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Abstract

In order to understand the nature of quantum computation it is useful to
examine what makes a quantum algorithm different from a classical one.
This work presents an in-depth analysis of Shor’s algorithm, including a
simulation programmed for a classical computer.
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Chapter 1

Introduction

People today expect their computers to become out-dated every couple of
years. This trend, driven largely by the break-neck speed of microproces-
sor development is slowly coming to an end. This may open the market to
alternative technologies, The computers of this century, based on contin-
ual improvements of the same model, may be joined by radically different
technologies. Among these contenders is quantum computation, which , in
theory, takes advantage of physical differences between the microscopic and
macroscopic worlds to perform computations in a completely different man-
ner than any “classical” computer.

In the last five years quantum computation has gone from an obscure
mathematical model to a hot research field [Tau96]. As with any proposed
technology it is hard to say how successful the field will be. Quantum com-
puters will certainly not surpass classical ones any time soon. But certain
algorithms developed for quantum computers show promise beyond what will
ever be possible on a classical computer, and may drastically change the field
of data manipulation and security. One such algorithm, Shor’s factorization
algorithm, will be the main focus of this study.

Shor’s algorithm was the main cause of the increased interest in quantum
computation. Quantum computation was first discussed in 1981 [Feyn82],
and by 1985 the philosophy and general theory behind it were firmly in
place [Deu85], claiming a potential for exponential speed increase over clas-
sical computers. But no useful algorithms had been developed fo motivate
sufficient research to overcome the difficulties in engineering a quantum com-
puter. Shor changed this in 1994 by showing that factorization, for which
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1o efficient classical algorithm is known, would be eflicient on a quantum
computer [Sho94]. The difficulty of factoring large numbers is the basis of
RSA cryptography-the main public key cryptography system in use that al-
lows information to be securely transferred over the Internet [RSA08]. If a
quantum computer could be built different methods of cryptography would
have to be used.

In order to better understand quantum algorithms and develop a useful |
simulation for further study, 1 have designed and programmed a simulation
of Shor’s algorithm to run on a classical computer. Through careful exam- |
ination of this algorithm and its simulation we will discuss the theoretical
differences between quantum and classical computation, and show how quan-
tum computation has made an existing algorithm efficient.

In chapter two we will discuss relevant aspects of classical computation |

and discuss how quantum computation may some day enter the computer !
industry. Chapter three discusses the theoretical basis of quantum computa- |
tion, briefly describing the effects that make quantum and classical compu- |
tation different. In chapter four we will examine the number theoretic basis
of Shor’s algorithm and overview the algorithm through a simple example.
In chapter five we will investigate the specifics of Shor’s algorithm and show
how they were implemented in the simulation. The appendices include all
the code in the working version of my simulation, a section on numeric explo-
ration of the number theory behind the algorithm and a couple basic number
theory topics for reference.

The diskette included with the thesis contains the source code for Shor.cpp
and trial.cpp, together with the appropriate header files, together with a
compiled version of Shor.cpp, Shor.out, for use on an HP PA RISC 2.0
workstation. The diskette also contains the BIREX 2¢file for this thesis.




Chapter 2

Some elements of classical
computation

Every existing computer today is “classical”. Even though the microproces-
sor is composed of millions of field effect transistors, the operation of which
depends on quantum mechanical phenomena, the mathematical basis of the
computation is classical. The primary difference between quantum and clas-
sical computation is in the nature of the bits the data are stored in and
how they are manipulated. Since it will shortly be physically impossible
for microprocessor components to continue shrinking at the rate they have,
new technologies are posed to find their way into the computational world.
Among these, quantum computation is a strong contender. Although we
will delay an actual definition of classical computation until chapter three,
this chapter will discuss aspects of classical computation useful in gaining an
understanding of quantum computation.

2.1 Classical computation: Little theoretical
change

Microprocessor performance has advanced at an amazing rate in the second
half of this century. Computing power has increased exponentially as micro-
electronics have shrunk in size. While it is common to speak of “technical
progress”, the mathematical basis and methods of technological advance-
ment have changed little and has been accompanied by extreme increases in
production cost because of the difficulties in fabricating smaller and smaller
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devices. In addition, physical limitations may cause the microprocessor in-
dustry to change significantly in the near future, making room for new tech-
nologies as well.

Whether a computing device is a PC or a supercomputer, it can be math-
ematically described as a Turing machine [Tur37). All classical computers,
no matter how complex, can be described by Turing’s model. According
to Williams and Clearwater, Turing’s idea came from mathematician David
Hilbert's question, “Could a machine be built that would be able to prove
the truth of any mathematical conjecture?” Taking this question more lit-
erally than Hilbert probably intended, Turing designed a machine to mimic
the way a mathematician thinks when writing a proof [WC97].

Turing decided that his model should not be a blueprint for a specific
machine, but genera) enough to describe all possible systems and avoid all
physical assumptions. His machine had an infinite strip of paper with cells
on it and a read-write head. The cells are either marked or unmarked (in
current terminology marked with a one or zero). The read-write head, like a
mathematician, would use earlier premises to dictate later ones, moving up
and down the strip, its actions dictated by the patterns of symbols it reads.

The Turing machine is simple enough to be used in mathematical proofs,
but complex enough to represent every computer in use. Turing claimed
(and periodically demonstrated) that no matter what method someone used
to create a different model, it was mathematically equivalent to his. Ac-
cording to Williams and Clearwater, “Given enough time and memory, there
is not a single computation that a supercomputer can perform that a per-
sonal computer cannot also perform. In the strict theoretical sense, they are
equivalent” [WC97].

2.2 Microchip Development: Slowing at last

From the invention of the microchip it has ruled computation, developing into
a $150 billion industry. The number of components per chip has doubled
every couple year since the chip’s invention, driving the industry forward.
Analysts now say that industry growth may slow in the near future. In
the next twenty years either economics or the laws of physics will force the
business to change.
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In 1964 Gordon Moore, co-founder of Intel, saw that the number of com-
ponents on a microchip doubled every year. The prediction that this would
continue became known as Moore’s law. Since 1964 Moore’s law has held
with occasional alteration. Aeccording to Alfred Brenner, Deputy Director of
the Institute for Defense Analysis, the rate had slowed to a doubling every
18 months by the end of the seventies, which slowed again at the end of the
eighties to every 24 months. Market analysis now shows that from 1997-
2007 the number will double every three years [Bre97]. Beyond 2007 some
scientists and analysts are now saying that this trend is even less sure.

According to Dan Hutcheson, analyst for VSLI research group, and his
partner Jerry Hutcheson who serves on the Semiconductor Industry Asso-
ciation Roadmap Council, the progression of technology was not a smooth
development. “It was more like a harrowing obstacle course that repeatedly
required chip makers to overcome significant limitations in their equipment
and production processes.” Anytime one group of engineers predicted a “show
stopping” problem, that was too costly to overcome, someone else would solve
it [HH96).

This trend may be coming to its end. Robert F. Service, research writer
for Science magazine reports that the industry is looking hard for new tech-
nologies to keep things going. The current methods of chip production may
be able to fit 250 times as many components on a single chip as are there
are currently, but then the technology will need significant advances [Ser96].
Hutcheson and Hutcheson agree, saying that the industry is in need of break-
throughs to continue, both in lithography (the method of manufacture) and
in the materials used [HH96]. Some scientists don’t believe there will be a
crunch. Bijan Divari, silicon integration engineer for IBM reminds us that
industry has continued in this fashion for thirty years, and with the develop-
ments taking place now there are many possibilities on the horizon [Ser96].
Robert Keyes, also of IBM, acknowledges the limits, but says that there are
many more possible new technologies on the horizon that will develop as
understanding of the physics of new materials increases [Key92j.

Technology, however, isn’t the only issue; the microprocessor industry
anticipates having trouble increasing investment and may have to change
their way of doing business. According to Hutcheson and Hutcheson, while
the cost of 1 megabyte memory chip has gone from $550,000 to $38 in the
last 25 years, the price of building the production facility has gone from
$4 million to $1.2 billion. Business methods will have to change as prices
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increase and the rate of development slows. The computer industry will
change just like the automotive, railroad and airline industries did, going
from advancement in straight power t0 specialized markets. These industries
also grew quickly in the beginning, but eventually the need for bigger and
faster machines didn’t match the costs, and companies began to diversify
their products [HH96).

2.3 The physical limit

Although the industry is more worried about the barriers in the near fu-
ture, some scientists are looking at ultimate physical limits. Clearwater and
Williams say that if the current trends hold chip components will reach the
size of an atom by 2020. Not only would this be the decisive end to any de-
crease in size, sometime before the components reached that size they would
enter the realm of quantum mechanics [WC97, Mil96].

Another physical problem with shrinking components is that the amount
of heat given off by the integrated circuits increases with the density of the
components. Trreversible computation, which uses logic gates to get one bit
of information from two, emit heat with the destruction of information. The
laws of thermodynamics reéquire that for each bit erased the computer gives
off kT in heat [Lan9l]. A microchip based on irreversible logic that has
components the size of an atom would produce more than enough heat to melt
itself. Although we will not discuss this in greater detail, since the evolution
of a quantum system is reversible, a quantum computer would be a reversible
computer and not suffer from the heat problem. (For further discussion on
reversible and irreversible computation, see [Mil98] and {FT82].)

2.4 How quantum computation may someday
be an important part of the computer in-
dustry

The three most promising alternatives to reduction in size of microcircuitry
are nanocircuitry, optical computation and quantum computation. Although
our topic is quantum computation, the other two technologies help illustrate
how quantum computation may enter the industry. These technologies also
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offer different ways of approaching problems that would allow more efficient
algorithms for specific problems.

Strictly speaking nanocircuitry would be the effect of continual size re-
duction of microcircuitry. As the size of microprocessor elements is reduced,
increased attention must be placed on the quantum mechanics. Nanocircuits
will be small enough that either they will utilize quantum mechanical effects
or be limited by them. In experimental systems careful design has allowed
tight control of current flow and behavior of groups of particles. Gerard Mil-
burn, a leading physicist in the field of quantum optics, predicts that, within
a decade, quantum nanocircuits will have important niche markets [Mil96].

Optical computing is the oldest of the three technologies, and may show
how quantum computing will enter the market. Research in optical comput-
ing began before 1960, but optical computers have not been able to compete
with semi-conductor based systems. A group of special editors chosen for an
Applied Optics feature issue on optical computation, say that optical com-
putation is now considered a strong contender. The Institute of Electrical
and Electronics Engineers (IEEE) has held conferences on optical computing
since the *70’s. In the '90’s there have been demonstrations of “practical op-
tical computing systems”. Although optical computers are still a technical
novelty, many technologies developed for optical computing, including fiber
optics, are used commercially in some form of computer hardware [Li96].

As shown by developments in optical computing, the industry is pre-
pared to accept new technologies where their performance is superior. As
microchip advances slow we are likely to see more of these technologies en-
tering electronic devices. (Quantum computation, in particular, bas the at-
tractive advantage that its calculations can be performed with an exponential
speed increase.

2.5 Algorithm efficiency

One method for increasing computer performance is finding more efficient al-
gorithms. A clever new algorithm can greatly decrease the time required to
perform desired task. For example the discrete Fourier transform is com-
monly used in data analysis to find the spectrum of experimental data.
Noticing that many of the calculations in the transform are redundant, a
new algorithm improved performance from O(n?) to O(nlun). This second
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form is known as the fast Fourier transform (FFT), and can greatly reduce
time required for data analysis. Where the FET takes 1 second to do the
spectral analysis on 100,000 data points the older or slow Fourier transform
would take two and a half hours to produce the same results on the same
computer.

