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ABSTRACT

Chaos in the Relativistic Three-Body Problem

Jared Stephens Jay
Department of Physics and Astronomy, BYU

Bachelor of Science

We study the chaotic properties of the three-body problem in general relativity and examine
the effects of successive post-Newtonian Hamiltonian correction terms. We set up a planar, two-
parameter, three-body system consisting of a circular binary and an incoming star, and integrate
the system many times, varying the two initial parameters by small amounts. We study the cases
of equal masses and unequal masses. We observe that the initial parameter space contains regions
of fairly predictable behavior and regions of chaotic behavior at all levels of approximation to
relativity. This is strong evidence that the three-body exhibits the same chaos in general relativity
as in Newtonian gravity.
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Chapter 1

Introduction

1.1 The Three-Body Problem

The gravitational three-body problem has been an important area of research since the time of

Newton. The problem is to find the positions and velocities of three gravitationally interacting

objects at every future moment in time given the initial positions and velocities of each object.

Newton treated this problem in his book Principia Mathematica to try and understand the Earth-

Moon-Sun system, but was unable to find a solution.

Over the space of many years, scores of scientists and mathematicians tried to solve this prob-

lem [1, 2], including Euler, Clairaut, and Lagrange. In 1887, Poincare proved that there is no gen-

eral analytical solution in terms of algebraic operations and integrals, putting an end to all attempts

to solve the problem analytically. (An analytic power series solution was developed afterwards,

but it converges so slowly that it has no practical application [1].)

In the early twentieth century, Einstein developed general relativity, a geometric model of

gravity. This new model of gravity provides additional complications to the three-body problem

that we wish to investigate. Instead of solving the full Einstein equations, we use a perturbation

1



1.2 Chaos 2

approach on the Hamiltonian for the Newtonian three-body problem called the post-Newtonian

approximation. The

1.2 Chaos

The main focus of our research is the presence of chaos in the three-body problem. Chaos was

first observed in the twentieth century in connection with the weather. The typical example is the

butterfly effect, in which a butterfly flapping its wings in Argentina can cause a tornado to occur

sometime in the future in Texas. The defining property of chaos in a physical system is that an

arbitrarily small change in the initial conditions can cause an arbitrarily large difference in the

outcome of an interaction.

The Newtonian three-body system is now known to exhibit deterministic chaos [1]. This means

the problem is deterministic by Newton’s laws, yet in most cases the initial conditions can’t pos-

sibly be measured precisely enough to give reliable long-term predictions. The chaos in the three-

body problem has been studied extensively in Newtonian gravity [3], but little research has been

done on the chaos of the three-body system in general relativity.

1.3 Research and Motivation

The purpose of our research is to analyze the chaotic behavior of the three-body problem in general

relativity, and examine the effects of the post-Newtonian Hamiltonian correction terms on the

dynamics of the system. This knowledge will have applicability in future numerical simulations

of celestial bodies and may help us gain a greater understanding of black hole formation. Most

black holes are formed in clusters of stars, and some believe that the chaotic effects of this many-

body system causes the black holes to form more quickly than expected through multiple two-body

mergers [17, 18]. The code that we have developed in this project could be expanded to this type
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of problem.

Another application of recent interest is the stability of distant solar systems. The Kepler

Space Telescope has identified over a thousand planets orbiting distant stars [4]. Scientists have

been running simulations to test the stability of these orbits in Newtonian gravity. We would like

to know if general relativity causes instabilities not seen in Newtonian gravity. We are currently

working to adapt our code to this project.

1.4 Previous Work

Our research builds mainly on work done by P. Boyd and S. McMillan on chaos in the Newtonian

three-body problem [5]. In their paper, they restricted the three-body problem to a simple setup

involving a binary and an incoming star and then integrated the equations of motion until one of

the objects escaped the system. We follow the same approach in our research. This allows us to

check our results against previously established results.

In 2007, David Tanner extended the investigation to general relativity [6] using a Hamiltonian

formalism of the post-Newtonian equations developed by Schäfer [7] (see corrections in Lousto

et al [8].). Tanner extended Boyd and McMillan’s simulations to second-order post-Newtonian

(PN2). However, an error in the computer code was discovered after his thesis was completed. J.J.

Campbell later repeated Tanner’s work with corrections up to first-order post-Newtonian (PN1) [9].

Significant work was done on numerical simulations of three bodies in relativity by Galaviz

[10], who included 2.5-order post Newtonian for the first time (PN2.5). Our methods of numerical

integration are similar to his, but applied to the system studied by Boyd and McMillan to study the

chaos of the system.
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1.5 Outline

In this thesis we report a successful extension of Boyd and McMillan’s research to post-Newtonian

orders PN2 and PN2.5. We have examined the characteristics and effects of each order of approx-

imation and we have observed that the system is chaotic at all orders.

