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Abstract

Calculating the probability current for nonrelativistic particles with spin,
using the same procedure as is used for particles without spin, yields an am-
biguous result. We resolve this ambiguity without appealing to relativistic
quantum mechanics. A unique expression for the probability current of non-
relativistic particles with spin is derived. This expression includes an extra
term that arises due to the spin of the particle. We verify that this extra
spin current term is not a relativistic effect, and analyze the properties of
the spin current for the case of an electron in a homogeneous magnetic field.



Chapter 1

Introduction

Quantum mechanics provides a description of nature almost as surprising and
wonderful as nature itself. A critical property, absent in classical mechanics
and exposed only through quantum theory, is the quantum spin of an indi-
vidual particle.! Many natural phenomena can only be understood and de-
scribed in terms of this new property. The characteristic chemical properties
of the elements, and their ordering in the periodic table are governed by the
spin of the electrons surrounding the nucleus. Spin has explained many ob-
served phenomena including atomic fine structure, magnetism in solids, and
superconductivity. Spin physics, when coupled with particle statistics, has
predicted surprising new effects such as the recently observed Bose-Einstein
condensates.? Computer engineers are seeking to use the spin states of in-
dividual particles for information storage, heralding the advent of a new
generation of supercomputing.?

The spin property is arguably the most significant contribution made by
quantum theory to our understanding of the physical world. The accurate
and consistent description of nature provided by spin, as well as the myriad
applications of spin in modern technology, have merited extensive investiga-
tions of its properties and operations. Experiments have exposed how the
spin property affects the behavior of particles and their interactions, and

1For a review on theories of spin in classical mechanics see Kinematical Theory of
Spinning Particles by Martin Rivas [Rivas 01].

2 Physics Today reports the first observation of Bose-Einstein condensates in an article
entitled “Gaseous Bose-Einstein condensate finally observed” [Collins 95].

3See Gershenfeld’s popular article “Quantum computing with molecules,” in Scientific
American |Gershenfeld 98].



corresponding theory has been promulgated.

The interpretation of the modulus square of the quantum mechanical
wave function as the probability density distribution is one of the funda-
mental tenets of quantum theory. Surprising, then, is the dearth of written
material that examines the contribution made by spin to the probability
density current. Katsunori Mita states this observation in a recent article to
American Journal of Physics in this way:

The spin current is a concept not often treated in textbooks of
quantum mechanics, appearing in a very small number of texts. (...)
The lack of coverage is also reflected in this journal. We again find
only a couple of papers on the spin current.

[Mita, 00]

G. Parker submitted a paper in 1984 to American Journal of Physics in
which he uses spin current to derive the hyperfine interaction in hydrogen
[Parker 84]. A derivation of the spin current term also appears as an exer-
cise problem in Schaum’s Outlines: Quantum Mechanics [Peleg 98] but the
implications of this term are never discussed nor explored.

A possible reason for this lack of treatment of spin and its effects on prob-
ability current, is the peculiar historical development of spin theory that has
mislead many into regarding the spin property as a purely relativistic effect.
This misconception would belie the idea of investigating the contribution of
spin to the probability current of nonrelativistic particles. Furthermore, un-
expected difficulties arise when calculating the spin current for nonrelativistic
particles with spin.

This thesis seeks to investigate and discuss the effects of spin on the prob-
ability current, particularly in relation to the quantum mechanics of nonrel-
ativistic particles. These purposes will be addressed within a format that
provides a detailed presentation of all concepts and calculations involved. A
thorough background, derivations of all results and calculations, and expla-
nations of relationships between results will be provided. Key derivations are
included in the body of the text; while others, less significant to the crux of
the argument, are presented in the Appendix for readers to examine at their
discretion.



Chapter 2

Statement of the Problem

Introductory quantum mechanics texts seldom treat the quantum mechanical
probability current for nonrelativistic particles with spin. The procedure for
calculating probability current is most often presented in relation to particles
described by the Schrédinger equation, that is particles without spin. In
later chapters, after having introduced readers to the Pauli equation and its
description of particles with spin, the authors rarely return to the topic of
probability current.! This omission may cause readers to incorrectly infer
that the calculation of the probability current for particles with spin follows
the same line of argument as is used for particles without spin.

A closer inspection of the derivation of the probability current for particles
with spin reveals that adopting the same procedure as is used for particles
without spin gives rise to a nontrivial ambiguity. Indeed, we discover that
applying the standard procedure to the Pauli equation fails to determine the
probability current uniquely. We may add an extra term to the resultant
expression for the probability current with impunity, and still satisfy the
continuity equation. This result is intolerable since the probability current
is physically measurable and must be uniquely defined. We must conclude
that the standard approach used for calculating the probability current of the
Schréodinger equation is incapable of deriving the unique probability current
for particles with spin.

In a recent paper submitted to American Journal of Physics, Marek
Nowakowski addresses this ambiguity. Nowakowski argues that a nonrela-
tivistic reduction of the probability current for relativistic particles with spin

1Gee for example a text by D. Griffiths titled Introduction to Quantum Mechanics
[Griffiths 95].



reveals the correct and unique expression for the probability current of non-
relativistic particles with spin. His calculations show that the spin of the
particle does indeed introduce an extra term to the probability current of
the form =~V x (¢fotp). This extra term is called the spin current: the
contribution to the probability current that arises due to the spin of the
particle.

Nowakowski’s method for deriving the extra spin current term requires
the use of relativistic quantum mechanics. Indeed, he regards this approach
as imperative in order to resolve the ambiguity:

This ambiguity cannot be resolved by means of nonrelativistic
quantum mechanics alone. Or, to put it differently, this ambiguity
only appears from the point of view of nonrelativistic quantum me-
chanics. (...) Hence, there is a priori no way to decide from the point
of view of nonrelativistic quantum mechanics whether a term should
be added to the [probability current] or not.

[Nowakowski 99]

The purpose of the present research is to derive the unique probability
current, including the spin current term, for nonrelativistic particles with spin
without appealing to a relativistic theory. Such a derivation will highlight
the fact that spin current is not a relativistic effect. Having established
the nonrelativistic nature of spin current, the research will investigate the
properties and behavior of spin current. Specifically, we shall investigate the
contributions of the extra spin current term for the case of an electron in a
homogeneous magnetic field.



Chapter 3

Background

3.1 Quantum Mechanical Wave Equations

Quantum mechanics attributes to matter the properties of waves. The pos-
tulate that matter behaves as a wave and can be described by a wave func-
tion, provides a mathematical description or model of many previously un-
explained physical phenomena such as the diffraction pattern of an electron
beam. Although the wave function itself bears no physical significance, in-
formation about all physically observable quantities is contained within the
wave function. The wave functions are solutions to quantum mechanical
wave equations.

The present research is sensitive to the different properties of the various
wave equations. For this reason, a brief description of the wave equations is
presented here.

3.1.1 The Schrodinger equation

The Schrodinger equation, a nonrelativistic second-order differential equa-
tion, is the simplest of the quantum mechanical wave equations:

2

ihoy) = —g—nv% + V. (3.1)

When the Schrodinger equation is solved for a specific potential and
boundary conditions are included, the solutions reveal that the energy is
quantized in discrete values, or energy levels. Zeeman noticed that in the
presence of a magnetic field each of the energy levels for the electrons in
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hydrogen splits into two levels. The property that causes this degeneracy in
the energy levels is termed spin. The Schrodinger equation fails to predict
the splitting of energy levels in hydrogen since spin is absent in this equation.

Spin is an intrinsic property of the all particles that contributes to its total
angular momentum in such a way as to ensure conservation of the angular
momentum |[Wilczek 96]. Spin is a mathematical construct that yields the
correct predictions from the equations when comparing with observations in
nature. Texts on quantum mechanics typically do not provide a physical
interpretation of what spin actually is, or what it looks like. It is simply a
mathematical property ascribed to a particle in order to find agreement with
experimental results.! Spin is nevertheless a powerful predictor of physical
phenomena. The fact that spin cannot be dismissed simply due to lack of
physical interpretation is evidenced by its measurable and tangible influence
on experiments such as the Stern-Gerlach experiment. In this experiment,
a beam of silver atoms passing through an inhomogeneous magnetic field,
splits into two distinct beams corresponding to quantized spin states of spin
up and spin down, contrary to the smooth distribution predicted by classical
theory.

3.1.2 The Pauli equation

Pauli found that he could recover the data of the Zeeman experiment if he
appended an extra spin term of the form %O’.B to the Schrodinger equation:
. B _, eh
thoyp = 2mV 2ma.B . (3.2)
This extra term introduced non-commuting objects, o, or spin operators
that act on a space of two-component wave functions called spinors. The
non-commutative property of the spin operators requires that the spinors be
at least two-dimensional. This two-component nature of the wave functions
allows for two solutions of differing energies. Thus, Pauli’s amendment to the
Schrodinger equation yields two solutions of different energies corresponding
to the two different spin states of spin up, or spin down. The two energy
solutions agree with the observation by Zeeman that each energy level is split
into two.

!Ohanian proposes a physical interpretation of spin in his paper “What is spin”
[Ohanian 89].



The addition of the extra term in Pauli’s equation provides the desired
mathematical result, yet appears as a forceful addition of the spin property by
a hand-placed constraint. A more appealing derivation of the spin property
followed later with Dirac’s relativistic approach.

3.1.3 The Dirac equation

Dirac incorporated the principles of relativity into quantum mechanics by
deriving a relativistic wave equation that was first-order both in time and
space.? This approach intrinsically requires the non-commuting properties
of the spin operators. Hence, Dirac was able to derive spin from information
contained within the fundamental wave equation rather than hand-placing it
in the equation a la Pauli.® The Dirac equation is a relativistic wave equation
for particles with spin:

[(a.p)c + ﬁmCQ] ¥ = EU. (3.3)

In agreement with the correspondence principle, a nonrelativistic reduc-
tion of the Dirac equation leads to the Pauli equation.?

Table 3.1 classifies these wave functions according to their properties.
Mentioned in the table, but not pertinent to our study, is the Klein-Gordon
equation, a second-order wave equation describing relativistic particles with-
out spin.

3.2 Probability Current

Probability theory, although inherently reluctant to reveal exactitudes of out-
comes, provides a powerful language for modeling nature. The amplitude of
the modulus square of the wave function is interpreted as a probability den-
sity distribution. Regions of largest amplitude represent locations where the
particle is most likely to be found. The sum of the probabilities over all space
should be unity, corresponding to the fact the probability of finding the par-
ticle somewhere in all space must be one. The time dependence of the wave
equation governs the propagation of the wave. Regions of largest probability

2See Appendix B.2 Derivation of the Dirac equation.
3See Appendix B.2.1 Derivation of spin from the Dirac equation.
4See Appendix D.1 Nonrelativistic limits of the Dirac equation.
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Table 3.1: Properties of the Schrédinger, Pauli, and Dirac wave equations.

Relativistic | Nonrelativistic

L Pauli equation
~Contains spin Dirac equation (Spin is hand-placed
CoEmEn T in the equation.)

Nospm | Klein-Gordon equation Schridinger equation

density will move through space as determined by the wave equation. The
movement or flow of probability density is termed probability current.

The standard procedure for deriving an expression for the probability
current is most easily demonstrated using the Schrodinger equation. We
remember that the wave function, v, of a particle contains all information
about physical observables, (including the probability current) and that the
square of the wave function is interpreted as the probability density,

pPEYY, (3.4)

where 1" represents the complex conjugate of .
Calculating the probability current (represented by the letter J) requires
that we manipulate the Schrodinger equation,

2
ihoy) = —h—v%p +V, (3.5)
2m

into a form in which we can compare it with the continuity equation,



The continuity equation is simply a statement of the conservation of prob-
ability density. A local change in probability density arises only due to an
inward or outward flow of probability current. Probability for finding the
particle cannot be created nor destroyed. Once the Schrédinger equation is
in a form comparable to the continuity equation, we can conveniently read
off the probability current, J.