In computer science the most common method of rating algorithm per-
formance is through “big-oh” notation, written O (f(n)). Big-oh notation
will not give specific information about run time (which is dependent on
implementation, compiler and computer the program is run on), but offers
information on how the time taken for operation scales with the problem
size. 1f we have a problem, where the scaling variable is n (we may have n
entries in a database) we can analyze the algorithm in relation to n. Using
an example in C code,
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for (i=0; i<=n; i+
for (j=0; j<=n; j++){

/* program performs some operations here, where *
¥ the number of operations is independent of n */

¥
}

we see that we could have many operations occur. If in place of the “some
operations” we place 25 different commands, the run time of the example
code, T(n), will scale as T'(n) = 95n2. But the time cach of the operations
takes may vary from computer to computer. We may even decide that some
of the commands are unnecessary, and reduce them to 21, by adding another
loop that scales linearly with n, so T(n) = 21n?+5n. Overall, though, either
way the dominant portion of the code scales with n?, so we say it 1s O(n?).
(For a more formal discussion of runtime and big-oh notation see chapter 3
of [AU95].)

Improved algorithms can greatly increase computer performance, but
for many problems no efficient algorithms are known to exist. In general,
we say an algorithm with O (f(n)) is considered efficient (or “tractable”) if
f(n) grows like a polynomial, and inefficient (or “intractable”) if f(n) grows
faster than a polynomial.




Chapter 3

Fundamentals of quantum
computation

In this section we will examine some basic quantum mechanical principles
necessary to understanding the nature of quantum computing, including
what makes a quantum computer different from a classical one and an overview
of the quantum effects quantum computational theory relies on: entangle-
ment, superposition and decoherence. Our scope will be limited to the po-
tential of quantum Turing machines and what may give them an edge over
classical Turing machines.

3.1 Quantum Turing machines

In 1981 Richard Feynman questioned Turing’s claim that all systems could
be described by his model, asking whether a Turing machine would be able
to simulate quantum mechanics. In answer to the questions raised by Feyn-
man, David Deutsch, redefined the Turing machine, allowing him to make a
distinction between classical and quantum Turing machines.

In 1981, at the first Symposium on Computers in Physics at MIT,
Richard Feynman raised a question about whether it would be possible to
build a “universal quantum simulator”. Feynman stated that a Turing ma-
chine may not be able to serve this purpose since there are a lot of things
we simply don’t know about gquantum mechanics, and classical computers
may not be able to simnlate them for us. He asked if it would be possible
to build a computer such that, with ¢y suitable class of machines you could

10
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simulate any quantum system.” He said that this machine would not be a
Turing machine, but like a classical or universal computer, this simulator
should be able to handle any quantum system [Feyn82].

In response to Feynman’s question, Deutsch looked at the implications
of a quantum computer [Deu85]. Deutsch decided that regardless of Tur-
ing’s attempts to define his machine independent of any sort of design of a
computer, his definition was too general. The machine has to assume some
physical assumptions, and needs to be matched to the “existing structure of
physics”. According to Deutsch,

The reason we find it possible to construct, say, electronic calcula-
tors, and indeed, why we can perform mental arithmetic, cannot
be found in mathematics or logic. The reason is that the laws
of physics happen to’ permit the existence of physical models for
the operations of arithmetic such as addition, subtraction and
multiplication. If they did not, these familiar operations would
be non-computable functions. We might still know of them in
mathematical proofs . . . but we could not perform them.

Deutsch continues, “Every existing model of computation is effectively clas-
gical. . . . The more urgent motivation [{to develop a model of quantum
computation] is, of course, that classical physics is false.”

Whether or not one agrees that classical physics is false, it is the differ-
ence between quantum and classical physics that makes a quantum computer
different. The mathematics of quantum mechanics does allow us to simulate
things in the classical world (according to the correspondence principle), but
it also allows us to treat things differently. Deutsch’s model for a quantum
Turing machine provides the fundamental mathematical basis for quantum
computation, just as Turing’s original model does for classical computing.

3.2 Qubits and the quantum register

The major effects that must be addressed in quantum computation are how
entanglement, superposition and decoherence act on quantum bits or qubits.
The combination of the first two working together is what allow the exponen-
tial speed increase promised by specific algorithms. They allow the qubits to
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work together in ways not possible with classical bits. The third effect, de-
coherence, destroys the effects of the other two, making physical realization
| of quantum computation difficult.

| 3.2.1 Qubits

Just as the basis of data in classical computers is the bit or binary digit, the
basis of data in a quantum computer is the qubit or quantum binary digit. A
working quantum computer would be composed of a memory register of many
such qubits, each bit being stored by a quantum system (possibly a two-level
atom in an ion trap, see [MW95, MW96, Ste96, HR96], or as multiple spins
in an NMR system, see [GC97, Eco97]). We can write each bit in familiar
gpin form representing spin-up and spin-down

1) vs. )

or in a binary form representing on and off
1) vs. [0).

Multiple qubits can be placed together in a quantum register, similar to
how a classical register is put together. We can put a series of bits together,
representing them either as arrows, binary, or in the decimal equivalent of
the binary nurmber:

11T = [101101011) = |363).

For our purposes we will generally use the decimal notation for repre-
senting quantum registers.

3.2.2 Superposition: The ability to be in two states at
once

A quantum state defines the “range of possible locations” of a particle in
discrete, quantized energy states [Ste96]. It is generally believed that the
particle is not just somewhere, but everywhere in that range of locations,
in a superposition of states, similar to how a superposition of solutions to a
differential equation is also a solution.
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According to quantum mechanics, the particle’s state will never be mea-
sured in a combination of states, but as one or the other. Gilles Brassard
explains how this probability works by giving the example of an electron or-
biting an atom. The electron can be moved from one state to a higher state
by shining a specific frequency of light on it for a specific length of time. But
if you only shine the light on the atom for half the needed time and then
take a measurement, there’s a fifty percent chance of finding the electron in
one state or the other. We can use a system like this for a qubit, with one
possible state representing a 0 while the other represents a 1. This qubit
is different than a classical bit because it represents neither 0 nor 1, but a
combination of the two [Bra97]. :

If we consider a particle in a superposition of two states, |1) and ||}, we
can write the state of the particle as

¥ =calt)+ L) (3.1)

where o and 8 are the probability amplitudes of the respective states. Mea-
surement of the bit will produce only one of the states, with a probability
of |o|? finding |1) and a probability of |8}* of finding |J). If we are measur-
ing the spin state of a particle we are guaranteed to have either spin-up or
spin-dow, so the total probability || + |8|? is one [Gas96].

3.2.3 Entanglement: Einstein’s hang-up with quantum
mechanics

The other quantum phenomenon that gives quantum computing its power
is entanglement. Entangled quantum particles form a somehow correlated
system in which their quantum properties are connected unti] measurement.
A common example of an entangled state of two fermions is the spin-singlet
state,

_ -l
Y= \/ﬁ ’ (32)

which is a superposition of two two-qubit states. If we write this in the form

¢ =altd)+ BN, (3:3)

then o =1/ V2 and 8= -1/ /2. When we measure one of the bits we have
a 50-50 probability of measuring either state, spin-up or spin-down. Saying
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that the particles are entangled means that if we measure the first bit and
get an answer of spin-up we are guaranteed to get an answer of spin-down
when we measure the second (where we still had an even chance on finding
the second particle in either state before we measured the first). This holds
true even if the particles are separated by a long distance and the second is
measured so soon after the first that any communication between the two
would have to exceed the speed of light.

This phenomenon, known as the Einstein-Podolsky-Rosen (EPR) Para-
dox has no classical analog. Somehow particles know the states of the other
particles they are entangled to. Einstein, Podolsky and Rosen published this
paradox as an argument against quantum mechanics, saying that the theory
can not be complete as it implies communication faster than the speed of
light. The phenomenon predicted by EPR was demonstrated in a series of
experiments in 1981-2 led by Alain Aspect (see [AGR81, AGR82, ADRS82],
or for a more accessible, comprehensive explanation, chapter 6 of [GZ97]).

A quantum register would be composed of many correlated particles,
each of which can be acted on individually or collectively. Any operation on
a single qubit would cause each state the register is in to change in that bit.
The register will remain in this state until a measurement is made. If the
qubits are all entangled, measurement of the state

1 1
¥ = 5 TR + 75 U, (3.4)

will be completely determined by the first measurement that is made.

3.2.4 Quantum algebra: Using superposition and en-
tanglement for exponential speed increase

The promise of exponential speed increase comes from the interplay between
superposition and entanglement. Since a register of n bits can be in a super-
position of any or all of the possible values, it can effectively act as 2™ registers
simultaneously, allowing for 2" calculations to be performed at once. There
is a hitch, however, in that when the register is measured only one value is
retrieved.

If we begin with two registers whose states are represented by 1 and ¢,

Y=oy 1)+ 5y |2) + w14
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¢ = g |0) + 85 11) + 715} (3.5)

and perform an addition of ¢ to v, the state held by register ¥ is now

F = agll) + B 12) + 7 13) +8514) + g l6) ¢;16) +ng|7) +6519), (3.7)
where

2 2 2

g+ |85] +- - +1ogl =1 (38)
Here the exact number of calculations done depends on the number of states
o and ¢ are each originally in. A problem arises when we go find out what

each of those values are—when we measure ¢ we get only one of the answers
and we can never know what the other states were.

This poses a sticky problem for quantum computation. In an 7 qubit
register we can at best perform 2" calculations, but unless we can find an
cfficient way to use each of these we effectively only perform one calculation,
and our answer is somewhat random. If we begin with a 3-qubit register in
a superposition of all possible states

i |000) 100)
| |001) 101)
| 1010) |110)
i |011) [111)

1 perform an addition of several states on it we could calculate eight answers
at once, but there are only eight possible states. If all original states have
! the same probability, our answer is just a random, 3-qubit number.

To get around this problem quantum algorithms are generally based on
a quantum version of the fast Fourier transform (FFT), which deals with
the probability amplitudes of each of the possible states of the register in
a similar manner to how the classical FFT operates on a list of data. This
does, however, require that algorithms be found that rely on periodicity. In
guch algorithms the quantim speed increase is at best exponential, and can
change exponential algorithms to polynomial.
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3.2.5 Decoherence: The bane of quantum computation

The last of the three major effects involved in quantum computation, de-
coherence poses the biggest hurdle to a working computer. Any interaction
between the environment and a qubit effectively measures that qubit, deter-
mining (at least partially) the state of the other qubits and causing the qubit
to decohere or disentangle. If a qubit in the quantum register experiences any
interaction with the outside environment that qubit will decohere and the
quantum algorithms will not work. Current experimental quantum systems
have been unable to keep sufficient numbers of entangled qubits isolated from
the environment to perform significant quantum computations.

One proposed solution to this problem is through quantum errox code
correction. In classical computation error correction codes are used to guar-
antee against accidental flips in the value of a specific bit. Similar methods
have been developed for quantum computation (for further information see
[Sho96], [EJ961).

