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ABSTRACT

Mapping Magnetic Memory in [Co/Pd]IrMn Thin Films Under Exchange Bias Conditions

C. Alex Safsten
Department of Physics and Astronomy, BYU

Bachelor of Science

Magnetic domain memory (MDM) is the tendency of a magnetic material to recall its domain
pattern after a disturbance resulting from an application of an external magnetic field. In general,
magnetic materials do not exhibit this property, but some specialized thin films composed of lay-
ered ferromagnetic and antiferromagnetic materials do display magnetic memory. We measure the
amount of memory of such films using the x-ray resonant magnetic scattering (XRMS) technique,
and use a speckle-correlation technique to quantify the degree of magnetic memory in the sample.
In particular, we examine how the magnetic memory in these films persists when we introduce
an exchange bias between the ferromagnetic and the antiferromagnetic layers. We find that when
bias is applied to the sample, the magnetic memory persists. However, the amount of memory and
its behavior throughout the magnetization loop varies with the magnitude of the bias applied. We
further find that the amount of memory and its behavior throughout the magnetization loop does
not, however, vary much with multiple magnetization loop passes.

Keywords: Magnetic Memory, Exchange Bias, Magnetic Thin Films, XRMS, Cross-Correlation
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Chapter 1

Introduction

1.1 Motivation

Ferromagnetic materials often exhibit uniformly magnetized regions known as domains [1]. The

domain pattern of a magnetic material is the spatial arrangement of the domains within the sample.

The domain pattern of a magnetic sample naturally depends on the external magnetic field. The

magnetization of the domains within the sample tend to align with the direction of an external

magnetic field.

Normally, magnetic moments of domains can be oriented in any direction in space. If we

construct a material which is sufficiently thin in one dimension, the magnetic moments will be

oriented primarily in the direction of the thin dimension. We say that the magnetization is either

up or down. A magnetic material constructed in this manner is known as a perpendicular magnetic

thin film . The domain patterns of ferromagnetic materials are very complex. There are three spatial

degrees of freedom, and the magnetization of the domains can be oriented in any direction. The

domain pattern of perpendicular magnetic thin films, though still complex, is somewhat reduced

in complexity because: (1) there are only two spatial degrees of freedom, and (2) there is only

1



1.1 Motivation 2

Figure 1.1 The domain pattern the [Co/Pd]IrMn thin film as measured using magnetic
force microscopy. The dark regions are domains with spins oriented up while the lighter
regions have spins directed down. The physical width of this image is about 20 microns,
so we can see that the domain size is about 200 nm

one possible direction for the orientation of the domains. Figure 1.1 shows the domain pattern of

a perpendicular magnetic thin film. Figure 1.1 shows a domain pattern in a “maze” state, as the

configuration of up-oriented and down-oriented states resembles a maze. Sometimes, the domain

pattern manifests itself as bubbles, with a large section of the sample up-oriented, with several

small down-oriented regions.

Suppose a magnetic thin film exhibits a certain domain pattern in the absence of an external

field. If the domain pattern is changed by an external field, we are usually very unlikely to recover

the original domain pattern at some later time. Since there is no preference for the original struc-

ture, there is no reason to return to it. In some specialized thin films, however, there is a preference

for certain domain patterns. When a domain pattern in such a thin film is disturbed by an external

field, there is a tendency for the domain pattern to return to a configuration similar to the original

after the field is removed. In other words, the thin film “remembers” its domain pattern. Hence,
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we refer to this phenomenon as magnetic domain memory (MDM) .

Normally, perpendicular magnetic thin films are isotropically magnetized, which is to say that

that there is no preferred direction for the magnetization of the domains. We may, however, intro-

duce a preferred direction by cooling the sample in the presence of a magnetic field, and maintain-

ing this low temperature for the duration of the experiment. This is known as a field cooling (FC),

as opposed to cooling without a field known as zero field cooling (ZFC).

In this work, we will study thin films discovered to exhibit a high degree of MDM. We will

produce examine MDM maps, or arrays which completely characterize the amount of MDM ex-

hibited by our samples. Specifically, we will study MDM in thin films experimentally under a

variety of cooling field strengths in order to better understand the magnetic interactions which are

responsible for MDM within the samples.

1.2 Background

1.2.1 Ferromagnetism, Antiferromagnetism, and Couplings

The domain pattern of a magnetic material is one which minimizes the magnetic energy. The least

energy configuration for magnetic domains is, in part, determined by the type of magnetic order

of the material. Magnetic ordering is the preferred orientation of neighboring spins, depending on

the sign of the exchange interaction associated with the material [2].

If a material has a negative exchange interaction, neighboring spins store less magnetic energy

if they are aligned. This magnetic ordering is ferromagnetic ordering. Groups of spins near each

other decrease their total energy by mutually aligning their spins and thereby form a domain [1]. A

sample is said to be saturated if all of its ferromagnetic domains are aligned in the same direction.

If a material has a positive exchange interaction, neighboring spins store less magnetic energy

if their spins are anti-aligned. This magnetic ordering is known as antiferromagnetic ordering.
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Antiferromagnetic films tend to develop a “checkerboard” pattern at the atomic level, where as

many spins are anti-aligned as possible. Antiferromagnetic materials have an associated Néal

temperature below which the antiparallel ordering occurs.

Ferrom
agnetic Layer

A
ntiferrom

agnetic Layer

U
ncom

pensated Spins

Figure 1.2 The spins in a ferromagnetic material tend to be aligned with their neighbors.
Spins in antiferromagnetic materials are anti-aligned with their neighbors. Above the
blocking temperature, spins in the antiferromagnetic layer near the boundary with the
ferromagnatic layer tend to align in the direction of the ferromagnetic spins. When cooled
below the blocking temperature, the antiferromagnetic layer retains this configuration
regardless of any changes in the ferromagnetic layer. Spins so affected are known as
uncompensated spins, and this interaction is known as exchange coupling.

Figure 1.2 also gives us some insight on an interesting phenomenon occurring in antiferro-

magnetic thin films. Observe that each “up” spin in the antiferromagnetic layer is balanced by a

“down” spin on every side except the spins near the boundary with the ferromagnetic layer [3].

Spins in the antiferromagnetic layer near the boundary with the ferromagnetic layer are affected

by ferromagnetic domain, and at high temperature (e.g., room temperature), these boundary spins
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tend to flip in the direction of the neighboring ferromagnetic spins. This effect is known exchange

coupling [4]. This coupling has an associated blocking temperature. Below the blocking temper-

ature, the spins in the antiferromagnetic layers are frozen in their configuration, regardless of the

configuration of the neighboring ferromagnetic spins. As ferromagnetic domains conform to the

lowest energy state, they couple to uncompensated spins. Thus, the pattern of uncompensated spins

is determined by the initial ferromagnetic domain pattern and serves as a template for the recovery

of this initial ferromagnetic domain pattern. This is the mechanism which encourages MDM in the

ferromagnetic layers [5].

1.2.2 Sample

We use a sample which takes advantage of the exchange coupling between ferromagnetic and an-

tiferromagnetic layers. Specifically, the ferromagnetic layers in our sample consist of alternating

cobalt and palladium [3]. The antiferromagnetic layers consist of an alloy of iridium and man-

ganese [6] . We have three samples which vary slightly in the thickness of some of the layers.

