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Abstract
Techniques from Supersymmetry (a theory in particle physics) are applied to nonrelativistic
quantum mechanics to develop a general method of finding ladder operators for exactly solvable
potentials. Bound States in the Continuum are studied, and the same techniques from
Supersymmetry are used to generate potentials which permit bound states in the continuum.
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Applying Supersymmetry to Quantum Mechanics
with a study of
Bound States in the Continuum

Introduction

The following work is a contribution to a better understanding of nonrel-
ativistic quantum mechanics. It will explore techniques for factorizing and
solving Schrédinger’s equation for various potentials. It will also explore
unusual potentials such as potentials leading to bound states within the con-
tinuum, and ways that our new technigues for solving Schrédinger’s equation
can help us create such potentials,

Supersymmetry is a theory in particle physics which is used to predict
the masses and various other quantum numbers of the fundamental particles.
Techniques similar to those used in supersymmetry can be used to factorize
and solve the Schrddinger equation. These techniques are known as Super-
symmetric Quantum Mechanics or SUSY QM, and will be explored in detail
in the first part of this work.

Localized potentials, such as that of the hydrogen atom, usually have
several discrete bound states at negative energics, i.e. below the asymptotic
value of the potential, and a continuum of unbound states at positive energies
(Ballentine, p.205). However. Wigner and Von Neuman discovered that lo-
calized potentials may be created which permit discrete bound states within
the continuum and with positive energies. (J. von Neumann). These states
are kuown as bound states in the continuum, or BICs. In the second part of
this work we will discuss these potentials, their properties, and how we may
use supersymmetric techniques to generate them.




Supersymmetric Quantum Mechanics

Typical solution methods for finding energy eigenvalues of the Schrédinger
equation include guess work and expansions in a power series. Goswami for
example uses these two methods in his text. Unfortunately the first of these
options is not systematic and the second is mechanical and lacks physical
insight. However, in some cases, such as the simple harmonic oscillator, an
operator method can be used to greatly simplify the work and still reliably
yield the energy eigenvalues. If this method of operators could be expanded
to all or even most exactly solvable potentials, i.e. potentials for which we
can form an exact analytical solution to the Schrédinger equation, it would
be very useful. A way to do this can be found through supersymmetry.

The techniques of supersymmetry can be applied profitably to regular
nonrelativistic quantum mechanics. These techniques allow us to solve di-
rectly for the wave functions of many potential wells by generalizing the
operator technique used to solve the problem of the simple harmonic oscilla-
tor. '

We begin studying supersymmetry by looking at the Schridinger equation
in one dimension. If we take /i = 1 and m = 1 then the equation reads as

_d%d,(w) + V(2)p(e) = By(z)

for an arbitrary potential V(z) where ¢:(z) is any eigenfunction of the equa-
tion and ¥ is the energy eigenvalue corresponding to that eigenfunction.
If we know any of these eigenfunction we can solve for V(z) in terms of
that eigenfunction, and its eigenvalue. We will do this for the ground state
eigenfunction, but the method can be applied to any eigenfunction. We will
discuss excited states more when we discuss bound states in the continuum
(BICs). The potential is then expressed as

N

Viz) = o(z) + E,

 tpolz)
and the hamitonian can be expressed as
d2 g
I:I = _Hd_g;i + % + ED.




The eigenvalue equation can then be written as

Hij(z) = Ei(z)

aQr

71)

We wish to look for ways fo factorlze the left side of this equation. To
begin we will choose a simple operator A such that Aye = 0. One simple

operator that satisfies this relation is A = E%:' - %’Dl We can then choose
our pha.se such that 1p(z) is real, and write the hermitian conjugate of A as
At = _E — =, We multiply A and AT to get
d2 M
A=l %
o

which is just the left side of the equation above. So we will define a new
hamiltonian H(-) = H — K. This is simply a rescaling of the potential
energy such that the potential energy of the ground sate is zero. We can now
write

AtA = g

and

AT Ay = EDpC) = (B, — Byl

This leads to an interesting observation. If we multiply both sides of the
equation by A from the left we get

AAT A () = ABOP (@),

Then by applying the associativity of A on the left and the linearity of A on
the right we get
ANV (4 () = EO (AP Ha)).