Quantum computing’s main strength lies in its theoretical ability to use
massively entangled systems. Even if the time required to perform single
operations were close to that of classical computers (which is not yet the
case) the quantum computer would have to decisively beat classical com-
puters to gain serious consideration. Search algorithms like Grover’s aren’t
very impressive when a much cheaper, classical system takes less than a sec-
ond. Large problem sizes are needed to justify using a quantum computer.
Regardless of the quantum system chosen, a quantum computer decipher-
ing a 56-bit encryption code would require at least 56 entangled states (plus
many more for error correction codes). Haroche and Raimond have claimed
that more than a few dozen entangled states will never be realized, which is a
much smaller number than is needed to justify quantum computing for Shor’s
algorithm [HR96]. If large entangled systems cannot be created, quantum
computing may never be realized.

3.3 Algorithms for the new computer

Deutsch’s model for computing laid the groundwork for quantum computing,
but, like Turing’s model, it didn’t build a computer. His model lay largely
unexamined until the discovery of quantum algorithms showed how power-
ful quantum computing can be. Quantum algorithms can perform tasks at
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speeds that are mathematically impossible for a classical Turing machine,
including (but essentially limited to) factoring large numbers and searching
unsorted lists. There is still a clear lack of useful algorithms.

As already mentioned, the field remained in obscurity until 1994 when
Peter Shor of AT&T Bell Labs announced that he had found a way to factor
large numbers in polynomial time. There is no known way to do this effi-
ciently on a classical computer. This has made factoring an important tool
in data encryption. This demonstration of the power of quantum computing,
albeit theoretical, caused interest in quantum computing to skyrocket, with
many people searching for other useful algorithms.

The next important algorithm, Grover’s algorithm, provides 2 dramatic
example of the potential power of quantum computers. Grover’s algorithm
is for a “needle-in-a-haystack” type search. Brassard explained that the best
method of searching on a classical computer is a sequential search, which is
O(n), while Grover’s algorithm can perform the search in O(y/n} [Bra97]. Put
in more dramatic terms by Graham Collins, associate editor of Physics Today,
for a search through n = 2% possibilities (the common Data Encryption
Standard uses a 56-bit key), a classical computer trying one million different
possibilities a second would take, on average, 1000 years to find a match.
A quantum computer running Grover’s algorithm at the same speed would
take under 4 minutes {Col97].

Although there are a couple other algorithms for quantum computation
(for a review of algorithms, see [Joz98]), the lack of useful algorithms is still
a concern. The importance of Shor’s algorithm—the threat of being able to
break the RSA codes—may generate enough interest to build a prototype
quantum computer, but if other useful algorithms are not found, the world
may only ever need one quantum computer.



Chapter 4

The basis of Shor’s algorithm

The genius of Shor's algorithm is using quantum computation to make a
known method of factoring efficient. As was discussed in the last chapter a
quantum algorithm must find a way to get more than one answer out for the
exponential speed increase to be useful. Shor's algorithm uses the quantum
discrete Fourier transform modulo q (DFT, ) to analyze the information in
the register before measurement, 80 that almost all possible answers provide
enough information to complete the calculation. Since all the major known
quantum algorithms depend on the DF'L; [Joz98], analysis of Shor’s algorithm
serves as a good illustration of how successful quantum algorithms work.

The most widely used standard for asymmetric data encryption, RSA
cryptography, relies on the fact that large numbers are hard to factor by using
the product of a pair of large primes [RSA 98]. Even for smaller numbers
calculating the product,

229283 ==z
can be done much faster than solving
2y = 64,807,

for z and y.

The best known factoring algorithms for classical computers are consid-
ered “sub-exponential”, and intractable. The number field sieve, which best
handles large numbers, is O (60"1/3““”)2/3), where ¢ is a constant and n is the
aumber of bits needed to represent the number being factored [WCOT7]. Any

18




CHAPTER 4. THE BASIS OF SHOR’S ALGORITHM 19

time there is worry that the number of bits used in RSA security is too small
the standard can be increased. Although factoring large numbers is gener-
ally hard, the Rabin algorithm [Rab80] can efficiently determine whether a
number is prime or composite, providing an inexhaustable source of primes.
Shor’s algorithm may be the only way to break this.

4.1 The number theoretic basis of Shor’s al-
gorithm

Factoring is a problem from classical number theory, and Shor’s algorithm is
primarily rooted in it. Most of the algebra takes place in the the multiplica-
tive group of integers modulo N, where N is the number being factored.

4.1.1 Notation and multiplication of integers modulo
N

Since a majority of the math in Shor’s algorithm deals with the set of in-
tegers modulo N, and N is always the number to be factored, numbers in
the equivalence class z{modN) will generally be written as T = z{modN).
This serves to distinguish these numbers from regular integers, which also
play a part in the algorithm. Hence, if N = 5, numbers will be written
3 - § — 13 = 118. On the other hand if T = § we cannot be sure that z = 5.

Multiplication in the integers mod N is surprisingly simple. This greatly
aids in any realization of the algorithm since raising an integer to modest
powers quickly requires a tremendous amount of memory. It is also useful in
understanding the algorithm. If X =a+bN and ¥ =c+ dN, then

XY =ac+ N(ad + bc+ bdN),
XV =ag,
XY =(a+bN): (c+dN).

Hence,

|

b
}-<
I

>
=i
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Thus any register involved in the program needs only to be large enough to
handle numbers on the same order N.

4.1.2 Factoring on a periodic function

Given an N to factor, and a random integer y, where 1 < y < N and
ged(y, N) =1, then ged(y®,N) =1 and yZ # 0 for any integer a. Now we let

gl =75, ¢=0,1,23,... (4.2)

Gince there are only N equivalence classes in the integers mod N, there are
only N possible distinct values of g. Furthermore, since y¢ # 0, there are
ot most N — 1 elements in g and one of them is not 0. Using Eqa. (4.1),
for any two integers b and ¢, if g(b) = glc) then g(b+1) = glc+ 1). Since
there are only a distinct number of values of g, for some 7, g(b+ r) = g(b).
Thus g is periodic with period r and each element of g occurs only once in
a period. (In algebraic terms, g is a cyclic sub-group of the multiplicative
group of integers modulo N with generator y and order 7 [DF91}.)

This periodicity can be used to find the factors of N. The specific values
ofgare g{0) =1, g(1) =7, . . - g(ry=1,. .., we see that y7 = 1. This
implies that ’

¥ =1,
yr —1= 6:
N2 _
(yi -1= 0}
which, by factoring, gives
(vi+1) (¥5 - 1) =0. (4.3)

This implies that (yg + 1) = myp and (y§ — 1) = ng, where m, n, p and ¢
are integers and pg = N.
The two factors of N, p and g can be found by taking the greatest

common denominator of NV with each of the factors in the left hand side of
Eq. (4.3):
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ged (y% 4 1,N) = ged (y§ + 1,N) =p,

ged (yg -1, N) = ged (gﬁ - 1,N) =q. (4.4)
This gives us

ged (yﬁ + 1,N) % ged ('y% - 1,N) = N. (4.5)

fy72+1=0,then p=N (orif y"/2 4+ 1 =0 then ¢ = N) and Shor’s
algorithm vields the trivial factors, Otherwise p and ¢ are non-trivial factors.
Shor claims that the probability of finding trivial factors is 1 —1 /2% where k
is the number of distinct prime factors of N. So if we can efficiently calculate
enough values of 7 to find r we can efficiently factor N [Sho%4].

What values of r are possible? It is clear that 1 < r < N, but there
is little guaranteed beyond that. To serve as an example, a simple program
can find the possible values of 7 for each possible y. Using V = 77 as an
example, the different r values generated are 2, 3, 5, 6, 10, 15, 30 and 76. It
is easy to see how the even r’s would not produce irrational numbers, but
the occasional odd 7’s raise some questions. These often occur with perfect
squares (when y = 36, 7 = 5), but not always. When y = 23, r = 3 and
Shor’s algorithm produces factors of 7 and 1. Further analysis of this problem
can be found in Appendix B.

4.2 An overview of Shor’s algorithm

We now turn to Shor’s algorithm, using it on a simple example—factoring
the number 21. Our purpose here is to give a brief overview, unmuddled by
details. In the following chapter we will examine the details of each step of
Shor’s algorithm, and discuss their classical simulation. The example used
here, the factoring of 21, is not interesting by itself, but the method would
be used for much larger numbers in a quantum computer.

A majority of Shor’s algorithm relies on classical number theory, and can
be performed on a classical computer. The heart of the algorithm, though, is
the Quantum Discrete Fourier Transform (DFT, ), which finds the spectrum
of a single quantum register in a superposition of values much the same way
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the fast Fourier transform finds the spectrum of a list of values (stored in an
array of registers). The other parts of the algorithm serve to either prepare
the register for the DFT, or interpret the result received from the DFT, .

4.2.1 Preparing the main register

We begin with a number to factor, N and a randorm number ¥y that is rela-
tively prime to N:

N=21, y=13.

In practice it isn’t essential to choose a number relatively prime to N. Any
random odd number will do. Most numbers will be relatively prime, but if
the random number chosen is a factor then we have our answer.

We now find g = 2% such that

%<N<q (4.6)

q = 912.

We then prepare a quantum register with 3L /2 entangled qubits. We prepare
the first L qubits so that each of the ¢ states formed by these qubits have
equal probability amplitude.

g—1

> f(a)la), (4.7)

a=0
where f(a) = %.
We prepare the other L/2 qubits so that this auxiliary register contains the

function g(a) = y@. The state of our register is now

gﬂ:ﬂf(a) 10} [77) (45)

where f(a) is the probability amplitude of the state ).
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As shown above g is periodic. For N =21 and y = 13 we have

[y = (4.9)

We now measure the auxiliary register and throw out the answer. In our
example we will assume that our measurement yields the answer “17.

We do not keep the answer becuase we are only interested in the period
of g. Since this auxiliary register was entangled to the main register the
probabilities of the states in the main register now reflect that period. For
all @ such that g(a) = 13, f(a) =0.

e —0.2,4,...,510
= ﬁ% ! a &y fyrety 41 .
f@) { 0 . a=1,3,5...,511 (4.10) |

4.2.2 TFind the period by performing the DF'L;

We now use the DFT, to find the spectrum of the probability amplitudes of
the different possible values in the main register.

g—1 g—1 _
DET, : 3 f(a) o) — L f(e) (4.11)
- 1 =
fo={% 1 o i

4.2.3 Interpretation of the result

We now measure |c) and call this value ¢. We use a continued fraction to
find a fraction in lowest terms that approximates c/q,
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CI

- (4.13)

[od
o~

L=l e

The continued fraction is discussed in greater detail in chapter 5 and in
appendix C. We can find r if c = 0. There is a 50% probability of measuring
each, ¢ = 0 or ¢ = 256, so we have a 50% chance of getting r. If we measure
¢ = 256 then we get r = 2 and can use this in Fqs. (4.4) to find the factors
of N

h:i-el

y3 = 132%/2 = 13.

ged(13 £1,21) = 7,3. (4.14)

Once again these last steps—the continued fraction and finding the great-
est common denominator—can be done using well-known methods from clas-
sical number theory. The power of Shor’s algorithm is in the efficiency of the
DFT, .