In Chapter 2 we explain in detail the methods we used to analyze the problem. We start by

explaining the post-Newtonian approximation that we use. We then choose a special case of the

three-body problem and derive the initial conditions analytically. We explain our method of nu-

merical integration (LSODA) and give evidence of its validity with special tests. In Chapter 3 we

present the results of the simulations in the form of color-coded images. We point out the charac-

teristics of chaos and explain unexpected effects in the images. In Appendix A we have included

the full post-Newtonian Hamiltonians.



Chapter 2

Methods

2.1 Post-Newtonian Approximation

Due to the large number of simulations involved in our study of chaos, we do not solve the full

Einstein equations; instead, we assume weak gravitational fields and use a perturbation approach.

We assume (v/c)2� 1 and GM/r� 1, where v is velocity, c is the speed of light, and GM/r is the

Newtonian gravitational potential. We then find correction terms to the Newtonian Hamiltonian.

The Hamiltonian is expanded in the form

H = HN + c−2HPN1 + c−4HPN2 + c−5HPN2.5, (2.1)

where HN is the Newtonian Hamiltonian. The terms HPN1, HPN2, and HPN2.5 represent successive

post-Newtonian approximations to general relativity. We refer to each order of approximation

respectively as zeroth-order post-Newtonian (PN0), first-order post-Newtonian (PN1), second-

order post-Newtonian (PN2) and two-and-a-half-order post-Newtonian (PN2.5). The Hamiltonian

H2.5PN is a dissipative term that includes the first gravitational wave emission effects. Part of the

purpose of our research is to discover the properties of each of the available orders of approxima-

tion to general relativity up to PN2.5. Hamiltonians of this form above order PN2.5 have not yet
5
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ϕ
ρ

m2

m1 m3

Figure 2.1 The initial conditions of our simulations depend on only two parameters: the
impact parameter ρ , which is the perpendicular distance of the third object from the x-
axis, and the phase angle φ , which is the initial inclination of the binary from the x-axis.
The masses of the objects are m1, m2, and m3. The objects are color-coded, and the colors
are consistent throughout the document.

been derived for three bodies. We examine the effects of each of these terms on the trajectories in

our simulations.

These Hamiltonian approximations are very complicated and have been successfully derived

for three bodies up to PN2.5 by Schäfer et al [7,11] with corrections by Lousto et al [8]. For order

PN2.5 we used the form of the Hamiltonian given by Galaviz [10]. The Hamiltonians are displayed

in Appendix A.

Hamilton’s equations express the time derivatives of the position and momentum of the objects,

ẋi
a =

∂H
∂ pi

a
, (2.2)

ṗi
a =−

∂H
∂xi

a
, (2.3)

where i labels the axis and a labels the object. These form a set of eighteen ordinary differential

equations which can be numerically integrated from initial conditions to determine the motion of

the three objects.
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2.2 Initial Conditions

We limit our experiments to single-star binary interactions, in which two objects are initially in

a circular orbit, and a third object approaches from a large distance before interacting with the

binary. The system is restricted to a plane, with the third object initially moving in the negative

x-direction. The initial conditions for each run require only two parameters: φ , the initial phase of

the binary relative to the x-axis, and ρ , the impact parameter in units of r, the radius of the binary.

The initial diameter of the binary and the velocity of the incoming object were identical in all of

our simulations.

The initial conditions for the circular binary are found in the same way for all the post-

Newtonian orders we work with, the only difference being the form of the Hamiltonian. We give

an example here using the Newtonian Hamiltonian

H =
p2

1
2m1

+
p2

2
2m2
− Gm1m2

|x2− x1|
, (2.4)

where p1 and p2 are the momenta of the two objects, m1 and m2 are the masses, x1 and x2 are the

positions, and G is the gravitational constant.

We restrict ourselves to the center-of-mass frame where p1 =−p2 and we let p = p1
µ

and q =

|x2−x1|/GM where M =m1+m2 and µ =m1m2/(m1+m2) is the reduced mass. The Hamiltonian

then simplifies to

H = µ
p2

2
− µ

q
. (2.5)

We now define a new scaled Hamiltonian

Ĥ =
H
µ

=
p2

2
− 1

q
. (2.6)

Two-body Hamiltonians of this form can be found up to order PN3 in Schäfer [12].

