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Abstract

[nformation is traditionally stored in computers as s and Os called bits
and manipulated by classical gates. Similarly, information can be stored at
the quantum level in qubits and manipulated by quantum gates. Programs
can then be written for quantum computers by assembling networks of
these quantum gates. If realized, such programs would be able to achieve
an exponential speedup over classical algorithms by taking advantage of
quantum effects such as interference; superposition, and entanglement.

Because of the difficulty of maintaining quantum coherence, quantum
networks will not be operational for some time. [ propose to simulate
these networks on a classical computer. Although such a simulator does
not produce an exponential speedup, it allows the user to test quantum
gate networks before implementing them in hardware. The operation of
an o-bit quantum computer simulator I have developed is described. The
advantages and limitations of the simulator, as well as possible applica-

tions, are then discussed.
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Chapter 1

Introduction

The quantum computer has received much interest both in the specialized litera-
ture [DBE95, M*95] and in the general press [I'ol95, Bra95] primarily because of its
potential for factoring numbecs in. polynomial time [Sho84]. This work is a study
of some simple gates of the quantum computer, on how to represent them, and on
how to compute their effects by using the power of a classical computer. My efforts
to understand the inner workings of the quantum computer have culminated in the
development, of an interactive quantum computer simulator. -

I show in Chapter 2 that the classical computer, although it has served us well,
will not be able to improve much further. In Chapters 3 and 4 I expiain what is
meant by a quantum computer and how it works. Next, in Chapter 5, I discuss how
this computer can be used. That chapter focuses on Shor’s algorithm for factoring.
Attempts to construct a quantum computer are described in Chapter 6 along with
difficulties and sorne possible remedies, Chapter 7 presents one representation of the
inner workings of the quantum computer and describes in detail my contribution to
the area, focusing on a quantum corhputer simulator I designed. I conclude with some
suggestions for further work in Chapter 8. In that chapter I describe the difficulties
[ encountered and how I overcame them. I also comment on aspects of the problem
that I would approach differently now that I understand the topic more fully.

Several appendices have been included for completeness. Appendix A describes
the quantum property spin, which is useful ta store quantum information. Ap-
pendix B discusses the RSA cryptosystem, a widely-used method of cryptography
which may be rendered obsolete if a quantum computer is ever constructed. The
Pascal source code for my quantum computer simulator QCompute is presented in
Appendix C along with some sample gate-network files. Finally, Appendix D shows

an interactive session with the simulator,



Chapter 2

The ClaSSical Computer

2.1 Development of the Computer

Society has uadergone fundamental changes with the introduction of the computer.
Although computers started out as large, slow machines that could only accomplish
the simplest of calculations, they have rapidly improved both in power and in versatil-
ity. These changes have been accomplished through several improvements, including
the invention of the transistor to replace the vacuum tube and later the method of
etching transistors onto a wafer of silicon %o create more compact circuits. Because of
advances in technology and in our ability to create more reliable integrated circuits
(ICs) we have seen an exponential growth rate in the power of computers. This fread,
commonly called Moore’s Law, states that the number of transistors per chip, and
therefore the computing power, doubles roughly every 18 months [Gro96, Met96).
There is, however, a limit to the possible improvements we can make on the
common digital computer. We have achieved much of the speed we see today because
of the ability to etch thinner and thinner traces on a piece of silicon. For example, the
current traces are only .35um across, and Intel already has plans for chips with traces
25um wide [Met96]. Because atoms are on the ovder of an Angstrom across, we are
already down to the point where our traces are only about a thousand atoms across.
Also, we are running them at frequencies up to 200MHz, which means that relatively
few electrons can travel down each path. Increasing the power of the computer means
that we must have more circuits, so that we must either make the traces smaller or the
physical size of the computer bigger. Any increase in the speed of the computer means
that we must send shorter pulses of electricity through these traces and therefore pass

fewer electrons through these traces. Because the traces must be ab least one atom
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wide and we must always send at least one electron down each trace to represent the
digital “on” state, there is a theory-imposed limit on the maximum power and speed
of any classical computer [Tof80]. The restrictions on size and speed lead Intel to
believe they will reach this limit by the year 2017 [Met96]. Further progress needs fo

be sought in a different direction.

2.2 Quantum Effects in Computers

Physics teaches us that, at the microscopic level, there is a limit to the amount of
knowledge we can obtain about a system. In particular, the Heisenberg uncertainty
principle tells us that we cannot simunltaneously determine the position and the mo-
mentum of a quantum particle with unlimited precision [Gas96]. Because individual
electrons are guantum particles, nonclassical, quantum phenomena will occur when
we athempt to construct a compnter that uses sufficiently low numbers of electrons to
carry information. These effects are leading physicists and theoretical computer sci-
entists to develop a completely new and different type of computer based on quantim
mechanics called a guantum computer [Fey86, Bar96].

Because they operate on quantum particles such as electrons or photons, quantum
computers have several distinct advantages over their classical counterparts. bSome
of these advantages are derived from the properties of wave mechanics [Fow89} such
as superposition, interference, and entanglement [Ben95|. Superposition allows the
computer to work on a problem by taking parallel paths, and then combining those
paths to get an answer at the end. This way, the computer can attack many as-
pects of a problem at the same time. When the answers are superposed, interference
phenomena will cause some results to be enhanced while causing others to be re-
duced or even eliminated. Entanglement ensures that all aspects of the problem are
taken into account at every step. Because of these three properties, guantum com-
pubers can operate on quantum bits of information (called gubits) in completely new
ways [DJ92, Sim94]. In particular, quantum computation presents a richer struc-
ture than classical computation or even classical parallel processing. The advantages
of quantum computation have already been applied to the problems of discrete log
and factoring (see Chapter 5} [Sho94], both of which are very important to crypto-
graphic systems such as RSA [Bra94, Cle89]. Appendix B gives a description of RSA
public-key cryptography.



Chapter 3

The Quantum Computer:

Background

3.1 Theory

A quantum computer is based on the principles of quantum mechanics. The computer
operates on a quantum systern, which may be a single electron, an entire atom,
or even a quantum dot. Because of the nature of quantum mechanics, we must
describe a quantum particle in terms of probabilities. This is normally accomplished
by representing a particle by its wave function — a normalized, complex wave which
Lo - completely describes the state of the particle [Gas96]. ‘The wave function 4 is related

to the probability density P through its modulus squared, so
P =y, (3.1)

Any actions we take can be expressed as opérators acting on this wave function.
The wave function may in turn consist of a superposition of several basis states, or
a set of states in terms of which any arbitrary state may be defined. The heart of
gquantum computation is therefore to perform conditional actions on the basis states
of a quantum particle.

Several mathematical formalisms have been developed for quantum mechanics. 1
will use one formalism, called Dirac notation [Gas96], to represent wave functions,
operators, and measurements. In this notation, a wave function may be represented
as |) and an operator on it may be represented as [:rlu')). A measurement may
be accomplished by performing the operation (]U[). We can also write 1) as a

column vector, so ﬁld)) becomes a square maftrix multiplied by a column vector, thus
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resulting in another column vector. The (1| is written as a row vector corresponding
to the Hermitian adjoint (the complex conjugate of the transpose) of the column
vector [t). I will use this formalism for the remainder of the discussion and refer the
reader to a standard text on quantum mechanics for a more comprehensive treatment
of Dirac notation [Gas96].

i Using this formalism, the state of a quantum system may be represented as a com-
plex superposition of the several basis states available to it. Thus we may represent

the spin state of one electron as

Wy =of H+B1T) (3.2)

where | |} represents spin down and | T) represents spin up. (See Appendix A for a
; discussion of spin.) When relating quantum systems to the quantum computer, we
; choose systems that have only two possibilities (i.e., a two-level system), which we
| label [0} and [1). This allows us to-use a common notation whether the quanium
system is implemented using the spin states of an electron, energy levels in an atom,
or some other two-level quantum system. This also makes the correspondence with

classical bits easier for us to understand.

j 3.2 Advantages

; In a classical computer, a bit (the elementary unit of information) must be either a 0
‘ or a 1. In a quantum computer, a similar system is used, where each quantum bit, or
qubit, is in a complex superposition of the |0} and |1) basis states, where the o and
# in Eq. 3.2 are complex numbers which represent the degree to which the quantum
system is in each state. Because the qubit is in a superposition of both states, it may
reptesentr both a classical 0 and a classical 1 simultaneously. This allows us to carry
out multiple calculations at the same time, thus resulting in an exponential speedup
{J92, Sim94]. Because of theorems concerning the universality of gates it turns out
that 1t is only necessary to be able to perform one- and two-bit gate operations to

perform all operations [Bar95].

3.3 Challenges

There are some problems associated with quantum computation. The most dificult

challenge is imposed by the same property which makes the computer so powerful

o
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— the qubits can be in an entangled state. When the system is entangled, it is not
possible for us to measure the state of one qubit without affecting the state of the
enfire system. Therefore any operations we perform must act on the system as a
whole, and measurement must be reserved until all calculations have been completed.

Another challenge is that constructing an actual quantum computer will be diffi-
cult, if not impossible. Quantum states may decohere, or fall out of their entangled
state, if any interaction is permitted with the outside world. Therefore it is necessary
to trap the quantum particle in such a way that it will be completely isolated from
the outside world. Isolating such a large system is an extremely difficult task for the

experimental physicist.




Chapter 4

The Quantum Computer: Theory

4.1 Qubits

The basic component of information in a classical computer is commonty referied o
as a bif. This bit, which can store either a 0 or a 1, is stored in a classical compnier
as a voltage, where, for example, 0V may correspond to the binary 0, and 5V may
correspond to the binary 1. Any operations which are performed act on these hits,
or in physical terms, on all of the electrons of which these bits are composed.

Similarly, for a quantum computer; the smallest component of information is
called a qubif, and can take values corvesponding to a complex superposition of the
10} and 1) basis states. This information is stored in a two-level quantum syster.
For an electron, it might correspond to the spin-down and spin-up states. In an
atom, it might correspond to the ground state and the excited state. The actual
implementation is not important here — all that is important is that the two states
form a basis for the quantum system.

As in the classical computer, we may wish to store more complex information
than simply one qubit. To do this, we may construct a register which contains several
qubits. The register may be interpreted in binary such that an N-bit register can store
any of the numbers 0 through 2V — 1. The notation used to represent these may take
the form of either 6 or 110, (the number 6 written in base 2) on a classical computer,
similarly, on a quantum computer we may use the notation |13]1)]0), 1110, or i6),
depending on which aspect of the information we wish to emphasize at the time. For
example, writing [1)}1}]0) would generally be interpreted as three separate registers.
The notation |110} helps to emphasize that the three qubits in question are all part of

the same register. Finally, the notation |6) emphasizes that it is the data with which
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we are concerned, and the bitwise representation is less important. When operating
on these registers we should keep in mind that, just as in the classical computer, we
only operate on one qubit at a time. Changes to the entire register are accomplished
by performing successive operations on all qubits in the register.