Chapter 5

Classical simulation of Shor’s
algorithm

Careful examination of Shor’s algorithm provides a good model for how a
quantum algorithm can be applied to a classical problem to find a tractable
solution. It also illustrates the inherent differences between classical and
quantum computation. Emphasis will be placed on these differences, show-
ing how the algorithm has been realized in our classical simulation, The
entire code of the simulation can be found in Appendix A. To aid in under-
standing the program each step will be examined thoroughly and frequent
reference will be made to the functions in which the specific portion of the im-
plementation can be found. (The function names will be written function()
in headerfile.h.) The flow of the simulation is controled by the function
run_shor () found in shor_main.h.

For large numbers (such as are used in RSA cryptography) most steps in
the algorithm are tractable on a classical computer, and would presumably
be executed on one, except for calculating enough values of

g(a) = 4"

to generate a period and then finding that period. Quantum computation
solves this problem because quantum gates operate bitwise on the qubits
of superposed states rather than whole bytes. A series of gate operations
can be used to generate g efficiently, and a second, the quantum discrete
Fourier transform (DFT, ) can efficiently find r. This simulation sets out
to perform Shor’s algorithm on a classical computer as a quantum computer

25
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would. Because of the differences of operation between classical and quantum
computers some of the code is inefficient by general programming standards.

Although it will be a common complaint that our classical computer
cannot perform gquantum operations, there are two great advantages of our
simulation over what an actual quantum computer would do: when we want
to see what is in our register we don’t end the program and when we take a
measurement we can see what all the values in our register are at once. With
a quantum computer only one value can ever be extracted. For this reason
if/when a quantum computer is built classical simulation may still play an
important role in algorithm design.

5.1 Selection of main numbers: N, vy, g

The first task in performing Shor’s algorithm, is to determine the numbers to
be used throughout the algorithm. Given N, an integer to factor, we choose
a random integer, ¥, such that 1 <y < N. For Shor's algorithm to definitely
work we need ged(y, N) = 1. So we use the Buclidean algorithm to check
to see if the numbers are co-prime. In our program, any time we need to
find a greatest common denominator we call GCD() from numbers.h. An
explanation of the Euclidean’ algorithm can be found in Appendix C.

In practice it would be nice if N and y were not co-prime, since the
Euclidean algorithm would find a tactor of N and we would be done. However
for a 200-digit number with two prime factors (as used in RSA cryptography)
this isn’t very likely. If it does happen (and since the npumbers our program
factors are 2-digit this occurs frequently) the program simply returns the two
factors and is done.

If N and y are co-prime the next step is to determine the number of
entangled qubits needed to factor N. This can also easily be done on a
classical computer (and is performed in set_mainNums () in ghor_main.h).
For the DFT, to be efficient we need to find integers ¢ and L such that

q:ZL’

% < N? <q. (6.1)

The DFT, needs to operate on & register capable of containing the states
a=1012,...,g—1tobe efficient, so we need L qubits to hold 2% states. An
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additional set of qubits, also entangled with the first L, are needed to create
the “auxilary register” in which the function

gla) =4° (6.2)

is placed to create a period. Since for all a, g(a) < N, the number of bits
required to hold g is [log, N7 = L/2, s0 in all 3L/2 qubits are required for
our quantum register. Additional bits are required for error code correction,
which we will do not consider in our simulation.

In a working quantum computer the maximum number of qubits a com-
puter can handle will determine whether or not the computer is able to factor
a number. In our simulation, too, we will see this happen, although in a dif-
ferent way.

5.2 Preparation of the main register

The main register is prepared by superposing in it all possible values @ =
0,1,2,...,4 — 1 so each state has an equal probability amplitude. The
subregister is then generated by the main register with the value y° en-
tangled to each corresponding value a, |a) [y®). This can also be done effi-
ciently on a quantum computer, first by determining the value of y2 for each
i=0,1,2,...,L — 1 through repeated squaring modulo N and then multi-
plying specific 42’5 according to the binary expansion of a. Thus if a = 35,
a = 100011,, and so

=y Py (5.3)

This operation can be performed gimultaneously on all values of a using
quantum gates analogous 1o the gates a classical computer would use to
perform the operation on a single value of a a. This is the first example of
where the quantum algorithm achieves exponential speed-up.

Once the auxiliary register is created it is measured. Since the qubits in
this auxiliary register were entangled to the main register, this changes the
probabilities of different states in the main register. The state of the main
register is changed from
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S h(a) |a) ly* mod N) (5.4)

a=0

where h(a) = %, to

6) = 3 () a) (5.5)

=0
where if mm is the value that’s measured, ! is the smallest a for which g(a) = m,
n=0,1,2,... 7 is the period of g and k is the number of values a for which
g(a) = m,
L =1l4rn
i =0,1,...,q- 1. 6
f(a') { 0 , a:,'él+?"n !a’ 011) ?q (5 )

The function f is the probability amplitude of the different values in the
main register and is now zero everywhere except at periodic values of a. It
is interesting to note that f does not depend directly on m. It turns out
that the period r is all that is important and the actual value of m is useless
information. Finding an m is done solely to make f periodic.

On a classical computer each calculation must be performed individu-
ally, and this becomes a daunting task. We are better off not even trying
to find all the values, but finding » as is done in Appendix B. However,
since we want to mimic the operation of a quantum computer and our num-
bers are small we will calculate all the values, but not in the same fashion.
In createMeasure_register we first find m randomly by choosing an a
(“chosen”) calculating m = yhossn We then cycle through all ¢ values of
g(a), counting how many times g(a) = g(m), which gives us our value &

“occurs”). We then cycle through g(a) again, and set f(a) =1 /v'k when
g(a) =1 and f(a) = 0 otherwise, Although this may seem contrived, the act
of measuring the auxiliary register on a quantum computer automatically
sets these equal probabilities, and a classical computer has no mechanism to
do such.

5.3 Finding the spectrum: The DFI,

With 7 containing a periodic function the next step is to find that pe-
riod. This is done through the quantum discrete Fourier transform modulo ¢
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(DFT, ), which is a quantum adaptation of the fast Fourier transform (FFT).
Where the FFT finds the spectrum of an ordered set of values contained in
many registers, the DFT, finds the spectrum of an ordered set of probabil-
ity amplitudes contained in a single quantum register. The discussion and
notation here will basically follow the discussion by Ekert and Jozsa [EJ96],
adapted for the purpose of understanding our simulation.

5.3.1 The quantum theory of DFT,

A quantum gate performs an operation on a qubit or multiple qubits in the
quantum register, just as a classical logic gate performs an operation on a
bit or multiple bits. The DFT, uses two quantum gates. The first,

Aj:%(i ~11) (5.7)

is a gate that operates on a single qubit. The second,

100 O
010 0
Bj,k= 00 1 0 y (58)
“\o o0 o0 &

operates on two qubits. The 1/ /2 in A is a normalization factor. All gates
in a quantum computer are required to be unitary, meaning that as long as
the total probability of the quantum register was one, after any number of
gates have operated on it, it will still be one.

The transform is performed by making L passes on the register, running
from j = L1 to j = 0. Each pass begins with a series of B gates, beginning
with B; ;1 and ending with Bjp_1, followed by A;. On the first pass, since
j = L — 1, there are no operations done by B gates, on the second there is
one, on the third, two, etc. So on & three bit register the DF'T, is performed
by the following matrix equation:

V = ApBy1 B A1 B A2V, (5.9)

where 'V is our initail state, V is the transformed state, and gates operate
from right to left on V. The schematic for this operation is shown in Fig
(5.1).
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Figure 5.1: Schematic for 3-bit DF[represented by Eq (5.9). (Adapted from
[EJ96].)

22 — As Tﬁ
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At the end of these passes we define a new counter, by letting qubits of ¢ be
the same as the qubits of a read in reverse order. So if |a) = [001) = 11},

then |c) = |100) = |4) and f(a) = f(c). So the effect of the entire DF'I; on
our register is

DFT, : qf_j fla)|a) — q}::ﬂ Fe) ey,

a=0

where

c) = Ypr 2Tty 5.10
1) 0 , otherwise (5.10)

f {_\}__ , ¢=0,2% (r=L)g
T

We will return to this equation shortly.

5.3.2 The classical implementation of DFT,

Since the DF'L, is a quantum algorithm we cannot perform it with the effi-
ciency described above. This portion of the simulation (contained in DFT_Ekert .h)
requires using g X ¢ matrices, requiring a great deal of computer memory for
even the smallest values of N, limiting the numbers we can factor. Classical
simulation does, however, allow us to watch the evolution of the state of the
main register throughout the DIl .




CHAPTER 5. CLASSICAL SIMULATION OF SHOR’S ALGORITHM 31

For the purposes of understanding the DFT;in our simulation it is helpful
to look at the function, f(a), as a column vector containing the probability
amplitudes of the different states. Since the probability amplitudes are po-
tentially complex values we simulate the register by creating a ¢ X 1 array of
complex variables, indexed from 0 to ¢ — 1. We let the complex value in the
array cell with index number 0 represent the probability amplitude of |0),
7(0), the complex number in array cell with index number 1 represent f(1)
and so on.

As shown in Damian Menscher’s thesis [Men97}, it is helpful to look at
gate operations using vectors and matrices. If we begin with three qubits,

|A> = Qyp |O> + o |1) ,
\B) = Bo|0) + A1 1), (5.11)
IC) =7 [0) + 711},

the state of the register formed by the entangled qubits can be represented
as

( agfoo \
apfom
aof1%0
_ | @bim
V= o Bovo | (5.12)
a1fhm
a1 B1%0
k a1m
Since our array’s index corresponds directly to the possible values of |a), a
gate operation on this vector can now be represented by a unitary matrix,
M, which we can multiply by V.

To perform the DF'T, we need to create matrices which will operate on
the entire vector 'V simulating the action of the A and B matrices, which
operate on a specific bit. For example, since A,V yields

Bo + B
ﬁUH \/5 y
Bo — B
ﬁlH \/§ )

(5.13)
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we would like to find an A; such that

oo Yo \ ' apBoyo + cofrvo
oo aofomn + cofim
i B17%0 , aoB1v0 — 00foYo
agbin | _ apfiy1 — cobont
A afove | V2| eboretofive | (5:14)

o1 Boma a1bom +oim

L a1 1% a1 — 01B0Yo
arbm ) k a1 b — o1fomi /

The desired matrices can be created through tensor products of the A and
B matrices and the 2 x 2 identity matrix, I. So the matrix performing the
operation A; in the above example is

A=I®ARI= 5/?1 0;/1? 1y g
0101"?1 G

' BV )
/10 1 0 00 0 0\
010 1 00 0 0

10 -1 00 0 O

101 0 =100 0 O

~/2l00 0 0 10 1 0 (5.15)

00 0 0 01 0 1

00 0 0 10 -1 0
kooo 0 01 0 -1

All the A; matrices for a three qubit transform can be constructed in a similar
manner.

Since L varies depending on N, we need a more general equation for our
matrices. The general A; matrix for an arbitrary number of qubits, L, is

A-:I0®Il®'f‘®Ij—1®Aj®"'®IL_1! (516)
]

where the superscripts denote the position of the matrices in the sequence of
tensor products.
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As can be guessed, the A matrices require large amounts of memory, and
serve as the limiting factor in the program. Since A is a ¢ X g square matrix,
the maximum size of g (QMax, set in shor_found.h) can be set according to
the limits of the computer system (1024 on the HP PA RISC 2.0 machine).
The operation of an A; gate is performed on the main register as a square
matrix multiplied by a vector.

