeIO IMPORT WriteCard, ReadCard;

FROM RealMath IMPORT power;

FROM STextI(O IMPORT WriteString, Writeln, SkipLine;

FROM ElapsedTime IMPORT StartTime, GetTime;

CconNsT

MaxStates = 32768;
MaxGates = 128;

(* Note that the number of basis states i1s 2 to the Nth power,
where N ig the number of gubits. The maximum number of gates
is arbitrary *)

VAR
initstate, finalstate : ARRAY [0 .. MaxStates - 1] OF State;
maxbits, maxstate : CARDINAL;
floatbhits, floatstate : REAL;
gatein : ExtractState;
gateout : ARRAY [0 .. 3] OF ExtractState;
gateget : ARRAY [0 .. MaxGates - 1] OF GateSpec:
doagain : BCOLEAN;
cycle, count, gatehigh : CARDINAL;
time : CARDINAL3Z2;

BEGIN

REFPEAT

(* perform varicus initislizations *)
Reset{initstate);

{* get the number of bits, and set the upper bound on the
array of states *)

Writeln;
WriteString("Please enter the number of bits to work on: "y
ReadCard{maxbits); SkipLine; WriteLn;

floatbits := FLOAT (maxbits);
floatstate := power(2.0, floatbits):
maxstate := (TRUNC (floatstate} - 1);

Initialize(initstate[0..maxstate)l, gateset, gatehigh);
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(* process each gating action *)
(* also, start timing *)

StartTime;
FOR cycle := 0 TO {gatehigh - 1) DO

Reset ([inalstate[0. .maxstatel]);
{* evaluate the gating action for each baslis state *)
FOR count := 0 TO maxstate DO
Extract (initstate{count], gateset[cycle], gatein) ;
Process (gatein, gateset[cycle]l, gateout);
Restore{gateout, initstatel[count], finalstate[0..maxstatel);
END:; {(* FOR Count *)
initstate[0..maxstate] := finalstatel[0..maxstatel;

END; {* FOR Cycles *)
time := GebTime():

{(* write the output *}

WriteString{"Elapsed time ig ");

WriteCard{time, &) ;

WriteString(" in milliseconds."); Writeln;

WriteResult (finalstate[0..maxstate], deagain);
UNTIL (NOT doagain);

END Q.

DEFINTTION MODULE QuantumGatelibrary;

(* File : QuantumGatelLibrary.DEF
Author : Z. Johnson
Compiler : Stony Brook MODULA-2Z
IS0 : Partly; see below
Date : May 8, 1897 *)

{* The following are useful type declarations; note that
I have to use conditional compilation to secure my
type cagts., This is non-IS0O standard format,
hut should be trivial to adjust *)

$IF ThirtyTwoBit %THEN

TYPE Bitset SET OF CARDINALI[C..31]1;

H

%ELSE

TYPE Bitset BITSET;

Tl

%END
ARRAY [0..37,([0..3] OF COMPLEX;

]

TYPE GateArray

{(* [rows] [celumns] *)

I

RECORD
ID : CARDINAL;
FirstBit : CARDINAL;

TYPE GateSpec
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SecondBit : CARDINAL;
END;

RECORD
Bits : Bitset;
Coefficient : COMPLEX;

TYPE State

il

END;

1

RECORD
Coefficient : COMPLEX;
Bits : Bitset;
FirstBit : CARDINAL;
SecondBit : CARDINAL;

TYPE ExtractState

END;

PROCEDURE Tnitialize (VAR initialstate : ARRAY OF State;
VAR gateset : ARRAY OF GateSpec;
VAR gatesetmax : CARDINAL) ;

PROCEDURE WriteResult (output : ARRAY OF State;
VAR repeat : BOOLEAN) ;

PROCEDURE Extract (instate : State; gate : GateSpec:
VAR result : ExtractState)};

PROCEDURE Restore (VAR outstates : ARRAY OF ExtractState;
archive : State; VAR target : ARRAY OF State) :

PROCEDURE Process{instate : ExtractState; gate : GateSpec;
VAR outstates : ARRAY OF ExtractState);

PROCEDURE Reset (VAR target : ARRAY OF State);

END Quantum@GateLibrary.