Another important concept is that of entanglement, or the ability of one qubit
to be intrinsically correlated with another qubit. For example, we might have a
register in the state «|00) -+ 8111}, If we were to measure the first qubit and obtain
a value of 1, then we would know that the second qubit must also have a value of 1.
Because we have determined information about the quantum state, we say that the
state collapses, or reduces, to a simpler form. In the example above, the state would

collapse to be y[11), where |7|* = 1.

4.2 Conditional Operations

In order to have a useful computer, it is necessary to be able to perform conditional
operations, or operations for which oue or more inputs may control whether the
of)eration is performed. These operations may be as simple as constructing an AND
gate, where the target bit is set to ! if and only if both control bits contain the
value 1. On a quantum computer al! conditional operations are based on conditional
quantum physics, in which one system undergoes a coherent evolution that depends
on the state of another system [BDEJ95]. For example, we may want to flip the spin
state of an electron if and only if it is in the excited state of an atom. This can be
accomplished through the use of an electric field and precision lasers as described in
Section 6.1.

4.3 Simple Gates

Like a classical computer, a quantum computer may be constructed by combining
several simple logic gates. When performing quantum operations, all calculations are
reversible, i.e.. no information will be lost. This is a consequence of the unitarity
of time evolution in quantum mechanics, which is related to the conservation of
probabilities. Unlike classical gates, therefore, a gate must have the same number of
outputs as inputs. A gate is usually represented pictorially as a box that has wires

going in and out of it, as in Figure 4.1,




4.3.1 FLIP Gate

The FLIP gate is the most commonly used one-bit gate. This gate, which is the quan-
tum equivalent of the classical NOT gate, flips the value of its argument. Classically,

this gate just changes a 0 to a 1 and a 1 to a 0. The quantum mechanijcal analog is

similar — the gate changes the [0} state to a |1) state and the |1) state to a |0) state.
! Because a quantum state can be in both the |0) and 1) states al the same time, the

gate must actually perform the operation
al0) + 8I1) — BI0) + al1) . (1)

Thus it interchanges the complex coefficients of the two basis states. This gate acts

on only one qubit, and is represented pictorially as in Figure 4.2(a).

4.3.2 Controlled-NOT Gate

The Controlled-NOT (CN) gate is the quantum analog of the classical exclusive-OR,

(XOR} gate. This gate flips the farget qubit if and only if the control qubit is a 1
(or to the extent that the control qubit is a 1). Thus if we perform the CN operation
on a two-bit system with the first qubit controlling the second qubit, we perform the
operation

B— ADB, (4.2)

where £ is the classical XOR operation and signifies addition modulo 2. This achicves

the transformation
0310) + BIO)[1) + 7{1)]0) + B11)[1) — al0)]0) + BIO)L) + S]13]0) +A|1}1) . (43)

A pictorial representation of this gate is shown in Figure 4.2(b) where o is placed on

the control line and @ is placed on the controlled line.

|A) A%}
|1B) U |B')
C) - )

Figure 4.1: Pictorial representation of an arbitrary quantum gate acting on three

qubits.




4,3.3 Controlled-Controllied-FLIP Gates

The Controlled-Controlled-FLIP gates are gates with two control bits and one target
bit. There are two varieties of the Controlled-Controlled-FLIP gate. The first, the
Controlled-Controlled-NOT (CCN) gate, is similar to the CN gate in that it flips the
target qubit if and only if both control bits are set to 1. Thus if it is acting on the
three bits A, B, and C, where 4 and B control C, it will change C' according to the
operation

C—(ANBY®C, (4.4)

where A is the classical AND operation. This gate, frequently called the Toffoli gate
after its inventor, is shown in pictorial form in Figure 4.2(c).

The second gate, the Deutsch gate, works like the Toffoli gate except that it takes
an argument, 8, where sin § specifies the degree to which the controlled qubit is flipped

if both controls are in the |1) state. Hence it performs the operation

I 1 (e]0) + 311)) — |11} ((Fcos 8 4 Bsin 8)|0) + (asin 8 + iF cos 0)|1))
[1)[0)(|0) + 8]1)) ‘
[0}|1) (|0} + 511}) } Unchanged.
[0}10)(e]0) -+ 811))

(4.5)

A representation of this gate is shown in Figure 4.2(d).

4.3.4 Other Simple Gates

There are countless other simple gates, only a few of which are commonly used. In
general, a gabe will operate on one or more qubits. Because the qubits are generally
in an entangled state, a gate will change all of the qubits it acts on — i.e., there may

not be a specific control or target qubit. Gales of this type are represented as in

Figure 4.2(e).
R
R

(a) - (b) () (d) (e)

Figure 4.2: Five simple gates for the quantum computer: (a) the FLIP gate, (b) the
ON gate, (c) the Toffoli gate, (d) the Deutsch gate, (e) an arbitrary 2-bit gate

10




4.4 N-Bit Gates

(Gates are not restricted to be small like the ones described above in Section 4.3. For
a useful computation, it will be necessary to have several large gates. Because one-
and two-bit gates form a universal set, large gates can always be constructed from
the smaller gates [Bar95]. For example, it is shown that a gate with three control
qubits flipping a cingle target bit can be constructed from three CCN gates {using
one qubit for working space) in Figure 4.3 [B*95].

" I I

o—— 00— i
D ®

Figure 4.3: Construction of the Triple-Controlled Not gate

R
N

4.5 Networks

In order to perform useful computations, we must combine several gates of all sizes
in a way such that we can obtain the desired result [Deu9]. Constructing such a
network is a complicated process. Consider the two-bit adder. The purpose of this
adder is to take in the binary numbers AB and CD and add them to get the result
EFG. The construction of the required network using only two- and three-bit gates
is shown in Figure 4.4. We see that it is complicated for us to perform even this
relatively simple task. This algorithm is actually quite close to the one developed
for the classical computer. On the classical computer, the implementation of this
network requires the correct wiring of 24 transistors and 3 resistors [Poo%2]. On the
quantum computer, it would likely be implemented on 7 qubits using a large number

of precision lasers and electric fields.
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A

Figure 4.4: Construction of the two-bit adder, which adds the binary numbers AB +
CD=EFG.



Chapter 5

Applications

The quantum computer has received much publicity because of its predicted perfor-
mance in certain applications. Because of the exponential speedup available, several
classically intractable calculations can be performed in polynomial time on a quan-
turn computer. Two algorithms utilizing this speedup have been developed for the
quantum computer so far: to solve the problems of the discrete log and of tactoring
[Sho94]. Because of the importance of factoring large numbers to encryption (see
Appendix B), the factoring algorithim has become the more popular of the two, and

is discussed helow.

5.1 Shor’s Algorithm

The function

fon(x)=a" mod N, (5.1)

where o 1s any number coprime with N, is periodic. This means that, for a given
e and NN, if we use the numbers 0, 1, 2, ...as the r inputs, the output f{z) will
eventually begin to repeat itself. One can show that factorization is equivalent to
finding the period, or number of values of z between repetitions, of this function,

Once the period r is known, we can find the two factors of N as
ged(a™? 4+ 1, N) (5.2)

just as in Pollard’s p — 1 method for factorization [And94].

Can we find the period of this sequence and factor N in polynomial time? A
polynomial-time factoring algorithm was designed for the quantum computer by Peter
Shor in 1994 [Sho94]. This algorithm is described below [Bar96].

13
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1.

We start by preparing a state of the form

1 2L .
5o 2 l)o) (5:3)
o=

where L > [log, N7.

Now that we have the computer in a complex superposition of all necessary

states we perform the operation f, n described in Eq. 5.1 on the state to get

1 92L _q |
57: Z |T’)Efu,N($)) ' {5‘»&)

This single operation calculates the result of f, y for all 220 &y 22leN — N2

values of x.

We now measure the second register. As with all measurements, this forces
the second register’s wave function to collapse from a superposition of several
values down to a single value. In addition, because the registers are entangled,
the first register’s wave function must also undergo a collapse, to include only
those values which could have given the result measured by the second register.
Because the function f, x is periodic, the values of which the first regisier
consists will be separated hy integer multiples of the period, which we will
denote r. It is this perlod thai we are ultimately after, so we can thiow away
the information we gained when we measured the second register, as it is now

no longer necessary for our purposes.

Notice that although we know that the first register contains the superposition
of a sequence of numbers [, [+ r, [+ 2r,. .. we can’t directly obtain the perind, r,
throagh a measurement because we still don’t know the offset, I, If we comld do
this experiment many times and measure the same value for the second register,
then we could get different values here and infer the value of r. In general this
will not be possible because the sequence may have a very large period, thus
making the probability of measuring the same value for the second register twice
exponentially small. If we were to perform the experiment repeatedly until we
did manage to do so, we would have returned to an exponential time requirement
for the algorithm. Instead. to eliminate the offset, we may perform a discrete
Fourier transform (DFT) on the first register. Because a Fourier transform loses
vhase information, the offset is eliminated. We can now measure the first state

to find an integer multiple of the period. If we do the entire procedure two or

14
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more times and obtain periods of ri,rq, ..., r,, we can infer the actual period r

as ped(r1, 12, .. ., 7)) With reasonable accuracy.

5. Finally, we can calculate the two factors of IV as
ged(a™? + 1, N) (5.5)

in polynomial time on a classical computer because the greatest common de-

nominator can be found in polynomial time.

5.2 Factoring 15

As an example of how this method works, let us factor the number 15. The steps are

as follows:

1. We start by preparing the necessary state. Here & = 15 so L = {log, 15} = 4.

Thus our starting state is
285

1 AY
“1?{;)1“””0) : (5.6)

2. We now need to choose a such that a is coprime with NV (otherwise we factor
N as ged{a, N)). Let us choose «¢ to be 7. Now we perform the operation f, v
described in Eq. 5.1 to get the state

S0 + 01T+ [2)14) + 1)

13) + [49[1) +15)]7) + -+ + |255)[13)) . (5.7)

Notice that the result of this function is periodic, namely that for z =
0.1,2,3,4,5,6,7.8, - the result is 1,7,4,13,1,7,4,13,1, - -.

3. Now we measure the second register’s wave function. It doesn’t really matier
what the result of our measurement is. but let us assume that we measured a
value of 4. Then the second register takes on a value of 4 and the first register
collapses to contain only those values which could have produced a result of
4. Those values are x = 2,6,10,---,251. Hence the first register is now 1 the

state

1
3!

4, We want to find out what the period r is of this wave function (Eq. 5.8). Just

254)) . (5.8)

2) +16) + 110) 4+ +

making a measurement won't help us though, because obtaining a value such as

54 doesn’t tell us anything about the period unless we know what the offset { is.

13




Therefore we now perform a discrete Fourier transform on the register, This has

the effect of eliminating the offset. Now we can measure the register and know
thaf the answer we obtain is an integer multiple of r. If we repeat the procedure
and find the greatest common denominator of our final measurements, we will

know the value of r. In this example, the offset is { = 2 and the period is r = 4.