The B matrices could be constructed in a similar fashion to the A, but
are not since all the entries in any given B matrix off of the main diagonal
are zero. We can place the main diagonal entries in an array and multiply
these by the main register, element by element.

We mentioned earlier that one advantage of simulating quantum algo-
rithms on a classical computer is that we can watch the state of the main
register as the DI'T, progresses. On a quantum computer when a measure-
ment is made we get a single value out. In our simulation we can display a
histogram of the entire probability of the register. In displayREGISTER.h
we have a couple different versions of the display function, and can use these
to examine different aspects about the DFT, 's operation. (General opera-
tion would use displayREGISTERhist() to produce a simple histogram in
the commandline window after each A matrix is multiplied by the register,
allowing us to watch the DFTyat work, which could not be done with a quan-
tum computer. At the end of the DFT, we see the period. Below is output
from the DFT, with N =21 and y = 17:

0 — 27 ekkkkkkerkekkokdokkkk
28 - Bbb
56 - 83 *
84 ~ 111 sdkdkkskssokkdkokskkk
112 - 139
140 - 167
168 = 195 ssckkkokiokskkdkokdkokk
196 - 223
224 - 2b1
252 ~ 279 kdokkkskkkkokkgkkokd K
280 - 307
308 - 335

336 — 363 mkkkkkkkkkRkRAKF
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364 - 391
392 - 419
400 - AAT ksolkokdokkskokiokiok
448 - 476
476 - 503
504 - 511

for which r = 6.

The other functions in displayREGISTER.h allow us to check different
aspects of our program. Equ. (5.10) predicts that there should be a maximum
at ¢ = 2q/r = 512/3. But c is supposed to be an integer. We can zoom-in
on this value using displayREGISTERrange hist O

169

170 #%*

171 sekskskskokdokRokk
172 *

173

to see that the probabilities are spread around the value. In comparison,
where ¢ is an integer we have only one value.

264
265 :
D56 kkskskdokokkkkok Ak ok ok

2567
258

We will see that the spread probability is a problem later on.

5.4 Extracting and making use of the period

Once the DFT, is completed a measurerent is taken of the main register
resulting in one of the possible values of ¢,
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= g%__“" Tl)q, (5.17)
To determine a value of ¢ in our simulation we calculate a random value
between 0 and 1 and add the total probability of the register sequentially until
we surpass the random value. We next attempt to use a continued fraction to
find r. Continued fractions can be used to find a fractional approximation of
rational or irrational numbers to a desired tolerance. The resulting fraction
is in lowest terms, and is judged as being a good or bad approximation by

an inequality, which for Shor’s algorithm is

c c

1

i N
g r|” 2q
According to a specific algorithm we use the continued fraction to find an
approximation for our measured value c. We then check to see if our approx-
imation is within the desired bound, If it is we call this r (or a factor of 7).
If it is not we continue with the algorithm to generate a fraction that more
closely approximates the given value. (The continued fraction algorithm is
briefly explained in Appendix C.)

(5.18)

Using the continued fraction we can find r or one of its factors. From
there we can try this number in Eq. {4.5}. Using the above example, where
N =21 and y = 17, ¢ = 171 tells us that ¢//r = 1/3. By multiplying small
integer values by 3 for r’s to try in

N =ged (y5 +1, N) x (yF -1, N) (5.19)
we find that r = 6 and our program has successfully factored 21.

We can see, though, that we will not always easily find r and we may
need to start over. If we measure ¢ = 0 then there is no way to extract useful
information. Also, some numbers we measure won’t satisfy the inequality
until the denominator is ¢. This is true if we measure 170 rather than 171 in
the above example. The only approximation within the bound is ¢ = ¢ and
r = ¢, which doesn’t satisfy Eq. (4.5).
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5.5 Discussion

The computer program Shor.cpp in Appendix A works well for N =15 and
N = 21. Most other composite numbers less than 31 do not work as well,
for reasons from number theory (as discussed in Appendix B). The difference
in time taken between N = 15 (¢ = 256) and N = 21 (g = 512) gives a
taste of the exponential slow-down that occurs with the algorithm being run
on a classical computer. We have also been able to watch the effect of the
DFT, on a quantum register, which is something that could never be done
on a quantum computer.




—

Chapter 6

Conclusion

The addage, “Nothing is constant but change”, seems to apply well to the
computer industry. The coming years will provide new challenges and op-
portunities, which may include alternative technologies. It is hard to say
whether quantum computing is one of them. This simulation gerves as an-
other reminder that the algorithms have arrived before the hardware. We
have been able to get a good picture of how a quantum computer differs from
a classical one.

In our simulation of Shor’s algorithm we have seen how a quantum com-
puter works differently than a classical one. The ability of the quantum
computer to act on single qubits to change the probability of all the possi-
ble states of the register has no classical analog, and our code resulted in
exponential slow-down.

There are a couple of things which could be done to improve the pro-
gram. The most inefficient part of the simulation is the A matrix. I chose to
construct the entire matrix since this best matches the gate representation
as discussed in chapter 5. One change that could be made in this C++ code
would be to ehange the A matrix to a smaller matrix using bitwise math, de-
creasing the required memory dramatically. Since the only values the matrix
needs to hold are 0, 1 and -1, this could be done with two bits per matrix
entry. Another obvious change would be to not construct the A madtrices,
but perform the operations based on the bitwise representation of a. I now
think that a careful treatment based on the binary representation of a would
more closely mimic the operation of the A gate than the matrix. It would
also save time and memory, allowing the factoring of larger numbers.
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Appendix A

Program simulating Shor’s
algorithm

The following is the complete text of the simulation program of Shor’s al-
gorithm. The program has been subdivided into several header files, which
are interdependent. The order the files have been listed in is according to
when they are called in the program: Shor.cpp, shormain.h, DFT Ekert. h,
displayREGISTER.h, shor_found.h numbers.h and complex.h. Further ex-
planation of what the functions do can be found in the comments in the
code.

A.1 Shor.cpp

JakddkononkRor ko SHOT . CPp sk ook ok koo F okl oo ok dokok

* Main program for Shor.cpp. The program is really in the header files. *
R——————————————eer e e e PEEE T L UL L S L AL LY

#include "shor_main.h"
main(){
int N;
shor_main Shor_main;
// Input number to factor
cout << endl << endl << "Input a number to factor: ";

cin >> N;

/% Run Shor’s algorithm (the Shor object file). If the algorithm returns TRUE

38
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then display factors. If not, say the algorithm falled. */

if (Shor_main.run_Shor(N)){
cout << endl << "The factors of " << N << " are "
<< Shor_main.mainNums.facl << " and " << Shor_main.mainNums.fac2 |
<< ", " << endl << endl << endl; N

else :
cout << endl << "Shor’s algorithm found: " |
<< Shor_main.mainNums,facl << " and " <L Shor_main.mainNums.fac2

<¢ "." << endl << endl << endl; 1'

A.2 shormain.h |

/******************** ghor_main.h ok 0 ok ook o ke o o ke e s kol o sk ok e ke ek i

% This file contains the necessary program to run Shor’s *
* algorithm on a classical computer (except for the discrete* 1
+ Fourier transform, which is found in DFT_Ekert.h ) * 1

*************************************************************/

#include "DFT_Ekert.h"

class shor_main {
public:
int Q; //Although also in mainNums, very usefunl;
shor_mainNumbers mainNums; //Main numbers for shor’s algorithm .
get_mainNums (int); /* Based on N (number to be factored) determines 1
other main numbers */
superposition mainReg; //This is the main register for shor’s algorithm
createMeasure_register(); //Initializes main register to start algorithm
BOOLEAN run_Shor (int); /* Runs shor’s algorithm as the primary function
% call in the main program. */
int measure_transfrmdRegister();

};

/#kskkskiok run_Shor sk ok Ak sk ok Kok f

BOOLEAN shor_main::run_Shor(int N){ /% This is the object that runs N
Shor’s algorithm */ i
DFT_Q dft;
int position, ct, Ij
BOOLEAN rFound=FALSE;
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// Based on the input, create numbers needed in shor’s algorithm and then
// determine whether the computer can factor the number (if Q > QMax)
srand (time(NULL));

gset_mainNums (N);
if (mainNums.Q > QMax){
cout << "N is too large for this program to factor it." << endl;
return FALSE;

}

position = (int) GCD (N, mainNums.y};
if (position != 1){
mainfums.facl = position;
mainNums.fac2 = N/position;
return TRUE;
}

|
|
‘ // Check whether random number chosen is a factor. If it is exit to main prog.
|
|

§ = mainNums.Q; //Determine size of register needed
//This is actually already done in set_mainNums()

dft.qQ = Q;

dft.mainNums = mainNums;

cout << endl << "Preparing and measuring part of main register. ";

createMeasure_register();

cout << endl;

for (ct=0; ct<f: ct++)
dft.mainReg[ct] = mainReglct];

cout << endl;

cout << "Performing discrete fourier transform on the main register. "

dft.perform_dft(};
for (ct=0; ct<Q; ct++)

mainReg[ct] .probVal = dft.mainReg[ct].probVal;
cout << endl;

cout << "Measuring main register. ";

position = measure_transfrmdRegister();

cout << endl;

cout << "Using continued fraction to approximate period.";
r = contFrac (position, mainNums.Q);
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cout << endl;

cout << "Determining factors.

for {ct = 1; ct
mainNums ., facl
mainlums.fac2

<

5; ct++){
(int) GCD ({int) pow(mainNums.y, (float) (T*ct/2)) +1, N);
(int) GCD ((int) pow(mainNums.y, (float) (r*ct/2)) -1, N);

if ((mainNums.facl !'=1) && (mainNums.fac2 '= 1)){

cout << endl << "Period was W oe¢ pxct << "." << endl;
rFound=TRUE;
ct = 5,

}

}

cout << "Position was " << position << endl
<< "Original random number was # << mainNums.y << endl;

if (rFound == FALSE){
cout << "Program was unable to determine r.";

return FALSE;

}
return TRUE;

}

JHsxxsrokerx set_mainNums sekok s sk olok ok
BOOLEAN shor_main::set_mainNums (int W{

mainNums .N = N;
mainNums.L
mainNums.Q

(int) ( (Log {N*N))/LN2 +1);
{int) pow(2, mainNums.L);

//mainNums.y = (rand() % (N-2)) + 2;
cout << endl << "Please input an integer: ;

cin »> maipNums.y;

return 0;

¥

/#kskxsrik createMeasure register sk K
/%**xCreates main register for the algorithm*/

shor_main::createMeasure_register(){

int a, chosen, occurs=0;

float probability;

//Creates a "super osition" of values in part of our re ister
perp P B

mainReg[0] .yamodN = 1;
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for (a = 1; a < Q; a++)
mainReg[al .yamodN = (mainRegla ~ 1].yamodN * mainNums.y) % mainNums.N;
chosen = 16; //mainRegi(rand() % (Q -1})+1].yamodN; //Take measurement

//Create probability of function being measured
for (a = 0; a < Q; at+)
if (mainRegla] .yamodN == chosen) occurs++;

probability = 1 / ( sqrt{{float)occurs) );

for (a = 0; a < ; a++){
mainRegla] .probVal.Im = 0;
if (mainReg[al.yamodN == chosen)
mainReg[a] .probVal.Re = probability;
else mainRegla].probVal.Re = O;
}

for (a = 0; a < {; a++)
mainReg[aJ.probValmodSquainReg[a].probVal.Re*mainReg{a].probVal.Re;
return 0;