In other words we have found a new hamiltonian H™ = AAT with the same
eigenvalues as H(~) (except for the ground state which has disappeared) but
with eigenfunctions modified by the the operator A. This can be expressed
in the following manner

E?(¢+) E n+1




PP o Al

Our next task is to normalize () which we do using Dirac ket and bra
notation. Assume

[65) = cAli3))
where ¢ is a complex constant and
() =1
(Pl = 1.
With a few manipulations we get
(W) = (cAwiZeAvRh) = e (02 AT AR = 1P B G

=B = 1.

Choosing ¢ to be real and positive we get

e= (B2

By a similar process we can start with an eigenfunction of the H) op-
crator and operate fo the left with the AT operator to get eigenfunctions of
the H-) operator

HO (@) = AT = B

A]L(A}ﬁ)-zjyfj) - 14TET(L+)¢?(Z+)
AT AT = B ATy,

This implies that
i) o ATy,

which can be normalized as we did above.
So we see that while the A operator changes eigenfunctions of H(-) into

eigenfunctions of H{*), At changes eigenfunctions of H(*) into eigenfunctions
of H). Our findings can be summarized in the following equations:

B = B 2)
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-1 B
B = (B5L) 77 anld) (3)

P = (B) T aTyn, (4)

Because of this relationship between H*) and H() we refer to them as
supersymmetric partners or a supersymmetric pair.

Suppose that we were to do the same thing as before, but this time treat-
ing H*) as our starting point. We would then find another hamiltonian,
with one fewer bound state, since the ground state of H) will have disap-
peared, and we could transform its eigenfunctions to the eigenfunctions of
H™) as we did between H" and H(5), To illustrate this let us call the first
two hamiltonians H{g*) and Héﬂ then

2
H(g—) = AtJ)r Ao = !

. da?

+ Vo(z) — Foe

d2
1§ = Agal = — o5 T V(@) = Boo

where the first index on the energy represents the potential it is in and the
second represents the eigenstate of the hamiltonian corresponding to that
potential,

If we start with eigenfunctions of H[()H we can show that

wéﬂw |
—ar = ie) = B
1y
where By = Eyy. We can then define
d ey
diL Tpo
and 9
P
1 dar Azp[(f") '
With these relations we can show that
_ 1 d*
B = AT4, = —= 5 1 Vale) = Eio.

o

b




Therefore
HY ~ g = Eio— Eoo

or

Hf = Hf 4+ (Ei o — Fop)

The same thing can be done with the ground state of Him to get Hé_) and
Hé“. By recursion we obtain a series of potentials obeying the relationships:

H,;SH = Hg(_:l) + (Eep1,0 — Eep) (3)
) = Al 4, (6)
HY = A4 (7)

If the various hamiltonians correspond to potentials with similar forms.
i.e. Ve(z) = V(ay,x) where a; is a set of constants depending only on £ then
the potentials are said to be shape invariant (F. Cooper, p. 289-290). As a

result, we can find a general form for Ay and A; and use it to find the energy
eigenvalues and eigenfunctions of each hamiltonian in the series.

To illustrate this I will introduce some notation. The integer € will be an
index to label the potential V;{z) that we are working with. and HE(_) and
H tgfl) will both correspond to this potential. The index n will be used to
designate which eigenstate in the potential V; we are concerned with, Thus,
hamiltonians, potentials, and the operators A and Al only need to be labeled
with £, but eigenfunctions and eigenvalues must be labeled by both ¢ and n.

The energy scales for the different hamiltonians differ by a constant, be-
cause the ground state of each H; is defined to be zero. We can find the
constant from equation (5)

H:gH - Hé;f = E€+1.0 - Ef,o = Re+1-

Where Ryp1 represents the difference between the energy scale of the two
hamiltonians corresponding to Vi.;. From this we can find the energy level
of the ground state of each potential in terms of the energy scale in the
original potential, namely

'
Eeo = Eyo+ Y. R

i=1




In this formula By is the energy level of the ground state of our original
potential V(z). We can generalize equation (2) and find that, Etrn = Eep1n-1.
We can apply this formula recursively to find the energy level for any excited
state in terms of the energy of the ground state ol another potential, E,, =
FEpyng. Thus we find that in general

£-n

BEen = oo + Z 1%) v (8)

We can go through a similar process to find ¢, for any £ or n. We start
from

Apbro =0 (9)

which is a first order differential equation that can be solved and normal-
ized rather easily. We also know that given a normalized eigenfunction of
a hamiltonian corresponding to V; we can find the normalized eigenfunc-
tions corresponding to Vpy1 and Vo that have the same energy through the
relationships