5. Now we can find the factors of 15 as

ged(a £ 1, N) = ged(T42 + 1,15) = ged(48,15), ged(50,15) =3, 5. (5.9)

Although factoring 15 is a simple example, it uses the same procedure that would
be used to factor larger numbers. It is especially interesting to note that this algorithm
can factor large numbers just as rapidly as small numbers until step 5. The computer

used to do so, however, must have enough qubits to store the large number.

16




Chapter 6

Experiments in Quantum

Computing

6.1 Theory

Because it is universal with one-bit gates [Bar95], the Controlled-NOT (CN) gate has
received much attention. In this gate, one qubit (the target) is flipped if and only if
another (the control) is on. Thus it transforms the state |eg}|es) to |e1}]er @ e2) where
& signifies addition modulo 2. Several methods have been used to implement this

gate. Some of the methods include:

s Ramsey atomic interferometry, using a photon as the control qubit and an atom
as the controlled qubit [BDEJI5]

» Selective driving of optical resonances of two qubits undergoing a dipole-dipole

interaction [BDEJ95] (described below)

¢ Laser-cooled trapped ions in which the qubits are associated with internal states

[M+95]

of the tons |
The most successful method to date is the third one because it is the easiest to
itnplement. According to this method, one qubit is stored as the energy level of the
atom, where |0 is the ground state and |1} is the excited state. The other qubit is
stored in the spin state, which can be down (| |)) or up (| T}). The controlled-not
operation has been achieved using the two 25y, hyperfine ground states of a single
°Bet ion [M™85].

An alternate implementation, based on the second method listed above, is to use

two quantum dots in a static electric field Ey as the two qubits (Figure 6.1). If the

17
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first qubit spans a larger energy gap than the second qubit, then the ordering of the
states will be [0){0}, [0}{1), |1)|0}, |1}]1}. There will be allowed transitions between

them of frequency wy and w; as shown in the figure. Normally we cannot control

whether we cause a transition between |0}[0) and |0}]1) or a transition between |1}]0)
and |1}[1) because the required energy for the transition, hw,, is the same for both
transitions. In the presence of an electric field, however, the quantum Stark effect
causes all of the levels to shift by an amount A& as shown in Figure 6.1 [Gas96].
With the presence of this electric field, it is therefore possible to selectively stimulate
only the transition |1}{0) «— |1}|1}) with light of frequency w, + @ [BDEJ95].

Energy
i)
Fiwoy Fi(wg + @)
1)[0) ~
; B wi +
By - (wi +@)
ﬁ(u)l - u_?)
0)11) \
hewy b i(w, —w)
[0)[0) -

Figure 6.1: Combined energy levels of two quantum particles before and after an

applied electric field.

6.2 Resulis

One group has demonstrated the Controlled-NOT gate acting on a two-qubit system
[M*95]. In their experiment, the first qubit is the energy level of an electron in
a "Bet atom and the second qubit is the spin state of that electron. The desired
transition, [1}| {} - |1}] T} was singled out by using a sequence of three precise
laser {requencies. The state of the beryllium atom can be detected by pushing one
spin state with a laser, while leaving the other spin state alone. In so doing, the two
states of the atom can be spatially separated [SS96a, Win96, Lev97]. The results are
promising, Accuracies of above 80% for the CN gate starting in all four basis states
have been achieved [M*95].
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6.3 Decoherence Problems and Remedies

A major challenge arises from decoherence. Any interaction with the environment can
caunse the quantum state to decohere into a mixture of classical slates, thereby losing

all information in the caleulation. Two strategies have been proposed to combat this:

o The first strategy is to minimize decoherence. The relaxation time 7 of a qubit
is the amount of time the quantum system can be expected to last before deco-
hering into a classical state. The operation time  is the time it takes to perform
one gate operation. Then M = 7/t provides a figure of merit of how stable the
computer is, .e., how many gate operations we can expect to perform before the
state decoheres. The required M scales like N® for Shor’s algorithm [HR96], so
a larger M would allow us to factor larger numbers. Researchers are working
hard to improve the ratio 7/¢. Unfortunately, there is a theoretical limit on how
large M can become for each technology. Table 6.1 shows this ratio for various

proposed quantum systems.

(uantum system ¢ T M
FElectrons Au 1071 10~% 108
Electrons GaAs 10°18 107 10°
Electron quantum dot  107% 1073 10°
Electron spin -7 1w 10t
Méssbauer nucleus 1071 107 19°
Nuclear spin 1072 104 107
Optical cavities [o=* 107% 107
Superconductor islands 107° 10~% 108
Trapped ions - In " 1g7t g0

" Table 6.1: Figure of merit M for various proposed technologies. Values taken from
[Bar96, DiV95).

s Another method is to waich out for decoherence and account for it. This watch-
dog strategy works by encoding a [0} as |000) and a |1} as |111} so if any one of
the three bits in the register should decohere, the change could be detected and
corrected [HR96]. One can show that once M reaches some threshold value —
somewhere between 10* and 10® — stable computation will be possible using
these methods [MW96].

Because neither the theoretical requirements nor our experimental abilities are accu-
rately known, and because of the importance of the possible applications, the possi-
bility of stable computation remains a hotly debated topic [HR96, MW96].
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Chapter 7

Simulating the Quantum Computer

Because of the difficulty of actually constructing a quantum computer, [ have turned
my attention toward simulating the actions of a quantum computer on a classical
computer. Although all gate operations suffer an exponential slowdown (so there
is no increase in speed in the sumulation) there is much to be learned about how
quantum computers operate. Advaniages over the experimental approach include
the ease of use and the ability to monitor changes in the entangled state without
disrupting it. This will be especially useful in the development stage of a gnantum
computer because it allows us to test logic designs before implementing them :n

hardware,

7.1 State Representation

The first in the construction of the simulator was to develop appropriate representa-
tions of both the entangled state and any gate operations one might wish to perform
on that state.

I stact from the three qubits

|4} = l0) + au}l),
1B} = BGoi0) + Bull) (7.1)
ICY = 7%[0) +ml1),

where the coeflicients «, 4, v are complex. I multiply the coefficients together to
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obtain the entangled state-vector

apBove \
C‘foﬁo”h
Ofoﬁﬂ’o
‘_ Py :
V= 05_1,8070 ' (7.2)
o1 fomn
a1 o
a1 i }

Note that the 2V basis states are used here and can be numbered from 0 to aN 1

starting from the top.

7.2 Gate Representation

A gate is simply an operator which acts on a state. Thus with the state represented
as a vector, we must represent the gate as a matrix. Thus operations are defined by

the matrix equation
MY =V, (7.3)
Because V and V' are vectors in the same space (1.e.. they contain the same amount

of information) the matrix M must be square.

7.2.1 FLIP Gate
Consider the case where we want to change the state
al0) + Bl (7.4)

to the state

B0Y + afl) . (7.5)

We do so by multiplying by an appropriate matrix as follows:

(?é)(§)=(§)- (75)

This gate has effectively performed the FLIP operation on the qubit. Thus whenever

we wish to perform a FLIP operation, we can use the matrix

14
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7.2.2 Controlled-NOT Gate

The Controlled-NOT gate flips the state of the second qubit if the first qubit is In

the |1} state (see Eq. 4.3). In our representation of the entangled state as a vector

containing the coefficients of the basis states, this corresponds to interchanging the

values of the last two entries, while leaving the first two alone. Hence the matrix we

will use to perform the CN operation is

OO O e
DD = O
L v S s T e
e T S e Y

7.2.3 Controlled-Controlled-FLIP Gates

The Controlled-Controlled-FLIP gate has two varieties, called the Toffoli gate and
the Deutsch Gate. The Toffoli gate performs a complete flip on the third bit if the

first two are both in the |1} state {see Eq. 4.4). Hence its matrix representation is

0

where blanks replace 0s for clarity.

e ]

——~
-3
e

pa—_

The Deutsch gate only performs a partial flip on the controlled bit if both controls

are in the |1} state (see Eq. 4.5). Hence its matrix representation is

tcos
sin

Note that this matrix reduces to the matrix for the Toffoli gate for # = /2.
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7.3 Networks

Individual gates require the computer to keep track of only those qubits involved

in that particular gate. If, however, we wanted to perform an operation such as

ol

we would need to keep track of all three bits in the computer at all times, even though
we are only using two at any given time. Hence if we want to flip the second qubit in

a 3-qubit system we must use the entangled state of all three. Thus we perform the

operation

00100000 afbow aof1Yo
000100900 oo aghm

1 000 0000 oo aofovo

01 000000 (105171 _ 0—'0}90’}’1 (7 1 1)
0006 0O0CO0T1TOQ0 o Fovo v | '
00000001 oy Fon ayhm
00001000 a151% oy Bovo

\0 00001 00/\ afn afiors /

Note that this operation has left qubits A and C alone, while performing the FLIP
operation defined by Eq. 4.1 on qubit B. '

7.4 The Program

I designed a program, called QCompute, that can sequentieﬂly perform quantum gate
operations on an arbitrary number of qubits. When the program is run, it immedi-
ately requests information about each qubit. This information is entered by giving the
complex coefficients of each qubit. The program then entangles the N gubits into a
column vector with 2V entries. (Note that this allows the user to enter only unentan-
gled states. Entangled states can be obtained by performing appropriate operations.)
All non-zero entries of this column vector are now displayed. The user is presented
with a serivs of options as shown in Figure 7.1. When one of the options is selected,
GCompute will ask the user for more information if necessary and will perform the
gate operation. 1 started with several simple gate operations such as the FLIP gate,
the CN gate, and the ability to have a user-defined gate. From here, additions to the

program became much easier. I constructed the Toffoli gate from one- and two-qubit
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gates using the identity shown in Figure 7.2, The (R)ound off option checks to see
if the real or imaginary components of any of the states are less than 10~%, and, if so,
sets their values to be zero. This has the effect of countering any round-off errors the
classical computer might have. The (E)xperimental gate construction is used
for program ftesting. It is currently used to perform the Controlled-NOT gate for a
specified number of iterations in order to test the speed of the program. The Pascal
source code for this program is given in Appendix C.

Networks for performing specific tasks can be saved into a text file and then
executed for different input. 1 did this for several networks, including a 1-bit adder
(shown in Appendix C.3) and a 2-bit adder (shown in Appendix C.4). A sample of

an interactive session with the program is reproduced in Appendix D.

7.5 Results

7.5.1 Two-Bit Adder

) The largest test 1 gave my program was a 2-bit adder, a representation of which is
g E ¥y prog ; P
given in Figure 4.4. The file to do this, given in Appendix C.4, was quickly verified to

work correctly {or several math problems. Then, in order to verify that the quantum

f (N)ot gate (1-bit gate) {(1)-bit arbitrary gate

i (Controlled-Not gate (2)-bit arbitrary gate
(T)offoli Gate (D)eutsch gate
(E)zperimental gate construction (R)ound off and (V)iew
(I)nritialize new quantum state {(Puit

J Enter an option:

Figure 7.1: Quantum computer simulator options

1 [
a1

L/

Ii2

P
L
-
—

v
i
IV

At —p

where A = R,(%).