Formally, the samples’ layering scheme is given by,

Sample 0: [(Co 4Å/Pd 7Å)12/ Co 4Å/ IrMn 43Å]3/ (Co 4Å/Pd 7Å)12/Co 4Å

Sample 1: [(Co 3.8Å/Pd 7Å)12/ Co 3.8Å/ IrMn 43Å]3/ (Co 3.8Å/Pd 7Å)12/Co 3.8Å

Sample 2: [(Co 3.9Å/Pd 7Å)12/ Co 3.9Å/ IrMn 50Å]3/ (Co 3.9Å/Pd 7Å)12/Co 3.9Å

with a 5Å capping layer of tantalum on each sample. Here, the / indicates a new layer and a

subscript indicates the number of times the preceding structure is repeated in the layering. The

samples are produced by sputtering, and each has a thickness of about 70 nm. From the Figure 1.1,

we measure the average domain size is about 200 nm, these samples qualify as thin films. Figure

1.3 shows a detailed schematic of the sample construction. We will abbreviate the cumbersome

notation for this type of magnetic thin film simply as [Co/Pd]IrMn thin film. Each of the sam-

ples were assembled via sputtering by Eric Fullerton and his research team at the University of
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California, Davis.

12 copies total

Additional 
Co layer

3 copies total

Ferromagnetic Co

nonmagnetic Pd

Antiferromagnetic 
IrMn alloy

Ferromagnetic 
multilayer

Additional 
ferromagnetic 
multilayer

Figure 1.3 The complex multilayered structure of the [Co/Pd]IrMn sample is optimized
for magnetic memory.

1.2.3 Magnetization Loops and Exchange Bias

Magnetic materials famously exhibit a property known as hysteresis. Hysteresis is the dependence

of the output of a system on the history of the system as well as the current input. Hysteresis

in ferromagnetic materials manifests itself in the magnetization loop. A magnetization loop, also

known as a hysteresis loop, results when we measure the magnetization of a ferromagnetic sample
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with respect to a changing external magnetic field. We find that the magnetization of the sample

depends not only on the current external magnetic field, but also on the history of the external field.

A magnetization loop may be obtained experimentally by taking the following steps:

1. Begin with a high magnetic field perpendicular to the sample so as to saturate the sample.

2. Reduce the magnetic field gradually, measuring the magnetization at regular intervals.

3. Continue reducing the field until the sample is saturated in the opposite direction.

4. Reverse the process, increasing the field until the sample is once again saturated in the orig-

inal direction.

The result is a magnetization loop such as in Figure 1.4. The hysteresis is evident in the separation

between the ascending and descending branches of the magnetization loop. There are three points

of interest in figure. The coercive point, Hc is the field which must be applied in order for the

sample to be returned to a neutral state. The saturation point, Hs, is the field required to saturate

the sample. The nucleation point, Hn, is the field at which the sample first begins to depart from

saturation.

My thesis focuses on the effect of exchange bias on magnetic memory. Exchange bias is the

introduction of anisotropy to the sample [7]. Generally, we cool the sample to below the blocking

temperature to lock the spin configuration in the antiferromagnetic layers. If we cool the sample

in the absence of a magnetic field, the sample is isotropic; there is no preferred direction. We may,

however, introduce an external field perpendicular to the film during the cooling process so that the

antiferromagnetic layers are biased in the direction of the external field [8] [9]. The external field

introduced while cooling is called a cooling field. Introducing bias to the sample has the effect of

shifting the magnetization loop in Figure 1.4 to the left or right.
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Figure 1.4 The magnetization of the [Co/Pd]IrMn sample 1 as a function of the applied
external field. We traverse the loop in the counter clockwise direction. The separation
between the ascending and descending branches indicates the hysteresis characteristic
of ferromagnetic materials. This data was obtained at 300 K. Note the locations of the
coercive, saturation, and nucleation points: Hc, Hs, and Hn.

1.2.4 Mapping Magnetic Memory

In order to determine the amount of MDM exhibited by the sample, we must be able to obtain

some information about the domain pattern in situ. We can get some information about the domain

pattern using scattering of synchrotron radiation (see Section 2.1 for details) [10]. The result is

an image recorded by a CCD detector which contains details related to the domain pattern of the

sample. We take images as the sample follows the magnetization loop described in Subsection

1.2.3. We traverse the loop several times and take dozens of images during each loop. We can

determine the degree of MDM by comparing images taken at various points along the loop.
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After obtaining a scattering image, the next step in determining the amount of magnetic mem-

ory is comparing the MDM between two sets of images. We compare two sets of images by

producing a map, or an array, which displays the degree of magnetic memory between every pair

of images with one in each set. The map shows a general trend in the MDM displayed by the sam-

ple over each cycle of the magnetization loop. This allows us to determine over which sections of

the magnetization loop the domains in the sample best reproduce their structure. Furthermore, we

can tell how the sample “remembers” its domain pattern over several cycles of the magnetization

loop.

We will review the specifics of measuring the domain pattern and preparing the retrieved data

for presentation in maps in Chapter 2.

1.3 Previous Work and Goals

1.3.1 Previous Work

Studies in recent years have focused on measuring magnetic memory and domain patterns of mul-

tilayered magnetic thin films [11]. A conclusion of these studies is that [Co/Pd]IrMn thin films

do demonstrate a high degree of magnetic memory induced by the coupling between ferromag-

netic and antiferromagnetic layers. These studies have demonstrated MDM in [Co/Pd]IrMn thin

films under zero field cooling (ZFC) conditions. We will extend these studies by experimenting on

[Co/Pd]IrMn thin films after a cooling field has been applied.

1.3.2 Goals

The goal of our study is to characterize the effects of nonzero cooling field on [Co/Pd]IrMn thin

films. We will examine the effects of cooling fields of various strengths.



Chapter 2

Methods

2.1 Experiment

The first step in determining the degree of magnetic memory a sample exhibits is to measure the

domain pattern of the sample experimentally.

2.1.1 Principles of the XRMS technique

Xray resonant magnetic scattering (XRMS) is a technique used to measure the domain pattern of

magnetic thin films [12]. When xrays pass through a material, they interact weakly with the spins

of electrons in the material. This effect is magnified when the energy of the xrays is tuned to an

absorption edge of the material (this is what is meant by “resonant”). In our case, we tune the

energy of xrays to the L3 edge of cobalt, 778 eV.

The scattering pattern of xrays through the magnetic material reveals information about the

domain pattern of the material. In a process similar to Fraunhofer diffraction, the scattering pattern

is related to the Fourier transform of the domain pattern [13]. If the incoming xrays are not spatially

coherent, the scattering pattern is blurred. We can still measure general properties like average

10
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domain size, but we lose information about details of the domain pattern. Thus, we use synchrotron

radiation which is relatively spatially coherent in comparison to more accessible xray sources. To

further enhance the spatial coherence of the xrays, we drill a small aperture in the silicon substrate

on which the sample is mounted. The xrays are still not perfectly coherent, but the quality is

sufficient to distinguish domain patterns with subtle differences.

2.1.2 Experimental Setup

Measuring magnetic memory at a synchrotron facility requires a sophisticated experimental setup.

Xrays at 778 eV have an attenuation length of about 1230 µm in air at atmospheric pressure, so

we must perform the experiment in high vacuum (micro-Torr levels). Furthermore, we need to

measure how the sample responds to an external magnetic field, so we use a vacuum chamber

equipped with an octopolar electromagnet capable of producing a field up to 4500 Gauss in any

direction.

The sample must be cooled below the blocking temperature. The blocking temperature varies

between samples, but each has a blocking temperature higher than 200 K. Even below the blocking

temperature, MDM is better observed at temperatures as low as possible, so the sample is affixed to

a cryostat and cooled to about 25 K using liquid helium. The cryostat and sample are both mounted

on an electronic 3-axis translation stage which we can control digitally to align the sample with

the xray beam.