Yep1in1 = (Ef,n — Ez,o) P Agben (10)

Petmpr = (Ee,n - Ez—z,o)mgﬂj_ﬂ’e,n- (11)

These equations are generalizations of equations (3) and (4). We can use
equation (11) recursively to find any eigenfunction ¥, from the eigenfunc-
tion eyno. This yields

¢

wﬂ,n = { H [(Ef,n - E‘i,O)AJ] }7/)6’+n,0- (12)
1=f+n—1

In this way we can find ladder operators that allow us to find all of the energy

levels and eigenfunctions of any shape invariant potential. The index is writen

in descending order because the different A;r operators do not commute and
we must operate with those of higher £ first.

I will now illustrate the method with three examples: a simple harmonic
oscillator, a square box, and a hydrogen atom.




1. Simple Harmeonic Oscillator

The simplest illustration of supersymmetric techniques is the solution of
the simple harmonic oscillator

Wiz) = %kxg

The constant % determines only the width of the potential, and is not par-
ticularly interesting in this example so we will choose & = 2 so that the

hamiltonian becomes .

_ e 2
H= dm2+:v.

The ground state to this equation can easily be found to be
1 z?
ap(a) = (r)  exp(- )

which has an energy of Fgp = 1. The operators Ag and Ag can be found to

be

d
Ay = — —
7 dr ¥
b4
Ao = da
Then the hamiltonians become
_ d?

7 i
D HES = _z + a1
dz?
We notice that both Hé_) and H[()H have exactly the same form, except that
they differ by a constant 2. We can then reason by induction and find that all
of the potentials are identical except that their zero points have been shifted,
and that all of the energy levels differ by a constant Ry = 2. Thus we find
from equation (8) that

Ey=FEy+ > Re=(2n+1)

=1
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and from equation (12)

0 ' 2 n 2

Yn = [ II {[(2n+1)—(25+1)}“%,4’f}] (w)_%‘exp(—%) e [noen] % At exp(—%)
t=n—1

We recover therefore the results obtained from the conventional operator

treatment of the simple harmonic oscillator.

2. The Square Box

Another interesting potential to which supersymmetry may be applied is
the square box. For the sake of simplicity we will take a box with a potential

defined as

Wiz)=<0, if0<z<m

{ oo, ifx<O;
co ifz>m7.
It is then very simple to find the ground state eigenfunction ¥ = sin(z),
which we will leave unnormalized for simplicity. Then the operators and

hamiltonians become.

Ap = — — cot(z)
¢ I O 4
1 d I PR O
Ay = ——— — cot(z) e
° dil' 4,(‘}‘ LER TS
: ¥

27 = Ocsc’(z)—1 = )

H(S'H = 2csct(z) — 1 wﬁyﬁ 3“51

The first feature that we notice is that the supe%s%&%etric technique
gives us a good way to visualize a square well. A square well is nothing but
a csc?(z) function with a zero coeflicient multiplying it. Indeed, if we graph
Acsc?(z) and let A go to 0 slowly, the graph does indeed approach a square
well (See figure 1).

The second feature that we notice is that H{g—) and H, é+) no longer differ by
a constant, but by some factor multiplying the csc*(z) function. However,

both are still csc?(z) functions. We need to find operators A, and A}L for
which '

Al g = 1)




ApAl = g
and from equations (5), (6) and (7)

AEAI = A;r+1Af+1 + Rg+1. (13)
(Guessing by the form of Ag and A;[ we try
A= 2 (8 cot(a)
£~ do cot\xr

Al = —% — F(6) cot(x).

Substituting these into equation (13) we get
FO[F0)+1] esc¥a) — £28) = [J(E+1) =1 F(£+1) esc*(x) = f(£+1)+ Rega.

This implies that either f(£+1) = —f(£), or f(£+1) = f(€)+1. The first of
these does not give us a ladder so we ignore it. We also know that f(0) =1
so f(€) = £+ 1 This implies that

Vi = £(£ 4+ 1) csc®(z)

- d
H ):—@_4-%—(12%—1)2

dz
J:IEH_) = + %4_1 - (E ""f“ 1)2

Cda?
Re=HM BT =041 - 2.

Equation (9) then becomes

% — (€4 1) cot(z)|theo =0

which we solve to find that the ground state of the £th potential is

o = sin'(z).

