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ABSTRACT

Explorations in Quantum Channels

John G. Gardiner
Department of Physics and Astronomy, BYU

Bachelor of Science

The idea of separating the universe into a system to be studied and an environment to be ignored
is important to much of physics. We explore this idea in the context of quantum systems, where it
is captured by the concept of a completely positive trace-preserving map, or quantum channel. We
demonstrate the usefulness of the quantum channel formalism by using it to solve the problem of
optimally cloning an unknown qubit, given only its purity. We find that knowing just the purity of
a qubit does not give any advantage in cloning it. The simplest quantum channels are those whose
input and output are single qubits. We introduce a set of these single-qubit quantum channels
that are particularly simple and have straightforward physical interpretations. The question arises
whether all single-qubit channels are a composition of channels from this set. We show that, in
general, they are not, suggesting the complexity of the evolution of even the smallest quantum
systems.

Keywords: qubit, quantum information, quantum channel, quantum cloning, Choi-Jamiołkowski
isomorphism
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Chapter 1

Introduction

1.1 Quantum Information

While working in Bell Labs in 1948, the mathematician Claude Shannon invented a framework

for talking about information in a mathematical way. His ideas gave a way to precisely quantify

information, allowing information to be viewed as "stuff" with its own unit of measurement, bits.

This was the birth of information theory, a field that has grown to have applications not just in

communications engineering, but in many other fields, including physics.

As it did for other subjects, like mechanics and field theory, quantum physics has profound

consequences for information theory. From the merging of ideas in information theory and quan-

tum physics has come the field of quantum information. Microscopically, matter seems to behave

much differently from what we are used to from our macroscopic experience. Similarly, informa-

tion on the quantum level behaves differently from the classical information we are used to dealing

with. For instance, a fact about information we often take for granted is that it can be duplicated.

We duplicate information every time we send an email, or tell a story, or read a book. Quantum

information, on the other hand, is impossible to duplicate [1]. Think of a book whose words dis-

1



1.2 Outline of Thesis 2

appear as you read them or a story that you forget as soon as you tell it. This is analogous to

how quantum information works. The impossibility of copying quantum information is called the

no-cloning theorem and is important in this thesis.

Other peculiarities of the quantum are related to novel ways of processing information, like

so-called quantum teleportation, and novel algorithms, like Shor’s algorithm for factoring integers.

These are only a few of the new insights into our universe that quantum information offers. For a

short and accessible introduction to quantum information in general, see [2]. For a more thorough

introduction, see [3].

The generalization of information theory to quantum systems is not just a curiosity. Nature

is fundamentally quantum, so information at the deepest levels is encoded in quantum states. To

describe this information, quantum information theory is a necessity. Quantum information has

come of age as a field; it now has many applications, both direct ones, like quantum computing

and cryptography, and indirect ones, like applications to black hole physics [4].

1.2 Outline of Thesis

Often a physicist’s object of study is divided into two parts, one designated as the system and the

other as the environment, the environment consisting of those degrees of freedom that are unknown

or not under direct consideration, and the system being the degrees of freedom that are under study.

A recurring problem in physics is to effectively describe a system, even given the unknown nature

of its environment.

For instance, thermodynamics is a description of certain macroscopic properties (the system)

where the microscopic details (the environment) are unknown and unimportant. For another ex-

ample, consider the flipping of a coin. In all detail this is a rather complicated thing, but when

describing this situation we simply say the coin will land heads up with probability 1/2. We do
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this when, in fact, a precise accounting of the movements of the tossing hand, and all the particles

of air, and all the particles in the surface the coin lands on, and so on, should, at least in princi-

ple, give us an exact prediction of the outcome. In this situation the system is the orientation of

the coin while the environment is everything else. In these cases certain important properties are

given an effective description, while the unimportant, unknown, or uninteresting aspects, i.e. the

environment, are "traced over" or "integrated out."

The system/environment idea is the motivation behind the topic of this thesis: completely

positive trace-preserving maps, also known as quantum channels. Quantum channels, the focus

of Chapter 2, provide a description of the evolution of a quantum system. In quantum physics

the evolution of a closed system, one which does not interact with its environment, is given by a

unitary operator. Quantum channels are similar to unitary operators but generalized to also include

the more complicated evolution of open systems. As we will see in Chapter 2, the concept of

a quantum channel is the natural consequence of the system/environment distinction applied to

quantum physics. Chapter 2 begins with the definition of a quantum channel and explains some of

its useful properties. Specifically Sections 2.1 and 2.2 contain background information necessary

for understanding the results of the thesis, which are obtained in the subsequent sections. In Section

2.3 we use these to solve the problem of optimizing a specific quantum information processing

task, while in Section 2.4 we explore the possibility of decomposing quantum channels into the

composition of a handful of simpler channels, an exploration that will give some insight into their

nature.