3.2.1 Probability current for the Schrodinger equation
We begin with the definition of probability density,

p =Y, (3.7)
and differentiate with respect to time,
Owp = Y O + O™ (3-8)
Now we write the Schrodinger equation,
ihOy) = ——hiv%/; + V. (3.9)
2m

Our program here is to manipulate the Schrédinger equation into a form
in which we can compare it with the continuity equation. We proceed by
multiplying both sides of the equation by 1*:

2
it Opp = —%zp*v% + Vap*op. (3.10)

Now we take the complex conjugate of equation (3.10),

2
— Oy = —%wv%* + Vaprp*. (3.11)

Subtracting equation (3.11) from equation (3.10),

N * * hz * *
ih(p* O + pOpp) = ——2—771(%/1 Vi — V3T, (3.12)
and dividing through by 1A we find

YO + YO = o (BT — YY) (3.13)



We have fortuitously manipulated the equation so that the left-hand side
is the exact time-derivative of the probability density. We can substitute
this definition into the left-hand side. Next, we must work with right-hand
side so that we may compare with the continuity equation to read off the
expression for J.

ih
0up = 5 (W'~ YVPy) (3.14)
We can add and subtract convenient terms to the right-hand side to obtain
/I:h * *
Op = Vo, (VY — VYY), (3.15)
m
and then bring both terms to the left-hand side
ih . .
Op+V 2—75(1/)V¢ —Y*Vy)| =0. (3.16)

We have arrived at a form that we can compare with the continuity
equation,

Op+V.J=0. (3.17)
Apparently, the expression for J must be

JSChrﬁdinger - %(Q/)V'lﬁ* - ’(/J*V’Lb) (318)

We shall now attempt to employ this same procedure to calculate the
probability current for nonrelativistic particles with spin. We must remem-
- ber that our wave functions are solutions to the Pauli equation. These solu-
tions are not scalar functions, but rather two-component spinors. We begin
by naively adopting the identical approach for calculating the probability
current as we used in the Schrodinger case.

10



3.2.2 Probability current for the Pauli equation

First we write the Pauli equation:

R _, eh .
Just as for the Schrédinger equation, we multiply both sides by 1 to get
I eh
L A v 2 — Bt
P [ 2mV 2ma.B}7/) h' 0, (3.20)
I eh
gty - 2t — Bt
VA — 4l (.B)y = iy Oy, (3.21)

where, because ¥ is a two-component wave function,
| AR
w=(¢2)=(wl vs ). (3.22)

Now we take the complex conjugate of equation (3.21), noting that for
three arbitrary operators A, B, and C,
(ABC)' = C'BfAT, (3.23)

and that since the spin operators are Hermitian,

ol = 0. (3.24)

R’ eh .
—%(V%T)@b - %¢T(U.B)¢ = —ih(Byp)Y (3.25)
Subtracting equation (3.25) from equation (3.21) leaves

s - wiwmw| = nfvaw+ oan].  e0)

Now we divide through by A,

_2% (V29T )p — 1 (V29)] = vl + (BT, (3.27)

but remember that

11



Oip = W&:w + (aﬂ/)]\)d’, (3.28)

so we have

(Pt~ (7] = ap. (3.29)

Again, we have conveniently manipulated the right-hand side to be the
exact time derivative of the probability density. Minor rearrangement of
terms will allow us to compare with the continuity equation.

ih
09+ V.5t | (V1) = (V)] = 0 (3.30)
Comparing this with the continuity equation,

suggests the probability current to be

Jpami = % (V) — T (Ve)]. (3.32)

It would appear that we have arrived at a valid and conclusive expres-
sion for the probability current of the Pauli equation. However, a careful
inspection of the result will uncover the ambiguity. Because the divergence
of a curl is zero, the continuity equation in line (3.31) is still satisfied if we
append any term to the probability current of the form V x v, where v is
any vector or multi-component object. The Pauli equation acts on a space
that includes such objects, namely o, and so would, in principle, allow for
the construction of an extra curl term of the form V x (yfo).

Trai = 5 (VN = 9(VH)] + OV xWow)  (359)

The constraints of the continuity equation are insufficient to uniquely de-
termine the expression for the probability current. This ambiguity is a moot
point in the derivation of the Schrédinger current since the Schrédinger equa-
tion involves only scalar functions with which the creation of an extra curl
term is impossible. The standard approach for calculating the probability

12



current is clearly inadequate in calculating the unique probability current for
nonrelativistic particles with spin.

Nowakowski argues that the resolution of the ambiguity must be found
using relativistic quantum mechanics. He proposes that a nonrelativistic
reduction of the Dirac probability current (the probability current for rela-
twvistic particles with spin) will disclose the correct form of the extra term
to be appended to the probability current for nonrelativistic particles with
spin. Introducing the Lorentz symmetry of relativity imposes additional con-
straints that “restrict the number of possible terms and can therefore resolve
an otherwise persistent ambiguity” [Nowakowski 99].

In order to follow Nowakowski’s argument we begin with the probability
current for the Dirac equation,®

Jpirac = c(UTal). (3.34)

Now we must take the nonrelativistic limit of this current to find the
correct probability current for nonrelativistic particles with spin.

3.2.3 Nonrelativistic limit of the Dirac current

We begin with the Dirac current,

Jpirac = c(Ulal), (3.35)

where W is a four-element column matrix consisting of two two-component

spinors ¥ and Y,
_ (¥ )
¥ = , 3.36
< X ( )

and « is a set of three 4 x 4 matrices for which we choose the standard
representation,

ay = { Of)k ‘B’“ } . (3.37)

Placing these terms explicitly in the expression for the Dirac current and
performing the matrix multiplication yields

®See Appendix C.3 Derivation of the probability current for the Dirac equation.
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some =01 51 ) (o %) (4] (3.39
o, =cl( 9 ) (2% ) (3.:39)

JDirack = CWTUkX + XTUIW]- (340)

Equation (3.40) is still a relativistic expression for the Dirac current. We
must examine the Dirac equation to see how we shall reduce this expression
to a nonrelativistic limit.

The Dirac equation reads

[(e-p)c+ pmc?| ¥ = EV. (3.41)

The nonrelativistic limit will be easier to assess if shift the origin of energy
to mc?. We may do this by defining

m:(‘”): (G_Zﬁzﬁ) | (3.42)
X ek >~<

where each of the components includes a phase factor that explicitly removes
the rest mass, the difference between nonrelativistic and relativistic energies.

We place this wave function into the Dirac equation and perform the
matrix multiplication,

[ (a.(;)))c (G'(? )c] ( Z::Z;ﬁ ) (3.43)

ime? ime? fo 2

clople” F X +mcte™F ) = Ee ¢ (3.44)
ime? ~ ime? imc?

clople” n Yy —mcle R x = Ee & x.

Now we substitute the time-derivative operator for F,

14



ime?

c(o.p)e”F i + mcPew Lp = ik, (e‘imffz tz/;) (3.45)

_ ime ime®y

2~ 2 ime?
clople” & ) —mcle Tk 'y = iho, (e_Tt>2>’

and evaluate the time-derivative,

etomhit med] ¥ = in | =TG4 )| F @40

~ imc? ]
[c(a.PW - mczi] e r 't = ih [—ch

imc?

Now we can divide both lines by e~ = ¢ to get

clop)X +mctp = mc + ihd (3.47)
clop)) —mé®x = mex + hdx

clop)x = ihdwp (3.48)
clop)) —2me*x = ihdx.
In the nonrelativistic limit we assume that the kinetic energy (the right-

hand side of the equation) is small compared to the mass. In this limit, we
read off the bottom equation in line (3.48) as

clo.p)Y — 2me*x ~ 0. (3.49)
Inserting the gradient operator for p, we may rewrite this as
1 h. ~
X & ——0.(— 3.50
X 2mca ( 7 V)Y ( )
ih ~
X ~ ——0.V. 3.51
X~ =5 —oVi (3.51)

This is our expression for ¥ in the nonrelativistic limit. We will substitute
this into the expression for the probability current in line (3.40). Notice that

15



since the probability current contains both 1 and ' as well as x and x' it
is insensitive to the phase of the wave functions. Thus, we drop the tildes on
1 and x and revert to our original wave functions ¢ and x.

_

,
2mco.v¢} Wp] . (3.52)

b
JDiracNRk =cC l:?,bTUk l:——————z vajl + l:
2mc

We can expand out the terms to find

h ih
-;T;(vﬂp’f)aiakw — 5 —¥low0 Vg, (3.53)

Now we refer to the properties of the o matrices given in Appendix A.2,

J DiracNR; —

0;0r = 5ik+7;€ikl0'l (354)

ok0; = Ok — 1€K101,

so that our equation becomes

JDiracNR, = %(Vﬂ“)(@'k + i€x101)% — %wT(éki —i€mo) Vi, (3.55)

Expanding out each term,

ih h ih h
JIDiracNR;, = %(Vki/ﬁ)lb - %Wﬁikﬂlvﬂ/} - %vaw - %(Vﬁf)éikml[%
(3.56)
and now gathering like terms and simplifying yields

JDiracNRy, = % [(Vk¢T)¢ - UJTVM/)] - %(U)Tﬁikmviw + (Vi emor)
(3.57)
JDiracNR, = % [(ka)w - Q/JTVH/J] + %(Wfizk@lvﬂb + (Vi eawonp)

(3.58)

16



ih I
Toiraenw, = 5~ (Vi) = 91 Vi] + o (W1V x 09 + [V x gloley)
(3.59)
These two terms form the final result for our nonrelativistic limit of the
Dirac current,

Toimaen = - [(Vehyy — v'Vy] + —2% [V x (lop)] . (3.60)

2m

JDira,(:NR = JPa.uli + Jspin (361)
When we compare our final result here with the result for the Pauli proba-
bility current (3.33), the extra spin current term is easily apparent. Evidently,
an extra term containing a curl of ¢ must indeed be added to the Pauli cur-
rent. Furthermore, the Dirac equation predicts the unique coefficient of the
extra spin current term to be 5’},1— As indicated by Nowakowski, the introduc-
tion of the Lorentz symmetry provides a unique and unambiguous expression
for the probability current of nonrelativistic particles with spin.

The derivations of the probability currents for each of the three equa-
tions discussed reveals that the probability currents do not obey the same
limiting operations as the equations themselves. A nonrelativistic limit of
the Dirac equation yields the Pauli equation; however, a nonrelativistic limit
of the Dirac probability current yields an extra term when compared with
the Pauli probability current. Figure 3.1 on page 18 illustrates this incon-
sistency between the equations and their currents. The calculation of the
probability current using the Dirac equation depends on whether we take
the nonrelativistic limit before or after calculating the probability current.

The fact that spin contributes to the probability current of nonrelativis-
tic particles is a significant finding that has not been widely documented.
However, this result alone is not the sole objective of this paper. In addition
to an investigation of this spin current term, we are also concerned with the
method in which it is derived. ‘

Nowakowski’s relativistic prescription for resolving the ambiguity implies
that the nonrelativistic theory does not contain sufficient information to pro-
vide the necessary constraints. The reader may be left to wonder if this is
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Figure 3.1: The probability current for nonrelativistic particles with spin can
be derived from the Dirac equation by calculating the respective current and per-
forming a nonrelativistic reduction. However, as this diagram illustrates, the result
depends on the order in which these two procedures is performed. Making the non-
relativistic reduction after calculating the Dirac current introduces an extra term,
%V x (¢plaep), when compared with the Pauli current.
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because spin current is an inherently relativistic effect not fully describable
by nonrelativistic quantum mechanics. On the other hand, if spin current is
not at all relativistic, why must we appeal to a relativistic theory to deter-
mine its properties? Herein lies the problem and motivation for the ensuing
research.
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Chapter 4

Research Objectives

Having established a historical background and motivation for this study, we
can now make a clear statement of the research objectives:

1. We shall derive the correct probability current, including the spin
current term, for nonrelativistic particles with spin without appealing to
relativistic theory. This derivation will verify that spin current is not a
relativistic effect, and merits further scrutiny in the context of nonrelativistic
quantum mechanics.