IMPLEMENTATION MODULE QuantumGateLibrary;

(* File : QuantumGatelibrary.MOD
Aunthor : 7. Johnson
Compiler : Stony Brook MODULA-Z
IS0 : Yes
Date : May 8, 1997 *)

FROM STextIO IMPORT ReadChar, ReadString,
ReadToken, SkipLine,
Writeln, WriteString;

FROM SWholeIQ IMPORT ReadCard, WriteCard;

FROM SRealIO IMPORT WriteFixed, WriteFloat, ReadReal;

FROM ComplexMath IMPORT conj, zero;

FROM RealMath IMPORT sgrt;

FROM SeqFile IMPORT Chanld, OpenResults,
OpenRead, OpenWrite,
Close, old;

FROM Stdchans IMPORT StdInChan, sgtdoutChan,

NullChan, SetInChan,
SetOQutChan;
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IMPORT SegFile, ChanConsts;
FROM SYSTEM IMPORT CAST;

{* This procedure gets all the pertinent information from
the user; in particular, it prompts for the number and
type of gates and for the initial states. *)

(* It is assumed in this procedure that the initial
state hags been properly prepared, so Reset needs to be
called first. The set of gates, on the other hand,
does not need to be initialized, as it will be fully
specified by this prccedure. *)

(* This procedure now takes input from the external file
"settings.txt" and performs autcmatic nermalization *)

{* Note that the format for "gsettings.txt" follows the input
exactly; that is, the set of commands that would normally be
manually entered in is typed into the file beforehand with
no changes *)

PROCEDURE Initialize (VAR initialstate : ARRAY OF State;
VAR gateset : ARRAY QOF GateSpec;
VAR gatesetmax : CARDINAL);

VAR
3, k, temp : CARDINAL;
yesno : CHAR;
high : CARDINAL;
real, 1mag, check : REAL;
readingfile : BOCLEAN;
BEGIN
WriteString("Would you like to read in the settings from a-text
file?");
Writeln;
WriteString("(The settings will be read in from settings.txt)
{(y/n):");
Writeln;
ReadChar (yesno); SkipLine;
IF ((yesno = 'y') OR (yesno = 'Y')) THEN
readingfile := TRUE;

OpenRead (filecid, "settings.txt", old, fileresult};
IF {(fileresult = ChanCongsts.noSuchFile) THEN
WriteString ("Cannot find settings.txt! Aborting program

HALT;
END;
SetInChan(filecid};
dumpcid := NullChan{};
SetOutChan {dumpcid) ;
FLSE readingfile := FALSE;
END;

WriteString("Please enter the number of gates."); Writeln;
ReadCard{gatesetmax); SkipLine; Writeln;
high := HIGH(gateset);
WHILE (gatesetmax > high) DO
WriteString("Sorry, you can only have ");
WriteCard(high, 0); WriteString{" gates."); Writeln;
WriteString{"Try again, please."};
ReadCard {gatesetmax); SkipLine; Writeln;
END;
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WriteString{"Please enter the gate as follows: "); WriteLn;
FOR k := 0 TO (numberoigates - 1) DO

WriteString(" ("); WriteCard(k, 0}; WriteString{") "};
WriteString{possiblegates[k].GateName); Writeln;

END;

Writeln;

FOR j := 0 TO (gatesetmax - 1} DO
WriteString{"Please enter the type for gate ");
WriteCard(j, 0};: WriteString(": "); Writeln;

ReadCard (gateset [41.ID}; SkipLine;
WriteString("Please enter the first bit of the gate: ");

Writeln;

ReadCard{temp); SkipLine;

gateset [j] .FirstBit := temp;

WriteString ("Please enter the second bit of the gate: ") ;
Writela;