Chapter 3 restates the original results from Chapter 2 and discusses possible interpretations of

the results.
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1.3 Preliminary Concept: the Qubit

We end this introduction with a brief explanation of some concepts used throughout. A reader with

prior exposure to quantum information might skip this section.

We will use Dirac notation throughout this work. For an elementary explanation of Dirac

notation, see [2].

Analogous to the bit in classical information theory, the fundamental unit of quantum infor-

mation is the qubit. A qubit, like a bit, can be one or zero. But a qubit, being a quantum state,

can also be in a superposition of 1 and 0. An arbitrary qubit is of the form α |0〉+β |1〉, where α

and β are complex numbers. Of course, as qubits are quantum states, they are distinguished only

up to a norm and a phase. The space of distinct qubits is topologically a sphere. One can thus

visualize all the possible qubits by imagining a unit sphere where each point represents a different

qubit state and points opposite to each other on the sphere represent orthogonal states. This way

of representing qubits is called the Bloch sphere (see Fig. 1.1).

Quantum states are vectors in a Hilbert space. A useful generalization of this formalism is the

density matrix formalism. In this formalism, states are written as matrices rather than vectors. As

an example an arbitrary qubit α |0〉+ β |1〉 is represented by the matrix
(
α |0〉+ β |1〉

)(
α 〈0|+

β 〈1|
)
. The purpose of rewriting states this way is that they can be easily generalized to include

what are called mixed states. Consider a machine that prepares a qubit when turned on. Specif-

ically, the machine will either prepare the qubit |0〉 or the qubit |1〉. Which it prepares is left up

to chance: the machine flips a coin and uses the outcome to decide which of |0〉 or |1〉 to output.

It does this without signifying which choice was made. How does one describe the output of this

machine? A naive guess might be that the output is |ψ〉=
√

1
2

(
|0〉+ |1〉

)
. After all, |ψ〉 has prob-

ability 1
2 of being |0〉 upon measurement or of being |1〉 upon measurement, just like the output of

the machine does. However, the output of the machine is not really a superposition of |0〉 and |1〉;

though the superposition |ψ〉 will satisfy some of the same statistics as the output of the machine,
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Figure 1.1 The Bloch sphere gives a convenient representation of the space of qubit
states. Each state is a point on the surface of the sphere. Shown are a few states and their
corresponding points.
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it will not satisfy all of the same statistics. So it does not accurately describe the output of the

machine. The output of the machine is a statistical mixture of quantum states, a mixed state. The

density matrix formalism gives us the correct way to represent mixed states. As an example, the

output of the machine would be correctly represented by the matrix 1
2 |0〉〈0|+

1
2 |1〉〈1| which can

be thought of as the weighted average of the states |0〉〈0| and |1〉〈1|.

The space of qubits, including mixed state qubits, is topologically a ball. One can visualize

such a generalized qubit as a point in the unit ball. Mixed states are points in the interior, while

pure states, states that are not mixed, are on the surface. This way of visualizing states is called the

Bloch ball. The surface of the Bloch ball is simply the Bloch sphere mentioned above. The purity

of a state is how mixed it is, i.e. how close it is to the surface of the Bloch ball. For a detailed

discussion of qubits, mixed states, and the Bloch ball, see [3].



Chapter 2

Quantum Channels

2.1 Formalism

In quantum mechanics the evolution of a (closed) system over some time interval is described by a

unitary operator acting on the state vector of the system. Say the system starts in some initial state

represented by the density operator |initial〉〈initial|. The state at some later time will have evolved

to

|final〉〈final|=U |initial〉〈initial|U†,

where U is some appropriate unitary transformation. This is the paradigm for evolution of any

closed quantum system. What about open systems, i.e. systems that interact with an environment?

The answer comes via the trick of viewing the system and its environment together as one larger

system. This joint system is itself closed (though neither of its constituent parts is), and therefore

its evolution will be described by a unitary operator. For example, consider a system described

by the state vector |system〉 and its environment, described by |environment〉. The system and

environment together are initially described as

|initial〉〈initial|= |system〉〈system|⊗ |environment〉〈environment| ,

7
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which evolves unitarily; at a later time the system and environment together will be

|final〉〈final|=U
(
|system〉〈system|⊗ |environment〉〈environment|

)
U†.

To examine just the system itself, we trace out the environment, i.e. sum over all possible config-

urations of the environment. Let {|1〉 , |2〉 , . . . , |N〉} be a basis for the environment Hilbert space.

Then the system after evolution is described by the density matrix ρsystem, such that

ρsystem =
N

∑
i=1
〈i|final〉〈final|i〉

=
N

∑
i=1
〈i|U

(
|system〉〈system|⊗ |environment〉〈environment|

)
U†|i〉 .

Let E be the linear map defined by

E (ρ) =
N

∑
i=1
〈i|U

(
ρ⊗|environment〉〈environment|

)
U†|i〉 .