2. We shall investigate the properties and behavior of spin current by
analyzing the contribution of the spin current to the total probability current
for an electron in a homogeneous magnetic field.
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Chapter 5

Results

5.1 A Nonrelativistic Derivation of Spin Cur-
rent

Dirac’s serendipitous derivation of spin within a relativistic context has led
many to believe that spin is a purely relativistic effect. From a historical per-
spective such a conclusion is apparently justified since spin was absent in the
nonrelativistic Schrédinger equation, forcefully introduced in the Pauli equa-
tion, and derived naturally only after Dirac’s inclusion of relativistic theory.
In 1969, however, Jean-Marc Levy-Leblond showed that the spin property
can be derived without appealing to special relativity, but by assuming only
Galilean invariance [Levy-Leblond 69].

The Levy-Leblond equation is obtained by factorizing the Schrédinger
equation into two first-order differential equations:

E¢p—clop)x = 0 (5.1)
2mc*y — c(op)p = 0.

This linearization process requires the non-commutative properties of the
o spin matrices. Spin appears as a natural consequence from the constraints
present in the equation. Derivation of the Levy-Leblond equation demon-
strates emphatically that spin is not a relativistic effect.’

!See Appendix B.3 Derivation of the Levy-Leblond equation.
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Table 5.1: Properties of the Levy-Leblond equation in comparison with the
Schrodinger, Pauli, and Dirac wave equations.

| Nonrelativistic

_ Relativistic

Pauli equation
RN L e (Spin is hand-placed
- Contains spin Dirac equation in the equation.)

Levy-Leblond equation
(Spin is an intrinsic property
of the equation.)

e No spin | Klein-Gordon equation Schridinger equation

The Levy-Leblond equation describes the wave functions of nonrelativistic
particles with spin. It differs, however, from the Pauli equation in that spin
is an intrinsic property of the equation and not a hand-placed constraint.

The Levy-Leblond equation exhibits relativistic correspondence since it
can be derived through a nonrelativistic reduction of the Dirac equation.?
The relationship between the Levy-Leblond equation and the other quantum
mechanical wave equations discussed previously is summarized in Table 5.1.

The misconception that the spin property arises only in relativistic quan-
tum mechanics may lead to the equally incorrect assumption that spin current
is also a relativistic effect. Indeed, Nowakowski’s insistence on the need for
a relativistic resolution of the ambiguity regarding spin current strengthens
this notion. However, Levy-Leblond’s derivation of spin without employing
relativity theory, hints at the possibility of deriving the correct spin current
term utilizing only nonrelativistic quantum mechanics. Surely, if indeed spin

2See Appendix D.1 Nonrelativistic limit of the Dirac equation.
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is not a relativistic effect, then spin current (the contribution to the proba-
bility current arising from spin) must be derivable in a purely nonrelativistic
context.

We have demonstrated in Section 3.2.2 that applying the standard pro-
gram for calculating the probability current to the Pauli equation fails to
generate the extra spin current term. Evidently, the procedure for calcu-
lating the probability current fails to preserve the information about spin
contained in Pauli’s ad hoc term. In the Levy-Leblond equation, however,
spin is naturally embedded as an intrinsic constraint. If the procedure for
calculating the probability current is able to preserve this information about
spin contained in the Levy-Leblond equation, and describe the subsequent
contributions of spin to the probability current, it will provide a nonrelativis-
tic derivation of spin current. We attempt at once to calculate the probability
current for the Levy-Leblond equation using the standard procedure. Our
purpose is to observe if the spin current term is produced, and whether it is
uniquely defined.

5.1.1 Probability current for the Levy-Leblond equa-
tion

We shall follow the same procedure as has been used in previous calculations
of the probability current. Each step of the derivation is included in detail
to allow a clear analysis of the interactions between the terms, specifically
the terms that describe the effects of spin.

As per usual we define the probability density,

p=d'e, (5.2)
so that

ap = ¢1(0:9) + (Or9') 9. (5-3)

We will need this to solve for Jieyy_rebiona in the continuity equation.
Next, we write the Levy-Leblond wave equation,

Ep—clop)x = 0 (5.4)
2me*x — clop)p =
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We can substitute operators for £ and p to find

ihOyp + ihc(o.V)x = 0 (5.5)
2me*x +ihc(a.V)¢ = 0.

From the top line of this wave equation we see that

0y = —c(0.V)x. (5.6)

We can use equation (5.6) and its adjoint,

Ot = —c(Vx'.0), (5.7)

to substitute for 8;¢ and 8;¢' in our expression for &;p in equation (5.3),
dp = —cd' (0.Vx) — c(Vx'.0)é. (5.8)

Furthermore, from the bottom line of the Levy-Leblond equation we see
that

ih
and hence
t— _Zi i
X ch(ng ).0. (5.10)

These expressions for y and x! can also be substituted into our expression
for Osp,

Op = —cd!(0.Vx) — c(Vx'.o)e (5.11)

o= T4t (0.V) (0:V9) — - [9(Velo)alp  (5.12)
tP = om . . om .0). .

Bip = -2% (610:0,Vi(V;¢) — (Vi(V0l07)01) ¢] (5.13)

Now we may add and subtract a convenient term,
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o = o [(Vz-aﬁ*)oiaj(wﬁ)+¢*o¢ojv,~(vj¢) (5.14)

T om
T80, ~ (Vs (V)|
Using the product rule for derivatives, we can rewrite this as
oG Tt :
Btp = %VZ [¢ Uin(Vj¢) - (ngf) )Uj0i¢] (515)

8t,0 + VZ% [(v]’¢f)0’j0i¢ - ¢T0'i0'j (Vj(b)] = (. (516)

Comparing this with the continuity equation,

we can easily determine JLevy—Leblond,
ih

JLevy—Leblond; = %[(VMT)U]‘UW — ¢l0,0;(V,9)]. (5.18)

But,
gi0; = 51']' + ieiijk (519)
g;0; = (51']' _ ifijkgk (520)

So,
ih + )
JLevy—Leblond, = P (V") (6;5 — ieijuon)d (5.21)
—¢T(0i0j(sij + ifijkgk) (ngb):,
ih t t

JLevy—Leblond, = 2 (Vid")p — ¢1(V,9) (5.22)

—i€nip! (V 0p0) — iEjki(Vj¢T)0k¢J
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JLevy—Leblond;, = % [(Vz‘ﬁmfﬁ - ¢T(Vz’¢)] + %Ejkivj((ZSTakqs) (5.23)

ih

R
_ At _ Ao, I T
JLevy—Leblondi - 2m [(vz¢ )Qb] QS (vz¢) + om [V X ¢ 0'¢L . (524)
Our final result then is
JLevy—Leblond = o {(V(JST)Qﬁ - ¢T(V¢)] + —h—V x (¢plog). (5.25)
vy © 2m 2m
JLevy—Leblond = JPawti + Jspin (5.26)

In this final result we can plainly discern the extra spin current term.
As it appears here, it would seem that this result accomplishes the first
research objective of a nonrelativistic derivation of spin current. The spin
current term we have derived has the same coefficient and form as the result
obtained through the nonrelativistic limit of the Dirac current in Section
3.2.3. However, the very careful reader may not be so easily convinced.
When we examine the spin current term, we notice that it is in the form
of a curl. This implies that the spin current term has no significant role in
the continuity equation since in this equation the current appears under a
divergence. Thus, since the divergence of a curl is zero, any contribution of
the spin current in the continuity equation will automatically be zero. How
then can it be possible to derive a unique coefficient for the spin current term
if at one point in the derivation, namely in the continuity equation, the spin
current evaluates to zero? If indeed the contribution of the spin current term
is zero, surely we can with impunity place any coefficient before the term
and still satisfy the continuity equation. How can we be sure the coefficient
we derived in (5.25) above is correct and unique?

In short, the answer to this question is that the constraints that define the
unique coefficient of the spin current are found within the actual process of
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calculating the total probability current. Although, the continuity equation
will allow any coefficient, the process of constructing the current determines
the coefficient uniquely.

In order to better understand how these constraints arise, we must exam-
ine exactly how the spin current term is generated in the calculation. We can
do this by working backwards through the derivation and tracing the origin
of the spin current term.

The separation of the spin current term from the regular Pauli current
occurs after line (5.18) which reads

JLevy—Leblond;, = _%[¢T0igj(vj¢) — (V;¢")oj0:]. (5.27)

The two terms in this expression each contain an even and odd part with
respect to permutation of the o spin operators. When we split both these
terms into their even and odd parts we obtain four terms. The two even
parts, when taken together, form the Pauli current. The two odd parts,
when taken together, form the spin current. With this understanding we can
now address the question of why the coefficient of the spin current cannot be
arbitrary.

The key is that the odd terms which combine to form the spin current
are tied to the even parts that form the Pauli current. If we increase the
coefficient of the spin current, then we are constrained to increase the coef-
ficient of the even part to which it is bound. Any change in the spin current
coefficient would cause the Pauli current coefficient to be altered also. But,
the correct coefficient of the Pauli current is a unique value determined by
the constraints of normalization. Thus, since the Pauli current coefficient is
fixed, the spin current coefficient must also be fixed at a unique value.

The manner in which the correct coefficient appears in this derivation
is not unique to the Levy-Leblond equation. Indeed, the same arguments
presented here must be made for the derivation of the Dirac current used by
Nowakowski. The identity known as the Gordon decomposition [Gordon 28]
demonstrates that the Dirac current, Jpj.c = c(¥fa¥), can be separated
into two terms describing the regular convection current and the spin current.
Under the divergence of the continuity equation, this Dirac spin current term
is effectively zero, however, must be retained with a unique coefficient in order
to satisfy other constraints imposed elsewhere in the derivation.

We have taken the Levy-Leblond equation, a nonrelativistic expression,
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Figure 5.1: The probability current for the nonrelativistic Levy-Leblond equation
includes an extra spin current term. This result agrees with the nonrelativistic
limit of the Dirac current. The spin current term is not uniquely defined when we
calculate the probability current using the Pauli equation.
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and calculated its corresponding probability current. As illustrated in Fig-
ure 5.1, the result includes the extra spin current term with the correct and
unique coefficient. Thus, spin current can be derived without appealing to
relativistic quantum mechanics. Whereas Nowakowski uses the Lorentz sym-
metry to introduce the needed constraints, Levy-Leblond is able to retrieve
these constraints by applying Galilean symmetry only. We conclude that the
spin current is a nonrelativistic effect that must be included in the expression
for the nonrelativistic probability current of particles with spin. This is a sig-
nificant result since standard textbook treatments of the probability current
for the Pauli equation typically neglect the contribution of spin to the overall
current [Bialynicki 92]. The results from this calculation effectively resolve
the first objective of this research.

5.2 Properties of Spin Current

The fact that spin contributes to the total probability current in a non-
relativistic regime merits a study of its properties and behavior. It will be
interesting to determine whether this seldom-spoken-of spin current produces
any experimentally measurable contributions to the probability current.

As has been previously noted, the spin current term,

I
Jopin = 5V x (¥low), (5.28)

has the form of a curl. This implies that the spin current cannot diverge
from an origin, but may only swirl about it as depicted in Figure 5.2.

The curl property of spin current precludes it from contributing to the
global flow of probability density from one location to another. Thus, spin
current cannot contribute to the momentum of the particle. Nevertheless, we
may not conclude from this observation that the spin current has no physical
significance. The swirling spin current still provides a nontrivial measurable
contribution, as any unlucky soul who has fallen into a whirlpool will attest!

Further properties of the spin current are more easily exposed by an exam-
ination of its behavior for a particular physical configuration. A calculation
of the spin current for the specific case of an electron within a homogeneous
magnetic field proves to be an informative exercise in this regard.
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Figure 5.2: Spin current has the form of a curl.
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5.2.1 An electron in a homogeneous magnetic field

We shall be most interested in comparing the probability current of the Pauli
equation, where the spin current term is absent, with the probability cur-
rent of the Levy-Leblond equation which includes the extra spin current
term. The comparison between the two results will illuminate the effects
contributed by the spin current. If the effects of spin current are significant,
an experiment can be devised to measure and verify them.