The xray scattering pattern is read and recorded by a CCD camera. Unfortunately, the direct

beam is too bright for the detector, and would damage the camera, so we use a small blocker to

obscure the direct beam. Because the beam tends to drift slightly, the blocker is attached to a

manipulator so we can adjust its position in vacuum. Finally, upstream from the sample, we have

installed two shutters: one to regulate the radiation intensity, and the other to expose the sample

for a fixed amount of time. Figure 2.1 gives a schematic of the experimental setup.
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Cryostat

Sample translation stage

Electromagnet

CCD Camera

Vacuum chamber

Sample
Shutter

Valve for intensity 
control

Blocker and 
manipulator

Scattered 
x-rays

Incoming xrays

From synchrotron

Figure 2.1 A diagram of the experimental setup for measuring magnetic memory at end-
station ID4-c at APS.

2.1.3 Experimental Procedure

After assembling the experiment as described above, the first step in performing an XRMS experi-

ment is to evacuate the chamber to micro-torr levels. Next, we decide on the magnitude of cooling

field to use (we may also choose not apply any cooling field). We apply the cooling field in the

direction perpendicular to the sample, and cool the sample with liquid helium to about 25K. Then

we remove the cooling field while maintaining the temperature of the sample. The scattering pat-

tern is brightest when there is no external field. Therefore, we adjust the intensity control valve and
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exposure time for the CCD camera so that we collect as much data as possible without saturating

or damaging the detector. Finally, we apply the following steps several times:

1. Decide a direction perpendicular to the sample plane to be positive. Apply a saturation field

of -4500 Gauss. Record the scattering pattern with the CCD detector.

2. Increase the field in increments of 50 to 200 Gauss (depending on the desired level of detail),

and record the scattering pattern at each step.

3. When the field reaches +4500 Gauss, begin decreasing the field at increments of 50 to 200

Gauss, recording the scattering pattern at each step.

We repeat the experiment as described several times for variable cooling fields. Each data set

measured between cooling cycles is referred to as a series. The parts of series of data taken during

the process of increasing applied field are referred to as ascending branches, while the parts of a

series taken with decreasing field are descending branches. Each series has one ascending branch

for each repetition of step (2) and one descending branch for each repetition of step (3). Typically,

each series has four ascending branches and four descending branches, but some have as few as one

of each or as many as seven of each. Four branches is enough to demonstrate magnetic memory

over several cycles, but not so many as to waste resources we could use to test the sample under

different field conditions. We will measure magnetic memory by comparing images from different

ascending or descending branches in the same series. An example of the scattering images obtained

through this process is given in Figure 2.2.

2.1.4 Challenges in Experiment

Magnetic memory experiments pose some unique challenges. One such challenge is that the very

hysteresis which allows for the phenomenon of magnetic memory can ruin an experiment if we
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Figure 2.2 This is an example of a scattering pattern obtained through the XRMS tech-
nique. Inset is an example of speckles within the image.

are not careful. We use digitally controlled electromagnets to produce an external field for the

sample. The computer controlling these magnets accepts a value for a magnetic field goal, and

then employs an algorithm which adjusts the current delivered to each of the eight magnets until

the field is sufficiently close to the desired value.

The electromagnets’ algorithm does not always adjust the field monotonically. If the adjust-

ment is not monotonic, the sample will follow a minor hysteresis loop, where the field is increased,

and then decreased (or vice versa) without achieving saturation at both extremes. If the field is

increased too much, and then decreased to the right value, the domain pattern will be different than

if the field is only increased to the particular value. This effect is outlined in Figure 2.3.

Generally, the electromagnets’ algorithm does not overshoot very much, so the effect of minor

loops is small. Occasionally, though, the algorithm generates a saturation field, and the sample

remains saturated for the rest of the images in that branch. We mitigate this problem by changing
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F1 F2 F3
a

b

c

Figure 2.3 Suppose we test the sample at magnetic fields F1 < F2 < F3. Two possible
paths from F1 to F2 are a and b ∗ c, where ∗ denotes the concatenation of paths. But be-
cause of the effects of hysteresis, these two paths result in different states for the sample’s
domain pattern when measured at F2. In particular, if F3 is a saturation field while F2 is
not, the sample may be saturated if we follow b∗ c and unsaturated if we follow a. Thus,
the process of changing the magnetic field is not commutative.

the field in finer steps in regions where we know the algorithm is faulty.

2.2 Computational Analysis

Through experiment, we obtain the data related to the domain pattern of the sample. To determine

how much magnetic memory the sample presents, we must analyze this data using computational

techniques.

2.2.1 Purpose

There are two major goals in the computational analysis of experimental data. First, we want

to isolate the details of the scattering pattern which correspond to details in the domain pattern.

Second, we want to use this information to determine how similar two domain patterns are and

organize this information into a chart showing how magnetic memory persists in the sample at

different external field strengths.

The features in the scattering pattern corresponding to details of the domain pattern are spots

known as speckles. The collection of all speckles is the speckle pattern. Speckles result from

the scattering of coherent x-rays scattering through the sample. Unfortunately, the speckles are
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difficult to discern because of the scattering of incoherent x-rays. The incoherent scattering is

known as the envelope. While the speckle pattern reveals details about the domain pattern, the

envelope gives only general information. We will separate the speckle pattern from the envelope,

and use speckle patterns to compare images.

The ultimate product of the computational process is the map. A map is an array M generated

by two branches of images {A1, ...,Am} and {B1, ...,Bn}. Each element Mi j of the array is a number

corresponding to the similarity of image Ai to image B j. If the images are speckle patterns, then

their similarity is related to the amount of magnetic memory exhibited in the sample between those

two images [14].

2.2.2 Techniques and Algorithms

While performing our analysis, we will find a few common techniques useful. In particular, we

will make use of the convolution of functions. Regarding f and g as L1 functions f ,g : R2→ R,

the convolution is defined as

( f ⊗g)(x)≡
∫
R2

f (x−ξ )g(ξ )dξ .

More particularly, we employ a cyclic convolution defined for periodic functions.

Definition 2.2.1. Let f ,g ∈ L1(R2) be doubly periodic, both having periods a and b. The cyclic

convolution of f and g is

( f ⊗T g)(x) =
∫
T

f (x−ξ )g(ξ )dξ

Where T= [0,a)× [0,b).

We will find the following useful in constructing periodic functions.

Definition 2.2.2. Given a function f : R2→R which vanishes outside of [0,a)× [0,b) for a,b > 0,
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the periodic summation of f is a function f̃ : R2→ R defined by

f̃ (x,y) =
∞

∑
n=−∞

∞

∑
m=−∞

f (x−na,y−mb).

Proposition 2.2.3. Let f be a function f : R2 → R which vanishes outside of [0,a)× [0,b) for

a,b > 0. Then the periodic summation of f , f̃ (x,y), is periodic in both x and y.

A proof of this proposition is given in the appendix.

We will convolve images, which we can regard as a matrix of pixel values. Of course, we do

not have a convolution defined for matrices, so we will convert each image into a function. Let A

be an m-by-n matrix corresponding to an image. If Ai j = z, define a function

fA(x,y) =


Adxedye if 0≤ x < n,0≤ y < m

0 otherwise.

Since A has mn values, this is a simple function, and therefore fA ∈ L1(R2).

Definition 2.2.4. Let A and B be matrices corresponding to images with dimension n-by-m. Then

the image convolution of A and B is

C = A⊗B

where C is the matrix,

Ci j = ( f̃A⊗T f̃B)(i−1/2, j−1/2)

for 1≤ i≤ n, 1≤ j ≤ m. Note that A⊗B = B⊗A.