Figure 7.2: Construction of the Toffoli gate
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nature of the simulation was working correctly, I initialized the first register to the
state |0) + |1} 4 |2) +13) and the second register to the same state. The third register,
which holds the result, was initialized to be in the |0} state. The result was the

equally-weighted superposition

[0)[0)10) + 10} (1311} + 10}[2)[2) + [0)[3)}3)+

J0)[1) -+ [1)11)12) + [13]2)13) + [1)13)]4)+ (7.12)
[2){0)12) + 12)I1)[3) + 12)[2)|4) + [2){3)]5)+ '
[3){0)13) + [3Y1)[4) + 13)12)]5) + 13)[3){6)

as shown in Appendix D. This is precisely the state showing all sixteen addition
operations. Incorrect addition problems, such as [1)[2)[5) (signifying 1 +2 = 5)
have zero probability, while all correct addition problems have a finite probability of
occurring. The impressive aspect of this demonstration is that it is no harder for the
computer to calculate the answer to all 16 problems than it is for it to calculate the

answer to any one of them. Thus an exponential speedup is achieved.

7.5.2 Performance

I had initially expected the program to slow down dramatically for large systems
(N > 3, where N is the number of qubits in the system) because both the memory
required to store a gate operation and the number of operations required to perform
the gate operation scale as 22N [t was not necessary, however, to store the entire
gate matrix in the computer at one time. Because the computer constructs the gate
matrix, it can do so as it is performing the multiplication, and thus save valuable
memory. The program only has to store the current state of the system — a vector
which scales as 2. Also, because entries in the matrices consist primarily of zeros
for operations which modify only one qubit at a time (a universal set, and therefore
the only type the program currently allows), most steps in the multiplication can be
omitted. By avoiding several multiplications by zero and the corresponding additions
of zero, the time requirements can be reduced to scale as 2N as well. Although still
exponential in N, both the space and the time requirements scale according to the
square root of my initial predictions, and therefore allow the program to perform well
up to N 2 10. Execution times for my program (QCompute) and an independently-
developed program (Q) [Joh97] for various numbers of qubits are shown in Table 7.1.
The table shows that my program is faster for small systems (N < 5) while the
other program is faster for larger systems. Data analysis shows that QCompute has

a runtime which increases according to approximately 21037V while () has a runtime
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which increases according to approximately 2°°%7V, Both programs are therefore
operating close to the predicted runtime of O(2V). The exact reason why the programs
differ slightly from the prediction is undetermined, but is most likely due to the specific
compilers used. Compilers often optimize code, and the quality of the executable

program they develop may vary between compilers,

CN Gate Time (ms} i
! Qubits Q| QCompute

2| 0.0438 0.0394
3| 0.0902 0.0792
41 0.1746 0.1604
5| 0.3362 0.3274
6| 0.6592 0.6690
7| 1.3282 1.3666
‘ 8

2.6276 2.7846
9| 5.3488 5.8780
10 | 16.7532 12.2454
11 | 21.4766 25.0450
12 1 43.0802 51.1924
13 | 86.2758 I

Table 7.1: Gate time of two quantum computer simulators for the CN gate acting on

various nurmbers of qubits. QCompute ran out of memory when attempting to operate
on a system with 13 qubits. (Timed on an Intel P100 running MS-DOS 6.20 — times
given are the average of five trials of 10,000 CN operations, each with accuracy of
0.01s.)
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Chapter 8

Conclusions

When I began my study of the quantum computer, I didn't realize how complex the
field had become. In a relatively short time, this field has attracted a wide variety of
scientists, with specialties ranging from physics to computer science to mathematics,
Because of the diversity of the field, I was forced to select only a small segment to
study in detail, and could gain only an overview of the other areas. In particular, I
chose to examine the underlying theory of the quantum computer and applied this
knowledge to develop a quantum computer simulator.

Designing the simulator proved to be a major task. The first problem I encoun-
tered was that of entanglement. 1 discovered that once two qubits are entangled, they
may be impossible to disentangle, except through a measurement. Thus my program
only deals with the qubits in the entangled states, and never attempts to disentangle
them.

When I first conceptualized bow the simulator would run, I thought of storing each
gate as a 2V x 2% matrix. An operation would be performed by multiplying the matrix
by the state vector. Some preliminary calculations showed that [ would experience
some severe limitations due to the time and memory requirements of such a method.
Realizing that the mattices consist primarily of zeros and that the computer would
have to construct each matrix before using it led me to the idea that I could simulate
matrix multiplication by just manipulating the state vector entries in the same way
that a matrix would manipuiate them. In this way, I avoided constructing the 2V x 2%
matrix (which would have taken up huge amounts of memory) and reduced the time
requirements from being O(2*Y) to O(2Y). In so doing I made it possible to attack
larger problems in shorter times.

Oune thing that [ would change about the simulator if I had to program it all over

again is to write it in C++ instead of in Pascal. T originally chose Pascal because
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it is eagier to understand than C4-+ for one who is not familiar with programming

languages. I wanted to make it easier for a future researcher interested in my simulator
to understand and modify the source code. In retrospect, I think that C++ may have
been more beneficial, because object oriented programming would have led to a more
clear style, which would be easier to understand. Also, a C++ version probably
would not have suffered from the same limitations as the Pascal version, allowing il
to handle even larger gates and run slightly faster.

The classical computer has served us well and will continue to do so for years to
come. It does, however, have its limitations. The quantum computer, if one is ever
constructed, will overcome these limitations and lead us into a new era of computing,
where exponential speedups will reduce computation times dramatically. It is still
uncertain whether a quantum computer wiil ever be constructed, but I believe there
is still much that can be learned, both about theoretical physics and about theoretical

computer science, through the study and simulation of such a computer.
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Appendix A

Spin

The quantum computer, as it is currently defined, acts on several two-level quantum
systems. One of the most common examples of a two-level quantum system is that of
electron spin. This appendix will introduce the reader to the concept of quantum spin
at a basic level. The interested reader will find more details in a quantum mechanical

text [Lib80, Gas96].

A.1 The Basics of Quantum Spin

i quantum theory there are two classes of angular momentum associated with elec-
trons or elementary particles in general, orbital anguler momentum and intrinsic, or
spin angular momentum. It is the spin of a particle that is addressed here. Spin is
independent of the position of a particle, and is therefore an internal property. It is
denoted by the symbol 8. The Cartesian components of S obey the commutation

relations

A A ~

(8, 8] =ihS,, 18,8 =Sy, [8,8]) =ikS, . (A.1)
We may also define the ladder operations for spin as
8= 8, £:5,. (A.2)
The qua,ntization‘ of spin is given by the conditions on the basis states
S%s,m,) = his(s + 1)}s,m,) , (A.3)

3,|8,m) = hms|s, m,) (A.4)

where s is a non-negative integer or half-integer. For any given value of s, the quantum

number m, takes values in integral steps from —s to +s. For example, for s = 3/2, m,
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can take on the values: -3/2, -1/2, 1/2, 3/2. The ladder operators have the property

that

Sils,m.) =Tz\/s(.s+1) —my(m, £ 1)|s,m, £1) . (A.5)

From this information, it is possible to determine the operations 52, 5., S'y, 3, on any
given spin state. An example of how this would be done for a spin 3/2 particle follows.
For all particles, Eqs. A.3 and A.4 hold. In the case of a spin 3/2 particle, we may

represent the basis states |s, m,) as:

1 ] 0 0
A I A IR R
2’2/ Lot e/ p o 22/ T vyt q2 2/ |0
0 0 0 1
(A.6)
From this we can determine that for the spin 3/2 particle
1 3
rg  1DA 1 5 A 1
2L - P L d
A - | and S, = 5 1 (AT
1 -3
We now need to determine S, and & 5,. To do so, we begin by defining
Sila,m) = (8 +35,)]s,m,) = ﬁ\/s s+ 1) —my(m, + 1)|s,ms + 1), (A.8)
S_|somg) = (Sp — 5,)]s,ms) = ﬁ\/ s{s+1) ~ms(m, — 1)|s,m, — 1) . (A.9)
Then we can easily find
6 v3 0 0 0 0 0 0
= 0 0 2 0 V30 0 0
S, = = it
V= Hh 00 0 3 and ) k 0 02 0 0 (A10)
0 0 0 0 0 0 30
Using the relations 5, = %(5+ +8 )and §, = (S - 8..) we find
0 v3 0 0 0 -\/9‘, 0 0
8y = E Vs 020 and S, = ﬁ va 0 -2 0
T2 0 2 0 VB T2 0 2 0 -3
0 0 V3 0 60 0 V3 0
(A.11)

If we wish to check to make sure our answers are correct, we may do so using the

relation ‘?2 + q 2y 5'2 §?. In this case. we find

3 0 23 0
py Ay R® 0 7 0 /3
S} 2 P e .&12
s+ Sy 45 Tlavs 0 7 0 (4.12)
0 2v3 0 3
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h\,

3 0 ~2v3 0
M 7 0 —2v3
41 —2v3 0 7 0
\ 0 —2v3 0 3
9
hz( 1
T 1
9
1
15K 1
T4 t
1
= 5.

This concludes the consistency check of these expressions. It should be noted that

analogous results may easily be derived for arbitrary values of s.

A.2 Mixed Spin States

Up to this point, only idealized conditions have been considered. The particle was
isolated from and uncoupled to the external environment. Let us now consider the case
in which the system 7s coupled to the external environment. Under these conditions,
it may not be possible {0 determine the wavefunction, and we may say that the system
does not have a wavefunction [Lib80]. A system that does not have a wavefunction-
is said to be in a mized state while a system that does have a wavefunction is said to
be in a pure state.

Under conditions when we do not know the state of the system, we take the
point of view that althongh a wavefunction exists for the system, it is not completely
determined [Lih80]. In place of this wavefunction, we introduce the density operator
p. It Ais some property of the system, we can find the expectation value of A through
the relation

(A) =Tr pA (A.13)
where Tr § = | and p = ' where { indicates Hermitian conjugation. The trace

operation, denoted Tr, sums over the diagonal elements of a matrix. Therefore,

Te A= Ap . (A.14)
A particle has an isotropic distribution ?f
(S} = {5) = (8) = 0 (A.15)
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and

(32 = (Sh) = (5% . (A.16)

This means that the expectation values for all three directions of spin are zero. If we
wish to find the p matrix that corresponds to this situation, we must find the matrix

p which satisfies the relations

{S5.) = TrpS, =0,
( Ar‘y) = Tr ﬁhy =0, (A'17)
(8.} = Trps, =0,
and

(5'3%) = Tr pgg = %32 ,
N 1 4

(S2) == npﬁzgf, (A.18)
N , 1 4

(Sj) = Tl'.' ,5;95 = *:‘}“:5'2 .