Obtaining the probability currents for an electron in a homogeneous mag-
netic field requires that we first derive solutions to the Pauli and Levy-
Leblond wave equations for the corresponding potential. L. Landau published
the first solution to this problem for the Schrodinger equation in 1930.> We
can use his results to facilitate our solution of this configuration for the Pauli
and Levy-Leblond equations. Once the correct wave functions have been ob-
tained, we can proceed to calculate the exact probability currents using the
expressions we have previously derived.

3See Appendix E.1 Solution to the Schrédinger equation for an electron in a homoge-
neous magnetic field. A solution to the relativistic problem was. provided by I. Rabi in
1928 [Rabi 28]
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Solution to the Pauli equation

Our aim here is to solve the Pauli equation for an electron in a homogeneous
magnetic field. We begin with the Pauli Equation,

1 eh

[%(p —eA)? — %U.B] W = Ev. (5.29)

In this expression, 1 represents a two-component wave function:

b= ( :/;b ) . (5.30)

In order to ensure a homogeneous magnetic field B = Byz, we choose the
vector potential to be

A = Byzy. (5.31)
Substituting for B and p in the Pauli equation yields

1 h 2___6_3_7:_'/_ BO O "/}a . ¢a
- (5 ) () -2(5) e
or, by rearranging terms,
1 h Vo \ _ eh [ B 0 Py
oo (3 ) =[peau (D 5] (%) o

We can pick off the top and bottom equations to obtain two separate
equations. The two equations are

1 & 5 h

%(;‘V - eA) Yy = (E + ‘;;LBO)"»ba (5'34)
1,k 5 h

-GV —eAY = (B~ %Bo)wb. (5.35)

These two equations have exactly the same form as the Schrodinger
equation for which we have already obtained solutions by Landau.* The
Schrodinger equation is

4See Appendix E.1 for Landau’s solution of the Schrédinger equation for an electron
in a homogeneous magnetic field.
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%i(?ﬁv A = Fy. (5.36)

Thus, we can use the solutions already obtained if we let

eh
=F+—B 5.37
Ey + 5y 20 ( )
for the spin up case, and
eh
=F—-— 5.
E, 2mB0 (5.38)

for the spin down case.
Our final energies for the Pauli equation are

1 K2 eh
= — et —k+ — .
TEn,kz (n —+ 2)7110 -+ o P + 2mBO (5 39)
for spin up, and
1 B2 eh
B, . = —Vhw, + —k%2 - —B 4
1Bk, (n+2)w-+%nz 5 Bo (5.40)

for spin down where n is the principal quantum number arising from the
quantization of energy.

Evidently, the spatial part of the wave functions are identical to those
which we have already found for the Schrédinger equation only that now
there is a different energy dependent on the spin of the particle.

The wave function for spin up is

T%:<%>, (5.41)

and for spin down

o = ( g ) | (5.2

where

Hn e—-fz/Q—I—ikyy—i—ik‘zz 5.43
) (5.43)
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eB MW,
:7n£ §= h(l"‘xo) To = —05-

We (5.44)
and H, (&) are the Hermite polynomials.

Having obtained the wave equations, we may now proceed to calculate
the probability current for the Pauli equation. The expression for calculating
the Pauli probability current in an electromagnetic field is given by®

Teun = o [(Velyy — (V)| - S('Av).  (549)
M 2m m

Evaluating this expression reveals that the currents for both spin up and

spin down are identical:

‘ 1 2 [,
tydPanti = 2"n!ﬁ6~§ [H.(8)] {07 —wek, %kzil : (5.46)

Solution to the Levy-Leblond equation

As we shall see anon, our solution to the Pauli equation expedites our solution
of the Levy-Leblond equation. Again, we choose the vector potential to be

A = Byxy. (5.47)
Next we write the Levy-Leblond Equation,

E¢—clop)x = 0 (5.48)
—c(o.p)¢ +2mc*x = 0.

We take this equation into the electromagnetic field using minimal cou-
pling, where p — p — €A, and E — E + e®. With these substitutions, the
wave equation becomes

5See Appendix C.2 Probability current for the Pauli equation in an electromagnetic
field.

33



(E+ed)p—clo(p—eA)]x = 0 (5.49)
—clo.(p—eA)]p+2mc*x = 0.

Solving for x in the second line,

1

X=5— [0.(p — eA)] 4, (5.50)
and substituting in the first yields
(E+ed)p —co.(p—eA) {2—71%0. (p— eA)] =0 (5.51)
1
E¢ = %[a. (p— eA)]2¢ — eda. (5.52)

After expanding out the terms, it is a straight forward exercise to demon-
strate that this expression simplifies to the Pauli equation.® We have effec-
tively uncoupled the two first-order equations of the Levy-Leblond equation
to produce a single second-order equation. Having already solved the Pauli
equation, we can immediately write the solutions to the Levy-Leblond equa-
tion.

Our final energies are

1 K2 5 eh
ET,n,kz = (TL + E)hwc + %‘kz — —2——7n—-B0 (553)
for spin up, and
1 K2 eh
E T = = h c P 2 _B . 4

for spin down.
The wave function for spin up is

Ot = ( %" ) , (5.55)

and for spin down

%See Appendix B.1 Derivation of the Pauli equation beginning at line (B.3).
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b = ( 5 ) (5.56)

where
MW, 1 _£2 /94 ik
T e e G L (5:57)
. eBy W, _ hk,
we =~ €= : (x — z9) Ty = By (5.58)

With the exact solutions for ¢ in hand, it will be a straightforward exercise
to find x using the equation in (5.50). However, our expression for the Levy-
Leblond probability current in an electromagnetic field,”

Hiawy-tosoniont = o (V)6 = 81 (V9)] = = (§1A9) + -V x (¢109),
(5.59)
is in terms of ¢ only. Since our main purpose is to analyze the probability
current, we shall proceed to the probability current calculation without delay.
As we do so, it will be interesting to observe closely the contribution of the
spin current term -V X (¢To ).

We shall evaluate each component of the current vector in turn, noting
that A, =0, A, = Byz, and A, = 0. We begin with J, for the spin up case.
We shall omit the subscript n, since these results are valid for all n.

I h
e = 5 [(@:01)8 — 610e0)] + 5 - [0,(8)061) — 0.(dloyor)]  (560)

Jo = 0,616 - ¢ (0:9)] (5.61)

T 2m

e (3 S ()] afee o0 S]]

7See Appendix C.5 Probability current for the Levy-Leblond equation for an electron
in an electromagnetic field.
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Performing the matrix multiplication reduces this to

_zh h

— 1(0:¢")¢ — ¢"(0s ¢)] 5, [0,(67 ¢)] (5.62)

Pauh current spin current

Both the Pauli current term and the spin current term in this equation
are identically zero, leaving us with the trivial answer

1z

J, =0. (5.63)
Now to find 1J,.
iy = o (0,606 — 810,01~ “oa(glon) +o [0 (6lovtr) - 0,(lo01)]
(5.64)
Jy = o (0,66 — ' (0,8)] - a(6) (5.69

oo o () (-2l 0 (3 2 (2)]

Performing the matrix multiplication reduces this to

M= 5 0,69 = 60,0 = SEa(6'0) - o= 8] (566)

"

~

Pauli current spin current

Notice that the contribution from the spin current term in this equation is

non-zero. After evaluating the derivatives, we can pull out a common factor

of e—%,\l/@ from each term:

Pauli current

. g hwc GB()) )
W, = 2nnf [ —ky — 1/ —)a (5.67)

T s

spin current

— TNWT + mwcx0)> }
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Now we must remember the relations

eBy MW, hk,

u]c:%“ 5: 7 (fl?“x()) .’I,'OZEE(—)-.

(5.68)

Substituting for k, in the first term, (e—r—]flg) in the second, and expanding
out the third yields

e C[H, (O] [ws M,
T v L el (5:69)

—2nw, H}ZZS) \/—7 \/— WeTo) }
tly = 6_;[5:/(?]2 [\/_h— (eBO) \/7 (5.70)
— 21w, H;I;ES) \/—‘ \/Tn—' WeTo }

Pauli current

A

Y

e CTHOPR  [maw.
g, = _%%)]—[—,/ 2 — 20) (5.71)

H, (&) MW,
Ho () + - %(x_%)/].

v

spin current

- 2nw,

At this point we pause to observe an interesting interaction between the
Pauli current and the spin current. The spin current contributes a term that
exactly cancels the Pauli current. All that survives is a single remaining term
from the spin current.

_ e HL (O] Hy1(€)
ty = SN [—2nwc () } (5.72)
Finally then,
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_ 1

B —2"77,!\/776

(5.73)

o, Ut (©)F e

Lastly, we must find 4+J,.

. h
1o = 5= [(0.816 = ¢10.9)] + 5= [0:(610y9) = 9 (6'09)]  (5.74)
Pauli :urrent h spin glrrent ’

T = o [(0.6%) - 6°(0.6) 5.75)

Tl (2 ) (@)ale () ()]

Performing the matrix multiplication reveals that the entire spin current
term is zero, leaving us with the same result as the Pauli current,

1= o [(0:67)9 — ' (2.9)]. (5.76)

This evaluates to

1 2 huw,
192 = o= AP 5k (5.77)

corresponding to the unconfined motion of the electron in the Z direction.
Our final result for the spin up current vector is

1 2 H,_ /h c
TJLevy—Leblond - We_é [Hn(f)]2 lo y _27’&% anég) , T(: k{l .

(5.78)

Now we must evaluate the Levy-Leblond probability current for the spin
down case where
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¢, = ( 2) ) . (5.79)

Again we use the probability current equation,

Tiovs-tavionaine = o (V89 ~ 61(V8)] — S (91A6) + 5 x (3lo9),
(5.80)

Begin by looking at the z-component,

_ i

06" 161 —61 L (0u D] +5 = [3,(81 402 1)~ 0261 1 0 )]

(5.81)

e

Ji = 2 ((04)6 — 6'(0:6)

e (3 5) ()l (0 7))

Performing the matrix multiplication reduces this to

i n

Pauli current spin current

Again, just as in the spin up case, both terms here are identically zero,

SO
Js=0. (5.84)
Now to find |J,.
; B
J, = % (0,60 — 6(8,0)] — %x(qﬁ* $) + % [0.(810:0) — 0:(810.9))

(5.85)
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Jy = (0,676~ ¢(0,0)] — “a(g) (5.56)

+%[@[(0 as*)((f é)(;)]“aﬂf[(o ‘””(é —01><36>H

Performing the matrix multiplication reduces this to

= o (0,676 — 6 (0,8)] — (s 0+ L (u(¢" . 87

~

Pauli current spin current

Notice again that the contribution from the spin current term is non-zero.

In each term we can pull out a common factor of 7[5%5——2]— to find

Pauli current

J, = 2%, \F Nmk - eB") (5.88)
it )]

v

+

~
spin current

Now we use the relations

eB T, hk
wczﬁo 62 7 (SC—"E()) QTOIEEL"O‘.

(5.89)

Substituting for k, in the first term, (%Q) in the second, and expanding
out the third gives

e CH (O [w. M,
in = W %GBOZE’O— 7 Wel (590)

2 Hn / ¢ / c
+2nw, n 1 d m—g}*wc%)]
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Wy = 2nnly/T

we(T — To) (5.92)

spin current

At this point in the calculation it is informative to examine again the
behaviour of the spin current term. The spin current produces a term which
exactly duplicates the Pauli current term. An additional term from the spin
current also survives.