We will also take advantage of the convolution theorem, which states

F ( f ⊗g) = F ( f )F (g),

where F denotes a Fourier transform. The convolution theorem also applies to image convolu-

tions.
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We will have many opportunities to apply image convolution. One opportunity is in Gaussian

smoothing . A Gaussian matrix is an n-by-n matrix G given by

G(n,σ)i j =
1√

2πσ
e−

(i−n/2)2+( j−n/2)2

2σ2 ,

where σ is a real number corresponding to the width of the Gaussian peak. The Gaussian smooth-

ing of an image A is A⊗G. Physically, the process of Gaussian smoothing results in an image

similar to A, but blurred slightly. An example of the Gaussian smoothing to Figure 2.2 is given in

Figure 2.4.

Figure 2.4 Gaussian smoothing applied to Figure 2.2 with the Gaussian matrix G(50,10).

Another application of image convolution is the process of cross correlation. Cross correlation

is a method of comparing two images. Cross correlation is a mapping f which maps two images

to a real number (usually denoted ρ). It is defined for n-by-m images by

ρ = f (A,B) =
∑

n
i=1 ∑

m
j=1(A⊗B)i j√

∑
n
i=1 ∑

m
j=1(A⊗A)i j ∑

n
i=1 ∑

m
j=1(B⊗B)i j

. (2.1)
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It is not hard to apply Hölder’s inequality to show that 0 ≤ f (A,B) ≤ 1. If f (A,B) = 1, we may

conclude that A = B. If f (A,B)≈ 1, we know that A is very similar to B. We will find this method

invaluable in calculating magnetic memory.

2.2.3 Computational Procedure

We now describe the procedure for extracting the speckle pattern and determining the magnetic

memory demonstrated between speckle patterns. In order to expedite the computational analysis,

we have developed a robust collection of MATLAB functions to perform various tasks. Here we

present the steps in the computational analysis.

1. First, we must enter all information from experiment into appropriate files so other functions

can access it. This information includes the image numbers recorded by the camera, the

applied magnetic field for each image, and the cooling field applied for each series.

2. Each scattering pattern is occluded by the blocker. This results in a scattering image with

artificially low values in the shadow of the blocker. To prevent this data from corrupting the

results, we must find the location of the blocker within each image. Fortunately, the position

of the blocker is nearly constant for each series. (We sometimes have to move the blocker

when the beam position shifts slightly due to optical elements changing temperature).

3. We will apply Gaussian smoothing repeatedly to each image to find the smooth underlying

envelope of the scattering pattern, which corresponds to the scattering from incoherent radi-

ation. We will subtract the envelope from the rest of the image to extract the speckle data. If

we do not smooth enough, we will lose some of the speckle data. If we smooth too much,

we will include too much of the envelope in the extracted data. In this step, we pick a few

sample images out of a series to smooth at various levels, and determine the best one. Figure

2.5 show the results of oversmoothing, undersmoothing, and the proper level of smoothing.
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Once we have determined the proper level of smoothing for each series, we smooth each

member of the series to this level.

4. The longest step in the computation is the cross correlation. The cross correlation is per-

formed using the convolution theorem, and takes about one second for each pair of images.

We cross correlate every pair of images within a series, so if there are 200 images in a se-

ries, the cross correlation can take over ten hours per series when computed in series. The

result of the cross correlation between two images of dimension n-by-m is another image of

dimension 2n-by-2m. There is a sharp peak centered close to (n,m), but the rest of the image

has pixel values close to zero. To save hard drive space, we only save an 81-by-81 subimage

of the correlation centered at the peak.

5. Next, we compute
n

∑
i=1

m

∑
j=1

(A⊗B)i j

for each pair of images A and B in the series. There is a slight complication: there are some-

times small secondary peaks near the primary peak due to neighboring speckles correlating

with each other. To avoid summing these secondary peaks, we identify an ellipse which

contains only the primary peak, and only sum these values.

6. The final step is to assemble the maps. A cross-correlation map is an interpolation of the

f (Ai,B j) from Eq. (2.1) over images A = {A1, ...,Aα} and B = {B1, ...,Bβ} where A and B

are both ascending or descending branches of images. We assemble the maps by recalling

the values of sums from the previous step, and arranging these values in an array. Then we

interpolate over the resulting array. Rather than image number, we put the associated applied

external field on the axes. This shows us which regions on the magnetization loop have the

highest degree of correlation. We call the difference between the branch number for the two

branches the separation quality of the map. For example, a map formed by cross correlation
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(a) Undersmoothed image slice (b) Oversmoothed image slice

(c) Properly smoothed image
slice

Speckle data

Raw data

Envelope data

(d) Figures legend

Figure 2.5 These are slices, or columns of the image matrix showing the raw data, the
smoothed envelope, and their difference, the speckle. It is important to identify an optimal
level of smoothing. Too much smoothing results in a portion of the envelope included in
the speckle pattern. Too little smoothing results in omitted speckle detail.

of ascending branch 1 and ascending branch 3 has separation 2. We average all of the maps

with the same separation to observe the overall effect.
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2.2.4 Challenges in Computational Analysis

The biggest challenge in computation is adjusting for the presence of the blocker. As described

above, we must identify the location of the blocker to account for it. Even so, when we smooth

the image, the pixels near the blocker are affected by the lower pixel values of the blocker. We

do not yet have a good way to avoid this, so we must dispose of data in the neighborhood of the

blocker. Thus, when entering the location of the blocker, we intentionally create a blocker about

twenty pixels larger than necessary in both directions. When we construct an array with is zero

on the enlarged blocker, and one elsewhere, we may multiply this array by the original image and

thereby dispose of the original blocker shadow and the surrounding pixels.

We would, of course, prefer not to dispose of data. It is possible that we may interpolate over

the blocker region so that the pixels in the neighborhood of the blocker shadow are affected by the

low values during the smoothing. This is an area of further study.



Chapter 3

Results and Conclusions

3.1 Experimental Results

The XRMS experiment yields thousands of scattering images. We index the images by number,

and organize them into several series. Each cooling cycle has an associated series consisting of

(usually) four ascending branches and four descending branches, corresponding to a total of about

two hundred images. Between each series, we adjust various parameters of the experiment such

as cooling field strength, or final temperature. We may also change which sample we test. Table

3.2 shows the parameters for each series. Some series have a wide temperature range because the

liquid helium was depleted before completing the series. Fortunately, enough helium remained to

keep the temperature remained far below the blocking temperature in every case.

The data in this analysis are measurements from one of four samples. Recall from Section

1.2.2 that we are working with a set of distinct multilayer types denoted samples 0, 1, and 2. Each

sample is mounted on a silicon wafer with a small aperture to increase coherence. Samples 0a

and 1a, and 2a have an aperture of size 20µm× 30µm, while sample 1b has an aperture of size

100µm× 100µm. The aperture size is the only difference between sample 1a and sample 1b. This

23
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Sample name Sample number Aperture size (µm×µm)

0a 0 20×30

1a 1 20×30

1b 1 100×100

2a 2 20×30

Table 3.1 A description of each sample used in the XRMS experiment

information is summarized in Table 3.1. The size of the aperture is important. A smaller aperture

size results in a more contrasted scattering pattern, as shown in Figure 3.1. The larger aperture size

produces smaller and less contrasted speckle spots, so we use the smaller aperture size to measure

magnetic memory. Thus, we only used sample 1b for a few images, not for large series.