1

o8 s sk ool s ok sk b ook skl sk ok ok measure_transfrdeegister() oKk s ok ok o ook o ok ok

int shor_main::measure_transfrmdRegister{){
int c;
float val, total;

total = 0O;

for (¢c=0; c < Q; c++){
mainfteg[c] .probValmodSq = modSqr_cmplx (mainReg[c].probVal);
total += mainReglc].probValmodSq;

}

cout << "Total probability = " << total << ". ";
val = ({float) (rand() +rand() +rand() +rand() +rand() +rand() +rand()
+rand() +rand() +rand()) / (float) (10+RAND_MAX)) * total;

total = 0;
for (¢ = 0; wval > total; c++)
total += mainReg[c].probValmodSq;

(i
return c;
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A.3 DFT_Ekert.h

[ ek ks ok dOR ok ko DFT_Ekert . h  skokskkssokskokkdokkkik ookt
% header file containing routines for a working classical *
% simulation of the quantum discrete fourier transform *
% in paper by Ekert and Jozsa (Rev of Mod Phys, July 96). *
***********************************************************/

#include "displayREGISTER.h"

typedef float MATRIX [QMax] [QMax];

/Aot doksk R ok ok ok ok DFT_Q class etk ok ko ek ok ok
class DFT_Q {
public:

superposition mainReg, newReg;

perform_dft();

shor_mainNumbers mainNums;

int Q, L;

MATRIX A; //The A matrix from Ekert and Jozsa's paper
A_create (int); //Creates the proper A matrix for the current
situation

displayMatrix (MATRIX);

void B_mult_REG (int, int);

A _mult_REGQ);

void bitReverse();

void bitReverseNew(); //does same thing as bitReverse, but
//only changes newReg and not mainfieg

IE

Jrwxkkkkioen perform dit sk ok okeok
DFT_Q: :perform_dft (3{

int ctl, ct2;
§ = mainNums.Q;
L = mainNums.L;

for {(ctl = L - 1; ctl >= 0; ct1—-){
for (ct2 = L -1; ct2 > ctl; ct2--21{
B_mult_REG (ctl, ct2);
cout << endl << "B"<< ¢t2 << ctl;
}
A_create(ctl);
A_mult_REG(Q);
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cout << endl << "A" << ctl;

// The following two lines display the state of the
// register after each pass through the DFT
bitReverseNew();
displayREGISTER(newReg, 0);

}

bitReverse();
for (ctl = 0; ctl < @; ctl+d)
mainReg[ct1] .probValmodSg = modSqr_cmplx(mainReglct1] . probVal);
//displayREGISTER (newReg, m;
return 0;

}

[ iokskopookkkkkooR kR kdksok kR A create sk ok o ke s R ok ok o st sk o e ok ok
* The purpose of thie function is to create the A matrix capable *
* of opperating on a single bit using tensor products, Since the *
% classical simulation doesn’t work the way the quantum computer *
* would, *
m——————————— P TP P L EET SRS LS L bbbt
* Position: The position is given so that if there are 4 bits in*
% the calculation (L == 4) then the ordering of our matrices is *
* 2°3, 272, 271, 270. The sequence of for loops *
******************************************************************/

DFT_Q::A_create (int position){
int pos.ct, // Position counter (which tensor are we multiplying),
// for number manip

i, j, ct_temp, tempval; // for number menipulation

// Fill A-Matrix with ones over square root of two
// (we'll get rid of them as we multiply the other matrices)

for (i=0; i < Q; i++)
for (3j=0; j < Q; j+H)
A[il[j] = InvSQRT2;

//Multiply identity matrices before A
for (pos_ct = L -1; pos_ct > position; poa_ct=-){
tempval=1;




—
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for (ct_temp=0; ct_temp < pos_ctj ct.temp++)
tempval = tempval*2;

for (i = 0; i < Q; i++)
for (j = 0; 3 < Q; j+o)i
if (((i/tempval)%2)!=((j/vempval)¥2))
AT4 03] = O3
}
}

//Multiply A matirx (no for loop, but happens when pos_ct=position

for (1 = 0; i < Q; i++)
for (j =05 j < Q; j+0){
tempval=1;
for {ct_temp=0; ct_temp < position; ct_temp++)
tempval = tempval¥2;
if ((((i/tempval)¥2)==1) k& ({(j/tempval)¥2)==1))
AL 03] = AT4D 03] * -1;
}

//Multiply identity matrices after A matrix
for (pos_ct = position-1; pos_ct >= 0; pos_ct—-){
tempval=1;
for (ct_temp=0;.ct_temp < pos_ct; ct_tempt++)
tempval = tempval*Z;

for (i = 0; i < Q; i+H)
for (j = 0; j < @ j+i
1f (((i/tempval)¥%2)!=((j/tempval)¥2))
A[11[5] = 05
}
}

return O;

}
JHswkrkseorn A _mult REG seokskok Kook /
DFT_Q: :A_mult_REG(){

int ctl, ct2;
cmplx sum;

for (ctl = 0; ctl < @Q; ctl++){
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sum.Re=0; sum.Im=0;
for (ct2 = 0; 32 < Q; ct2++){
sum = add_cmplx(sum, scalMult_cmplx(Alct1][ct2], mainReg[ct2] .probVal));
} ;
newReg[ctl] .probVal = sum; 3
1

for (e¢tl = 0; ctl < Q; ctlt+)
mainReg[ct1].probVal=newReg[ctl].probVal;

return 0;

}

J#srkdropiokoks B_mult_REG  sktokskksskk/
void DFT_Q::B_mult_REG(int indl, int ind2){

int difference, tempvall, tempval2, ct;
float diff2=1;
cmplx exponential;

difference = indl - ind2;
if (difference < 0)
difference = -difference;

for (ct=0; ct<difference; ct++)
Aiff2%=2;

cos (3.14159285358/diff2);
gin (3.14159285358/diff2);

exponential .Re
exponential.Im

n

tempvall=1;
for (ct=0; ct < ind2; ct++)
tempval2 = tempval2+2;

tempvall=1;
for (ct=0; ct < indl; ct++)
tempvall = tempvall2;

for (ct=0; ct < Q; ct++)

if ((ct/tempvall)%2==1 && {ct/tempval2)¥%2==1)
mainReg[ct] .probVal=mult_cmplx(mainReg[ct].probVal, exponential};

/**************bitﬂeverse()*****************/




—
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void DFT_Q::bitReverse (){
int ctl, ct2, ct3, Logld_ct, tempval, newLocat, difference, diffPow2;

for (ctl = 0; ctl < Q; cti++){ |
newLocat = 0;
Log2_ct = (int) (Log((float)ctl) /LN2+1};
tempval = 1;
for (ct2=0; ct2 < Log2_ct; ct2++){
tempval = tempval*2;
if (ct2 == 0)
tempval /= 2;
if (((cti/tempval) % 2} == 1){
difference = L -1 -ct2;
if (difference < 0)
difference = -difference;
diffPow2 = 1;
for (ct3 =0; ct3 < difference; ct3++)
diffPow2 *= 2;
newLocat+= diffPow2;
}
¥

newReg [newLocat].probVal = mainReg [ct1] .probVal;

}

for (ctl = 0; ctl < Q; ctl++)
mainReg [ctl1].probVal = newReg [ct1] .probVal;
}

/**************bitReverseNew()*****************/

void DFT_Q: :bitReverseNew (){
int c¢tl, ct2, ct3, Log2_ct, tempval, newLocat, difference, diffPow2;

g for (etl = 03 ctl < Q; cti++)]
: newLocat = 0;
‘ Log2_ct (int) (Log{(float)ct1) /LN2+1);
{ tempval = 1;
' for {(ct2=0; ct2 < Log2_ct; ct2++){
tempval = tempvalkZ;
if (ct2 == 0)
tempval /= 2;
if (({ctl/tempval) % 2) == 1){

n
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difference = L -1 -ct2;
if (difference < 0)
difference = -difference;
diffPow2 = 1;
for (ct3 =0; ct3 < difference; ct3++)
diffPou2 *= 2;
newLocat+= diffPow2;
} ;
} |
newReg [newLocat].probVal = mainReg [et1] .probVal; '
}
}

A.4 displayREGISTER.h

£ ek sk sk kel skok ok ok ok displayREGISTER.h i f ok ok o 3k ke bk o o st ok ook e ke sk
* Functions for displaying histograms of the probability *
* of measuring different states of main register *
**********************************************************[

#include "shor_found.h"

void displayREGISTER (superposition, int); // mainReg and Q

void displayREGISTERhist (superposition, int); // mainReg and Q

: void displayREGISTERLog2 hist (superposition, int); // mainReg and (

! void displayREGISTERrange hist (superpositiom, int, int, int); // mainReg, Q,

' //center (where to center histogram} and radius
void displayREGISTERnum (superpositionm, int); // mainReg and Q

void displayTotalProb (superposition, int); // mainReg and Q

Jewiocionkkkkikaokokkioook  displayReg  Set sk ksl ok ok o ek o o s ok o s sk ok ok ok o
* The idea is that the format of display may be chosen by *
* puting the function creating the desired format into this other *
% function. So in DFT_Fkert only this function needs to be called *
********#**********************************************************/

void displayREGISTER(superposition mainReg, int @4

int i, center, radius;
superposition newReg;

for (i=0; i<Q; i++)
mainReg[il .probValmodSq = modSqr_cmplx {mainReg[i] .probVal);
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cout << endl << endl ;

// The following can be un-commented if one desires to use the
// displayREGISTERrange_hist function.