10




We can then use equation (12) to find the other eigenfunctions, and from
equation (8) we find that the energy spectrum is

4n
Epu=1+ [(i+1) =i = (+n+1)"

i=1

3. The Hydrogen Atom

The final potential that we will use to iliustrate the supersymmetric so-
lution technique is the hydrogen atom. We will start by looking only at the
radial part with angular quantum number £ equal to zero, and we will use
the wave function u(r) = rR(r) thus reducing the problem to one dimension.
We will thus get

where we have taken ke? = 2 for simplicity. This differential equation is of
exactly the same form as a cartesian one-dimensional Schrédinger equation
so we can use the same operators and hamiltonians as we have used before by
simply substituting r for z. The unnormalized ground state of this function
is u(r) = rexp(—r). From this we can find the operators.

d 1
Ap = & r +1
b__d 1
Ao dr 7 T
and the hamiltonians
0T drz g
2
£ _ 42 2 >
JLJ.TO = g + 2 . 4 1. {

We quickly recognize that the new potential Ht) is the same as the effective
potential for a Hydrogen atom with a term for centrifugal repulsion. This
particular case corresponds to an angular quantum number £ = 1. We can

solve for a general form for the ladder operators A, and Aj in the same way

11




that we did when studying the square box. First, we assume a general form
for the ladder operators

A=y g
=
A= 194 g0

Then we substitute these into equation (13) and use the known values for
the £ =0 case and find that f(¢) = f =3¢ +1). We therefore get

d £+1 1
Ay —+-I-——

:5 7 £ 1
AJ:_i_€+1 1

dr r £41
e+1) 2
Vila) = 2y
IR
e ur )

We can now see that the potential V() is simply the effective potential
for a hydrogen atom with angular quantum number ¢. This makes sense
since each time we increase the angular quantum nwmber by 1 we loose the
lowest bound state, but preserve the rest of the the energy spectrum, which
is exactly what the supersymmetric transformation does. We will now see

that our operators give the correct wave functions and energy spectrum.
Equation (9) becomes

d f41 1
(c_f?_ r +£+1)u"”°(r) =0

which we can solve to find that

T
1)

With equation {13) we can find the rest of the wave functions, and from the
‘equation (8) we can find the energy spectrum:

teo(r) = pitt exp(—

1
(44 mn+1)2

én — —

12



thus recovering the well known wave functions and energy spectrum for the
hydrogen atom. It is interesting to note that although we started with the
intent of solving only the case with angular quantum number £ = 0 we ended
up finding the radial solutions for all possible angular quantum numbers.

13




Bound States in the Continuum

Let us suppose that we have a central potential V;(r) which tends to zero
as the radius goes to infinity and which has a continuum of positive energy
solutions to the Schrédinger equation. Let us assume that we have a radial
S state wave function wo(r) such that yo(r) = ”"T(” Then ug(r) obeys the
equation

—ug(r) + Vo(ruo(r) = Fuo(r)

which is simply the Schrédinger equation in dimensionless form for £ = 0.
States other than S states may be treated by letting the potential be an
effective potential which includes the ﬂﬁ“LTll term.

We can therefore express Vg in terms of the eigenfunction ug(r) as

()

Vo(r) = E + w1’ (14)

If we modify ug(r) in such a way that it becomes a bound state, then we

can use equation (14} to determine the necessary modifications to V(r) to
accomodate such a wave function.

Since the potential tends to zero at infinity. the wave function ug(r) tends

to sin(kr) as r becomes very large. The result is that the wave function can

not be normalized because it does not tend to zero for large r and therefore

/oo ul(r)dr = .
o

To make a new wave function u(r) that goes to zero quickly enough to be
normalizable we can multiply up(r) by some function f{r) which does not
diverge near the origin and goes to zero at least as quickly as r~% for large
values of r. II we assume that the energy of ug(r) and wu(r) are the same
and substitute the new wave function u(r) = ug(r) f(r) into the Schrédinger
equation, we get

—ug(r)f(r) = 2ug(r)f'(r) — uo(r) f(r) + V(r)uo(r) f(r) = Euo(r)f(r)
which yields the following form for the potential

wr) | ul) S 5)
{

Vin)=E+ u(r)  Two(r) fr) 0 f(r)

14




The first two terms are simply Vo(r) so the new potential may be rewriten
as the original potential ¥5{r) plus some variation on it

. S00) 1)

In general we may expect that for large T fj(i)l — 0 like + and T(Lil — 0

like . Therefore the potential still tends to zero for large values of r. We
will discuss the behavior of the potential and the wavefunction at infinity in
more detail later.