The angular momentum is defined by j = qpφ . For circular orbits, we have p = pφ , so we can
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Figure 2.2 A quasi-periodic interaction between all three bodies called a resonance.

replace each p in the Hamiltonian with j
q ,

Ĥ =
j2

2q2 −
1
q
. (2.7)

With everything is in terms of q, we can take the partial derivative of this Hamiltonian with respect

to q. The condition for a circular orbit is pr = 0. We therefore require

ṗr =−
∂H
∂q

=
j2

q3 −
1
q2 = 0. (2.8)

The solution to this equation is j =
√

q, which means p = j
q = 1√

q . The total momentum of the

first object is then given by scaling back to our original units, p1 = µ p. The initial conditions for

other PN orders are calculated analogously.

The third object is initially far to the right at a distance of 60r from the center of the binary. We

choose the initial incoming velocity of the third object such that the total energy of the three-body

system is less than zero. It can be shown, following Boyd and McMillan [5], that this velocity must
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satisfy

v <

√
Gm1m2(m1 +m2 +m3)

2rm3(m1 +m2)
. (2.9)

We arbitrarily set the object’s velocity to one-half this value in the −x direction (approaching the

binary).

Setting the total energy to be less than zero guarantees that at least two of the objects will be in

a bound state at the end of a run. This restriction limits the possible outcomes of each experiment

to the following four: (1) a flyby, when the third object simply flies by the binary, (2) an exchange,

when the third object takes the place of one of the objects in the binary, (3) a collision, or (4)

resonance, which is a complicated interaction like that shown in Fig. 2.2.

The plots in this thesis use a consistent color scheme, in which the color of a pixel represents

which of the three objects escaped the system. Blue represents m1, red represents m2, and green

represents m3, as in figure 2.1. Here, and often throughout this document, we refer to the objects

themselves by their masses mi.

2.3 Numerical Methods

In our computations we use geometric units, where the Gravitational constant G = 1 and the speed

of light c = 1. In order to return to SI units, we multiply geometric quantities by the derived

conversion factors R = GM
c2 and T = GM

c3 , where M is any mass scaling factor we desire.

We generate Eqs. (2.2) and (2.3) in Mathematica and integrate them in FORTRAN on Mary-

lou7, the supercomputer at Brigham Young University. We use an integrator called LSODA, which

is twelfth-order integrator with adaptive step size [13,14]. The adaptive time stepping is crucial in

our scattering experiments. LSODA runs either an Adams-Moulton or a Gear method depending

on the stiffness of the problem. In the following sections we review the tests we have done with

this integrator to prove its accuracy.
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Figure 2.3 Simulation of a binary in-spiral due to emission of gravitational waves.

2.3.1 Error in Conserved Quantities

A good test of the validity of our simulations is to check that the values of the Hamiltonian and the

angular momentum for the system are conserved. We calculate the Hamiltonian at the beginning

and the end of each simulation and find the relative error given by the formula (H f −Hi)/Hi. The

error in Newtonian gravity never exceeds 1.3×10−5.

We test for conservation of angular momentum in the same way. Our tests show that the

relative error in the total angular momentum is around 10−9 or smaller everywhere, provided the

initial angular momentum is not zero.

2.3.2 Gravitational Waves

When gravitational wave emission is included in the simulation at order PN2.5, the objects lose

energy to gravitational waves and gradually spiral inward until they converge or coalesce. The

theoretically predicted time τ for coalesence of a circular binary is given by

τ =
5

256
c5R4

0
G3(m1 +m2)2µ

, (2.10)
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Theory
Simulation

0 2 4 6 8 10 12 14
0
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Figure 2.4 Relative separation over time between the two bodies in the binary according
to theory (green line) and our simulation (blue dots). The bodies lose energy over time
through the emission of gravitational waves and gradually spiral in towards each other.

where R0 is the initial diameter of the binary and µ is the reduced mass [15].

Figures 2.3 and 2.4 show the results of our simulation of two bodies of equal mass, initially in

a circular orbit of radius 50 geometric units, that spiral inward due to gravitational wave emission

in PN2.5 gravity. Figure 2.3 shows the actual paths the two bodies followed. Figure 2.4 is a plot

of the relative separation between two bodies (blue dots) versus time with a comparison to the

theoretical prediction (green line). The curve predicted by theory is

R(t) = Ro(
τ− t
τ− to

)1/4 (2.11)

and it closely matches our simulation. The coordinate time is not gauge invariant in general rela-

tivity, and has been scaled to match the theoretical inspiral time.

2.3.3 Long Runs

In Newtonian gravity, two objects in a circular orbit should maintain that same orbit forever. We

tested our code in this situation and found that a circular orbit increased its radius by about 0.1%

after more than 750,000 orbits.
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Thus, we have tested the ability of the code to conserve energy and angular momentum. We

have shown that it reproduces the correct inspiral solution for bodies emitting gravitational waves.

Finally, we have shown that it maintains a fixed orbital configuration for relatively long times. We

conclude that the code is capable of giving valid results for our scattering experiments.