An experiment at the Advanced Light Source (ALS) at Berkeley tested sample 0a, while an

experiment at the Advanced Light Source (APS) at Argonne tested samples 1a, 1b, and 2a. The

results from the ALS data and APS data are different, so we separate them accordingly. The ALS

data comprise series 900-3400, while the APS data comprise series 5000-7200.

3.2 Maps

Here we present the results of the computational analysis. The results consist of maps generated as

described in Section 2.2.3. Table 3.3 indexes the series with their corresponding figures. We divide

the results in two groups: one obtained in an experiment at ALS and the other at APS. The maps

presented here are all given a title starting with the series number, then an “A” or “D,” meaning

ascending or descending, followed by a number indicating the number of branch separations. This

means that the image is an average of all the maps where the two correlated branches are separated

by a fixed number of loops. Four example, the 1200 series has four ascending branches, so the map



3.2 Maps 25

Series # Experiment Location Sample Temperature (K) Cooling Field (Oe) Image Range

900 ALS 0a 21 3200 953-965

1200 ALS 0a 19 3200 1238-1370

1600 ALS 0a 27 3200 1631-1704

1900 ALS 0a 18 2560 1975-2140

2100 ALS 0a 21 2240 2144-2270

2200 ALS 0a 22 1920 2290-2394

2400 ALS 0a 28 1280 2407-2511

3400 ALS 0a 20 640 3452-3631

3600 ALS 0a 22 0 3635-3759

5000 APS 2b 303 0 5010-5128

5200 APS 1a 22 0 5280-5495

5500 APS 2b 22-70 0 5496-5624

5700 APS 1a 23 4500 5714-5922

5800 APS 1a 23 2500 5923-5974

5900 APS 1a 22 2500 5977-6190

6100 APS 1a 24-130 2000 6192-6393

6400 APS 1a 23 1500 6395-6693

6700 APS 1a 21 1000 6703-6913

7000 APS 1a 22 500 6916-7121

7200 APS 1a 22-160 0 7124-7330

Table 3.2 The parameters used in each series. We organize the experimental data into
series. Each cooling cycle has an associated series.
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(a) Scattering through a small aperture (b) Scattering through a large aperture

Figure 3.1 Scattering through a smaller aperture results in a more distinct speckle pattern.
Inset are selected speckles from each image. Note that the speckles from the smaller
aperture image are both larder and more distinct than those of the larger aperture image.

with a title “1200-A2” is an average of correlations between images on the first and third branch

and images on the second and fourth branch.

3.2.1 ALS Data

Each series from the ALS data has a distinct shape featured in its maps. In particular, we note the

following:

• All zero-separation maps are exactly symmetric because the correlation operation is com-

mutative. See Figure 3.2.

• The 1200 series has particularly low correlation levels. See Figure 3.3.

• The ascending branches of the 2100 series demonstrate a “plateau” feature. See Figure 3.4.

• The descending branches of the 2100 series demonstrate a “bird” shape. See Figure 3.5.
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Series # Figure(s)

900 3.7

1200 3.8-3.9

1600 3.10-3.11

1900 3.12-3.13

2100 3.14-3.15

2200 3.16-3.17

2400 3.18-3.19

3400 3.20-3.21

5200 3.22-3.23

Table 3.3 The figures corresponding to each series.

• The maps in the 2400 series feature an “X” shape. See Figure 3.6.

Every map has the same color scale; a red color indicates a higher correlation, while a blue

color indicates a lower correlation. We observe a general trend showing that series with lower

cooling field tend to show more memory (on average) than those with a higher cooling field. We

also see some other trends. Most of the maps have strong correlation on the diagonal, but not all.

Many also have strong correlation on a plateau in the center, and others have strong correlation on

the anti-diagonal.

Notice that the zero separation, or same-loop correlation maps always have a strongly-correlated

diagonal. This is because the diagonal consists of autocorrelation. The near-diagonal correlations

are high because we do not expect the domain pattern of the sample to change much over a small

interval within a magnetization loop.

Figures 3.7-3.21 give most of the correlation maps obtained from ALS data.
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Figure 3.2 Autocorrelation maps are exactly symmetric since the correlation operation
is commutative. In the plot title, the letter D stands for descending, and the zero next to
the D means that this is a composite average of all maps which show a correlation of two
branches with a zero loop separation (i.e., all autocorrelations).

3.2.2 APS Data

These series have a consistent plateau of high correlation in the low-field corner of the map, while

the remainder of the map increases in correlation with decreased cooling field. This behavior is

not expected based on the results of ALS and other experiments. Further experiment is required to

determine whether this is authentic, or a property of samples 1a and 2a. Figures ?? and ?? shows

a sample of results from APS data.

3.3 Quantitative Analysis of Maps

3.3.1 Slices

While correlation maps give us a good qualitative understanding of MDM properties of thin films, a

quantitative analysis requires a different sort of plot. Such a plot is a slice of the correlation maps.
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Figure 3.3 The 1200 series has, ing general, a relatively low degree of correlation. In the
plot title, the letter D stands for descending, and the two next to the D means that this is a
composite average of all maps which show a correlation of two branches with a two loop
separation

A slice is simply a row, column, or diagonal of the correlation map matrix plotted against field

value. We can superimpose many slices on the same plot to observe different effects. For instance,

Figures 3.24 and 3.25 column and diagonal slices (respectively) for each ascending branch sepa-

ration. We usually refer to a column slice as a vertical slice, and we will always present a vertical

slice corresponding to the middle column. Notice that there is not very much decrease in memory

over many branch separations. This is a confirmation of a previous paper, which demonstrated that

memory persists over many branch separation [15].

Of particular interest to us is the collection slices corresponding to the same branch separa-

tion across series with different cooling fields. Such a plot of slices is given in Figures 3.26 and

3.27. Besides the rather anomalous results from the series with a 640 Oe cooling field (this is the

3400 series), we notice the general trend that increased cooling field leads to decreased overall

correlation. We shall proceed with a statistical analysis to confirm this rigorously.
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Figure 3.4 Maps from the ascending branches of the 2100 series feature a “plateau” shape.
In the plot title, the letter A stands for ascending, and the two next to the A means that
this is a composite average of all maps which show a correlation of two branches with a
two loop separation

3.3.2 Statistical Analysis

We study two statistics for every map with positive separation: maximum correlation and mean

correlation. So as not to confuse these with other maxima and means, we will call these variables

map maximum and map mean. We study these variables with respect to two factors: cooling field

and branch separation. While we omit a complete presentation of this data, summary statistics are

given in Table 3.4. Figure 3.28 shows the effect of cooling field on the means of map maximum

and map mean.

To test the significance of cooling field and branch separation on both variables, we will use

the statistical tools ANOVA (analysis of variance) and Tukey HSD (honest significant difference).

ANOVA tables given in Tables 3.5 and 3.6.

The most important results from the ANOVA tables are the rows for which P(>F) has a value

less than 0.05. This means that the corresponding factor has a statistically significant effect at the
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Figure 3.5 Maps from the descending branches of the 2100 series feature a “bird” shape.
In the plot title, D stands for descending, and the two next to the D means that this is a
composite average of all maps which show a correlation of two branches with a two loop
separation

Map Maximum Map Mean

Cooling Field (Oe) Mean Std. Dev. Mean Std. Dev.

1280 0.989 0.009 0.740 0.058

1920 0.893 0.031 0.583 0.029

2240 0.976 0.012 0.661 0.078

2560 0.899 0.020 0.549 0.076

3200 0.815 0.120 0.389 0.056

Total 0.9207 0.0722 0.5937 0.1257

Table 3.4 Means and standard deviations for the experimental data.