In order for the potential to be well behaved we require f'(r) to go to
zero whenever ug(r) is zero, and we require f(r) to have no roots. The
first condition can be met by making f(r) some function of the integral of a
monotonic function proportional to wug(r). If the function is not monotonic
then the integral will not increase continuously at large r. As a result one
can not use it to construct a function of r that goes to zero like 7~7 without
using other functions of r which would prevent f'(r) from going to zero when
up(r) does. We give two of many possibilities here.

F(r) = f(s(r))

where .,
s(r) = fo () dr
or

s(r) = /OT r'u{z}(r')dr'.

The Behavior of the Potential and the Wavefunction at Large
Radii

We now wish to explore the behavior of the potential and the wave func-
tion as r goes to infinity. Specifically we want to see 1) if we can make them
both go to zero, and ii) how quickly they will go to zero. To examine this
more closely we will make the substitution f(r) = e?}. This can be done
without loss of generality if we allow g(r) to be a complex function. We can
then express the wave function and the potential in terms of the new function
g(r)

u(r} = uo(r)exp g(r) (16)

15




V=V+ 2?.?3%51'(7") +(g0) + "), (17)

and we can extract the beliavior of g(r) by studying the desired behavior of
u(r) and V(r).

Since up(r) oscilates with constant amplitude at large values of 7, the
wave Tunction u(r) will die off like e9("}, This means that to have a bound
state g(r) must go to negative infinity as r goes o infinity,

Next we look at the potential. For the potential to approach zero as r
becomes large both ¢'(r) and ¢”(r) must approach zero as r goes to infinity.
H this is true, then at large values of » the term with ¢/'(r) will dominate.

Let us suppose that ¢'(r) goes like r*~%; g(r) will then go as r~%. If
we want the potential to go to zero more quickly than »~' we must let §
be positive, and therefore g(r) will also go to zero as r becomes large. This
implies that u(r) = ug(r)expg(r) behaves like ug(r) for large values of r.
[t oscillates between fixed values and does not converge, therefore it is not
bound.

If § is taken to be negative then g(r) goes to a positive or negative infinity
for large values of r. This can result in a bound state, but also gives a
potential that approaches zero very slowly or else one that does not approach
zero at all. This would be a non-local potential.

Therefore the way to generate the most local (one which goes to zero
most quickly) potential V(r) that permits a bound state is to let ¢'(r) go
like 1. This restricts g(r) to go like nln(r) or In(r"™) where n is any real
number. :

If we use equation (16) to solve for the wave function when g{r) goes
like nln(r) we find that u(r) goes like r™. Therefore, we can make the wave
function behave like any power of r including negative powers that allow
us to normalize it thus creating a bound state. However, the potentials
corresponding to these wavefunctions decay like r~'. We can not generate
a potential that decreases more quickly than r~! that also permits a bound
state, nor can we have a state which decreases more quickly than by some
power of r without allowing for non-local potentials.

We will give a simple illustration starting with an unperturbed solution
that is a free particle

Va(r) =10

16
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o) = singgkr)

E =k

We will now alter these functions in accordance with our previous discussion
by multiplying ua(r) by f(r) where

1
)= w0

r sin?(kr’)
S(T‘) :L T‘d?",.
The integral can be worked explicitly to yield

4 sin{kr)
ulr) = E[4A + 2kr - sin(2kr)] (18)

i Zkr) 4 sint(fr)
V(r) = 8k sin(2kr -
() {4.4 + 2kr —sin(2kr)  [4A4 4 2kr — sin(2kr))?

and the energy is the same as before
E =k

So we see that this simple modification has changed the potential from a null
one to a radially decreasing sinusoidal function which for large values of r
has the form
4k* sin(2kr)
kr '

This new potential has a bound state at the positive energy £ = k* which,
depending on the choice of A, may even be greater than the largest peak of
the potential function, as illustrated in figure 2.




Supersymmetry and BICs

The techniques we developed in the first part of this paper, can be used
to find bound states in the continuum. In that part of the paper we said that
we could factorize a hamiltonian such that

H=ala+E
Where i)
A= dr uo{r)
and e 4w
dr  we(r)

where ug(r) represented the ground state of the hamiltonian and Fy was the
ground state energy. We could then find a similar hamiltonian

HY = AAT + B,

which had the same eigenspectrum except that the ground state had been
erased, and the eigenfunctions u™(r) were related to the eigenfunctions u(r)
of H in the following way:

ut(r) = Aulr).