For the case of the spin 3/2 particle we might guess, based on symmetry, that

1
1
p=7 . . (A.19)
1

This matrix satisfies the conditions Tr j = 1 and p = pl. Also, using the matrices
found earlier for 5},, S'y, 5'2, Sﬁ, 5*5, 5§ 52 we may quickly verify that this choice of p
satisfies the other six requirements as well. In all generality, we conld start with a
matrix which only satisfied the last two conditions, and then attempt to find con-
ditions which would help us to determine the correct matrix, In this example, the

starting matrix would be

X a+ta b+4:1f c+ 1y
| a—ta Y d+1d €+ i€
P b—ip d—i§ 2 fic (A.20)

c—ty e—ic f—i( 1-(X+Y+2Z)

From this starting point, we could apply all of the above conditions until we deter-

mined the correct matrix for p.




Appendix B

The RSA Cryptosystem

One of the most promising applications of the quantum computer is that of factoring
large numbers using Shor’s algorithm (described in Section 5.1). Factoring is impor-
tant, not just to the study of mathematics, but also to the science of cryptography.
The most popular method of public-key encryption in use today relies on the difficulty
of factoring numbers for its security. This method, named RSA after its inventors
Rivest, Shamir, and Adleman, is 'cun:ently being used by individuals, banks, and gov-
ernments for secure comrmunication. If a quantum computer is constructed, it would
be able to decipher any of these communications in seconds. A general reference on
RSA can be consulted for further details [Fah93].

B.1 Theory

Fach user must develop a pair of large (100 digits or more) prime numhers, dencted
p and ¢. These numbers are multiplied together to get a number m, the modulus.
Also, the user comes up with integers d and e such that de is relatively prime to
n = (p—1)(¢—-1). The numbers m and e (the encryptor) are made public, and d (the
decryptor) is kept secret. The primes p and q are no longer necessary, and should be
destroyed.

Now, when Alice wishes to send an encrypted message to Bob, Alice must use

Bob’s m and ¢ in the function
C =P {mod m), (B.1)

where P 1s the plaintext and C' is the ciphertext. Once Bob receives the message, he

decrypts it according to the function

P =" {mod m). (B.2)
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Bob will get the original plaintext message back because he is actually performing

the following steps:

1. First, by the Chinese remainder theorem [And94],

[P* (mod m)]* (mod m)=P%* (modm). (B.3)

2. Now, we know from Euler that if gcd(P,m) = 1 then P*(™ =1 (mod m) for
p(m) = é(pq) = (p — 1)(¢ — 1) = n (the number of positive integers less than
m and relatively prime to m) [{Gar95]. Hence as long as P is not a multiple of

p or of ¢, we may write
P (mod m) = P (mod m) = P (1)* (mod m) = P (B.4)

where k is an integer.

B.2 Signaturization

RSA also allows Alice to sign a message to authenticate that it is real. She does this
by encrypting it using her decryptor, denoted dj, before encrypting it using Bob's

encryptor, denoted eg. Thus, the resulting operation wouid be
C =[P (mod my)l*® (modmp). (B.3)

When receiving the message, Bob would decrypt the message using dg and mp, and

then encrypt it using e4 and m,, according $o the function
P=[C% {(mod mp)]*s (mod my,). (B.6)
But this is the same as performing the operation

P = [[P* (mod mu)|® (modmp)[*® (modmp)]*™t (modmy) (B.7)

Placadses  (mod my,) (mod mg) =P,

where the Chinese remainder theorem and Euler’s theorem have been used as in

Eqs. B.3 and B.4 above. Therefore Bob will only be ahle to read the message if it

was indeed encrypted using Alice’s decryptor da, which only Alice knows.
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B.3 Security

RSA derives its security from the difficulty of factoring large numbers. Computers can
easily multiply numbers together, but there is no known method for easily factoring
large numbers. So far, the most commonly used factoring methods are Pollard’s p-1
method, the elliptic curve method, the number field sieve, and the multiple polynomial
quadratic sieve (MPQS). These have running times, in big-O notation, as shown in
Table B.1. With two 100-digit primes, m would be about 200 digits long, so the best

Pollard Rho Ol/p)

Pollard’s p-1 O(p') where p' is the largest prime factor of p — |
Elliptic Curve O(e\/zh‘?’h’l‘”’)

Number Field Sieve 0(61.9(11171}1/3(11111111)2!3)

MPQS O(e\/hlninlnn)

‘fable B.1: Running times of various factoring methods, where n is the number to be

factored and p is a prime factor of n [Fah93].

known factoring method, the MPQS, would take on the order of

e\/ln(ww‘))ln{ln(wzm)) ~ 53 A 128 (B.8)

operations. The world’s fastest computer runs at 1.08 Tflops (short for trillion Hoating
point operations per second) [SS96b]. Therefore it would take this computer over 3000
vears to factor the number.

Factoring m would allow the intruder to calculate the person’s decryptor, d. Tt is
not, however, necessary to factor m to do this. The only other known way to crack the
cipher weuld be to discover the recipient’s decryptor, d, directly. In general, d will also
be a large number, and, because the encrypting and decrypting processes are tinse-
consuming, it would take similarly long amounts of time to try every possible value
for d. Barring a significant factoring breakthrough, therefore, the RSA cryptosystem
will always be secure. As computers improve all that is necessary to maintain the

integrity of a message is to increase the lengths of p and ¢, and therefore m.




Appendix C

The Program

The following is the Pascal source code of the quantum computer simulator 1 wrote.
The program consists of two program files and two optional network files. The first
program file, Complex.pas, handles all manipulation of complex numbers for the
program. The second program file, QCompute.pas is the heart of the program. This

file takes care of performing all gate operations and provides the user interface. The

N b S .

two network files, Adder.q and Adder2.q, are script files which perform one- and
= two-bit addition networks, respectively. The programs shown below are included on
the enclosed disk. In addition to the source code, the disk also contains the DOS

i executable. For more information, view the readme.txt file on the disk.

C.i Complex.pas

{S$IFNDEF COMPLEX}
{$DEFINE COMPLEX}

p; type
h complex = recoxrd
Re: real;
i Im: real;
i end; {record}
/
' procedure AddComplex(a, b: complex; var c¢: complex);
{Desc: Adds two complex numbers and returns the result.
Pre: =a and b are complex numbers,
g Fog: The sum a+b has been returned as c.
Uses: Nome.l}
begin {procedure 4ddComplex}
c.Ra := a.Re + b,Re;
¢.Im := a.Im + b.Im;
end; {procedure AddComplex}
|
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procedure SubComplex{a, b: complex; var c: complex);
{Dasc: Subtracts two complex numbers and returns the result.
Pre: a and b are complex numbers.
Post: The difference a-b has been returned as c.
Uses: Hone.}
begin {procedure SubComplex?}
¢.Re := a.Re - b.Re;
¢.Im := a.Im - b.Im;
end; {procedurs SubComplex}

Procedure MulComplex{a, b: complex; var c: complex);
{Desc: Multiplies two complex numbers and returns the result.
Pre: a and b are complex numbers.
Post: The result of a*b has been returned as c.
Useg: None.}
begin {procedure MulComplex}
¢.Re = a.Re*b.Re - a.Im%b,Im;
c.Im := a.Re*b.Im + a.Im*b,.Re;
end; {procedure MulComplex}

{$ENDIF}

C.2 QCompute.pas

{

Program Name: Quantum Computer. Simuclator

Version: 1.0

Programmer: Damian Menscher

Description: Simulates the actions of a guantum computer.
Date: July &, 1987

}

program QCompute;
uses Dos;
{$7+} {enable procedural types}

{37 fenltils.pas} {general utilivies package}

const
MAXQBITS=7; {Arbitrary}
VECTORSIZEEIQS; {=2"MAXQBITS;}
UMATRIASIZE=4; {=2%2;F
PI=3.14158285358979; {for rotation matricesz}

{$I Complex.pasz} {package to handle complex numbers}

typa
StateVachor=array[0..VECTORSIZE-1] of complex;
UArrayTypesarray[1. UMATRIXSIZE] of complex;
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var

CursState: StateVactor;
intile: text;

ch: string;
counter, iter: integer;
UArray,

ToffoliArray: UArrayType;
qubit,

Control,

Controlled: integer;
Zero, ona: complex;
theta: real;

ho, m0, s0,

hund0, hf, nf,

3%, hundf: Word;

procedure Round0ff(var curstate: StateVector);
{Desc: Rounds off values close to zZero to be exactly zero.
Pre: Receives the curstate StateVector
Post: Returnsg a rounded StatsVector -
Uses: None}
var
counter: integer;
begin {procedure RoundDfi}
for counter:=0 to VHCTDREIZE-1 do
begin {for}
if abs{curstatelcounter] Re) < 1E-5 then
curstate{counter] .Re := 0
if abs(curstatel[counter].Im) < 1E-5 then
curstatelcounter].Im ;= 0;
end; {for}
end; {procedure Round(ff}

function PowOf2(exponent: integer): integer;
{Desc: Finds a power of two.
Pre: Raceives an exponent that is an integer.
Post: Returns the power of two that was requested.
Uses: Error}
var
counter,
tenp: integer;
begin {function Pow0{2}
if exponent < 0 then
Error(’Power0fTwo must receive a non-negativa integer’)
alse
begin {alsel}
temp := 1;
while wexponsnt > O do
begin {while}
temp = bemp * 2;
axpenent := exponent - 1;




end; {whilel}
end; {else}
PowQf2 = temp;
end; {function PowDf2}

procedure SwapComplex(var a, b: complex);
{Desc: Swaps contents of complex variables a and b.
Pre: Variables a and b exist.

Post: The contents ¢f a and b have been axchanged.
Uses: Nonel}
var

temp: complex;

begin {procednre SwapComplex}

temp := by
b = a;
a 1= temp;

end; {procedure SwapComplex}

procedure ViewState(CurrentState: StateVector);

{Des¢: Displays the current statevector.