Chapter 3

Results

3.1 Scattering in the Three-Body Problem

In this chapter we present the results of our simulations. The results come in three types: (1) equal

mass scattering, (2) non-equal mass scattering, and (3) quasi-periodic runs. For the equal mass

binaries, all three objects have the same mass. We run these binaries at orders PN0, PN1, PN2,

and PN2.5, and plot the outcomes over the initial parameter space of ρ and φ . As we zoom in

on these plots, the features of chaos are evident. For the non-equal mass binaries, we perform the

same simulations, but the mass of m1 is increased. We explain some unexpected effects of the

increased mass, such as strange symmetries and perfect alignment in the plots. We then examine a

few long-lived runs that exhibited quasi-periodic behavior.

3.2 Visualizing Chaos

In order to observe chaos, we set up thousands of runs using the methods outlined in Chapter 2

and vary the two parameters ρ and φ by small amounts. To visualize the results of all these runs

on a two-dimensional image, we plot which of the three objects escaped the system versus the

13
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initial parameters ρ and φ . Each object has been color-coded for these plots: red is m1, blue is m2,

and green is m3, where m1 and m2 form the initial binary and m3, comes in from infinity. For a

chaotic system, we expect to see the colors switch erratically over very small ranges in the initial

parameters.

3.3 Equal Mass Scattering

The results of the simulations are plotted in Fig. 3.1. Each pixel represents the outcome of a

simulation initialized with certain values of ρ and φ , where −10r ≤ ρ ≤ 14r and 0 ≤ φ ≤ π .

Because of the symmetry of the equal-mass binary, these ranges for the initial parameters cover

the whole space of interactions, excluding distant flybys. The color of each pixel indicates which

object escapes the system. The black pixels correspond to simulations that result in a collision or

black hole merger. A black hole merger occurs when the separation between particles is less than

the sum of their Schwarzschild radii. The regions of solid color are areas of relative predictability,

where a change in the initial parameters has little effect on the final outcome. The fuzzy regions

correspond to chaotic behavior where very small variations in the initial parameters give large

differences in the outcome. For large values of ρ , the third object simply flies by the binary

without any complicated interaction, as should be expected.

When we add the first-order post-Newtonian corrections (top-right of Fig. 3.1) to the Hamil-

tonian, we see a similar picture but with a phase shift (the whole image is shifted to the left).

By experiment, we have discovered that this phase shift occurs because the binary rotates more

quickly. There are interesting changes to the interior of the image as well, most notably the lack of

black pixels and less chaotic fuzz. We have observed that at this level of approximation to general

relativity, when the objects get too close together they feel a rapidly increasing repulsive force

which causes them to fly apart very quickly. This makes collisions rare, so there are very few black
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Figure 3.1 Each pixel in this figure represents the outcome of a simulation with initial
parameters ρ and φ . The color indicates which of the three bodies escaped from the
other two. Black pixels are collisions. This figure shows the results of orders PN0 (top-
left), PN1 (top-right), PN2 (bottom-left), and PN2.5 (bottom-right). The fuzzy regions
correspond to chaotic behavior.
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pixels in the image. It also causes many close encounters to result in the bodies flying apart instead

of following chaotic orbits, so there is less fuzziness in some areas.

We have deduced by experiments that this effect is caused by the first two terms in the second

sum in the first-order correction Hamiltonian HPN1 (see Appendix A), except for one of the seven

pa ·pb terms. This is the minimal part of the Hamiltonian that must be removed to eliminate the

repulsion effect. We will call this repulsive part Hrep,

Hrep =−
1
4 ∑

a,b6=a

mamb

rab

{
6

p2
a

m2
a
−6

pa ·pb

mamb

}
. (3.1)

For two equal masses, this simplifies to

Hrep =−
3

2r12
(p1−p2) · (p1−p2). (3.2)

In the center of momentum frame (p = p1 =−p2), this can be written as

Hrep =−
6

r12
p2. (3.3)

Now it is easier to see why the objects fly apart. Since p2
1 is proportional to the kinetic energy of one

body on average, by the virial theorem, it tends to vary inversely with the potential energy, which

goes as 1/r12. So Hrep ∝ 1/r3
12. When the objects get too close, this part of the Hamiltonian blows

up much more rapidly than the other parts. Simulations at order PN1 are therefore unphysical for

close interactions.

The second-order corrections (bottom-left of Fig. 3.1) counteract some of the strange effects of

the first-order corrections. The black space, which indicates mergers or collistions of two objects,

has returned because the Hamiltonian has terms of higher order that overpower the repulsion from

Hrep.

Adding the 2.5-order corrections (bottom-right of Fig. 3.1) greatly increases the black space.