95% confidence level. To summarize the preliminary results of this analysis:

• Cooling field and branch separation both have a significant effect on the map maximum
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Figure 3.6 Maps from the 2400 series feature an “X” shape. In the plot title, the letter A
stands for ascending, and the one next to the A means that this is a composite average of
all maps which show a correlation of two branches with a one loop separation

(a) Ascending zero separation (b) Descending zero separation

Figure 3.7 Ascending and descending averaged maps for the 900 series.

correlation, as does the interaction between them.

• Cooling field and branch separation both have a significant effect on the map mean correla-

tion.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

Figure 3.8 Ascending averaged maps for the 1200 series.
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(a) Descending zero separation (b) Descending one separation

(c) Descending two separations (d) Descending three separations

Figure 3.9 Descending averaged maps for the 1200 series.
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(a) Ascending zero separations (b) Ascending one separation

Figure 3.10 Ascending averaged maps for the 1600 series.

(a) Descending two separations (b) Descending three separations

Figure 3.11 Descending averaged maps for the 1600 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

(e) Ascending four separations (f) Ascending five separation

Figure 3.12 Ascending averaged maps for the 1900 series.
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(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

(e) Descending four separations (f) Descending five separation

Figure 3.13 Descending averaged maps for the 1900 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

(e) Ascending four separations

Figure 3.14 Ascending averaged maps for the 2100 series.
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(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

(e) Descending four separations

Figure 3.15 Descending averaged maps for the 2100 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

Figure 3.16 Ascending averaged maps for the 2200 series.



3.3 Quantitative Analysis of Maps 41

(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

Figure 3.17 Descending averaged maps for the 2200 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

Figure 3.18 Ascending averaged maps for the 2400 series.
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(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

Figure 3.19 Descending averaged maps for the 2400 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

Figure 3.20 Ascending averaged maps for the 3400 series.
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(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

Figure 3.21 Descending averaged maps for the 3400 series.
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(a) Ascending zero separations (b) Ascending one separation

(c) Ascending two separations (d) Ascending three separations

Figure 3.22 Ascending averaged maps for the 5200 series.
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(a) Descending zero separations (b) Descending one separation

(c) Descending two separations (d) Descending three separations

Figure 3.23 Descending averaged maps for the 5200 series.
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Figure 3.24 Vertical slices for each ascending branch separation of the 2400 series at the
middle pixel. Cooling field here is 1280 Oe.

Figure 3.25 Diagonal slices for each ascending branch separation of the 2400 series.
Note that the zero separation slice is a constant. This is because the diagonal of a zero
separation map consists of autocorrelations. Cooling field here is 1280 Oe.

So we know that cooling field has a significant effect, but what is it? To determine what the

effect of significant factors are, we can construct Tukey HSD 95% overall confidence intervals.
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Figure 3.26 Each of the vertical slices for both ascending and descending one separation
maps. We have omitted the data from the 3400 series, which was cooled under 640 Oe,
because it has some strange behavior, which may not be physical. We observe that, in
general, series with a higher cooling field have lower correlation. The vertical slice is at
the center pixel.

Map max ρ D.F. Sum Sq. Mean Sq. F-value P(> F)

Cooling Field 4 0.3591 0.0898 51.6464 <0.0001

Separation 5 0.0233 0.0047 2.6767 0.0263

Interaction 9 0.0344 0.0038 2.1956 0.0291

Residuals 93 0.1617 0.0017

Table 3.5 ANOVA table for the map maxima. Note that every effect is significant at the
95% confidence level.

There are hundreds of such intervals for each effect and every interaction over both response vari-

ables. For the sake of brevity, we present only the confidence intervals for the effect of cooling field

on map maximum and map mean correlation. These confidence intervals are given in Table 3.8.
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Figure 3.27 Each of the diagonal slices for both ascending and descending one separation
maps. We have omitted the data from the 3400 series, which was cooled under 640 Oe,
because it has some strange behavior, which may not be physical. We observe that, in
general, series with a higher cooling field have lower correlation.

Map mean ρ D.F. Sum Sq. Mean Sq. F-value P(> F)

Cooling Field 4 1.2733 0.3183 86.6464 <0.0001

Separation 5 0.1352 0.0270 7.3581 <0.0001

Interaction 9 0.0037 0.0004 0.1130 0.9993

Residuals 93 0.3417 0.0037

Table 3.6 ANOVA table for the map means. Note that both main effects are significant at
the 95% confidence level.

Each row in this table shows the difference between the average values for map mean correlation

for two cooling field values, along with a lower and upper bound. We are 95% confident that the

true value of the difference between the average map mean correlation for these two cooling field

levels lies between these bounds.
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Figure 3.28 The effect of cooling field on the means of map maxima and map means for
each cooling field value.

For each case where the confidence interval does not contain zero, we conclude that cooling

field does have an effect. Note that in almost every case, the difference between a larger cooling

filed map mean and lower cooling field map mean is negative. This means that higher cooling

fields result in lower map mean correlations. For example, all else being equal, if ρ1 is the average

map mean of the 3200 Oe maps, and ρ2 is the average map mean of the 1280 maps, then we are

95% confident that 29% < ρ2−ρ1 < 40%.

To summarize the results of this statistical study, cooling field has an effect on the map max-

imum and map mean correlation values. A higher cooling field almost always results in lower

correlations.



3.4 Conclusion 52

Difference ∆ρ̂ estimate Lower bound for ∆ρ̂ Upper bound for ∆ρ̂ p-value

ρ̂1920− ρ̂1280 -0.096 -0.137 -0.055 <0.0001

ρ̂2240− ρ̂1280 -0.013 -0.048 0.022 0.847

ρ̂2560− ρ̂1280 -0.090 -0.120 -0.060 <0.0001

ρ̂3200− ρ̂1280 -0.174 -0.213 -0.135 <0.0001

ρ̂2240− ρ̂1920 0.083 0.041 0.126 <0.0001

ρ̂2560− ρ̂1920 0.006 -0.032 0.044 0.991

ρ̂3200− ρ̂1920 -0.078 -0.124 -0.032 <0.0001

ρ̂2560− ρ̂2240 -0.077 -0.109 -0.046 <0.0001

ρ̂3200− ρ̂2240 -0.161 -0.202 -0.121 <0.0001

ρ̂3200− ρ̂2560 -0.084 -0.120 -0.048 <0.0001

Table 3.7 Tukey HSD 95% confidence intervals for the effect of cooling field on the map
maximum correlation value. We are 95% confident that the true difference between the
average map maximum correlation values of each pair of cooling fields given here lies
between the given bounds. Here, ρ̂c f denotes the average map maximum for maps with
cooling field c f .