ReadCard (temp); SkipLine;

gateset[j].SecondBit := temp;

END; (* for *)

WriteString ("The registers will initially be set to 0");
Writeln;
WriteString("unless you specify otherwise."); Writeln;
WriteString ("Would you like to specify any values? {(y/n):");
ReadChar (yesno) ; SkipLine;
WHILE ({yesnoc = 'y') OR (yesno = 'Y'y) DO
WriteString ("Which state would you like to speclfy?”);
Writeln;
WriteString (" (Please 'enter the state in base 10):"};
WritelLn;
ReadCard(temp}; Skipline;
IF (temp <= HIGH(initialstate)) THEN
WriteString ("What would you like for its real
coefficient?");
WriteLn;
ReadReal {real); SkipLine;
WriteString ("What would you like for its imaginary
coefficient?");
Writeln;
ReadReal {imag); SkipLine;
initialstate|temp].Coefficient := CMPLX(real, imagl ;
ELSE WriteString("That state is out of range."); WriteLn;
END; (* if *)
WriteString ("Would you like to specify another state? ({y/n)");
Writeln;
ReadChar (yvesnc) ; SkipLine;
END; (* while *)

IF readingfile THEN
SetinChan {instdcid) ;
SetOutChan (outstdcid) ;
Close(filecid);

END;

WriteString ("Normalizing . . . "}; WritelLn;

Normalize (initialstate};

Write@tring ("Checking initial normalization . . . "};
check := NormalizeCheck (initialstate);

WriteFloat (check, 4, 6); Writeln;
WriteString!"Exacuting, please wait."); WriteLn;

END Initialize;
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(* Thig outputs the result of the calculations. It takes in
the final state and writes out, about a screen at a time,
the results. It currently skips over any 0 entries. This
procedure now also checks the normalization; note that if
the operating matrices are not unitary, normalization will
be off *)

PROCEDURE WriteResult (output : ARRAY OF State;
VAR repeat : BOOLEAN) ;

VAR
3, count, max, which : CARDINAL;
check : REAL;
more, yesno : CHAR;
filename : ARRAY[0..11] OF CHAR;
filewrite : BOOLEAN;
BEGIN
WriteString{"Would you like to dump the outputs to a text file?
{y/n}:");
Wraiteln;

ReadChar (vesne); SkipLine;

WriteString{"Checking final normalization . . . ");
check := NormalizeCheck{ocutput);
WriteFloat (check, 4, 6); WriteLn;

IF {({(yesno = 'v') OR (yesno = 'Y')) THEN
filewrite := TRUE;
WriteString("Please enter the name of the target file:");
Writeln;

ReadString(filename); SkipLine;
OpenWrite (filecid, filemname, old, fileresult);
IF fileresult <> opened THEN

filecid := outstdeid;
WriteString ("Something went wrong . . . reverting to
terminal output."};
WriteLn;
filewrite := FALSE;
END;
SetoutChan{filecid):
ELSE filewrite := FALSE;
END;
max := HIGH((output);
count := H
WriteString("Q Output"); WriteLn;
FOR 7 := 0 TO max DO .
IF (NOT filewrite AND {count = 23)) THEN
WriteLn; WriteString{"Hit a key for more."); WriteLn;
ReadChar {more); SkipLine;
count := 0;
END;

IF (output[i].Coefficient = zero)

THEN {(* do nothing *)

ELSE
which := CAST(CARDINAL, cutput[j].Bits):
WriteString{*State : "):
WriteCard({which, 6);
WriteString (" Coefficient : ")
WriteFixed (RE{output[j].Coefficient), 4, 6);
WriteString(" + ")
WriteFixed(IM{output[j].Coetficient), 4, 6&};
WriteString{"i"};

36




Writeln;
INC (count} ;
END;

END;

IF filewrite THEN
getoutChan (outstdcid) ;
Cloge (filecid);

END;

WriteString ("Would you like to run the program again? (y/n)");
WritelLn;