Pre: CurrentState exisgts, ‘

Post: The current statevector has been displayed for the user.
Uses: None}

var
qubit,
counter ! integer;
prob: real;

begin {procedure ViewStatel}
writeln;

for qubit := 0 to VECTORSIZE-1 do
if (CurrentState[qubit].Re<>0) or (CurrentState[gqubit].Im<>J) then
begin {if}
write(’ State ’, qubit:3, ’=?);
for counter := MAIQBITS-1 downto ¢ do
if (qubit and PowOf2(counter)) > 0 then
write(?1')
else
write(’07);
write(’: ?);
write{CurrentStatelqubit] .Re:6:3, ’ + i?, CurrentStatelqubit].Im:6:3);
prob := Sqr{CurrentStatelqubit] .Re) + Sqr{CurrentStatelqubit].Im);
writeln(’  Probability: ', prob*100:7:3, '%');
end; {if}
end; {procedure ViewState}

function Prompt{ubit(s: string): integer;
{Desc: Displays string s to ask for a qubit letter. If the user gives invalid
input, an error message is displayed and the user is asked again.
Pre: lNome.
Post: A valid qubit number has been returned.
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Uses: None.}
var
ch: string;
input,
qubit: integer;

begin {function PromptQubit}
write(s);
readln{infile, ch);
input = -1;
repsat
qubit := ord(chl{t])=-oxrd(’4°);
if ({qubit »= 0) and (qubit < MAXQBITS}) then
input := qubit
else
begin {elss}
qubit := oxd(ch[11)-cxd(’a’);
if {{qubit >= 0) and (qubit < MAXGBITS)) then
input := qubit
elsa
begin {slse}

writeln(’Qubit must between 4 and ’, chr(MAXQBITS-1+ord(’4’)), '.');

readlun{infile, ch};
end; {elsel} ’
end; {elsel}
until {imput >= 0);
PromptQubit :s input;
end; {function PromptQubit}

procedure Initialize(var CurrentState: StateVector);
{Desc: Initializes the StateVector CurrentState to what the user specifies.
Pre: The StateVector CurrentState exists.
Post: CurrentStats holds the values corrsspending to the wser input.
Uses: MultiplyComplex}
var
qubit,
coeff: integer;
coaffs: array[i..MAXGBITS, 0..1] of complex;
one: complex;
norm: real;

begin {procedure Initialize}
one.Re := 1;
one.Im := 0;
for coeft := 1 toe MAXQEITS do
begin {for}

write( Enter complex value for qubit ’, chr{coeff-l+ord(’4’)), ' in o> ?);

readln(coeffa[coeft, 0].Re, coeffslcoeff, 01.Im);

write(’Enter complex value for qubit ’, chr(coeff-i+vord(’A’)), * in [1> *);

readin(coeffs{coeff, 1].Re, coeffslcoeft, 1].Im);
norm := Sqr(coeffs[coeff,o].Re)+Sqr(coeffs[coaff,Ol.Im);
norm ;= Sqr(coeffs[coeff,i].Re)+5qr(coeifs{coeff,1].Im)+norm;
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i¥ {(norm>0) then
begin
coeffs[coefs,0].Re := coeffs[coeff,0].Ra/Sqrt(norm);
coeffe{coeff,0].Im := coeffs[coeft,0].In/Sqrt(norm);
coeffslcoeff,1].Re := coeffs[coerf,1].Re/Sqrt{norm);
coeffsfcoeff,1].Im := coeffs[coeft,1].In/Sqrt (norm);
cend

else
Error{’Can’’'t have zero probability for a qubit’);
end; {for}
for qubit := 0 to VECTORSIZE-1 do
bagin {for qubit}
Current3tate[qubit] := one;
for coeff := 1 to MAAQRITS do
if (qubit med PowDf2({MAXQBITS~coeff+i}} < PowDf2(MAXOBITS-cosff) then
MulComplex(CurrentStatelqubit]l, cosffslcoeff, 0], CurrentStatelqubit])
else
MulComplex(CurrentState[qubit], coeffslcoeft, 1], CurrentStatelqubit]);
end; {for qubit}
end; {procedure Initialize}

procedurse GetUArray(var Ulrray: UlrrayType};
{Desc: Gets the U-MNatrix from tha user.
Pre: UArray exists. .
Pagt: Udrray has values such as the user specifies,
Uses: Nome.}
var
countaer: integer;

begin {procedurs GetUArray}
uriteln(’Iaput the form of the U-matrix you want to multiply by’);
for counter := 1 to UMATRIXSIZE do
begin {for}

write(’Real and imaginary componets for position ’, counter, ’': ’);
readln(infile, Uirraylcountaer].Re, Uirraylcounter].Im);
end; {fox}

end; {procedure GetUArray}

procedure RotateY{theta: real; var Ulrray: UlrrayType);
{Desc: Creates a UMatrix corrssponding to a rotateY of theta.
Pre: VUdrray sxists.

Post: UArray has been set to its proper value,

Uses: None}
begin {procedurs RotateY}

Uarray[i]l.Rs := cos{theta/2};

Usrray{il.Im := 0;

UAxzay[2] .Re := sin(theta/2);

Utrray{2].Im := 0;

Usrray{3].Re := -sin(theta/2);

Uarray(3].Im := 0;

Uhrray[4].Re := cos(theta/2};

Uhrrayl4].Im 1= 0;
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end; {procedure RotateY}

procedure RotateZ(theta: real; var Udrray: UirrayType);
{Desc: Creates a UMatrix corresponding to a rotateZ of theta.
Pre: UArray exists.
Post: UArray has been get to its proper value,
Uses: Nons}
begin {procedure Rotatel}
UArray[1].Re := cos(theta/2); {exp(i theta/2)}
UArray[1].Im := sin(theta/2);
Uhrrayl[2] .Re := 0;
UArray[2].Im := 0;
DArray[3].Re := 0;
UArray{3].Im := 0;
UArray{4].Re := cos(theta/2); {exp(-i theta/2)}
UArray[4].Im := -sin(theta/2);
end; {procedure RotateZ}

procedure NotGate(qubit: integer; var CurState: StateVector);
{Desc: NOTs one of the quantum bits in CurState.
Pre: CurState exists.
Pogt: One of the bits in CurState has been H(Ted.
Uses: SwapComplsx.}
var
pos: integer;

begin {procedure ¥otGatel}
for pos := 0 to VECTORSIZE-1 do
if (pos mod PowOf2(MAXQBITS-qubit)) < Powlf2{MAXGBITS-(qubit+1)) then
SwapComplex{CurStatalpos], CurState[pos+Powdf2(MAXGBITS-(qubit+1))]};
end; {procedure NotlGate)

procedure OneBitGate(Ulrray: UArrayType; bit: integer; var CurState:StatsVector);
{Desc: Performs a one-bit gate operation.
Pre: CurState exisis.
Post: The one-bit operation specified by UArray has bean performed on tha
bit specified by bis.
Uses: PowQf2}

var
pos,
Uoffset: integer;
temp: complex;

NewState: StateVector:

begin {procedure OneBitGatael}
Uoffset := PowOf2(MAXQBRITS-(bit+1));
for pos != 0 to VECTORSIZE~1 do
begin {for pos}
NewStatelpos].Re ;= 0;
NewStatelpos]l.Im := 0;
end; {for posz}
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for pos := 0 to VECTORSIZE-1 do

begin {for pos}

if (pos mod PowOf2{MAXQBITS~bit)) < Pow(f2(MAXQBITS-(bit+1)) then

begin {if}

MulComplex (Uhrrayli],

AddComplex(temp,

MulComplex(Uhrray[2],

AddComplex(temp,

MulComplex (UArray[3],

AddComplex(temp,

MulComplex{Uirray[4],

AddComplex{temp,
end; {if}
end; {for pos}
CurState := HewStats:
end; {procedure UneBitGate}

CurState[pos], temp);
NewState[pos], NewState{posl);
CursState[pos+Uoffset], temp);
¥ewState[pos], NewState[pos]);
CurStatalpos], temp) ;

NewState[pos+Uoffset], NewState[pos+Uotfaet]);
CurState[pos+Uotfset], temp);
NewState[pos+Uoitset], NewStatel[pos+Uotiset]);

procedure ControlledMult(UArray: UArrayType;

Ctrl, Ctrled: integer;

var CurState: StataVector);
{Desc: Multiplies the CurState by a new operator matrix to come up with

the new CurState.
Pra: CurState exists.

Post: CurState has been multiplied by the operator matrix corresponding
to the u-matrix, control bit, and controlled bit specified.

var
WewState: StateVector;
pos!: integear;
temp: complex;
Uoffset: integer;

Uses: Pow(lf2, AddComplex, MulComplex}

begin {procedure ControlledMult}
Uoftset := PowODf2(MAXQBITS-(Ctrled+i));
for pos := 0 to VECTORSIZE-1 do

begin {for pos}
NewStatelpos] .Re :
NewStatelpos] .Im :
end; {for posl}

0;
C;

for pos := 0 to VECTORSIZE-1 do

begin {for pos}

if (pos mod Pow0f£2(MAXQBITS-Ctrl)) < PowOf2{MAXGBITS-(Ctrl+1)) then

AddComplex{WewState[pos], CurStatelpos], NewState[pos]) {a 1 in matrix}

alse

if pos mod PowOf2(MAXQBITS-Ctrled) < PowOf2(MAXQBITS-(Ctrled+1)) then

begin {if}

MulComplex(UArray[1], CurState[pos],

AddComplex (temp,

NewState[pos],

MulComplex(UArray[2], CurStatelpos+loffset],

AddComplex(temp,

WewStatel[pos],

MnlComplex (UArray[3], CurStatelpos],

AddComplex(tenp,

NewState[pos+lUoffset],

MulComplex (Utrray[4], CurStatelpos+Uoffaest],

AddComplex{temp,

NewState[pos+Uoffset],
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temp);
NewState[posl);
temp);
NewState[pos+Uoffset]);
temp);
NewState[pos+Uoffzet]);




end; {if}
end; {for pos}
CurState := NewState;
and; {procedure ControlledMult}t

{
procedure ControlledNot(Control, Controlled: qubit; var CurState: StateVector);
{Desc: Performs the Controlled-Not operation.

Pre: CurState exists.

Post: The CN operation has been performed on Curstate.