After gathering terms, we have

o= e U | -2t - 20 + 20| (.09
= e IO 2ot o g

Lastly, the z-component:

J= (0,606~ ¢10:9)] + - [0u(810,0) ~ By(60)]  (5:99)

3= 0.6 - ¢(8.0) (5.96)

2m

+§%[am[<o ¢*)<? 5@')(2)}—%%0 W(? é)(g)ﬂ
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Performing the matrix multiplication reveals that the second term is
zero. This result signifies that spin current makes no contribution to the
z-component of the current. We are left with

Je= o (0609 — 6°(0.0) (5:97)

which evaluates to

) Fitoe
J, = Znn1! ﬁe—f [Hn(g)ﬁ/—%kz. (5.98)

Our final result for the spin down case current vector is

1 2 H,_ hw,
¢JLevyLeblond = 2"n!ﬁ6_§ [Hn(g)]z [07 2nwe anéf) —2¢, “ kz}

(5.99)
Remember that the current for the spin up case was

1 2 H,_ | w,
+JLevyLeblond = 2"n!\/7?6_£ [H,,(8)) [0, —2nw, HnES) , ;i kz}

(5.100)
We will compare these with the current for the Pauli equation,
1 2 hw
Tpauti = €% [H,(6)[0, —wef, | —k,, 5.101
1Y Paul 2nn'\/7—re [ (6)] [Oa W 57 m k ]7 ( )

(the same for spin up and spin down) in order to analyze the contribution
of the spin current.
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5.2.2 Analysis of spin current effects

We have observed during the preceding calculations that the spin current
interacts with the Pauli current in an interesting manner. Only in the y-
component of the probability current does spin current generate a nontrivial
contribution. Accordingly, we shall focus our attention on this component of
the probability current. For each of the wave equations they are

1
Ipauii, = TING

=€ [H, (&) ﬁ%w—(iwc(x ~ 1), (5.102)

1 2 H,_
TJLevy~Leblondy = —an!ﬁe“f [H"(g)P I:anc—ﬁ;—é?} , (5103)
and
1 2 c H,_
¢JLevy—Leblondy - _W[Hn(f)]26_§ [2 @_7;}___(1; . 170) + 2nwc anéi)} )
(5.104)

The y-components of each probability current are summarized in Table
5.2. Large and unwieldy factors have been renamed as uppercase letters A,
B, and C:

1
2nnly/m

1 ) ;
B= o ﬁe"5 [Hn(g)]%/%‘i%xo, (5.106)

1 2 H,_
5 ﬁe—ﬁ [H,.(6)]2 [2%6%@] : (5.107)

This substitution allows for a clearer analysis of the inter-relationships
between the various terms that contribute to the total current. The table
illustrates how the Pauli and spin currents combine together to produce the
total probability current.

The information presented in Table 5.2 proves most insightful for estab-
lishing the properties of spin current. First notice that, whereas the Pauli
current is indifferent towards the up or down orientation of the spin, the

T,

A=-— 6_52[Hn(f)]2 N

W, (5.105)
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Table 5.2: y-components of the probability currents for an electron in a homoge-

neous magnetic field.

 Pauli Current

 Spin Current ‘urrent

 Total Probability

 Pauli Equation
- (Bothspinupand

A+B

A+B

" Levy-Leblond
. Equation

A+B

-A-B-C

: : YEBVY-»Leb-lbﬂdﬁ
 Equation
. (Spindowm)

A+B

A+B+C

2A+2B+C
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spin current of the Levy-Leblond equation differentiates between the two
spin states. As we may have intuitively conjectured at the outset, the con-
tribution of spin current for spin up is exactly equal but opposite to the
contribution for spin down. The Pauli current does not contain sufficient
information about spin to discriminate between the two spin states. We
notice that the total probability current for the Pauli equation is an exact
average of the total probability currents for the spin up and spin down cases
of the Levy Leblond equation. It appears that, rather than provide specific
information on each spin state, the Pauli current prefers to give a single
generalized statement.

A further intriguing observation is that the contribution from the spin
current is not entirely arbitrary and disassociated from the Pauli current.
Rather, it is connected to the Pauli current in such a way that it contains
similar components (A’s and B’s) that either combine with, or cancel corre-
sponding terms in the Pauli current. For the case of spin up, terms in the
expression for the spin current negate the Pauli current, while for spin down
these spin current terms exactly duplicate the Pauli current.

Plots of the y-components of the Pauli and Levy-Leblond currents are
shown graphically in Figures 5.3 - 5.7. The line graphs provide an actual
value for the magnitude of the y-component of the current for a given z,
while the vector plots give a more physically intuitive feel for the behavior
of the currents. The line graphs illustrate pictorially how a superposition or
average of the Levy-Leblond currents for spin up and spin down results in
the Pauli current.

Perhaps the most dramatic effect presented by the graphs is the physical
reality of the spin current. The vector plots reveal that the spin current
contribution provides an actual swirl as originally predicted. Since the elec-
tron carries a charge, this swirl due to the spin current would produce a flow
of electrical current measurable by an electrical current meter. Presumably,
this swirl of charge would create an effective current loop that would act
as a magnetic dipole. A dipole would in turn experience a torque in the
presence of the external magnetic field. A study of interaction effects due to
the spin current will provide an interesting direction for further experimental
research.

45



Figure 5.3: Line graph of the y-component of the probability current for the Pauli
equation for both spin up and spin down electrons.
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Figure 5.4: Vector plot of the probability current for the Pauli equation for both
spin up and spin down electrons.
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Figure 5.5: Line graph of the y-component of the probability current for the

Levy-Leblond equation for spin up electrons.
Figure 5.6: Vector plot of the probability current for the Levy-Leblond equation

for spin up electrons.
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Figure 5.7: Line graph of the y-component of the probability current for the
Levy-Leblond equation for spin down electrons.

\
T
/”’%)

Figure 5.8: Vector plot of the probability current for the Levy-Leblond equation
for spin down electrons.
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Chapter 6

Conclusion

The probability current for nonrelativistic particles with spin is seldom treated
in accepted pedagogical formats of introductory quantum mechanics texts.
The procedure for calculating probability current is most often presented
with regard to the Schrodinger equation, an equation that describes non-
relativistic particles without spin. When this standard procedure is applied
to the Pauli equation, it yields an ambiguous outcome since the resultant
probability current is not uniquely determined.

We have demonstrated that the unique expression for the probability cur-
rent of nonrelativistic particles with spin must include an extra spin current
term of the form %V x (iow). The inclusion of this extra term in the
expression for the probability current indicates that the spin of the particle
influences the flow of probability density.

Spin current is a nonrelativistic effect, and can be derived without ap-
pealing to relativity theory. In particular, we have derived the unique form
of the spin current term using Levy-Leblond’s nonrelativistic wave equation.

An analysis of the spin current for an electron in a homogeneous mag-
netic field reveals that the spin property, although it cannot contribute to
the momentum of the particle, produces interesting interaction effects with
the Pauli current. The swirl of the spin current introduces a nontrivial con-
tribution that is potentially measurable by experiment. Specifically, the spin
current contribution is dependent on the spin state of the electron.
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Appendix A

Conventions and Formalism

A.1 Constants

e The magnitude of the charge on an electron. Note that e = |e|.
A Planck’s constant, h, divided by 2.
c The speed of light.

A.2 Explicit representations of o, 5, v, and ¢

matrices

The « and 8 matrices:

_ 0 O
ak—*[dk 0

The v matrices:

The ¢ matrices:

50

8= [ - } (A1)
Ve = Boy (A.2)
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(20) (1) (i) o

which obey the relations

0,0 = 5ik+7;€iklo'l (A5)

Ok0; = Op; — €807

Important Note: The matrices presented in this appendix are referred
to in the body of the paper using their corresponding Greek letter o, 3, 7,
or 0. Whenever a Greek letter appears with an index, for example o, we
are referring only to a single matrix, which in this case is

( 8 ‘(')Z ) : (A.6)

However, if we use a Greek letter without any index, for example a, we
are referring to the multi-component object that contains all three matrices,
o1, a9, and osz.

Therefore,

a.p = 1P + op, + asps. : (A.7)

A.3 Symbolic notation

A.3.1 Complex conjugation

When 1) is used to designate a scalar function (as in the Schrodinger equa-
tion), we represent the complex conjugate of v as 1*.
The Pauli equation involves two-component wave functions which we may

€Xpress as
_ [t

ol



where ¢; and 1, are scalar components of 1. The complex conjugate of
in this instance is designated with a T symbol,

zp*:(Z;)T:(wf ¥ ). (4.9)

This notation is also used with the multi-component wave functions of
the Levy-Leblond and Dirac wave equations.

Throughout this paper we take the hermitian conjugate with respect to
spin space only, and not with respect to coordinate space. For example,

(Vi)' = (Vo). (A.10)

A.3.2 Commutators

For any two arbitrary objects A and B, we define the following two commu-
tators:

[A,B] = AB - BA (A.11)

[A,B], = AB + BA. (A.12)
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Appendix B

Derivation of Wave Equations

B.1 Derivation of the Pauli equation in an
electromagnetic field

We begin with the Schrédinger Equation:

2

p _
% +V = Ey. (B.l)

Now with minimal coupling for a free particle in an electromagnetic field,
and using o to introduce spin, we let

p— (p—e€eA)o, and FE —ihd;+ed. (B.2)
This yields
1

We will concentrate for the moment on expanding the operator
[(p — eA).o)%:

[(p—eA).o]” = [(p—eA)ol[(p—eA)d] (B:4)
= DiDi + BQAZ'AZ' - GO'inpz'(Aj) (B5)

—eUinAjpi - eAiij'in
= p2 + 62142 - e[pi(Aj)oriaj (BG)

+Ajpi0'i0j -+ AiijiO'j} .
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Now use the fact that

005 = 5@' -+ iéiijk (B?)
to get
[(p—eA).o]’ = p*+e?A% - e[pi(Ai) + 2Aip; (B.8)
+ip;Aj€sinor + 1A Di€iko) + iAiijiijk]
= p2 + 62A2 — e[pZ(AZ) -+ QAsz (Bg)

+’ipz'z4j€ijk0k - iAipjﬁiijk -+ iAipjfiijk]
= p’+e*A* —e[p.(A) + 2A.p + ip; Ajeijroi] (
= p*+e?A%? —ep. A —eAp-— teeipiAjor
h
= (p—eA)* - ie;(V X Aoy (
(p — eA)’ — ehB.o (
(p — eA)? — eho.B. (

Now we can substitute this back into (B.3) to get:

1 5, €h .
— - "B~ = . B.15
5 (p—eA) 5,0 B —e®| ¢ = ihdup (B.15)

This is the Pauli equation in an electromagnetic field. Notice that when
the electromagnetic field is removed, the spin operators, o, vanish and the
equation reduces to a form similar to the Schrodinger equation except that
the wave function ¢ has two components,

p’
By~ o~ =0. (B.16)
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B.2 Derivation of the Dirac equation

We want to have all space-time derivatives be first order. When we look at
the relativistic energy operator, this provides us a clue as to what our new
wave equation might look like,

E? = p*c + m*ch. (B.17)
We begin with a possible form of the anticipated first-order operator:

%@ = (—aqthd; — agihdy — asihd, + fme) (B.18)

where aq, as, a3, and 8 are undetermined coefficients. Now we square both
sides to get:

h?

—22—8? = (0qih0; + 0ihd, + a3ihd, — fme)? = 0. (B.19)

Now we expand the operator on the right-hand side,

hZ
—22—33 = —o?h0? - a1a2h28,,8y — a1a3h?0,0, — oq fihmcd, (B.20)

—aghzaz — a2a1h28$8y — a2a3h28yaz — apfBihmcd,
—aghzaf — a1 B20,0, — a3a2h28y8z — azfihmco,
—Bayihmed, — Bagihmed, — Bagihmed, + 52 (mc)?.

We can group terms to get

2

T = (010 + o302 + a302) + F(me) (B.21)
—h?[(anag + ae0n) 0,0, + (aras + azay)0,0, + (e + a302)0,0;
——z’hmc[(alﬁ + ,3&1)8z + (012,8 + 5&2)81/ + (OZ3,B + ﬁag)(‘?z]

In order to match the squared energy operator (B.17), we need all first
order derivatives to vanish. This places conditions on ay,az,a3, and S:
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o? 1 (No summation on 1) (B.22)
52 1 (B.23)
[, 05], = 0 (B.24)
[Byai], = 0 (B.25)

where (o, o]+ = oy + oy

We can see that our original coefficients cannot be simple scalars. We
need objects that will anti-commute. Therefore, we shall introduce matri-
ces. We could choose for our representation of these objects the explicit
representations given in Appendix A.2. The Dirac equation reads

[(a.p)c + ﬂch] U = EV. (B.26)

¥ is now a four-element column matrix.