ReadChar (vesno) ; Skipline;

IF ((yesnoc = 'y') OR (yesnc = NARE

THEN repeat := TRUE

ELSE repeat := FALSE

END;

END WriteResult:

(* This procedure is what makes thie program unigue; this is where
the state information pertinent to a specific gate is extracted;
as inputs it takes an individual state and information about
which lines are being affected; it then extracts the pertinent
information into an extract state *)

PROCEDURE Extract {instate : State; gate : GateSpec:
VAR result : ExtractState);
BEGIN

WITH result DO
coefficient := instate.Coefficient;
FirstBit := gate.FirstBit;
gecondBit := gate.SecondBit;
Bits := Bitset{};
IF (gate.FirstBit IN instate.Bits)
THEN INCL{Bits, 0)
FLSE EXCL(Bits, 0)
END;
IF {gate.SecondBit IN instate.Bits)
THEN INCL{Bitz, 1)
FLSE EXCL(Bits, 1)
END;

END; (* WITH Result *)

END Extract;

{* This procedure undoes what the Extract procedure does; it takes
an array of input states, assumed to be four, and puts them back
onto the final state array *)

PROCEDURE Restore (VAR outstates : ARRAY OF ExtractState;
oldcopy : State; VAR target : ARRAY OF State);

VAR
count : CARDINAL;
bitstate : Bitset:
whichstate : CARDINAL;

BEGIN
FOR count := 0 TC 3 DO

bitstate := cldcopy.Bits;
IF (0 IN ocutstates[count) .Bits)
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THEN INCL{bitstate, outstates[count].FirstBit}

ELSE EXCL{bitstate, outstates[count].FirstBit)

END;

IF (1 IN cutstates[count].Bits)

THEMN INCL (bitstate, ocutstates|[count].SecondBit)

ELSE EXCL(bitstate, cutstates|[count].SecondBit)

END;

whichstate := CAST(CARDINAL, bitstate}; i

target [whichstate] .Coefficient :=
target [whichstate] .Coefficient
+ outztates[count] .Coefficient; !

END; {* FOR Count *) i

END Restore; ?

(* This is the critical procedure. It takes the extracted states
and applies the gate to them, resulting in a set of states
which are then sgent to the Restore procedure. MNote that it is
assumed that "outstates” has exacty four states; thisg is
critical to the operation of the procedure *)

PROCEDURE Process (instate : ExtractState; gate : GateSpec;
VAR outstates : ARRAY OF ExtractState);

VAR
thisgate : GateArray;
which, j : CARDINAL;

BEGIN
thisgate := posgsiblegates[gate.ID].Matrix;
which := CAST{CARDINAL, instate.Bits);
FOR j§ := 0 TO 3 DO

outstates{j] := instate;

cutstates[j].Bits := CAST(RBitset, j):
outstates{j].Coefficient := (thisgate(j][which] *
instate.Coefficient);
END; (* FOR *)

END Process;

{* This procedure cleans out a set of states, resetting them to 0;
it algo sets the bitsets correctly *)

PROCEDURE Reset (VAR target : ARRAY OF State);

VAR
j : CARDINAL;

BEGIN

FOR § := 0 TC HIGH(target) DO
target:[j].Bits := CAST(Bitset, J):
target[j].Coefficlent := zero;

END;

END Reset:

(* This procedure normalizes the state vector; it is internal,
being used only by the Initialize procedure *)

PROCEDURE Normalize (VAR states : ARRAY OF State);

VAR
runningsum, divisor, absclute : REAL;
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complexdivisor, complexabsolute : COMPLEX;

1 : CARDINAL;
BEGIN

runningsum := 0.0;

FOR i := 0 TO HIGH(states) DO ‘
complexabsgolute := stateg[i].Coefficient * |

conj {states[i].Coefiicient);

absolute := RE(complexabsolute); X
runningsum := runningsum + absolute; !
divisor := sgrt{runningsum}; :

END;