This is explained by gravitational wave emission, which is now included at this order of approx-

imation to general relativity. This emission reduces the energy of the bodies and causes them to
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fall inward more quickly, and thus they collide in many more cases. This effect can be seen in the

binary tests in the section on gravitational waves in this paper.

The overall shape of the plots is the same at each PN order. Chaotic regions are visible at

every order. The regions where the plots differ are often in areas where the post-Newtonian expan-

sion becomes unphysical, as we showed in the case of PN1, because interactions in those regions

include close approaches in which (v/c)2 is not small.

When we zoom in on each of the images shown, we begin to see scale-invariance, a distin-

guishing feature of chaos. In Fig. 3.2, we show successive zooms for each of the orders PN0,

PN1, PN2, and PN2.5. Each successive image is zoomed 400 times more than the previous one.

The solutions show the same features at every level of zoom, regions of continuous color broken

by fuzzy bands where the solution is chaotic. The scale-invariance seen in the plots results from

chaos. In the last image of each column, the impact parameter ρ covers a range of only 1.5×10−4

times the radius of the binary, and the phase angle φ covers a range of only 6.25π×10−6 radians.

The wide variety of outcomes in this tiny area is strong evidence that the three-body problem is

chaotic in both Newtonian and relativisitic gravity.

3.4 Non-Equal Mass Scattering

In addition to studying the interactions of three bodies of equal mass, we examined the effects

that arise from changing the mass of one of the objects in the system. The object we chose was

m1, a member of the initial binary. We ran the same simulations as before, but with the mass of

m1 increased to 2, 3, 5, and 10 times its original mass. The outcomes of these simulations are

shown all together in figure 10. Notice that the phase angle φ now runs all the way to 2π . The

new asymmetry of the binary makes this extension necessary in order to see all of the possible

interactions.
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Figure 3.2 Zooming in on areas of the initial parameter space. Each post-Newtonian order
(PN0, PN1, PN2, PN2.5) is represented in a column. Each row is a successive zoom of
the image above it. Each zoom is 400X closer than the previous. The plots have the same
features at every level of zoom, which is indicative of chaos.
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Figure 3.3 This figure shows the results of the simulations for several different values
of m1, the mass of one of the objects in the initial binary. Each row corresponds to a
different value for the mass, which increases with each lower row. The value for the first
row is 1, and for the lower rows is 2, 3, 5, and 10. Each column corresponds to an order
of approximation to General Relativity. The first column is Newtonian gravity, and the
others are PN1, PN2, and PN2.5.
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Increasing the mass of one object in the binary makes it rotate more quickly, which would

tend to shift the image horizontally. However, the increased mass also increases the acceleration

of the third object so that the relationship between the phase of the binary and the position of the

incoming object is practically independent of the mass.

One obvious effect is that there is less red in the picture as m1 increases. The more massive the

object becomes, the less likely it is that that object will be kicked out of the system.

Another effect that is easy to see and not-so-easy to understand is the symmetry that emerges

around the phase angle values of π/2 and 3π/2. We ought to expect symmetry in φ to arise

simply because the binary tends toward one object with circular symmetry, but this would make

the outcome completely independent of φ , and it would also create symmetry in the values of ρ ,

which we don’t see at these values of m1. However, we can see that that sort of symmetry begins

to arise for values of m1 = 10. The early symmetry that arises in φ around the specific values

of π/2 and 3π/2 comes from the new asymmetry of the binary and the relatively high speed of

the incoming object. The angle of the binary determines whether the heavy or light side of the

binary is facing the incoming object. When the incoming object is close to the binary, its velocity

is four or more times the velocity of the heavy object in the binary. Because of this high speed, the

rotation of the binary has little effect on the outcome. If the binary is reflected about a certain axis,

the resulting interaction is roughly the same but reflected.

An additional effect is seen in the last column, at order PN2.5. The black pixels dominate

the interactions more and more as the mass increases. We expect this to happen because the

gravitational field of m1 is stronger, so the third object approaching from infinity comes in more

directly toward the first object and, if it doesn’t just crash into it, will revolve around it very quickly

and emit gravitational waves at a faster rate than it would for lower values of m1, causing it to spiral

inward more quickly and reducing the chance of escape.
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Figure 3.4 This figure shows plots of the total kinetic energy of the three-body system in
certain cases where the interaction lasted for a long period of time. One run is shown from
each order of approximation; they are not related. We have Newtonian gravity (top-left),
first-order approximation to GR (top-right), second-order (bottom-left), and two-and-a-
half order (bottom-right).

3.5 Quasi-Periodic Runs

It is interesting to examine a few of the interactions which happened to last for a very long time.