3.4 Conclusion

We began with a goal of determining the effects of a cooling field on magnetic memory. After

carrying out experiments to measure magnetic domain memory in the presence of a cooling field,

we have determined that magnetic domain memory persists even in high cooling field, but to a

diminished degree. The observed decrease in magnetic domain memory when a biasing field is

applied may be explained as following: when the film is cooled in the absence of field (zero field

cooling), there are about the same number of up and down domains in the imprinted pattern in

the antiferromagnetic layer, therefore leaving a large degree of freedom for the domains in the

ferromagnetic layer to nucleate at random locations and grow in a way to eventually match the
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Difference ∆ρ estimate Lower bound for ∆ρ Upper bound for ∆ρ p-value

ρ1920−ρ1280 -0.1564 -0.2160 -0.0967 <0.0001

ρ2240−ρ1280 -0.0785 -0.1296 -0.0275 0.0004

ρ2560−ρ1280 -0.1910 -0.2341 -0.1478 <0.0001

ρ3200−ρ1280 -0.3503 -0.4070 -0.2936 <0.0001

ρ2240−ρ1920 0.0778 0.0162 0.1394 0.0060

ρ2560−ρ1920 -0.0346 -0.0898 0.0206 0.4114

ρ3200−ρ1920 -0.1940 -0.2603 -0.1276 <0.0001

ρ2560−ρ2240 -0.1125 -0.1583 -0.0666 <0.0001

ρ3200−ρ2240 -0.2718 -0.3305 -0.2130 <0.0001

ρ3200−ρ2560 -0.1593 -0.2114 -0.1073 <0.0001

Table 3.8 Tukey HSD 95% confidence intervals for the effect of cooling field on the
map mean correlation value. We are 95% confident that the true difference between the
average map mean correlation values of each pair of cooling fields given here lies between
the given bounds. Here, ρc f denotes the average map mean for maps with cooling field
c f .

underlying antiferromagnetic pattern, but when the film is cooled in the presence of magnetic field

(this is, the cooling field), there is an unbalance between the up and down domains in the imprinted

antiferromagnetic pattern, reducing the ability for the domains in the ferromagnetic pattern to

match this underlying pattern. As a result, the overall magnetic memory is somewhat reduced

when the sample is field cooled. These hypotheses are confirmed by quantitative and statistical

analysis.

As always, we will seek to confirm these conclusions through further experiment. The data

obtained at APS is meant to confirm this. Indeed there is less magnetic memory as cooling field

increases in the APS data, but other features of the APS data are inconsistent with several previous
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experiments. We do not yet know the cause of this discrepancy. Perhaps there was an error in the

experimental setup, or perhaps samples 1 and 2 are different in some way from sample 0. Whatever

the case, we will seek to better understand these results through further study in future experiments.

We are also always in search of methods to improve the computational process for analyzing

magnetic memory data. The biggest challenge to the computational process is the identification

and removal of the blocker. As described in Section 2.2.4, we will attempt to build a robust

interpolation function designed to “guess” what data would have been in the region of the blocker.

This will allow us to perform all of the analysis without regard for the pixels in the neighborhood

of the blocker. Other improvements to the computational process include complete automation of

the process. Next to the blocker finding and removal, the computational step requiring the most

human involvement is the identification of the proper level of smoothing. We will seek to automate

this and other computational steps.

Moving forward, there are several questions about magnetic domain memory and our samples

which require further study to answer:

• Which of the three samples exhibits the most magnetic domain memory?

• Why do samples 1 and 2 behave differently than sample 0?

• What do magnetic memory maps look like for minor loops?

• How does magnetic memory persist at higher temperature?

We will answer these questions and more through further experiment. Though there is still work

to do, the characterization of magnetic memory under cooling field conditions is an important step

towards an understanding of magnetic domain memory.



Appendix A

Proofs

A proof of Proposition 2.2.3.

Proposition A.0.1. Let f be a function f : R2 → R which vanishes outside of [0,a)× [0,b) for

a,b > 0. Then the periodic summation of f , f̃ (x,y), is periodic in both x and y.

Proof. Fix (x,y) ∈ R2. Let N be the largest integer such that Na < x, and let M be the largest
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integer such that Mb < y. Then

f̃ (x,y) =
∞

∑
n=−∞

∞

∑
m=−∞

f (x−na,y−mb)

=
∞

∑
n=−∞

(...+ f (x−na,y− (M−1)b)+ f (x−na,y−Mb)+ f (x−na,y− (M+1)b)+ ...)

=
∞

∑
n=−∞

(...+0+ f (x−na,y−Mb)+0+ ...)

=
∞

∑
n=−∞

f (x−na,y−Mb)

= ...+ f (x− (N−1)a,y−Mb)+ f (x−Na,y−Mb)+ f (x− (N +1)a,y−Mb)+ ...

= ...+0+ f (x−Na,y−Mb)+0+ ...

= f (x−Na,y−Mb).

If we translate by a in the x direction, we see

f̃ (x+a,y) =
∞

∑
n=−∞

∞

∑
m=−∞

f (x+a−na,y−mb)

=
∞

∑
n=−∞

(...+ f (x+a−na,y− (M−1)b)+ f (x+a−na,y−Mb)

+ f (x+a−na,y− (M+1)b)+ ...)

=
∞

∑
n=−∞

(...+0+ f (x+a−na,y−Mb)+0+ ...)

=
∞

∑
n=−∞

f (x+a−na,y−Mb)

= ...+ f (x+a−Na,y−Mb)+ f (x+a− (N +1)a,y−Mb)+ f (x+a− (N +2)a,y−Mb)+ ...

= ...+ f (x− (N−1)a,y−Mb)+ f (x−Na,y−Mb)+ f (x− (N +1)a,y−Mb)+ ...

= ...+0+ f (x−Na,y−Mb)+0+ ...

= f̃ (x,y).
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If we translate by b in the y direction, we see

f̃ (x,y+b) =
∞

∑
n=−∞

∞

∑
m=−∞

f (x−na,y+b−mb)

=
∞

∑
n=−∞

(...+ f (x−na,y+b−Mb)+ f (x−na,y+b− (M+1)b)

+ f (x−na,y+b− (M+2)b)+ ...)

=
∞

∑
n=−∞

(...+ f (x−na,y+(M−1)b)+ f (x−na,y−Mb)+ f (x−na,y− (M+1)b)+ ...)

=
∞

∑
n=−∞

(...+0+ f (x−na,y−Mb)+0+ ...)

=
∞

∑
n=−∞

f (x+a−na,y−Mb)

= ...+ f (x− (N−1)a,y−Mb)+ f (x−Na,y−Mb)+ f (x− (N +1)a,y−Mb)+ ...

= ...+0+ f (x−Na,y−Mb)+0+ ...

= f̃ (x,y).

A symmetric argument is sufficient to show that f̃ (x− a,y) = f̃ (x,y) and f̃ (x,y− b) = f̃ (x,y).

Thus f is doubly periodic.



Appendix B

Code

Here, I present original MATLAB code I wrote to expedite the analysis process. First, this script

assists in locating the blocker.

clear;

close all;

clc;

series=5200;

imagenum=5322;

imloc=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\data\eb' num2str(imagenum) '.fit'];

im=fitsread(imloc);

s=size(im);

multiplier=50000;

m=multiplier;
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%ellipse values

%center coordinates

x = 644;

y = 660;

%axes

a = 100; %verticaly

b = 100; %horizontaly

phi = 0;%rotation angle

%tetragon values

x1 = 1;%first corner // top left

y1 = 678;

x2 = 525; %second corner //top right

y2 = 640;

x3 = 536; %third corner //bottom right

y3 = 715;

x4 = 1;%fourth corner // bottom left

y4 = 757;
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e=getEllipse(x,y,a,b,phi,s,0)*m;

t=getTetragon(x1,y1,x2,y2,x3,y3,x4,y4,s,0)*m;

imb=im+e+t;%image with blocker added

%image without blocker

fig1=figure('Name','Image without blocker','NumberTitle','off');

imagesc(im)

caxis([min(min(im)),max(max(im))]);

%image with blocker

fig2=figure('Name','Image with blocker','NumberTitle','off');

imagesc(imb)

caxis([min(min(im)),max(max(im))]);

This script allows the user to view an image smoothed to several degrees in order to determine

the optimal amount of smoothing.

clear;

close all;

clc;

tols=[.01,.05];%Tolerances to test

X=zeros(length(tols),1289,1289);%This is where we will store the data

%index counter

i=1;
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s=5200;%series

im=5323;%image #

%Get the raw data from the data folder

raw=fitsread(['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\data\eb',num2str(im),'.fit']);

for t=tols

%This runs the smoothing if it has not already been done

PreProcessor(s,t,'single',im);

%Formatting the tolerance string

ts=num2str(t,'%7.6f');

%Subtract the speckle from the raw data to get the envelope

Speckel=getfield(load(['\\physics\Shares\Research\Magnetic Speckle\Alex...