Uses: ControlledMult)

procedure ThreaGate(Udrray: UlrrayType;
Ctrll, Ctrl2, Ctrled: integer;
var CurState: StateVector);
{Desc: Multiplies the CurState by a new operator matrix to come up with
the new CurStats.
Pre: CurState exists.
Post: CurState has been multiplied by the operator matrix corresponding
to the w-matrix, control bits, and contrelled bit specified.
Uses: Powl(Jf2, AddComplex, MulComplex}

_ var
NewState: StataVsctor:
pos: integar:.
temp: complex;
Uoffset: integer;

begin {procedure ThresGatel}
Uotfset := PowOfZ(MAXQBITS-(Ctrled+1));
for pos := O vo VECTORSIZE-1 do
begin {for pos}t
WewStatalpos] .Re :
FewState[pos].Im :
end; {for pos}
for pos := 0 to VECTORSIZE-1 do
begin {for pos}
if (pos mod Pow0f2(MAXQBITS-Ctrll)) < Pow0f2 (MAXQRITS-(Csrli+1)) then
AddComplex(NewState[pos], CurStataslpos], NewState[pos]l) {a 1 in matrix}
else if (pos med PowDBf2(MAXQBITS-Ctr12)) < Powof2(MAXQBITS-(Ctrl2+1)) then
AddComplex(NewState{pos], CuxState[pos], NewState[pos]) {a 1 in matrix}

IH

0;
0;

i

alza
it pos mod PowCI2(MAYQBITS~Ctrled) < PowDf2(MAXQBITS-(Ctrled+1i)) then

begin {if} {found a UQ0 entry}
MulComplex (VArray[1], CurStatelpos], temp);
AddComplex(temp, NewState[pos], NewState[posl);
HulComplex{UArray[2], CurStatel[pos+Uoffset], temp);
AddComplex (tenp, NewState[pos], NewState[posl);
MulComplex (Udrray[3], CurStatelpos], temp) ;
AddComplex(temp, NewStatelpos+Uoffset], NewState[pos+Uoftset]);
MulComplex(UArray[4], CurStatelpos+Ucffset], temp);
AddComplex (temp, NewState[post+Uoffset], NewState[postUoffset]);

end; {if}

end; {for pos}




CurState := NewState;
end; {procedure ThreeGate}

procedure DeutschUArray(var Uirray: UlrrayType; theta: real);
{Desc: Returng the correct UArray for the Deutsch gate.}
begin {procedure DeutschUArray)

UArray[i].Re:=0;

VArray[1].Tm:=cos(theta);

Uhrray[2] .Re:=sin(theta);

UArray[2].Im:=0;

UArray[3] .Re:=sin(theta);

UArray{3].Im:=0;

UArray[4] .Re:=0;

Udrray (4] . lin:=cos(theta);
aend; {procedure DeutschUArray}

procedurs ShowMenu;
{Desc: Displays the menu options.}
begin {procedurs ShowMenu}

writeln(’ (Mot gate (1-bit gats) (1)-bit arbitrary gate’);
writeln(’ (Clontrolled-Not gate (2)~bit arbitrary gate’);
writelu(’ {TYoffoli Gate . : (D)eutsch gate’);
writeln(? (E}xperimental gate construction (R)ound off and (V)iew’);
writeln(?{I)nitializa new quantum state (Quait’);

end; {procadure ShowMenu}

begin {Main}
asgign(infile, paramstr{i));

reset{infile);

zaro.Re := 0]

zaxo.Im := 0;

one.Re = 13

one.Im = 0
Toffolihrray[1] := zero;
ToffoliArray[2] := one;
Totfolidrray[3] := one;
Toffolidrray[4l ;= zere;
Initialize(CurState);

ViewStata{CurState);
GetTime(h0, m0, s0, hund0);

ShowMenn;
repeat
write(’Enter an option: *);
chf1] := 7 7, {sc if there is no user input nothing will happenl}

readln{infile, ch);
case chil] of
"W, *n*: begin {case Not Gate}
qubit := PromptQubit(’ Which line should be NOTted? ’);
NotGate(qubit, CurState);
end; {case Not Gatel}
110 begin {case 1-bit gatel}
GetUbrray(UArray);
qubit := PromptQubit(’ Perform the gate on which line? ;
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(*

OneBitGate(VArray, qubit, CurState);
end; {case 1-bit gate}
*C?, ’e¢': begin {case Controlled-Not gatel}
Control := PromptQubit{’ Which bit is the control bit? *);
Contrelled := PromptQubit(’ The controlled bit? ’);
ControlledMult(Toftolidrray, Control, Controlled, CurStata);
end; {case Controlled-Not gate}
P2t begin {case 2-bit gate}
GetUArray(Usrray);
Control := PromptQubit(’ Which bit is the control bit? *);
Controlled := PromptGubit(’ The controlled bit? ’);
ControlledMult(UArray, Conmtrol, Controlled, CurState);
end; {case 2-bit gate}
'T?, 't’: begin {case Toffoli}
Control := PromptQubit(’ Which is the first control bit? ');
qubit := PromptQubist(! Which is the second control bit? *);
Controlled := PromptQubit(’ Which bit is being controlled? ’);
RotateY{(PI/4, Uhrray); {UArray becomes a Pi/4 ¥ rotation}
CneBitGate(UAzrray, Controlled, CurState);
ControlledMult(ToffoliArray, Control, Controlled, CurState);
OneBitGate(UArray, Controlled, CurState):
Controlleddult(Toffolidrray, gubit, Controlled, CurState):-
RotateY(-PI/4, UArray); {UArray becomes a -Pi/4 Y rotation}
OneBitGate(UArray, Controlled, CurState);
ControlledMult(Toffolidrray, Control, Controlled, CurState);
DnaBitGate(UArraﬁ, Controiled, CurState);
end; {case Toffolil}
'3 bagin {case 3-bit gatasl}
writeln{' This procedure usez the square root of the UArray.’);
GetUlrray(UArray);
Contrel := PromptQubit{’ Which is the first control bit? K
qubit := PromptQubit(’ Which is the second control bit? *);
Controlled := PromptQubit(’ Which bit is being controlled? ');
ThreeGate(UArray, Control, qubit, Controlled, CurState);
-RotateY(PI/4, UArray); {UArray becomes a Pi/4 ¥ rotation}
OneBitGats(VArray, Controlled, CurState);
ControlledMult{Toffolidrray, Control, Controlled, CurState):
OneBitGate(UArray, Controlled, CurState);
ControlladMult(Toffoliﬂrray, qubit, Controlled, CurState);
Rotate¥Y(-PI/4, UArray); {Ukrray becomes a —-Pi/4 Y rotation}
OneRitGate(VArray, Controlled, CurStata):
ControlledMult(Teffolidrray, Control, Controlled, CurState);
OneBitGate(Uszrray, Controlled, CurStats):
end; {case Toffolil}

'D*, ?d?: begin {case Deutsch}

Control := PromptQubit(’ Which is the first control bit? ');
qubit := PromptQubit(’ Which is the second control bit? *);
Controlled := PromptQubit(’ Which bit is being controlled? °);
write(’ What is the value of theta (Pi/2=1.570796327)7 ');
readln(infile, theta):
DeutschUdrray(UArray, theta);
ThreeGate(UArray, Control, qubit, Comtrolled, CurState):

An alternate method for the Deutsch gate building up from smaller gates
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E’,

{Then

{First we do a rotateZl}

RotateZ(PI/4, Vhrray); {UArray becomes a Pi/4 Z rotation}
OneBitGate(UArray, Controlled, CurState);

ControlledMult (Toffolifrray, Control, Controlled, CurState);
OneBitGate(UArray, Controlled, CurState);

ControlladMult (Toffelidrray, qubit, Controlled, CurState);
RotateZ(~PI/4, Uhrray}; {UArray becomes a -Pi/4 Z rotation}
OneBitGate(UAzray, Controlled, CurStatas);

ControlledMult (Toffolidrray, Control, Controlled, CurState);
OneBitGate(UArray, Controlled, CurState);

we multiply by the V-matrix}

YMatrix{0, PI/2, theta, UArray);

OneBitGate(UArray, Controlled, CurState);
ControlladMutt{ToffoliArray, Control, Comtrolled, CurState);
OneBitGate(UArray, Controlied, CurState);

ControlledMult (Toffolilrray, qubit, Controlled, CurState);
VYMatrix{0, PI/2, ~theta, Ulrray);{UArray becomes a ~Pi/4 Z rot}
OneBitGate(UArray, Controlled, CurState);

ControlledMult {Toffolilrray, Control, Controlled, CursStata);
OneBitGata(UArray, Controlled, CurState);

{Finally we do a -retataZ}

RotateZ(-P1/4, UVhrray); {UArray becomes a -Pi/4 Z rotation}
OneBitGate(VAzray, Controlled, CurState);

Controlleddult (Totfolidrray, Control, Controlled, CurState);
OneBitGate(UArzay, Controlled, CurState);

ControiledMuls (Toffelidrray, qubit, Contrelled, CurState);
RotateZ(PI/4, Ulrray); {UArray becomes a Pi/4 Z rotation}
OneBitGate(Uhrray, Controlled, CurState};

Controlled¥ult (Toffolidrray, Control, Comtrolled, CurState);
neBitGate{UArray, Controlled, CurState};

gnd; {case Deutsch}
‘r': begin {case RoundOff}

Round0Qff (Curitate);
ViewState{CurState);

and; {casa RoundDff}
‘y?: ViewState{CurState):
‘e’: begin {case Experimental}

write(’ How mony iterations of the CN gats? ');

readin(iter):
GetTime(h0, m0, s0, hundQ);
for counter := 1 to iter deo

ControlledMult{Toffolidrray, 0, 1, CurState);
GotTime(hf, mf, sf, hundf);

writeln{’ Start Time: ’, h0, ’:’', m0, ’:', =0, *.’, huud0);
writeln(’ End Time: 7, h¥, ’:', mf, *:', sf, '.', hundf);
i? hund¢ > hundf then {If starting hund > ending hund}
begin {if} {then we must fix it so}
sf 1= sf-i; {borrow from seconds...}
hundf := hundf+100; {and put onto hunds.}
end; {if} {Now hundf > hund}
if s0 > sf then
begin {if}

mf := mf-1;




st = gf+60; {4nd a similar fix for seconds!}

end; {if}
if m0 > mf then
begin {if}
hf := hi-1;
mf := mf+80; {And another one for the minutes!}
end; {if} {8kip the one for hours}

write(’ *, iter, ? iterations on ', MAXQBITS, ’ bits took ’);
write (50+*(60% (hf-h0)+(mf-md))+{sf-50)+(hundf~hund0)/100:5:2);
writeln(’ seconds?’):
end; {case Experimentall}
'I*, 'i7: Initialize(CurState);

elsa

if not((ch[1] = 'Q?’) or (ck[i] = 'q’}) then

begin

writeln(’ Illegal operation: ', chf1l);

ShowMenu;
and;
end; {case}

until (chli] = 'Q’) or {chli]l = ‘q*);

end. {Main}

C.3 Adder.q

Toffoli

a

b

[
Controlled-Not
a

b

Teffold

b

d

¢
Controlled-Hot
b

d
Controlled-Not
a

b

Quit

WA

First two bits are bits to add.

Third is the sum, which can contain carry

from a previcus addexr. Fourth bit is the carry, and must start out as zero.