We have chosen one such interaction from each order of approximation to general relativity and

plotted the total kinetic energy over the course of the interaction. The runs are not related, because

a long-lived interaction at one PN order often becomes much shorter at other orders. In the New-
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tonian interaction (top-left), we can see three frequencies: (1) the rapid oscillation of the binary

which is so quick that individual orbits cannot be distinguished at this level of zoom, (2) the long

revolutions of the third body around the binary which causes a spike in the kinetic energy when-

ever it gets close to the binary, and (3) an intermediate frequency which is an emergent effect of

three-body interactions [16]. These three frequencies still exist at higher orders, although they are

less noticeable because the interactions are more complicated.

3.6 Conclusions

Our simulations indicate that the three-body problem exhibits the same properties of chaos in

general relativity as it does in Newtonian gravity. We see that very small changes in the initial

conditions of the system give extremely different outcomes at all available post-Newtonian orders.

Each level of post-Newtonian approximations in turn adds its own effects to the system. At

first-order (PN1), the orbits begin to precess and gravity becomes repulsive for very close encoun-

ters. At second-order (PN2), higher power terms overcome the repulsion of PN1. At two-and-a-

half order (PN2.5), the bodies spiral inward and collide more often than in the other orders.

These results could have important applications to black hole formations. It seems that black

holes form in star clusters much more rapidly than previously thought [17, 18], and the chaotic ef-

fects of many-body systems, together with inspirals from general relativity, may be able to explain

that phenomenon. Relativistic effects may also play an important role in the stability of planetary

orbits. The Kepler project has found many planets [4] whose stability can be tested in general

relativity with the code that our group has developed.
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Appendix

A.1 Post-Newtonian Equations

In our simulations use a Hamiltonian-like formulation of general relativity. We made use of the

ADM formulation derived by Schäfer [7] with corrections from Lousto et al. [8]. We define xa

to be the three-dimensional position vector in Euclidean space for an object a of mass ma. We

define rab = xa−xb, rab = |rab|, and nab = rab/rab. We define pa to be the momentum of object a.

Assuming (v/c)2 is small and using a perturbation approach, the Hamiltonian becomes

H = HN +
1
c2 HPN1 +

1
c4 HPN2 +

1
c5 HPN2.5. (A.1)

where HN is the Newtonian Hamiltonian and HPN1, HPN2, and HPN2.5 are successive approxima-

tions to General Relativity. The equations of motion are

(ẋi
a)n =

∂Hn

∂ pi
a
, (A.2)

(ṗi
a)n =−

∂Hn

∂xi
a
, (A.3)

23
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ẋa = (ẋa)0 +(ẋa)1 +(ẋa)2 +(ẋa)2.5, (A.4)

ṗa = (ṗa)0 +(ṗa)1 +(ṗa)2 +(ṗa)2.5, (A.5)

where i labels the axis and a labels the object. We now proceed to write out each order of approxi-

mation of the Hamiltonian assuming G = 1 and c = 1.

HN =
1
2 ∑

a

p2
a

ma
− 1

2 ∑
a,b6=a

mamb

rab
(A.6)

HPN1 =−
1
8 ∑

a
ma

(
p2

a
m2

a

)2

− 1
4 ∑

a,b6=a

mamb

rab

{
6

p2
a

m2
a
−7

pa ·pb

mamb
− (nab ·pa)(nab ·pb)

mamb

}
+

1
2 ∑

a,b 6=a,c6=a

mambmc

rabrac
(A.7)
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HPN2 =
1

16 ∑
a

ma

(
p2

a
m2

a

)3

+
1

16 ∑
a,b6=a

mamb

rab

{
10
(

p2
a

m2
a

)2

−11
p2

a p2
b

m2
am2

b
−2

(pa ·pa)
2

m2
am2

b
+10

p2
a(nab ·pb)

2

m2
am2

b

−12
(pa ·pb)(nab ·pa)(nab ·pb)

m2
am2

b
−3

(nab ·pa)
2(nab ·pb)

2

m2
am2

b

}
+

1
8 ∑

a,b 6=a,c6=a

mambmc

rabrac

{
18

p2
a

m2
a
+14

p2
b

m2
b
−2

(nab ·pb)
2

m2
b

−50
pa ·pb

mamb
+17

pb ·pc

mbmc

−14
(nab ·pa)(nab ·pb)

mamb
+14

(nab ·pb)(nab ·pc)

mbmc
+nab ·nac

(nab ·pb)(nac ·pc)

mbmc

}
+

1
8 ∑

a,b 6=a,c6=a

mambmc

r2
ab

{
2
(nab ·pa)(nac ·pc)

mamc
+2

(nab ·pb)(nac ·pc)

mamc
+5nab ·nac

p2
c

m2
c

−nab ·nac
(nac ·pc)