FOR 1 := 0 TO HIGH{ztates) DO
complexdivisor := CMPLX (divisor, 0.0}
states[i].Coefficient := states(i].Coefficient

/ complexdivisor;
END;
END Normalize;

(* Thi= another internal procedure, used by both Initialize and
WriteResult for checking normalization *)

PROCEDURE NormalizeCheck({states : ARRAY OF State} : REAL;
VAR
runningsum, divisor, absclute : REAL;
complexabsolute : COMPLEX;
i i : CARDINAL;
‘ BEGIN _
- runningsum := 0.0;
i FOR i := 0 TC HIGH{states) DO
i complexabsolute := statesi].Coefficient
} * coni(states[i].Coefficient);
| absolute := RE(complexabsolute);
| runningsum := runningsum + absolute;
: divisor := sqgrt(runningsum);
END;

RETURN 1.0 - divisor;
END NormalizeCheck;

i {* This initialization code sets up the set of avallable gates;
i gates are read in from "gatespec.txt", which follows the
following format:

{number of gates)

{name of gate)

REAL +1i REAL. REAL +i REAL REAL +1i REAL REAL +i REAL
REAT, +1 REAL REAL +i REAL REAL +1 REAL REAL +i REAL
REAL +i REAL REAL +1 REAL REAL +1 REAL REAL +1 REAL
‘ REAL +i REAL REAIL +i REAL REAL +1 REAL REAL +1i REAL

. . . lother gates]

where "REAL" is a real number in standard format, and
the items in parentheses are strings; no checking on
the matrix is performed, so the gates must be verified as
unitary to achieve correct results *) i

? GateName : ARRAY[0..15] OF CHAR;

TYPE GateSpecifications = RECORD }
|
Matrix : GateArray; |

i END;
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VAR

possiblegates : ARRAY[0..15] OF GateSpecifications;
instdcid, outstdcid,
filecid, dumpcid : Chanld;
fileresult : OpenResults;
i, k, 1, numberofgates : CARDINAL;
real, imag : RREAL;
durmmy : ARRAY [0..7] OF CHAR;
BEGIN

OpenRead(filecid, "gatespec.txt", old, fileresult);
IF (fileresult = ChanConsts.noSuchFile) THEN
WriteString ("Cannot find gatespec.txt! Aborting program .

HALT;
END;
WritesString("Quantum Gate Precessing"); Writeln;
WriteString(" by Z. Johnson"); Writelm; Writeln;
WriteString("Reading in gates . . . "); Writelm;
instdcid := StdInChan{):
outstdeid := StdoutChan();

SetInChan{(filecid):
ReadCard (numberofgates); SkipLine; SkipLine;

FOR j := 0 TO {numberofgates - 1} DO
ReadsString{possiblegates[j].GateName}; SkipLine;
FOR k¥ := 0 TO 3 DO
FOR 1 := 0 TO 3 DO

ReadRkeal (real);
ReadToken (dummy) ;
ReadReal (imag) ;
possiblegates(j] .Matrix{k][1] := CMPLX(real, imag);
FEND;
SkipLine;
END;
SkipLine;
END;

SetInChan {instdcid);
Close(filecid);

END QuantumGatelLibrary.
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The following is a sample of gatespec.txt; the file starts at the “6”.

0.
1.
0.
0.

Uu_a

0.70710678
0.70710678
0.0 +1 0.0
0.0 +1 0.0

U_B{pi/4)
1.0 +1 0.0
0.0 +i 0.0
0.0 +i 0.0
0.0 +i 0.0

A(0,0,
1.0 +1
0.0 «+i
0.0 +1i
0.0 +1i

Soo o

[N w NN

pi/4)