We can manipulate the Dirac equation further to find an equivalent ex-
pression in terms of the v matrices.

Multiplying by S,

[ﬁ(a.p)c + 52m02] ¥ = SEY, (B.27)
and after referring to Appendix A.2 for the properties of the 8 and o matrices,
we can rewrite this as

[(fy.p)c + mc2] U =EV (B.28)
E

[(y-p) +mc ¥ = yo—V (B.29)

~ 1h
(’szi - '70?8t) U +me¥ =0 (B.30)
(7pu = me) ¥ =0 (B.31)

where

pu = 1h0,. (B.32)
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B.2.1 Derivation of spin from the Dirac equation
We need the hamiltonian to commute with the total angular momentum,

[H,J] =0, (B.33)

where H = a.pc + fmc? and J = L + S. Working only in the z-component
we have

H,L;] = [a.pc+ Bmc?, yp, — Zpy] (B.34)
H,L,] = ihc(aspy, — aop,) (B.35)

which is non-zero. We need an S such that

[H,S,] = —ihc(aspy — oap.). (B.36)

Suppose we construct the most general angular momentum vector using
only the vectors available within the theory:

S = Aa+ Bfa+ C(a x o) (B.37)

where A, B, and C are scalar constraints.
It follows that

Sw = Aa1 + B,BOél -+ C(O!QOég - agOéz). (B38)

Now we evaluate the commutator:

[H,S,] = [a1pzc + aapyc + asp.c+ Bmc® , Aa; + BBay + C(agas — azas)]
(B.39)

H,S:] = Ao, o]psc+ Alag, aalpyc + Alas, on]p.c + Amc?[B, o)
+Blay, Bospec + Blas, Baa]pyc + Blas, Bayp.c + Bmc?
+Clo, azas]pzc — Clay, azan]psc
+Clag, azas)pyc — Clag, azas)pyc (B.40)
+Cla, asas)p,c — Clas, asaz)p,c
+Cmc*[B, apas] — Cmc?[B, azas)].

Expanding again we get
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H,S,] = Alar, oqlpzc+ Alas, aqlpye + Alas, aq]p.c (B.41)
+Amc*[B, au] + Blau, Blaypzc + BBloy, anlpsc
+Blay, floapyc + BB[ag, ailpye
+Blas, Blaip,c + BB[as, ai]p.c + Bmc?[B, Blay + Bmc?B[B, ai)
+Clan, azlaspye + Cazlon, aslpzc — Clan, aslaspze — Cazlon, aglpec

]
+C[OZ3, 02]a3pzc + C'Olz[as; CY3]PZC - [037 Olg]Olzpo - 0043[@3; o ]
+Cm02[ﬂ, as)as + Cmcas[B, as] — Cmc?[B, azlag — Cme ag[ﬁ, Q).

+Clag, alaspyc + Coslas, aslpyc — Clas, aslaspyec — Cas[as, aslpyc

By inspection, we can drop terms in which the commutators immediately
vanish,

H,S,] = Alas, aalpye+ Alas, ailp.c + Amc?[B, o] (B.42)
+Blay, floapzc + Blag, Bloapyc + Bp|az, ai]pye
+Blas, Blaup.c + BBlas, a1]p.c + Bmc® BB, ai]
+Clon, avaspyc + Caglay, aslpc — Clan, aslagp,e
—Caglay, ag)psc + Caglag, aslpye — Clag, aslaspyc
+Cas, az)asp,c — Casas, az)p,c + Cmc?[B, az]as
+Cmctas[B, as] — Cmc®[B, aslay — Cmcias[B, os)].

We expand all the commutators explicitly,

H,S;] = A(aeoqn — ajas)pye+ Alazoy — ajaz)p,c (B.43)
+Amc*(Bay — a1 B) + Bayfoy — Bayay)pgc
+B(cpBay — Bagan)pyc + B(Basar — Basas]pye
+B(azfon — Baza)p.c + B(Basa; — Bayas)p.c + Bmc*(BBar — Bouf)
0(041012% - 042041043)po —+ C(azalas - 04201301)%0
—Clarazas — azonan)pyc — Clazonan — azaea;)pge
+C (003 — apasg)pyc — Copason — azaaan)pyc
+C(az0n03 — apo303)p,c — Cazosay — agaaas)p,c
+Cmc*(Bazas — agfaz) + Cmc? (ayBas — an0 )

—~Cme*(Basay — asBag) — Cmc*(asfoy — asaf),

o8



and simplify,

[H,S,] = —2Aaiaspyc— 240 a3p,c — 2Amc®ay (B.44)
+2Bmc*ay — 2Bfp,c
+4Caspyc — 4Casp,c.

Remember that we need this to be equal to —ihc(asp, — aap,). So now
we can compare terms. All the terms are linearly independent. In order to
have no mass terms, we must have both A = 0 and B = 0. This leaves us
with only:

4Caspyc — 4Casp,c = —ihc(aspy — ap,). (B.45)

Now we can solve for C:

C=-7. (B.46)

We have determined values for each of the three scalar coefficients A,
B, and C. Substituting these values into our original expression for the S;
operator in line (B.38) we find

b
Se = —2—4—(a2a3 — Q302). (B.47)

Now referring to the explicit representations for « given in Appendix A.2,
we can write this as

s=-2(10 o sl-lesllaw]) ®e

_ ihfl oy, 0 | |00 O
st ([0 [ ]) e
_ih [l doy, O 1o, 0
Sw""Z({() w¢}+[ 0 u%}> (B.50)
hlo, O
Sz—gl 0 o } (B.51)



By symmetry, we will also be able to show that

Lo, O
S, = 5[ 0 o } . (B.52)
and
hlo, O
Sz_i[ 0 Uz]. (B.53)
If we define a new matrix,
g; 0
¥ = [ 0 o } , (B.54)
we may write our operator S as,
S = gz, (B.55)

which is the spin operator for particles of spin %

B.3 Derivation of the Levy-Leblond equation

We begin first with the Schrodinger equation:

h2
ihopp + — V2 = 0. (B.56)
2m
In this form we recognize the operator,
K2 p?
= (ihd, + —V?) = -] = B.

where S is the Schrodinger operator. Now following the heuristic approach
used by Dirac, we want to find a wave equation which is first-order in all

the space and time derivatives. A most general form for this wave equation
could be:

Oy = (AE + cB.p + mc*C)yp =0 (B.58)
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in which A, B, and C are linear operators yet to be determined. In order to
keep these operators dimensionless, we have introduced extra constants m
and c¢. The introduction of the speed of light, ¢, bears no connection with
special relativity, but is used here simply to ensure the dimensionless nature
of the operators, and to allow us to compare with the nonrelativistic limit of

the Dirac equation.
For solutions of (B.58) to obey the Schrédinger Equation,

Sy =0, (B.59)
there must exist some operator

0 = (A'E + cB'.p + mc’C") (B.60)

such that multiplying (B.58) by ©' yields the Schrédinger Equation.
In other words we must have

0’0 = 2mc*S (B.61)

where the arbitrary coefficient 2mc? provides a convenient normalization.

(A'E + cB'.p +mc*C')(AE + cB.p + mc*C) = 2mc®S (B.62)

Expanding out the terms in this expression we obtain

omc’S = (A'A)E? + c(A'B; + BiA)p,E +mc*(A'C + C'A)E (B.63)
+m?c*C'C + mc®(C'B; + BiC)p;
+* Bl Bopl + ¢ B, Byp. + ¢’ B, B,p.
+c*(B,By + By By )pupy + ¢*(ByB; + B, By)pop: +
(B, B. + B}, By)pyp..
By identifying the various monomials in F and p and comparing with the

energy operator in (B.57), we obtain the following set of conditions on the
operators A, B, and C:

AA = 0 (B.64)
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A'B; + BIA 0 (B.65)
AC+C'A = 2 (B.66)

c'C =0 (B.67)
C'B;+BiC = 0 (B.68)
B/Bj+ BB, = —24;;. (B.69)

Now, it will help us to find an explicit representation if we define new
operators (effectively performing a rotation):

C

By = i(A+) (B.70)
Cl
B = i(4+7) (B.71)
!
B = A- % (B.73)
so that
(04 C :
BiBy = —(A'+ 7)(A + —2—) (B.74)
= ~[aas ooy oo
= 1
and
BBy = (4~ )4 (B.75)
A4 L(ACH0A) 4 50°C
~ 1.

Using this rotation we can write a succinct condition on the operators,

B.B, + B,B, = —25 (B.76)

I3

where p, v =1,2,3,4,5.
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At this point it becomes evident that our B, operator must have non-
commutative properties and is, therefore, not a scalar. One of the possible
representations of these non-commuting objects can be found using the Pauli
o matrices:

B;-[i ?n} B{::g ﬁ”} (B.77)
B, —»[é _?i] B, = -é _?Z] (B.78)
Bs :[ég} Bl : ?_1} (B.79)

Thus our original coefficients are:
i3] a i) e
&:[g 3”} a::i'fﬂ (B-81)
0:[8fg] O::gg] (B.82)

The reader may check that these matrices satisfy the conditions stipulated
in lines (B.64) through (B.69). Since the Pauli matrices are of rank two, the
solutions to our wave equation must have four components which we may

write as
m=<¢> (B.83)
X
where ¢ and x are each two-component spinors.
Substituting our coefficients into our original operator,
(AE + cB.p+mc*C)¥ =0, (B.84)

we finally have
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201 (#) o]l 6P (4)+]8 ] (2) -0

{ C(E ~cop) ] ( ¢ ) = 0. (B.86)

o.p) —2mc? X

And our final equation, which we refer to as the Levy-Leblond equation
is

—c(o.p)p +2mc*x = 0 (B.87)
E¢—clop)x = 0.

If we set the determinant of the matrix in line (B.86) to zero we obtain

p’c® —2mc®E =0 (B.88)
p2
E——=0. B.
2m 0 (B:89)

This is the hamiltonian for nonrelativistic wave equations.

The preceding derivation follows the same arguments presented in Levy-
Leblond’s original paper. However, Levy-Leblond chooses a slightly different
explicit representation for the matrices that satisfy the conditions of (B.76),

BB, + BLB, = —25,,. (B.90)

Consequently, Levy-Leblond’s final equation, although mathematically
equivalent, is of a slightly different form from the equation presented here in
line (B.87). Levy-Leblond’s actual equation reads
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(o.p)d + 2mx
E¢ + (o.p)x

where he has chosen ¢ = 1.
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Appendix C

Derivation of Probability
Currents

C.1 Probability current for the Schrodinger
equation in an electromagnetic field

First we define the probability density,

p =P i, (C.1)

and then differentiate the density with respect to time,

Owp = Y Otp + Yo™. (C.2)

Now we introduce minimal coupling to the Schrodinger equation for a
free particle in an electromagnetic field:

eA)?