2

m2
c

−14
(nab ·pc)(nac ·pc)

m2
c

}
+

1
4 ∑

a,b 6=a

m2
amb

r2
ab

{
p2

a
m2

a
+

p2
b

m2
b
−2

pa ·pb

mamb

}
+

1
2 ∑

a,b 6=a,c6=a,b

mambmc

(rab + rbc + rca)2 (n
i
ab +ni

ac)(n
j
ab +n j

cb)

{
8

pai pc j

mamc
−16

pa j pci

mamc
+3

pai pb j

mamb

+4
pci pc j

m2
c

+
pai pa j

m2
a

}
+

1
2 ∑

a,b 6=a,c6=a,b

mambmc

(rab + rbc + rca)rab

{
8

pa ·pc− (nab ·pa)(nab ·pc)

mamc

−3
pa ·pb− (nab ·pa)(nab ·pb)

mamb
−4

p2
c− (nab ·pc)

2

m2
c

− p2
a− (nab ·pa)

2

m2
a

}
− 1

2 ∑
a,b6=a,c6=b

m2
ambmc

r2
abrbc

− 1
4 ∑

a,b 6=a,c6=a

mambm2
c

rabr2
ac

+
1
2 ∑

a,b6=a

m3
amb

r3
ab
− 3

4 ∑
a,b6=a,c6=a

m2
ambmc

r2
abrac

− 3
8 ∑

a,b6=a,c6=a,b

m2
ambmc

rabracrbc

+
3
8 ∑

a,b 6=a

m2
am2

b

r3
ab
− 1

64 ∑
a,b6=a,c6=a,b

m2
ambmc

r3
abr3

acrbc

{
18r2

abr2
ac−60r2

abr2
bc−24r2

abrac(rab + rbc)

+60rabracr2
bc +56r3

abrbc−72rabr3
bc +35r4

bc +6r4
ab

}
− 1

4 ∑
a,b6=a

m2
am2

b

r3
ab

. (A.8)

HPN2.5 contains terms which include gravitational wave emission. Because of our choice of

units, we use the version of HPN2.5 given by Galaviz [10].

HPN2.5 =
1

45
χ̇(4)i j(xa′,pa′; t)χ(4)i j(xa,pa), (A.9)
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where

χ(4)i j(xa,pa) = ∑
a

2
ma

(
(pa ·pa)δi j−3pai pa j

)
+ ∑

a,b6=a

mamb

rab

(
3nabinab j−δi j

)
, (A.10)

and

χ̇(4)i j(xa′,pa′) = ∑
a′

2
ma′

[
2
(
ṗa′ ·pa′

)
δi j−3(ṗa′i pa′ j + pa′i ṗa′ j)

]
+ ∑

a′,b′ 6=a′

ma′mb′

r2
a′b′

[
3(ṙa′b′ina′b′ j +na′b′iṙa′b′ j)+(na′b′ · ṙa′b′)(δi j−9na′b′ina′b′ j)

]
,

(A.11)

approximating the derivatives of x and p with the PN1 equations of motion:

(ẋa)1 =−
p2

a
2m3

a
pa−

1
2 ∑

b6=a

1
rab

(
6

mb

ma
pa−7pb− (nab ·pb)nab

)
(A.12)

(ṗa)1 =−
1
2 ∑

b6=a

[
3

mb

ma
p2

a−7(pa ·pb)−3(nab ·pa)(nab ·pa)

]
nab

r2
ab

+ ∑
b 6=a,c6=a

mambmc

r2
abrac

nab + ∑
b 6=a,c6=b

mambmc

r2
abrbc

nab−
1
2 ∑

a 6=b

[
(nab ·pb)pa +(nab ·pa)pb

r2
ab

]
. (A.13)

The primed variables in the equation for χ̇ are unaffected by the partial derivatives in the Hamilto-

nian equations, so the 2.5PN equations of motion are

(ẋa)2.5 =
1

45
χ̇(4)i j(xa,pa;(ẋa)1,(ṗa)1, t)

∂

∂pa
χ(4)i j(xa,pa) (A.14)

(ṗa)2.5 =−
1

45
χ̇(4)i j(xa,pa;(ẋa)1,(ṗa)1, t)

∂

∂xa
χ(4)i j(xa,pa) (A.15)



Bibliography

[1] J. Barrow-Green, Poincare and the Three Body Problem (American Mathematical Society,

1996).

[2] M. J. Valtonen and H. Karttunen, The three-body problem (Cambridge University Press, New

York, 1996).

[3] A. Morbidelli, Modern Celestial Mechanics (CRC Press, 2002).