O RFQ [N Nl o OO O(T
oy o e « e e w v e e
SO OO

DO O
T

OO OO

OO O

(ot I vl i e ol

oOC oo

DO OO

+1
+1
+1
+1

+1
+1i
+1
+1i

+i
+1i
+1
+1

+1
+i

+1
+i
+1
+1

+1
+i
+1
+i

.0 ¢.0 +1 0.0 0.0 +1 0.0

0.0 ©¢.0 +1 0.0 0.0 +1 0.0

0.0 1.0 +1 0.0 0.0 +1 0.0

0.0 0.0 +1 0.0 1.0 +1 0.0

0.0 0.0 +1 0.0 0.0 +1 0.0

0.0 0.0 +1 0.0 0,0 +i 0.0

0.0 0.0 +1 0.0 1.0 +1i 0.0

0.0 1.0 «+1 0.0 0.0 +1i 0.0

0.0 0.0 +1 0.0 0.0 +i 0.0

0.0 0.0 +1 0.0 0.0 +1 0.0

¢.0 0.0 +1 0.0 1.0 +i 0.0

0.0 1.0 +1 0.0 0.0 +i 0.0

0.70710678 +1 0.0 0.0 +1 0.0 0.0 +1 0.0
-0.70710678 +1 0.0 0.0 +1 0.0 0.0 +1 0.0

0.
0.

oo Cca

CcCoOoo
i e I o i}

0
0

OO oo

0.70710678 +1 0.0
0.70710678 +1 0.0

OO OO

OO

.0

.0

0.70710678 +i 0.0
-0.70710678 +1 0.0

0 +i 0.0 0.0 +i 0.0

0 +1i 0.0 0.0 +1 0.0

C +1i 0.0 0.0 +1 0.0

C 41 0.0 0.70710678 +1 0.70710678
+1 0.0 0.0 +i 0.0

.0 +1 0.0 0.0 +1i 0.0

70710678 +1 0.0 0.0 +1 -0.70710678
+i -0.70710678 0.70710678 +1 0.0
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Appendix B: Sample Program Session

The following are two sample sessions of Q. In the first run the following

computation is performed:

100 0 0 0
010 ol1lo] 1]o
001 o |&l1] &1 25)
00061'11!4 1 einM

Note that in this session the initial state is not entered normalized; rather, since the initial

state is an even superposition of {10} and 111), both states are entered as 1.0 and the

program automatically normalizes them. The error initially reported is from rounding

error in the normalization computation. Rounding error is similarly responsible for the

reported lack of error in the final normalization check. The gate used is one that is used

by Barenco [13]; it performs a phase shift if both qubits are in the I1) state. Note also

that, for the sake of brevity, the program does not report output states with a zero

coefficient.

Quantumm Gate Processing
by 2. Johnson

Reading in gates .

Please enter the number of bits to work on: 2

Would vou like to read in the settings from a text file?
(The settings will be read in from settings.txt) (y/n):

1l

Please enter the number of gates.

1

Please enter the gate as fellcws:

(0)
(1)
(2)
(3)
(4)
{5)

Identity
ControlledNot
OneBitFlip
U_A

U_B(pi/4)
A(0,0,pi/4)

Please enter the type for gate 0:
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4

Please enter the first bit of the gate:

0

Please enter the second bit of the gate:

1

The registers will initially be set to 0
unlegs you gpecify otherwise.

Would vou like to specify any values? {(y/n):vy
Which state would vou like to specify?

{Please enter the state in base 10):

2

What would you like for its real coefficient?
1.0

What would you like for its imaginary ceoefficient?
0.0

Would yvou like to specify another state? (y/n)

%hich state would vou like to. specify?

{Please enter the state in base 10):

%hat would you like for its real coefficient?
%ﬁgt would you like for its imaginary coefficient?
%égld yvou like to specify another gtate? (y/n}

n

Normalizing . . .

Checking initial normalization . . . 5,960E-08
Executing, please wailt.

Elapsed time is 0 in milliseconds.

Would you like tc dump the outputs te a text file? (y/n):
n

Checking final normalization . . . 0.000E+00

Q Output

State : 2 Coefficient : 0.7071 + 0.00001
State : 3 Coefficient : 0.5000 + 0.50001

Would vou like to run the program again? {y/n)
n
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