\Speckle\GeneratedDataStore\',num2str(s),'series\speckle ',ts,'\eb',num2str(im)

,'.mat']),['eb',num2str(im)]);

X(i,:,:)=raw-getfield(load(['\\physics\Shares\Research\Magnetic Speckle...

\Alex\Speckle\GeneratedDataStore\',num2str(s),'series\speckle ',ts,'\eb',num2str(im)

,'.mat']),['eb',num2str(im)]);

figure('Name',['dtol: ' num2str(t)],'NumberTitle','off');

l=1:1289;

%plot the raw data and envelope

plot(l,reshape(X(i,:,650),size(l)),l,raw(:,650))

i=i+1;

end
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This script allows the user to choose a degree of smoothing, and automatically smooth an entire

series to that degree.

function GroupPreProcess(series,tol)

[~,~,ex]=getImagePreProcessTools(series);

aname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\imageListings\ascend' num2str(series) '.mat'];

dname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\imageListings\descend' num2str(series) '.mat'];

a=getfield(load(aname),'a');

d=getfield(load(dname),'d');

s=size(a);

for i=1:s(1)

for j=1:s(2)

im=a(i,j);

if (sum(find(ex==im))==0 && im~=0)

try

PreProcessor(series,tol,'single',im)

catch

err=lasterror;

disp(err);

disp(err.message);

disp(err.stack);

disp(err.identifier)

end
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end

end

end

s=size(d);

for i=1:s(1)

for j=1:s(2)

im=d(i,j);

if (sum(find(ex==im))==0 && im~=0)

try

PreProcessor(series,tol,'single',im)

catch

err=lasterror;

disp(err);

disp(err.message);

disp(err.stack);

disp(err.identifier)

end

end

end

end

This script generates an averaged map. It also eliminates rows and columns consisting of zeros,

which sometimes occur when an image is skipped.

function [map,xfields,yfields]=AvgMapMaker(series,dTol,btype,sep)
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intFile=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\GeneratedDataStore\' num2str(series) 'series\integrations...

\integrations ' num2str(dTol,'%7.6f') '.mat'];

rhos=getfield(load(intFile),'integrations');

aname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\imageListings\ascend' num2str(series) '.mat'];

dname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\imageListings\descend' num2str(series) '.mat'];

faname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\fieldListings\fieldsA' num2str(series) '.mat'];

fdname=['\\physics\Shares\Research\Magnetic Speckle\Alex\Speckle...

\XRMS program\dataListings\fieldListings\fieldsD' num2str(series) '.mat'];

a=getfield(load(aname),'a');

d=getfield(load(dname),'d');

fieldsA=getfield(load(faname),'fieldsA');

fieldsD=getfield(load(fdname),'fieldsD');

errorCheck=1;

if strcmpi('a',btype(1))

s=size(a);

images=a;

errorCheck=0;

fields=fieldsA(:,1);
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end

if strcmpi('d',btype(1))

s=size(d);

images=d;

errorCheck=0;

fields=fieldsD(:,1);

end

if errorCheck==1 || sep>=s(2)

disp 'branch type not recognized'

else

N=s(2)-sep;

maps=zeros(s(1),s(1),N);

for k=1:N

im1=images(:,k);

im2=images(:,k+sep);

for i=1:s(1)

for j=1:s(1)

if im1(i)==0 || im2(j)==0

maps(i,j,k)=0;

continue

end

fs=['eb' num2str(im1(i)) 'eb' num2str(im2(j))];
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ns1=['eb' num2str(im1(i)) 'eb' num2str(im1(i))];

ns2=['eb' num2str(im2(j)) 'eb' num2str(im2(j))];

try

f=getfield(rhos,fs);

n1=getfield(rhos,ns1);

n2=getfield(rhos,ns2);

score=f/sqrt(n1*n2);

if score>2

score=0;

end

if score>1

score=1;

end

maps(i,j,k)=score;

catch

maps(i,j,k)=0;

disp 'error'

err = lasterror;

disp(err);

disp(err.message);

disp(err.stack);

disp(err.identifier)

end
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end

end

end

%----------------------------

assignin('base','maps',maps)

map=zeros(s(1),s(1));

for i=1:s(1)

for j=1:s(1)

layers=maps(i,j,:);

if nnz(layers)==0

cell=0;

else

cell=sum(layers)/nnz(layers);

end

map(i,j)=cell;

end

end

%---------------------------------------------

[xfields, yfields]=meshgrid(fields,fields);

row0=0;

col0=0;

if series==2100 && sep==0

zeroToleranceRatio=.7;
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else

zeroToleranceRatio=2;

end

ztr=zeroToleranceRatio;

for i=1:s(1)

if sum(map(i,:)==0)>=ztr*sum(map(i,:)>0)

row0=row0+1;

end

if sum(map(i,:)==1)>=ztr*sum(map(i,:)~=1)

row0=row0+1;

end

end

for i=1:s(1)

if sum(map(:,i)==0)>=ztr*sum(map(:,i)>0)

col0=col0+1;

end

if sum(map(:,i)==1)>=ztr*sum(map(:,i)~=1)

col0=col0+1;

end

end

newmap=zeros(s(1)-row0,s(1));

new_xfields=zeros(s(1)-row0,s(1));

new_yfields=zeros(s(1)-row0,s(1));

r=1;
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c=1;

for i=1:s(1)

if sum(map(i,:)==0)<ztr*sum(map(i,:)>0) &&...

sum(map(i,:)==1)<ztr*sum(map(i,:)~=1)

newmap(r,:)=map(i,:);

new_xfields(r,:)=xfields(i,:);

new_yfields(r,:)=yfields(i,:);

r=r+1;

end

end

map=newmap;

xfields=new_xfields;

yfields=new_yfields;

newmap=zeros(s(1)-row0,s(1)-col0);

new_xfields=zeros(s(1)-row0,s(1)-col0);

new_yfields=zeros(s(1)-row0,s(1)-col0);

for i=1:s(1)

if sum(map(:,i)==0)<ztr*sum(map(:,i)>0) &&...

sum(map(:,i)==1)<ztr*sum(map(:,i)~=1)

newmap(:,c)=map(:,i);

new_xfields(:,c)=xfields(:,i);

new_yfields(:,c)=yfields(:,i);
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c=c+1;

end

end

map=interpolateOverZeros(newmap);

xfields=new_xfields;

yfields=new_yfields;

%figure;

%contourf(xfields,yfields,map,12)

%caxis([0,1])

%imagesc(map)

assignin('base','map',map)

assignin('base','xfields',xfields)

assignin('base','yfields',yfields)

end

end

function map=interpolateOverZeros(map)

s=size(map);

for i=2:s(1)-1

for j=2:s(2)-1

if map(i,j)==0

map(i,j)=1;

boarders=zeros(8,1);

a=1;
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for k=-1:1

for l=-1:1

if k~=0 || l~=0

boarders(a,1)=map(i+k,j+l);

a=a+1;

end

end

end

if prod(boarders)~=0

map(i,j)=sum(boarders)/8;

end

end

end

end

end
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