C.4 Adder2.q

Totfoli
b
d
£
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Controllad-Not
b :

d
Controlled-Not
d

g
Controllsd-Hot
b

d

Toffoli

a

G

e
Controllsed-Not
a

G

Toffoli

¢

£

a
Controlled-Not
c

1
Controlled~Not
a

G

Round0ff

Quit

WA

This is a procedurs to add two-bit binary numbers. It can add 0,1,2,3 %o
0,1,2,3 to get ©0,1,2,3,4,5,8, and theoretically 7. The bits should be
encodad as follows:
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Appendix D

An Interactive Session

The following is an example of an interactive session with QCompute. The example
follows the Adder2.q file found in Appendix C.4. This quantum gate network per-
forms two-bit addition on seven qubits. In this particular example, the qubits start

in the state

1B = !U) +11)
1) = 0) + 1)
D) =10y +11) (D.1)
&) = |0}
[y = 10)
Gy = {0}
These are added according to the operation
|AB) +10D) = |EFG) (D.2)

where the registers are interpreted by reading the digits A, B, ..., in binary. The
overall equation is stored in the simulator by combining it into one large register,

where the qubits are placed as

|ABCDEFG) . (D.3)

Enter complex walue for qubit 4 in {0>
Enter complex value for qubit & in |1>
Enter complex walue for qubit B in 10>
Enter complex value for qubit B in {1>
Enter complex valus for qubit C in {0>

10
10
10
10
10
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Enter complex value for qubit ¢ in [1> 1 ¢

Enter complex value for qubit D in 10> 1 0

Enter complex value for qubit D in [1> 1 0

Enter complex value for qubit B in |0> 1 ¢

Enter complex value for qubit E in [1> 0 0

Enter complex value for qubit F in 10> 1 0

Enter complex value for qubit F in [1> 0 ©

Enter complex value fox qubit G in 10> 1 0

Enter complex values for qubit G in |1> 0 0
State 0=0000000: 0.260 + i 0.000 Probability;
State 8=0001000: ©0.250 + i 0.000 Probability:
State 16=0010000: 0,250 + i 0.000 Probability:
State 24=0011000: 0.250 + i 0.000 Probability:
State 32=0100000: 0.250 + i 0.000 Pxobability:
State 40=0101000: 0.250 + i 0.000 Probability:
State 48=0110000: 0.250 + i 0.000 Probability:
State 56=0111000: 0.250 + i 0.000 Probability:
State 64=1000000: 0.250 + 1 0.000 Probability:
State YZ=1001000: 0.280 + i 0,000 Probability:
State &0G=1010000: 0.250 + 1 0.000 Probability:
State 88=1011000: 0.260 + i 0.000 Probability:
State 9€=1100000: 0.250 + 1-0.000 - Probubility:
State 3104=1101000: 0.280 + i 0.000 Probability:
State 112=1110000: 0.260 + i 0,000 Probability:
State 120=1111000: 0.250 + i 0.000 Probability:

(N)ot gate (i-bit gate)
(C)omtrolled-Not gate
(T)offoli Gate
{E)xperimsnial pate construction
(I)nitialize new gquantum state
Enter an option: Toffoli
Which is the first control bit? b
Which is thw second control bBit? d
Which bit is being coumtrelled? £
Enter an opticn: Controlled-Not
Which bit is the contrel bit? b
The controlled bit? 4
Enter an option: Controlled-Not
Which bit is the control bit? d
The contrclled bit? g
Enter an option: Controlled-Net
Which bit is the control bit? b
The controlled bit? d
Enter an opiion: Toffoli
Which is the first conbrol bit? a
Which is the second control bit? ¢
Which bit is being controlled? e
Enter an option: Controlled-Not
Which bit is the control bit? a
The controlled bit? c
Enter an optinn: Toffoli
Which is the first comtrol bit? ¢
Which is the second controel hit? £
Which bit is being controlled? e

(1)-bit arbitrary gate
(2)-bit arbitrary gate
{D)eutsch gate

(RYound off and (V)iew
(Quit

5l

6.250Y%
6.260Y%
6.250%
6.260%
6. 2E60%
6.260%
B.250Y%
6.250%
6.250%
6.250Y%
8.260%
6.250%

6.280%

6.250%
6.250Y%
6.260%




Enter an option: Controlled-Not

Which bit is the control »it7? ¢
The controlled bit? 1
Enter an option: Controlled-Not
Which bit is the control bit? a

The controlled bit? ¢

Enter an optiomn: RoundOff
State  0=0000000: 0.250 + i 0.000 Probability: 6.250Y%
State  9=0001001: -0,250 + i 0.000 Probability: 6.250%
State 18=0010010: -0.250 + i 0.000 Probability: 6.250%
State 27=0011011: 0.280 + i 0.000 Probability: 6.250%
State 33=0100001: 0.280 + i 0.000 Probability: 6.250%
State 42=0101010: -0.2B0 + i 0.000 Probability: 6.250Y%
State 51=0110011: -0.260 + i 0.000 Probability: 6.260Y%
State 60=0111100: -0.250 + 1 0.000 Probability: 6.250%
State 866=1000010: 0.250 + i 0.000 Probability: 8.250%
Stats T5=1001011:; -0.2B0 + i 0.000 Probability: 8.250%
State 84=1010100: 0,250 + i 0,000 Probability: 6.250Y%
State 93=1011101: -0.250 + i 0.000 Probability: 6.250Y
State 99=1100011: 0.260 + i 0.000 Probability: 6.250Y%
State 108=1101100: 0.280 + i 0.000 Probability: 6.280%
State 117=1110101: 0,250 + i 0.000 ¥Frobability: 6.250%
State 126=11:11110: 0.260 + i 0.000 Probability: 6.260%

Enter an option: Quit

Note that the results listed here are only those with a non-zero probability of
occurring. Note also that because the probability equals the modulus squared of
the wave function, all sixteen of these states have an equal probability of oceurring.

Interpreted by splitting these states up into registers according to the operation
|ABCDEFG) — |ABYICD)EFG) (D.4)

and then reading them as binary addition equations, we find that these results are

the sixteen correct additions, as shown in Table D.1.
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State | Binary Representation | Equivalent Addition Problem

0 (4 00 000 0+0=0

9 00 01 001 0+1=1
18 00 14 010 0+2=2
27 00 11 011 0+3=3
33 01 G0 001 14+0=1
42 01 01 010 14-1=2
51 (0110 011 142=3
60 01 11 106 143=4
66 16 00 010 240==2
5 10 01 01% 2+1==3
84 10 10 100 2-4-2=4
93 10 11 101 2+3=5
a9 11 00 011 3+0=3
108 11 01 100 3+1=4
117 11 10 101 34+2=5
126 11 11 119 3+3==26

Table D.1: Output of the two-bit adder for non-classical input.

33




Bibliography

[And94]

[B+95]

[Bard5]

[Bar96]

[BDI95]

[Ben93]

IBrag4

[BraE‘S]

[C1e89]

DBESH]

Keri L. Anderson. Restrictions on the integer N necessary to secure the

RSA public key cryptosystem. Thesis, Brigham Young U., 1994.

Adriano Barenco et al. Elementary gates for quantum computation. Fhys.
flev, A, 52(5):3457-67, November 1995.

Adriano Barenco. A universal two-bit gate for quantum computation.
Proc. K. Soc. London, Ser. A, 449(1937):679-83, Jiune 1995.

Adriano Barenco. Quantum physics and computers [review]. Contemporary
Physics, 37(5):375-89, September 1996.

Adriano Barenco, David Deutsch, Artur Fkert, and Richard Jozsa. Condi-
tional quantum dynamics and logic gates. Phys. Rev. Lett., T4(20):4083-86,
May 1995,

Charles H. Bennett. Quantum information and computation. Phys. Today,
pages 24-30, October 1995,

(. Brassard. Cryptography column — Quantum computing: The end of
classical cryptography? SIGACT News, 25(4):15, 1994.

Samuel L. Braunstein. Quantum computation: A tutorial. Avsilabie at

chemphys.weizmann.ac.il/"schmuel/comp/conp . html, Augnst (995,

R. Cleve. Reversible Programs and Simple Product Ciphers. PhD thesis,
U. of Toronto, 1989. In Methodologies for Designing Block Ciphers and
Cryptographic Protocols.

David Deutsch, Adriano Barenco, aud Artur Ekert. Universality in quan-
tum computation, Proc. R. Soc. London, Ser. A, 449(1937):669-77, June
1995.




[Deus9)

[DiV95)

[DJ92]

[Fah93]

[Fey86]

[Fol95]

[Fow89] -

[Gar95]

[Gas96]

[Gro96]

[HRY6|

[Joh87]

[LevdT]

David Deutsch, Quantum computational networks. Proc. R. Soc. London,
Ser. A, 425:73-50, 1989,

David P. DiVincenzo. Two-bit gates are universal for quantum computa-
tion. Phys. Rev. A, 51(2):1015-22, February 1995.

David Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. Proc. R. Sec. London, Ser. A, 439:553-58, 1992.

Paul Fahn. Answers to frequently asked questions about today’s cryptog-
raphy. Technical report, RSA Laboratories, September 1993. Version 2.0,
draft 2f.

Richard P. Feynman. Quantum mechanical computers. Found. Phys.,
16(6):507-31, 1986.

Tim Folger. The best computer in all possible worlds. Discover, pages
91-99, October 1995.

Grant R. Fowles. [Introduction to Medern Optics. Dover Publications,
second edition, 1989.

Lynn E. Garner. Public key cryptography. Talk given at Math Club
Symposium, BYU, October 1995,

Stephen Gasiorowicz. Quantum Physics. John Wiley & Sons, sccond edi-
tion, 1996.

Andrew S. Grove. The connected PC. Available at

. www.intel.com/pressroom/archive/releases/asgspeach htm, May

1996,

Serge Haroche and Jean-Michel Rairnond. Quantum cornpuiing: Dream
or nightmare? Phys. Today, 49(8):52-52, August 1996.

Zerubbabel A. Johnson. The simulation of a quantum computer on a

classical computer. Thesis, Brigham Young U., 1997.

Barbara (Goss Levi. Trap holds condensates of two different spin states at
once. FPhys. Today, 50(3):18-19, March 1997.

[k
ol




[Lib80]

[M*95]
[Met6]
[MW96]
[Po092]
[Sho94]
[S1m94]
(5596a]
[SS96b]

fTots0]

[Win96]

Richard L. Libofl. Introductory Quantum Mechanics, chapter 11, pages
418-90, Holden-Day, 1980.

C. Monroe et al. Demonstration of a fundamental quantum logic gate.
Phys. Rev, Lett., 75(25):4714-17, December 1995.

Cade Metz. Intel pushes Pentium Pro. PC Magazine, 15(14):36, August
1996.

Christopher Monroe and David Wineland. Future of quantum computing
proves to be debatable. Phys. Today, 49(11):107-8, November 1996.

Lon Poole, Inside the processor. MacWorld, 9:136-43, October 1992,

Peter W, Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proc. 35th Annual Symposium on FOCS, pages 124-34,
IEEE Computer Society Press, 1994,

D. Simon. On the power of quantum computation. In Proc. 85th Annual
Symposiom an FOCS, page 116. IEEE Computer Society Press, 1994.

Phillip F. Schewe and Ben Stein. Schrodinger’s cat-ion. SPS Newsletier.
29{(1):4, September 1996,

Phillip F. Schewe and Ben Stein. World’s fastest computer. SPS Newslel-
ter, 29(1):4, Septeinber 1996.

T. Toffoli. Reversible computing. In J. W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, pages 632-F. Springer,
1980.

Jeffrey Winters. Quantum cat tricks. Discover, page 26, October 1996,




	D_Menscher_H_Thesis1
	D_Menscher_H_Thesis2