The superscript — and the parentheses arround the superscript - have
been dropped for simplicity. The previous statements can be generalized.
First, uo does not have to be the ground state, but can be any eigenfunction
of the original hamiltonian, including continuum states. If any state other
than the ground state is used, the new potential will have poles at each of the
zeros of the eigenfunction, but the technique can still be applied. Second, the
new hamiltonian does indeed have an eigenfunction at the energy Fo, which
is the energy of the state we are working with, not necessarily the ground
state.

~ To illustrate the second of these two statements we notice that A and Af

can be written as j:;f; - %‘%‘1. We can then see that

H=

_ﬁ N d2lnug+(d1nu0>2
dr? dr? dr

18




d2 In Up
dr2

We can show by direct substitution that ( 3 is an eigenfunction of H* with
an eigenvalue of £y. This elgenfunctxon was previously ignored, because it
has poles at all the roots of up(r), but since we are using it as a construct to
find bound states in the continuum, we can keep it. It can also be shown by
direct substitution that

H*=H-2

0’"_’" uZ(r")dr’
uo(r)

is also an eigenfunction of A+ with the same eigenvalue Eq. If we let

I(r) =/ Cud(r)dr’
0
then the general form for the wavefunction at the energy level Ep can be

written as
&+ a-+bl(r)
O we(r)
If we treat A+ as the original hamiltonian and alter it in the same way
as H before, we get

U

@ In g
a2

This new hamiltonian has an eigenfunction

H=Ht-2

A I to
ty = — = ————.
O T a4 bl
If neither @ nor b is zero then this new eigenfunction ég(r) will represent

a bound state even if the original eigenstate ug(r) was a continuum state.
The new hamiltonian is simply

(20)

. 2 dzl (I+‘!)1T(T 2 -
H:H—Qd In ug _9 ” HH—Zd ln(a,-l—bf(r))‘

21
dr? dr® dr? (1)

The other eigenfunctions of the new hamiltonian can also be found quite
readily. We remember that we changed eigenfunctions of H into eigenfunc-

tions of H' by applying the operator 4 = d d{% In the same way we




change from an eigenfunction of H* to an eigenfunction of H by applying

. +
the operator A = f; — &3:9—. So we get

4= AAu

which after some manipulation becomes

b
ﬁ(?”) ={m[uug - 'MDU’} }UQ - Fu. (22)
As we can see, if we let b equal zero neither the potential nor the wave
functions are altered (except for being multiplied by constants), because
~we are then simply returning to our original potential. If however, b#0
then ug becomes a BIC and we have a direct method for finding the other
eigenfunctions of the new hamiltonian from the eigenfunctions of the old
hamiltonian. Furthermore, the alterations to any eigenfuntion other than
up(r) are localized, therefore, for large values of r the other wavefunction are
only slightly affected.

We can now see that the SUSY method of finding bound states in the
continuum is not as general as the previous treatment, but it has several
advantages. First, it is simple and direct; second, it allows us to find the
other eigenfunctions of the new potential; and third, it can easily be repeated
on other eigenstates of the hamiltonian to get multiple bound states in the
continuum.




Conclusions

Supersymmetric techniques can be used very effectively to find the eigen-
values and eigenfunctions of known potentials. They can also find solutions
to problems that were not known to be exactly solvable. For example, when
we studied the square well, we not only found the solutions corresponding
to the square well potential, but also to several csc?(z) potentials. However,
supersymmetric techniques do have a disadvantage. To use them we must
know the ground state eigenfunction and eigenvalue of the original hamilto-
nian. However, it is often easier to solve for the ground state of a potential
than it is to find all of the eigenfunctions and eigenvalues. In both the case
of a simple harmonic oscillator and a hydrogen atom, simply studying the
assymptotic behavior is enough to determine the ground state. (Goswami,
p. 132-136, p. 257-260).

Supersymmetric techniques may also be used to generate potentials which
permit bound states in the continuum. Although this method for generating
BIC's limits the BICs that can be found to a rather restricted class of BICs,
we can easily use it to find the other states of the system and to generate
potentials which permit multiple BICs.
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