(ih0; + eB)p = @-;m—zp, (C.3)
First we expand the operator on the right-hand side,
9 h h
(p—eA)y = (GV—eA)(TV —eA) (C.4)

= -’V +iheAVY + iheV(AY) + A%
= —hAV) + iheAV) + ihe(VA)Y + ihe AV + e? A%
—h2V24 + 2ihe AV + ihe(VA) + > A%,
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Substituting this operator back into the Schrodinger equation,

ihOyp = 2-17;1— [—h2v2¢ + 2ihe AV + ihe(VA)y + 62A2¢] —edy, (C.5)

and multiplying by %* we find

1
ViR = %1/)* [—h2V21/1 + 2ihe AV + z‘he(VA)zp] + 2 A%p*1) — el * Prp.
(C.6)

We take the complex conjugate of (C.6),

—Yihdp)* = 5%1/1 [—rﬂv?w* — 2iheAV* — ihe(VA)w*] +e2 A% h—erp* Do

(C.7)
Now subtract equation (C.7) from equation (C.6),
h[* O + Yo*] = 2—177“1 [hz(l/)v21/)* — *V) (C.8)

+2ihe A(Y*VY + pVY*) + 2ihew*1/1(VA)} .
We can use (C.2) to substitute on the left-hand side of this result,

thdp = %[W@DWW—WVZ ¥) (C.9)

+2ihe( AP VY + APVy* + ¢*¢VA)]

0ip =~ (BVR" ~ V) + SV (AYY) (C.10)

dp = —V. | v — o) + V. [E(Ave) (C.11)
2m m

o+ V. [%(ww* Ty - %(Aww)] —0.  (C12)
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In this form, we can compare with the continuity equation:

Op+V.J=0. (C.13)
We can read off the probability current:

JschrodingerEM = %WVT/J* —Y*Vy) (Ay*y). (C.14)

€
m

C.2 Probability current for the Pauli equa-
tion in an electromagnetic field

We begin with the Pauli equation for an electron in an electromagnetic field:

1 o €h .
We make the usual substitution p — %—V,
L(hg a) b B — cd|y = ihd (C.16)
2 \ 3 e 2ma. e = tho. )

Just as for the Schrodinger equation, we multiply both sides by 9! to get

J 1 (h > eh oot
0 5 ;V-eA) —%U.B—eq)};b:zh@/} oy  (C.17)

2
Wé%i (?v —eA) W+ ot (

—@—U.B — e@) ¢ =ikplo.  (C.18)

2m

In order to simplify this expression we must expand the operator (%V —
eA)?. We shall perform this expansion separately:

2
Gv - eA> P = —h*V) + 2iehA (Vi) + ieh(VA)y 4 e2A%),  (C.19)
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and then substitute into the equation. This yields

W';E( — B*V*1) + 2ieh A (V) 4 ieh(VA)yp + e2A21/)) (C.20)

+op! (—%U.B—e@) Y = yYlindu

2 - .
sty A Ty) 1yt )y (©21)

o (iA2~ i;.B_egp> v = ylino.

2m 2m

Now take the complex conjugate of equation (C.21), noting that for ar-
bitrary operators A, B, and C,

(ABC)' = C'BA', (C.22)
R? ieh ieh
—_ N oy Ty BN |
(Vg = (V¥ —Ayp -y o (VA (C.23)
2 A
4ot <;—mA2 - —2%1—0.3 . e<1>> Y = — (8.

Subtracting equation (C.23) from equation (C.21) leaves

h2

2m

{(vzww - w*(vzw)] (C:24)
vt {m(w) F U (VA + (W*)A“/’} - [ww ’ (a"‘M |

If we divide through by % and group terms, this can be more neatly
written as

-~ [(vw* o — (V%)} + oV AY) = [Wa“b + (@) w} (29

69



But we remember that

Bp = Y1o + (atqbf)% (C.26)

so we have

o [Vl - ()] + V@AY =0 (20

Again, we have conveniently manipulated the right-hand side to be the

exact time derivative of the probability density. Minor rearrangement of
terms will allow us to compare with the continuity equation,

e

m

0+ | (T - v - Swan] <o (o)

Comparing this with the continuity equation,

Op+V.JI=0, (C.29)
suggests the probability current to be

€
m

Tewutens = 5= |(V61 — 01 (V)] - (01 Av) (C.30)

C.3 Probability current for the Dirac equa-
tion
First we define the probability density as

p= Ty (C.31)

so that
Shp = (O,¥)T + Ul (9,1). (C.32)

Now we begin with the Dirac equation as found in equation (B.31):

Y'p, ¥ — me¥ = 0, (C.33)
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where
Py = 1ho, (C.34)

1
80 = Zat, 81 = Ox, 82 = ay, 63 = 8z

Let us remove p = 0 from the sum in the Dirac equation, and express it
explicitly,

1
ih [yozat + 750 ¥ — me¥ = 0. (C.35)

Multiply by ¥ where
U = Uiy, (C.36)

Also notice that since 4° is Hermitian,

(") =1", (C.37)

we may write the Hermitian conjugate of U as

() = (T1°) = 1w (C.38)
So, multiplying (C.35) by ¥ we get
Ui [y‘%at + 7’“6k]\11 — Ume¥ =0 (C.39)
3?@70(@\11) RV (9, T) — meTl = 0 (C.40)
%qﬁ(atqf) + RV (3, D) — mel T = 0. (C.41)

Now we take the complex conjugate of (C.41),

*%(@‘I’T)‘I’ — RO ) ()T — meTty T =0 (C.42)
- )

-—%(atqﬁ)qf + B3 T — el W = 0 (C.43)

—%(@‘1”)‘1’ — R0 V)YV — mcTT =0, (C.44)

where in line (C.43) we have used the fact that v* is antihermitian:
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() = —*.
Subtracting (C.44) from (C.41),

ih

Cc

[U1(0,%) + (8,91 ¥] + iR [Tv* (8, 0) + (8, T)7*T] =0,
and using (C.32) to substitute for the first term on the left,

1 = -

O+ [17*(00) + (@)1 ] =0,
we arrive at

8“0 + akc(\i”ykll’) =0.
Comparing (C.48) with the continuity equation,

atp + 8ka = O,
we may peel off the components of the probability current,
']lk)irac = c(\Ilryk\Il)

This result may also be expressed as

JE e = c(TTHY04F D).

Dirac

And then using the fact that

we have

JDirac = C(\I’TO[\I/) .
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C.4 Probability current for the Dirac equa-
tion in an electromagnetic field

We begin with the Dirac equation:

Y'p,¥ —me¥ =0, (C.54)
where
pp = tho, (C.55)
Oy = %at, 01 = 0Oy, 0y = 0, 03 = 0.

Now we take this equation into an electromagnetic field using minimal
coupling:
e
Po—>pot -9, and  pr — pp — €Ay

This yields
(00 + B)T + (s — AT — mel = 0, (C.56)
Now we use the definitions for p, given in (C.55):

’YO%(ihat +ed)¥ + AE (thdy, — eAR)V — me¥ =0 (C.57)

%70(87&\1]) + i (8, T) + Zcbfy‘)‘lf —ey* A4 —mel =0.  (C.58)

We multiply by ¥ where B
U = wiy0,

Also notice that since 4° is Hermitian,

(") =1, (C.59)

we may write the Hermitian conjugate of ¥ as

() = (Wh?)! = 10, (C.60)
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So, multiplying (C.58) by ¥ we get

\Ilzf—L'yO(Bt\ll) + Wihy* (0, ) + \II—Z@VO\I/ — Ve 4,0 — Umcel =0 (C.61)
c
o i . i
fc—qﬁ(aﬂ/) + ihTE (0, T) + anpw — eTyF AT — mel¥ = 0. (C.62)

Now we take the complex conjugate of (C.62) to get

J(7;(('%‘1”)@’ — ih(8 ) (vF) 10 + E@\Iﬁqf (C.63)
—eUT A (V)10 — melT = 0
—%(@\I}T)\If — RO U )T + -‘cf@\m (C.64)

—eVAY* T — medT = 0
where in line (C.43) we have used the fact that v* is antihermitian:

(Y = —*. (C.65)
We subtract (C.64) from (C.62),

th

c

[0 (0,%) + (8,1 ¥] + ih[Iv* (8, T) + (8, T)7F ] = 0. (C.66)

We recognize that the first term on the left contains the time-derivative
of the probability density,

1 - _
~Op + (97 (8, 0) + (B T)7* ¥ = 0. (C.67)
We can rewrite this as

Bup + Opc(UY*T) = 0, (C.68)

and compare with the continuity equation,

Oip + O JF = 0. (C.69)

From this we may peel off the components of the probability current as
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Jllc)iracEM = C(‘T’W’k‘l’) (070)

Notice that the vector potential A does not appear explicitly in the fi-
nal expression for the probability current. The vector potential is however
implicitly present in the wave function ¥, since ¥ is a solution to the Dirac
equation where A affects the solution.

The probability current may also be expressed as

Jllc)ira.cEM = C(\IleYOfyk\Ij) (C71)
And then using the fact that

Ok = ok, (C.72)

we have

JDiracEM = C(\IITQ(\IJ) (073)

C.5 Probability current for the Levy-Leblond
equation in an electromagnetic field

First we define the probability density,

p=¢le, (C.74)
so that

Bip = ¢'(0e9) + (Be9") 9. (C.75)

We will need this to solve for J in the continuity equation,

8ip+V.J = 0. (C.76)

Next, we begin with the Levy-Leblond wave equation:

E¢—clop)x = 0 (C.77)
—c(o.p)d +2mc*x = 0.
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We take this equation into the electromagnetic field using minimal cou-
pling, where p =+ p —eA, and F — FE + e®. With these substitutions, the
wave equation becomes

(E+ed)p—clo.(p—eA)]x = 0 (C.78)
—clo.(p —eA)] ¢ +2mc?y = 0.

And now after making canonical substitutions for E and p, we have

(ih8t+e<1>)¢—c[a. (—?V—eA)}X _ 0 (C.79)

—c [0. (?V — eA)} ¢+ 2mc*xy = 0.

From the top line of the wave equation we see that

ic h 1€
8¢ = —coVx+ %(U.A)X + %quﬁ. (C.81)
We can use this equation and its adjoint,
0" = —cVx'.o — %XT(U.A) - Z—;ng@, (C.82)

in our expression for d,p in equation (C.75),

Op = ¢ [—ca.VX + 3-:;(U.A)X + %@gﬁ] (C.83)
+ [—CVXT.U - %XT(G.A) - %(ﬂ@ .

We can express this result solely in terms of ¢ by using the second line
of the wave equation (C.78) to solve for ¥,

X = s [o(p - eA)]d (C84)
X = —%0. (vqs)—QLT;w(a.A)qs. (C.85)
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Substituting this expression for x, along with xT,

f_ ih

X' = (VqﬁT) o— ——ngf(a A), (C.86)

2me
into equation (C.83) gives

Bp = ¢T[c(a.V) [—Z—ca (v¢)+§-§70(a.A)¢] (C.87)

) | 0 (V) + e (0-A)0] + 0]

o o+ -5 o
+[cv< 5= (Ve).0 + o .A)) o

(e (Voo 5t (o)) (0.4) - 0o

First notice that the ® terms cancel, and then after expanding out all the
terms we find

dp = %¢T(U.V)a.(v¢)+§%¢f 0.V (0.A)] (C.88)

+§%¢+(0_A) [0.(V¢)] ~ (0.A)%
5 (V[©4)] )6+ 5 (V[0.8)] 0) ¢

2m
+5— [(Voh).0] (0-4)9 + " t0.A)2

atp = 5—7’7% l:(qﬁTO'iO'jvi(VjQS) — Vi(VijT)Ujo-i) ¢] (689)

€

= [¢T[ (034,8)] + 61 (0,4,) [05(V:9)]

+9. [61(0345)] 36 + (Tl )]

In the first line of equation (C.89) we can add and subtract convenient
terms so that we can bring one of the derivative operators out on the left
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side. Also, in the second and third lines, we explicitly evaluate the derivative
operators acting on products of functions, and express them as sums of the
derivative operator acting on each individual function:

ih
2m
gm0 V)6 + iy 41(710)
+¢10,0:4;(Vig) + (Vid")oj0:A;6
+¢10,0i(ViA;) + (Vz¢T)ffz‘UjAj¢]

o = [ (#10:03(7,6)) - ((vjas’f)ojoiqb)] (C.90)

8tp = ﬁV {¢ UtO'J(V ¢) (VjQZST)O'jUiQS:I (091)

e
+o Vi [¢TUinAj¢ + ¢TUjJiAj¢]

b = [—7’% [600;(736) — (V;8)0,04] (C.92)

m

+§e— [gﬁ oo A;¢+ ¢T0'j0-Aj¢)] } :

We compare this with the continuity equation to find

JLevy—LeblondEM = % [(VJW)UjU(f) - ¢T‘70j(vj¢)] (0-93)
—5% 610046 + ¢'0j04,0)]

JLevy—-LeblondEMi = % [(Vj¢T)Uj0i¢ - ¢T010j(vj¢)] (0-94)
—57’)-’; [QSTO};UjAjgﬁ + ¢T0'j0'iAj¢)]
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th
JLevy—LeblondEM; = 2m [(Vj¢T)Ujai¢ - (bTUz‘Uj(Vjﬁb)] (C.95)

&
_5_77—7, [qf)TAj(ﬁ(O'in -+ O'jdi)] .
But,
003 = 5”1 -+ ieijko'k (096)
0j0; = 5ﬂ1 - ifijkgk;
S0,
ih .
Jievy—LeblondEM; = o [(Vi(/ﬁTW - ¢T(Vi¢) - Zejki¢T(vjak¢) (0-97)

—iéjki(vjfﬁf)tfk(/ﬁ] - Q% (26 A0)

ih
Jievy~LeblondEM; = g;n— [(V@T)Qﬁ - ¢T(Vi¢)] (C.98)
h
eV (910x6) — — (4 Ai9)
Jievy—LeblondEM; = ‘22“?”‘ [(Vi¢T)¢ - ¢T(Vz’¢)] (C.99)

+% [V x glog] - % (¢'Ai0) .