[4] NASA, Kepler, 2015, http://kepler.nasa.gov (accessed March 30, 2015).

[5] P. Boyd and S. McMillan, “Chaotic scattering in the gravitational three-body problem,” Chaos

3, 507–524 (1993).

[6] D. Tanner, “Chaotic Scattering In The 2nd Post-Newtonian Order Gravitational Three-Body

Problem,”, Brigham Young University Senior Thesis, 2007.

[7] Schäfer, Gerhard, “Three-body Hamiltonian in General Relativity,” Phys. Lett. A 123, 336–

339 (1987).

[8] C. Lousto and H. Nakano, “Three-body equations of motion in successive post-Newtonian

approximations,” Classical and Quantum Gravity 25 (2008).

[9] J. Campbell, “Chaos In The Post-Newtonian Gravitational Three-Body Problem,”, Brigham

Young University Senior Thesis, 2008.
27

http://kepler.nasa.gov


BIBLIOGRAPHY 28

[10] Galaviz Vilchis, Juan Pablo, Ph.D. thesis, Friedrich-Schiller-Universitat Jena, 2011.

[11] Jaranowski, Piotr and Schäfer, Gerhard, “Radiative 3.5 postNewtonian ADM Hamiltonian

for many body point - mass systems,” Phys.Rev. D55, 4712–4722 (1997).

[12] Schäfer, Gerhard, “Post-Newtonian methods: Analytic results on the binary problem,” Fun-

dam.Theor.Phys. 162, 167–210 (2011).

[13] A. C. Hindmarsh, “LSODE and LSODI, Two New Initial Value Ordinary Differential Equa-

tion Solvers,” acm-signum newsletter 15, 10–11 (1980).

[14] L. R. Petzold, “Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of

Ordinary Differential Equations,” siam j. sci. stat. comput. 4, 136–148 (1983).

[15] M. Maggiore, “Gravitational Waves. Vol. 1: Theory and Experiments,” (2007).

[16] W. H. Jefferys and J. Moser, “Quasi-periodic solutions for the three-body problem,” The

Astronomical Journal 71, 568 (1966).

[17] M. Colpi, “Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence,”

in The Physics of Accretion onto Black Holes, Vol. 49 of Space Sciences Series of ISSI, M.

Falanga, T. Belloni, P. Casella, M. Gilfanov, P. Jonker, and A. King, eds., (Springer New

York, 2015), pp. 189–221.

[18] M. Volonteri, “Formation of supermassive black holes,” The Astronomy and Astrophysics

Review 18, 279–315 (2010).



Index

Adams-Moulton, 9
angular momentum, 7, 10

binary, 3, 6–11, 14, 17, 19, 20, 22
black hole, 2, 14, 22
Boyd, 3, 4, 8

Campbell, 3
chaos, 2, 13, 14, 17, 22
collision, 9, 14, 17, 22
color, 9, 14, 15

Einstein, 1, 5
equal mass scattering, 14
error, 3, 10
exchange, 9

flyby, 9
FORTRAN, 9

Galaviz, 3, 6, 25
Gear, 9
general relativity, 1–3, 5, 11, 14, 16, 19, 21–23
geometric units, 9
gravitational wave, 5, 10, 16, 20, 25

Hamiltonian, 2–5, 7, 10, 16, 23

impact parameter, 6, 7, 17
initial conditions, 2, 4, 7
integrator, 9

Kepler, 3, 22

Lousto, 3, 6, 23
LSODA, 9

Marylou, 9

Mathematica, 9
McMillan, 3, 4, 8

Newton, 1, 2
non-equal mass scattering, 17
numerical methods, 9

perturbation, 5
phase angle, 6, 17
post-Newtonian, 3, 5, 7, 14, 22, 23

quasi-periodic, 8, 13, 21

reduced mass, 7, 11
resonance, 9

scattering, 9, 12–14, 17
Schäfer, 3, 6, 7, 23

Tanner, 3

zoom, 17, 18, 22

29


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 The Three-Body Problem
	1.2 Chaos
	1.3 Research and Motivation
	1.4 Previous Work
	1.5 Outline

	2 Methods
	2.1 Post-Newtonian Approximation
	2.2 Initial Conditions
	2.3 Numerical Methods
	2.3.1 Error in Conserved Quantities
	2.3.2 Gravitational Waves
	2.3.3 Long Runs


	3 Results
	3.1 Scattering in the Three-Body Problem
	3.2 Visualizing Chaos
	3.3 Equal Mass Scattering
	3.4 Non-Equal Mass Scattering
	3.5 Quasi-Periodic Runs
	3.6 Conclusions

	Appendix A Appendix
	A.1 Post-Newtonian Equations

	Bibliography
	Index