/* cout << "Please input center and radius of histogram: " << endl;
cout << "Center: "; cin >> center;
cout << "Radius: "; cin >> radius;

cout << "Magnification around " << center << endl;

displayREGISTERrange_hist (mainReg, {, center, radius);
*/

displayREGISTERhist (mainReg, Q);

displayTotalProb (mainReg, @)

[##%¥%x  displayREGISTERhist () wdokkonk
* displays in a histogram format *
A ——— T T T L T L L LY

void displayREGISTERhist (superposition mainReg, int w{
int i, j, k, range, total_i;
float total_f;

range = Q / 18; /* range will be the number of numbers between
* which the histogram displays, ie. if range = 4,

* then it will show entries for 0-3, 4-T7 ... */
if (range < 1)
range = 1;

for (i=0; i<Q; i++)
mainReg[i] .probValmedSq = modSqr.cmplx {mainReg[i].probVal);
for (i=0; i<Q; i+=range){
if (i+range > Q)
range = Q] -~ i;

total f = 0;
for (k=0; k<range; k++)
total_f+=mainReg[i+k].probValmodSy;
total i=(int) (100 # total_f + 0.5);
//The 0.5 is for rounding to nearest rather than integer part

cout << setw (3) << i << " - " << getw(3) << itrange-l << setw (3);




—
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for (j = 0; j < total_i; j++)
cout << "'
cout << endl;
}
}

Jsnkkkx  displayREGISTERLog2_ hist () sekkkkiokk
® displays in a histogram format *
mm———— e T T T L UL L LS S L L L
void displayREGISTERLog2 hist(superposition mainReg, int oA
int i, j, k, rangs, total_i;
float total.f;

range = Q / 32; //range will be the number of numbers between which
// the histogram displays, ie. if range = 4, then it will show
//entries for 0~3, 4-7 ... i

if (range == 0)
range = 1;

for (i=0; i<Q; i++)
mainReg[i] . probValmodSq = modSqr_cmplx (mainReg[i] .probVal);
for (i=0; i<Q; it=range}{
if (itrange > Q)
range = 0 - 1i;

total_f = 0;
for (k=0; k<range; k++)
total_f+=mainReg[i+k].probValmodSq;
total_i={int) (100 * total_f + 0.5);
//The 0.5 is for rounding to nearest rather than integer part
total_i = (int) (log((float)total_i}/LN2);

cout << setw (3) << i << " - " << setw(3) << itrange-1 << setw (3);

for (j = 0; j < total_i; j++)
count << "x";
cout << endl;

}

FEZTITPETL: displayREGISTEHIange_hist() e sk ok e ok ok ok e s ok ok
* displays in a histogram format, centered around *
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% "center" showing "radius" values on either side *
***************************************************l

void displayREGISTERrange_hist(superposition mainReg, int Q,
int center, int radius){
int i, j, range_ hi, range_low, total_ i;
float total_I;

if (radius < 0)
radius = -radius;

range_low = center - radius; //range_low is lowest index shown
if (range_low < 0) range_ low = 0;

range_hi = center + radius; //range_hi is highest index shown
if (range_hi >= Q) range_hi = Q -1;

for (i=range_low; 1 <= range_hi; i++){
total_f = modSqr_cmplx (mainReg[i] .probVal);
total_i=(int) (100 * total f + 0.5);
//The 0.5 is for rounding to nearest rather than integer part
cout << setw (3) << i << " "

for (j = 0; j < total i; j++)
cout << "¥'; ’
cout << endl;
}
}

3ok o ko o displayREGISTERnum() ek et o sokok o/
void displayREGISTERnum(superposition mainReg, int Q){
int i;

for (i=0; 1<Q; i++){
if (mainReg[i).probValmod3q < 10.001){
cout << setw (4) << i <™ M << setprecision(lo)
<< mainReg[il .probValmodSq << " t << getw (3)
<< marnReg(i].yamodlN << endl;
}
}
}

/**********displayTotalProb()*********************
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* Adds up the probability in the main register *
* to check that all operations are unitary *
r——————————E T P T PP L PLET LI LI L L)

void displayTotalProb(superposition mainReg, int Q){
int c;
float total;

total = 0;

for (c=0; ¢ < Q; c++){
mainReg[c] .probValmodSq = modSqr_cmplx (mainReg[c] .probVal);
total += mainReglc].probValmodSq;

}

cout << "Total probability = " << total << M. ";

A.5 shor_foundation.h

J ke sk sk ook Rk g hor T ound . Ik skdskdokotoniokskok ok ko ook
% This is the foundation (hence _found) header file, *
% yhere most of the useful header files and defined *
* constants have been placed, as well as important  *
* type definitions. *
I ——————————e PP PR P TP L EE AL L L AL LY

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <time.h>

#include "numbers.h"
#include "complex.h"

#define TRUE 1
#define FALSE 0O

#define QMax 1024 // This is the maximum value of g we will allow.
// It is set according to memory limitations on
// the A matrix in DFT_Ekert.h.

// Numeric constants: These numbers will show up in our program
// so often it will be faster to define them as constants.
#define SQRT2 1.41421356237

52
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#define InvSQRT2 0.707108781187
#define LN2 0.6931471805599

typedef struct reg{ // This is the probabilities register--

cmplx probVal; // probVal is the probability functioen values (complex

int yamodN; // of course) while yamodN is the value of y"a mod N

float probValmedSq; // and probValmed is modulus of the probability value.
}; // 8Since we are really interested in an array of this
// type, representing the superpositions of the states, o
// this is how it will be used, as type REG.

typedef reg superposition [QMax];
typedef int BOOLEAN;

struct shor_mainNumbers{ -
int N, Q, L, y, facl, fac2;
/% Based on the model of Shor’s algorithm set down by Ekert and Jozsa
in their paper (in Rev. of Mod. Physics), these are the main numbers
for a run of shor’s algorithm, so they will be set at the beginning
in the shor_mainStructure object and only passed as needed: N is
number to factor, y is number coprime to N. */

};

A.6 numbers.h

[ sk sk ok ko ook sk ok sk ok KUM@ § | Dudskdeoieskak ook pokodoboloko ke %
* This header file contains the number theoretic *
% functions for use in Shor’s algorithm. This *
* includes GCD--Euclid’s method to find greatest *
* common denominator contfrac-—an algerithm to  *
¥ approximate a fraction by a simpler fraction. =
————————rr T AP L TR L L S L L L

//Function Declarations

unsigned long GCD (unsigned long, unsigned long); o
int contFrac {int, int}; .

7 e st ok s o s ok ek ok o ok e o GCD e s e s ok ok ok o ok ok e ke sk ok ook ok ke ; )
% Uses Euclid’s method to determine greatest * :

* common denominator of two numbers. *
************************x*************************/
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unsigned long GCD (unsigned long numi, unsigned long num2){
unsigned long big, small, temp;
if (numl > num2){

big = numl;
small = num2;

}
else {
big = num2;
small = numl;
}

temp = small;

small = big % small;
big = temp;

}

return big;

}

[Hsksssdorknsksok  contFrac() ewkockikcklooRkkkekok
+ Uses standard algorithm for finding a simpler *

* approximation to a fractionm. *
| PTm—————— e T TSP LLLE LR LAY

while {small!=0) {
|
|
|
|

#define LIMIT 15 /* Limits depth of fraction (irrational
* numbers by definition are infinite) */

#define A_i O //Defining A-i, P_i and Q_i this way allows
#define P_.i 1 //us to use these names for indexes In tThe
#define §_1i 2 //\array rather than numbers.

int contFrac(int num, int denom}{

int i, reg{3][LIMIT];
double run_d, frac, test;

test= 1/(2 » {(double) denom);
frac = (double) num / (double) denom;

1=0;
run_d= frac;
reg[A_i][il= {int) Tun_d;




—
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reg[P_il [il= regla_i][il;
reglQ_il [i]= 1;

i=1;
run_d= 1/(run_d - (double) reglA_il[i-11);
reg[A_i][il= (int) run_d;

reglP_il[il= regl[A_il [ilxreg[A_i] [i-1] +1;
reg[Q_il [il= reglA_ il [il;

//1i=2. LIMIT

for {i=2; i < LIMIT; i++){
run_d= 1/(run_d - (double) reglA._illi-1]);
reglA_il[il= (int) rTun_d;

reg[P_il[il= reg[A_i][i]*reg[P_i}[i-1]+reg[P“i][i—2];
reg[Q_il[i]= reglA_il [il*reg[Q_i] [i-1]+reglQ_il [i-2];

/* See if fraction is within 1/2Q of input fractiom, if so0 it will
* be returned: */
if ((test>=frac-(float)reg[P_il[i]/(float)reglQ_il1[i]) &&
(frac—(float)reg[P_i][i]/(float)reg[Q_i][i])>= -test){
denom = regl[Q_i][il;
i=LIMIT;
}
}
return denom;

1

A.7T complex.h

Jwskkdordookiokksoktok complex . h sekkokkskokkakokkkokokokkok
% Basic routines in complex math, requiring * :
* type (herein defined) cmplx. Specifically * |
* for simulation of gquantum computation. *
—————reamepp e e T T T LT LT L L L L LT

#include <math.h>
#include <iostream.h>
#include <iomanip.h>

#define RE Re
#define re Re
#define IM Im
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#define Im Im

struct cmplx{
float Re, Im; //Complex number, to be used with Re and Im
}

cmplx conj_cmplx (cmplx);

float modSgr_cmplX (cmplx);

cmplx add_cmplx (cmplx, emplx) ;

cmplx sub_cmplx (cmplx, cmplx) ;

cmplx scalMult_cmplx (float, cmplx);

cmplx mult_cmplx (cmplx, emplx) ;

cmplx div_cmplx (cmplx, emplx) ;
disp_cmplx (cmplx); ‘

cmplx conj_cmplx (cmplx numi){ //complex conjugate of a number
cmplx numQut;
numPut.Re=numl .Re;
pumQut . Im=-numl. Im;
return numut;

}

float modSqr_cmplx (cmplx numi){ //modulus squared of a complex number
float numOut;
numOut = numl.Re * numl.Re + numl.Im * numl.Tm;
return numiut;

}

cmplx add_cmplx (cmplx numl, cmplx nun2){ //addition of two complex numbers
cmplx num0ut;
numQut.Re = numl.Re + num2.Re ;
numOut.Im = numl.Im + num2.Im ;
return numfut;

3}

cmplx sub_cmplx (cmplx numl, cmplx num2){ //subtraction of two complex numbers
cmplx num{ut;
numQut.Re = numl.Re - num2.Re ;
numbut.Im = noml.Im - num2.Im ;
return numOut;

}

cmplx scalMult_cmplx (float numl, cmplx num2}{
//multiplication of a scalar by a complex number
cmplx numQut;
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numOut.Re = numl * num?2.Re ;
pumOut . Tm = numi * num2.Im ;
return numiut;

}

cmplx mult_cmplx (cmplx numl, cmplx pue2){ //multiplication of two complex
numbers '

cmplx num(ut;

num0ut.Re = nunl.Re * num2.Re ~ numi.Im * num2.Im ;

pumOut.Im = numl.Re * num2.Im + numl.Im * num2.Re

return numQut;

}

cmplx div_emplx (cmplx numi, cmplx nm2){ //divides numl by num2 (both complex
no.

cmplx numut;

numbut = mult_cmplx{numl, conj_cmplx (num2));

numOut .Re = pumOut.Re / modSqr_cmplx(num2);

pumDut . Im = numOut.Im / modSqr_cmplx (num2);

return pumbut;

}

disp_cmplx (cmplx numIn){ //Display a complex number in form a+bi

if (pumIp.Im == O && numIn.Re == 0}

cont << "O";
else if (numIn.Re == ()

cout << numlIn,Im << ™ i";
else if (numIn,Im == 0)

cout << numlIn.Re;
else if (numIn.Im < 0)

cout << numIn.Re << " - " << -numIn.Im << " i";
else

cont << numIn.Re << " + " << npumIn.Im << " i%;

return 0;

¥




Appendix B

Exploring the number theory
behind Shor’s algorithm

The program trial.cpp was written to get a feel for the number theory
behind Shor’s algorithm (see [Mil76]). It does not follow Shor’s algorithm
strictly, since it does not use the DF'T;to find r, but the results it gives are the
same as if Shor’s algorithm were run on the same values of N and y. Instead
we calculate individually each value of 32 beginning with a =1,2,3,... and
running until 7% = I. The smallest non-zero value of a that gives @ = 1
is the period of % (r = a). This can be done quickly by using the fact
that 4® + 1 = y? - y. Choosing random y values and running them through
this algorithm is actually a fairly good method for factoring numbers up to
60,000. Here we will first give the code for trial.cpp in B.1 and then discuss
the results in B.2.