Our final result is

) h
Teeesranonams = o [(V8)6 = 81 (V8)] = SA(S19) + 57 x (¢109).

(C.100)
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Appendix D

Non-relativistic Limits

D.1 Non-relativistic limits of the Dirac equa-
tion
First we write the Dirac equation:

[(oz.p)c + ﬂmc2] U =EV, (D.1)

where £ is the total relativistic energy,

£ =FE+mc. (D.2)

We begin by expanding the matrix multiplication,

[(0-(1)))0 wﬁk](i)*[ﬂf _fwz](iﬁ)#(ﬁ) (D.3)

(c.p)ex +mc*p = & (D.4)
(op)ep —me*x = Ex

(o.p)ex +mc*) = (E+mc®)y (D.5)
(o.p)cy —mc?x = (E+mc®)x
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(o.p)ex = Ev (D.6)
(o.p)cy —me®x = (E+mc)x.

In the nonrelativistic limit where E < mc?, we can make the approxima-
tion

E +mc® =~ mc?. (D.7)

Using this in the second line of the wave equation yields

(op)ex = Ev (D.8)
(o.p)cp —me*x = mc’x.

And now rearranging terms brings us to the Levy-Leblond equation,

—(op)p+2myx = 0 (D.9)
E¢—(op)x = 0.

From this point we require only a few line of calculation to arrive at
the Pauli equation. Solving for x in the bottom line of the Levy-Leblond
equation yields

_ (op)c
- 2mC2 10» (D].O)

which we can substitute into the top line of the Levy-Leblond equation,

g. . 2
B — (—132)—(77%@‘3—@& =0 (D.11)
By — %w =0. (D.12)
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This is the same form of the Pauli equation as was derived in equation (B.16).

D.2 Nonrelativistic limit of the Dirac proba-
bility current in an electromagnetic field

We begin with the Dirac current in an electromagnetic field:

Ipirac = c(¥Tal), (D.13)

where ¥ is a four-element column matrix consisting of two two-component

spinors i and ¥,
¥ = ( v ) , (D.14)

and

Or = YoYk- (D15)

We place these definitions in the expression for the Dirac current and
perform the matrix multiplication:

Ipirac, = c[( ¥ x1) ( fk Uok ) ( ;/2 >] (D.16)
Inirac, = <[ ¥ x') ( g:f; ) (D.17)

']Dira.c;c = C[wTUkX + XTakw]- (DlS)

Equation (D.18) is still a relativistic expression for the Dirac current. We
must examine the Dirac equation to see how we shall reduce this expression
to a nonrelativistic limit. Following the same methods employed in Section
3.9.3 we arrive at the following approximation for x in the nonrelativistic
limit:

0 =~ (0.p)y — 2mey. (D.19)
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Introducing minimal coupling, we rewrite this as

Xz——%N§V—eAWL (D.20)

We will substitute this into the expression for the probability current in
line (D.18),

1 & 1 & f
I DiracEMNR, = € [w‘tak [%Ui(;vi - eAi)T/J] + [%—COE(;W - eAz')%/)] UW} :
(D.21)
and expand out all the terms,
o = oV — oA (D.22)
DiracEMNR, — om kUi Vg om, 0044 .

TN o ot — - bt A
+2m (Vﬂﬁ )Uﬂk@/) 2m'¢ UzUkAzw-

Now we remember the properties of the o matrices from Appendix A.2,

0,0 — 5ik+'i5iklal (D23)

Or0; = Op; — i€ix00,
so that our equation becomes
ih

JpiracEMNR, = —%¢T(5ki — i€i01) Vi (D.24)

(& .
—%W((Ski — t€i07) At

1h ) e .
+%(viwf)(6ik + i€t o) — %T/)T(@'k + t€ik01) A,
We can expand out each term:
ih fi
JDiracEMNR,c = —_“va%b - _lfﬁﬁiklﬁlviw (D-25)
2m 2m

e ie F
"'2'_¢1Ak7’/1 + —leorAih + *Z“(VMDTW
m 2m 2m
h e ie
(Vi emop — %WAM/) - %WQWZAM,

2m
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and simplify,

JDiracEMNR, = i ((VkT/JT)TP - va?/)) - %WAW (D.26)

2m
h
5 (WlemoVip + (Vi) emon)

Tomn, = 5= ((Ved)y —9'Vi) - Sylay  (D27)
+-2—:L—n* (@bTEiszzVﬂ/J + (Vﬂ/ﬁ)ﬁizkﬁﬂﬁ)
(Ve -9 Ve) — Syt (D29

+§% (q/ﬂ‘[v x ol + [V x Wor]kz/)) )

JDiracEMNR, =

These three terms form the final result for our nonrelativistic limit of the
Dirac current:

I DiracEMNR = % ((V@/)T)lﬁ - WVI/)) - —%@bTA@/}+ %V x (Wlowy).| (D.29)
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Appendix E

Solutions to the Landau
Problem

E.1 Solution to the Schrodinger equation for
an electron in a homogeneous magnetic

field

In order to establish a homogeneous magnetic field, we choose the following

vector potential:

A = B()IIIS’,

which gives rise to a magnetic field
B=VxA= Byz.

Now the Hamiltonian is given by minimal coupling to be

1
H=—(p—ecA)
Zm(p eA)”,

so that the time-independent Schrodinger equation becomes

(b~ eAY) = By,

Substituting for p and A we get

h 2
! <;V - eBOQJSr> W = Ev.

2m
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Expanding the operator yields

?

1 [h
5 (—V — eBofES’> (%V - eBo$y> v =FE¢ (E6)

2
L |y - 200 g gy - Dol
2m (

o
26B0
ih

(Va9) + e?Béx%] — By (E7)

2
.__h__ [Vz’l/l -+
2m

By
h

20y — (S2LPa%] = By (B9

We shall attempt to solve this differential equation using separation of
variables. We hope to find an answer that may be expressed in the form

= X(2)Y(y)Z(2)- (E.9)

With this expression for 1/ as our ansatz, the Schrodinger equation (E.4)
becomes
hQ

T [X”YZ L XY"Z+ XY 2"+
2m

26B0

2B, ebo
ih

xv'z - (& )2:1;2XYZ] = EXYZ

(E.10)
Dividing by XY Z and rearranging terms we have

R [X" YY" Z" 2By Y' (eBp\® ,
—‘%[7*‘?*7* oy (5) 2| =F @

n z" h [X” Y" 2By Y' (eBo\® ,
"z Pt | X TY (T) “l

~t vt 5 °y (E.12)

om Z + 2m
Clearly, the left-hand side is dependent only upon z, while the right-hand

side is dependent only upon z and y. Thus both sides must be equal to a
constant. Let us define this constant to be E,. Then

-%—ZZ’— ~E, (E.13)
AR 2”;2]5 27 = 0. (E.14)

This gives a solution for Z(z),
Z(2) = e** (E.15)
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where

+\/ImE,
k, = —h”L (E.16)

Notice here that there is no quantization of the energy in the z-direction.
The particle is free to travel in either the positive or negative z-directions.

Now taking the right-hand side of (E.12), and setting it equal to the
separation constant F, we get

B2 [X" Y" 2B, Y’ eBy\ 2
E,=E+ — |—+ — — (=) 22
-I-2 [X+Y+z'th (h)a;} (E.17)
Now we let
E'=FE—-E,, (E.18)
so that
B [X" YY" 2B, Y eBy\ 2
EI:_____ o i - _0> 2
2m[X+Y+ih v (n x] (B.19)

There is no explicit dependence upon y, and thus we may express Y (y)
as
Y(y) =™, (E.20)

where k, is any real number.
Substituting this into (E.19) we find

_2% {XY R+ 2‘;50 (ik,) - (e_g-‘l 2:1;2} —E  (B21)

_ _27% X" 4 Zh; [kQ 2€Bo (630)2 562} X=FEX (E.22)
X" 2h— (—? —ky>2X EX  (B.23)

__271_; X4 _2% _g_ ( eBZ > X=EX  (E24)

_2% X % :_B_ ( 6BO> X=FX (525
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Now we define the frequency, w,, and the z-offset: =z,

BB() hky
e T = — E.26
“ m To= eBy ( )
This will give
R 1
—%X" + 5w 2z —20)?X = E'X. (E.27)

This result is in the form Griffiths uses in his book ” Introduction to Quan-
tum Mechanics” on page 32 equation [2.39] for the Schrédinger Equation for
a simple harmonic oscillator. Using his results on page 40 in equation [2.67]
we arrive at the energies:

1
= (n+ §)hwc. (E.28)
Our total energy then is
1
Eng, =(n+ §)hwc + E, (E.29)
E (n+ l)h + i k2 (E.30)
n = {7 — (,Uc K, .
ok 2 2m

The energies are infinitely degenerate in &y, and two-fold degenerate in
k,. The values £k, yield the same energies.

Now to find the resulting wave functions, we solve equation (E.27). The
solution is

H,(£)e €1? (E.31)

mw A\ Y41
Th ) 2nn!

() = (

where & = /%2 (z — zo) and H, are the Hermite polynomials.
Thus our original wave function, ¢ = X (2)Y (y)Z(z), is:

mwc>1/4 1

_£ % tk.z
w”:kyykz (xayvz) == ( s \/WHn(g)e 5 +ikyy+ik 7 (E32)
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where

eB MW,
- —T_n—o— € = h (‘/E - xO) Ty

_ Py
—6B0'

We (E.33)

A most general solution is a summation over the three quantum numbers
n, ky, and k,. Remember that n is an integer, while &, and k, are continuous
variables.

mw\ Y4 & e o0 1 e
\Il(x7y7z) = < ’ﬂ'h ) Z/ dky/ dkz Cn,ky,k;—%Hn(é—)e §2_+7‘kyy+zk:zz
n=0" -0 vV !
(E.34)

Now we proceed to analyze the probability current for the electron. We
calculate the current vector using the equation

ih ., . 3
J”’ky7kz _%[Q'bn,k‘y,k; vwn,ky,k'z - V¢n,ky,kz dj":’“ya’“z] (Ego)
€ *
_Ewn,ky,kz Aty g, k.- (E.36)

The results for the first few energy levels are:

MW, _mwe (p_p 32 hk
JO,ky,kz($7y>z) - h e * ( o) |:07 ’_Wc(aj - 370)7 mz:l (E37)
1 [, TN, 2 e SR hk
Jka,kz(fI?,y,Z) = 5 =k ( — (LE - $0)) e =k ( 0) [07 —UJC(IE - xg), ’ITI,Z:I
(E.38)
1 [muw, MW, 2 meep hk,
Tasee, ) = 1yt () — ) —2) e [0, = 20),

(E.39)
Or, for arbitrary n we have
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L _g2 1B
Jn’ky’kz(x) = onpl (Hn(f))Qe ¢ {07—0%5, %RZ}

where

eB MW, Kk
we = &=/ (@ —20) 7= 5

Notice that the currents are functions of z only.
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