B.1 trail.cpp

#include<math.h>

#include<iostream.h>
#include<iomanip.h>
#include<fstream.h>
#include#numbers . h#

//unsigned long GCD (unsigned long, unsigned long) -from in numbers.h

unsigned long r_yamodN (unsigned long, unsigned long);
unsigned long yamodN (unsigned long, unsigned long, unsigned long);

58
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main()4{
const unsigned long N=25b;
unsigned leng y, r, a, x, facl, fac2, product, trivCount=0,
onesCount=0, badCount=0, yct=0;
float trivRat, usefulRatic;

ofstream ones {"ones.txt", ios::out);
ofstream bad {"bad.txt", ios::out);
/* In these text files we list y’s that give a product equal to *
* one (ones.txt) or a product other than one or N (bad.txt). */
cout << endl << " N" <¢ y|| ce " " <¢ " y'- (1‘/2) "
<< " facl" << " fac2" << " prod"<< endl
€ M e e e e e " << endl;

for (y=2; y<N; y++){
if (GCD(N,y)==1){

yoct+t;

r= r_yamodN(y, N);
a=(r-r%2)/2;
x=yamodN(y, a, N);

if (r¥2==1) .
x= ({unsigned long) (x*sqrt((float)y)))%N;

faci=GCD(x+1,N);
fac2=GCD(x-1,N);
product = facl * fac2;

cout << setw(B) << N << setw(B) << y << setw(6) << r << setw(8)
<< x << setw(B) << facl << setw(B) << facZ << setw (8)
<< product << endl;

if ((product==N)&&((facl==N)||(fac2==N))){
trivCount++;

}
switch (product){
case N:

break;

case 1:




APPENDIX B. NUMERICALLY EXPLORING SHOR’S ALGORITHMG60

ones << "y=" << setw(6) << y <<" yields r= " <<'r

<< " and product= " << product << "." << endl;
onesCount++;
break;
default:
bad << "y=" << getw(6) << y <<" yields r= " << 1
<< " and product= "<< product << "." << endl;
badCount++;
break;
}
}
else
cout << setw(f) << N << getw(B) << y << endl;
}

trivRat=((float)trivCount)/((float)yct);
usefulRatio=(float) (N-2-trivCount—onesCount)/(float) (N-2);

ones << endl << "For N= " << N << " there were " << yct
<< " possible y values, of which " << onesCount
<< " yvalues of y that " << "gave an answer of 1, "
<< trivCount << " that gave trivial factors "
<< "and " << badCount << " that gave a wrong product." << endl;

cout << endl << "For N= " << N << " there were " << yct
<< " yaluea relatively prime to N." << endl << "Of these "
<< onegCount << " values gave an answer of 1, "
<< trivCount << " gave" << endl << "trivial factors and "
<< badCount << " gave a wrong (but useful) product." << endl
<< "The probability of a y finding a useful factor is "
<< usefulRatio << "."<< endl << endl;

ones.close;
bad.close;

return 0;

1

JF Rk sk Rk ok R Aok R ok Rk ¢ yamodN s e ok oot kel ol o sk ekt sk ke ok ok ok ok
/* An iterative approach to finding r from y"a mod N, given y and N */

unsigned long r_yamodN (unsigned long y, unsigned long N) {
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unsigned long out, ct; /% ct keeps track of iterationms
out holds each successive y“ct(mod N} */
out=y % N;
ct=1;
while{out!=1){
out= {out * y)¥% N;
ct++;

}

return ct;

}

[ Aok dokk b kR kok JAMOAN s kkkodok sk ok ok R KRk AR AR kol o ke /
/* An iterative approach to finding y~“a mod N, given y, a and N */

unsigned long yemodN(unsigned long y, unsigned long a, unsigned long N)
{

unsigned long ct, out=1;

for (ct=1; ct <= a; ct++)
out= (out * y) % N;
return out;

}

B.2 Numeric examples of how Shor’s algo-
rithm fails

trial.cpp can help us gain a feel for the numbers that Shor’s algorithm
produces. Below is printed an output sample for N = 77. Not all the
possible values of y are shown, To give a feel for the output r = 2,..,9
is shown, followed by a couple other groups to give sample output. ‘The
program prints blank lines following 4’s that are not relatively prime to N.
For readability in this list spaces have been placed where y values have been
skipped.

N ¥ r y"(r/2) tacl fac2 prod

7 2 30 43 i1 7 77
77 3 30 34 7 11 7T
T 4 15 43 11 7 17
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77 b 30 34 7 11 77
77 6 10 76 77 1 77
7T 7

7 8 10 43 11 7 (i
7 9 15 34 7 11 77
77 23 3 33 1 1 1
7 24 30 76 7 1 77
77 25 15 34 7 11 77
77 36 B 76 77 1 77
77 37 i5 20 7 1 7
77 38 30 34 7 11 7
7 53 16 29 i 7 7
77 76 2 76 7 1 77

For N= 77 there were B9 values relatively prime to N.

0f these, 5 values gave an answer of 1, 17 gave

trivial factors and 2 gave a wrong (but useful) product.
The probability of a y finding a useful factor is 0.706667.

The “wrong product” results from a y-value that does not satisfy
N = ged (y“+ 1,N) x ged (y“ - 1,N) .

We have chosen to define the wrong product as the cases only where the
product is not equal to 1 or N. By nature the wrong product will not be a
problem since it must be the product of two numbers that divide N. If at
least one of those two numbers is not equal to one then it is a factor of N.

For additional examples, several numbers were chosen and appear in
table (B.1). The focus here is more on finding the probability that a single
pass through Shor’s algorithm will produce a useful answer. The numbers
were chosen to be diverse, including a perfect square and a higher power, two
numbers that are close (one factor in common and the other having close to
the same value), a prime and small and large composites. The table shows
for the given numbers the frequency at which problems (product equals one
or factors are trivial) are seen.

The largest of these numbers, N = 229 x 283 = 64807, was chosen
as a “larger number”, since although still much smaller than the numbers
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Table B.1: Results of trial.cpp on selected numbers. The final column,
“Prob. Success”, gives the probability that given a random y, 1 <y < N
the algorithm will produce at least one useful factor.

| N Factors | Ones ‘[rivial Result Wrong | Prob. Success
21 3 xT 0 4 0 0.789474

25 b xb 1 17 1 0.217391

77 7x 11 5 17 2 0.706667

223 prime 96 125 0 0
1521 3% x 13° 28 122 7 0.789474
16807 7| 5022 7315 2064 0.265873
52003 | 7 x 17 x 19 x 23 149 4 0 0.789474
63109 ' 223 x 283 [ 15139 15776 260 0.510118
64807 229 x 283 | 7779 8102 130 0.754942

used in RSA cryptography, it is near the maximal value that will not cause
trial.cpp to overflow the C++ data type unsigned long on our system
(in this case a 32-bit integer). In general, y® could be close to NN, which,
when multiplied by N to calculate 3T could overflow the register if we do
not guarantee that N2  2sizect(usignediong),

The columns of table B.1 were chosen to give a fair image of what results
can be expected. The final column contains the probability that any random
y, 1 <y < N will find a factor (including y’s that are not co-prime to N).
This shows that for our limited selection the probability of finding a factor of
a number that is not a pure power is always better than 1/2. This problem
is addressed further in [EJ96].

 Table B.1 shows that this method works best for composite numbers,
and absolutely does not work for powers of a single prime (the only y’s that
are counted as a useful factor for N = 25 and N = 7° are those that are not
coprime to N or produce a “wrong factor”, which is always a lower power of
5 or 7 respectively}). Similarly, for N = 32132 the squares were never split,
the program always returning 9 and 169 as factors. As can be seen by 63109
and 64807 even numbers that are close to one another (both in value and
factors) do not necessarily fare equally as well in this method. For all of the
numbers tried, the probability of choosing a y randomly that will not find at
least one useful factor is greater than twenty percent.




Appendix C

Two other topics from number
theory

As stated in chapter 1, Shor’s algorithm depends on several results from
number theory. In addition to the core of number theory that allows us
to create the periodic function y* two well known algorithms from number
theory are needed, and will be discussed briefly here, the Euclidean algorithm,
which finds the greatest common denominator of two numbers and continued
fractions for finding fractional approximations. Proofs and more thorough
discussion of these methods can be found in any basic text on number theory
(see for example [HW68]).

C.1 The Euclidean algorithm for finding the
ged

The Euclidean algorithm is an efficient, well-known classical algorithm that is
often used in number theory and ring theory. Since the Euclidean algorithm
will be a major element of Shor’s algorithm we will examine it here. The
function GCD() in numbers.h in our program is based on this algorithm,
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Given two numbers, po and g, where py > qo, if we let '

¢, = po mod qo, P1 = qo, | 5
gy = p1 mod q1, P2 = q1, L
gs = p2 mod ¢z, P3 = G2, ‘

0 = p, mod gy, (C.1)

where g1, g2, - -, ¢n > O;then ged(po, go) = ¢n-
Example: Find ged(3315, 247):

104 = 3315 mod 247,
39 = 247 mod 104,
96 = 104 mod 39,

13 = 39 mod 26,

0 = 26 mod 13.

The algorithm says that ged(3315,247) = 13, which is true, since 3315 =
3xhHx13x 17 and 247 = 13 x 19.

C.2 Finding fractional approximations using
a continued fraction

A continued fraction is an efficient algorithm that finds a fraction that either
approximates or is equal to a decimal or another fraction, within a specified
bound. The resultarnt fraction will be in lowest terms. This brief introduction
is intended as a starting point. As with the greatest common denominator,
a basic text on number theory can provide a proof and more details.

The continned fraction:

¢ 1
?_‘G'O'Jl" i
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can easily be reduced to ¢/r. Given a decimal (or fraction) d, ag is the
greatest integer in the decimal, d (hereafter written |d]). We will denote the .
fractional remainder by fo. Fach successive ay is calculated by taking the |
greatest integer of one divided by the remainder of the previous calculation,
s0 ax = 1/(fr—1). We then want to determine numbers p and g so that at
each step, k, the value of the continued fraction can be found by

C—fz& (C.2)
T gk

The numbers p; and g, are calculated as follows:

m=a and g =1,

P11 =ay 6o, h = a1,

Dy = Gk * Pr—1 T Pk—2, Gk = Gk * Q-1 + Qr—2. (C.3)

The continued fraction can be used to find good fractional approxima-
tions of any decimal. There is a traditional bound that usually accompanies
a discussion of the continued fraction, but since this is really just the toler-
ance of the approximation it is somewhat arbitrary. Shor’s algorithm uses
a bound based on ¢, so in my function (contfrac() found in numbers.h) I :
allow the desired bound to be input. !

The example below shows the information output by version of contfrac()
that was modified to display the continued fraction as it progressed. The
same bhasic code used in my simulation of Shor’s algorithm is used to deter-
mine a fractional approximation of «.

Select input style {anything else to quit):
1. Fraction
2. Decimal

Please input a decimal: 3.14159265369
Set limit (ie. for 1/(2*N"2) input 2#N-2): 100000000
Constructing continued fraction:

a_ 0= 3 p= 3 q= 1 p/gq= 3
a. i= 7 p= 22 q= 7 p/q= 3.1428570747375b
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a_ 2= 15 p= 333 q= 106 p/q= 3.14160953292847
a_3= 1 = 365 gq= 113 p/q= 3.14159297943115
a_ 4= 292 p= 103993 q= 33102 p/q= 3.14159274101257

As this example shows, this relatively simple algorithm can efficiently find
approximations to as high a precission as desired.
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