The evolution of the open system is given by this map E . In general, the evolution of an open

quantum system is described by a map like E . Such maps are called completely positive trace-

preserving maps, quantum operations, or quantum channels . More details on quantum channels,

including a precise definition, can be found in [3]. For our purposes it suffices to know the follow-

ing two properties:

• Where Hi is the Hilbert space describing the initial system and Hf is the Hilbert space of

the final system, a quantum channel is a linear map from density matrices on Hi to density

matrices on Hf.

• Any quantum channel E can be written in the form E (ρ) = ∑i AiρA†
i where the Ai, called

Kraus operators, are a finite set of operators satisfying A†
i Ai = 1.

2.1.1 Examples

As an example of a quantum channel, imagine a quantum memory that stores a qubit but with some

failure, so that over a certain time interval there is a probability p that the qubit switches value, |1〉
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bit flip 

Figure 2.1 The effect of a bit flip on Bloch ball is to deform it into an ellipsoid whose
smallest axes have length 2 |1−2p|.

becoming |0〉 and |0〉 becoming |1〉. The evolution over this interval is described by the map

Ebit flip(ρ) = (1− p)ρ + p

0 1

1 0

ρ

0 1

1 0

 .

The first term represents the probability 1− p that there is no error so that the initial state ρ remains

ρ . The second term represents the probability p of an error switching the bit. This is a quantum

channel called the bit-flip channel. For more examples of simple single-qubit quantum channels

with clear physical interpretations, see [3]. To further illustrate the concept of a quantum channel,

some of these channels are described in Table 2.1.

We can visualize single-qubit channels by their effect in the Bloch ball. The effect of a single-

qubit channel on the Bloch ball is an affine transformation [3]. (An affine transformation is simply

some combination of stretching, rotating, and translating.) For instance, when we input the Bloch

ball to the bit flip channel Ebit flip described above, the output is an ellipsoid as pictured in Fig. 2.1.

The transformations for the simple channels listed in Table 2.1 are given in Table 2.2. Note

that the effect of a unitary transformation on the Bloch ball is simply a rotation. As is reflected in

the figures in Table 2.2, the bit flip, phase flip and bit-phase flip channels are related to each other
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Table 2.1 The action of a quantum channel E on a state ρ can be given as E (ρ) =

∑ j A jρA†
j where A j are the Kraus operators. Listed are simple single-qubit channels and

corresponding Kraus operators, where p and α are constants.

Channel Kraus operators

phase flip
√

1− p

1 0

0 1

,
√

p

1 0

0 −1



bit flip
√

1− p

1 0

0 1

,
√

p

0 1

1 0



bit-phase flip
√

1− p

1 0

0 1

,
√

p

0 −i

i 0



generalized amplitude damping

√
1− p

1 0

0
√

1−α

,
√

1− p

0
√

α

0 0

,

√
p

√1−α 0

0 1

,
√

p

 0 0
√

α 0



depolarizing channel

√
1− p

1 0

0 1

,
√

p
3

0 1

1 0

,
√

p
3

0 −i

i 0

,

√
p
3

1 0

0 −1


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Table 2.2 The action of a single-qubit channel on the Bloch ball is an affine transfor-
mation. This table shows the image of the Bloch ball under some simple channels.

Channel Image of Bloch ball

phase flip

bit-phase flip

generalized amplitude damping

depolarizing channel
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by unitary transformations. Also, it is easy to see that the depolarizing channel is equivalent to a

bit flip, a phase flip, and a bit-phase flip applied in sequence.

As mentioned above, every affine transformation is the composition of rotations, scalings of

the axes, and translations. These three roughly correspond to unitary transformations, bit (or phase

or bit-phase) flips, and generalized amplitude dampings respectively. It seems reasonable that it

should be possible to create any affine transformation of the Bloch ball from the transformations

available from unitary transformations, bit flips, and generalized amplitude dampings alone. We

would thus be able to consider any single-qubit quantum channel as the composition of unitaries,

bit flips, and generalized amplitude dampings, three particularly simple channels with clear physi-

cal interpretations. The question of whether this is indeed possible is the subject of Section 2.4.

2.1.2 Choi-Jamiołkowski Isomorphism

Though any channel can be written in terms of Kraus operators, i.e. E (ρ) = ∑i AiρA†
i , it cannot

always be written uniquely in this form. There can be many choices of Kraus operators that give

the same channel. This redundancy can complicate searches for channels with certain proper-

ties. So Kraus operators are in some sense not the best way to parametrize the space of quantum

channels. A better way is to make use a standard tool of quantum information called the Choi-

Jamiołkowski isomorphism. Where H and H ′ are any Hilbert spaces, this isomorphism is a

one-to-one correspondence between quantum channels from H to H ′ and density matrices for

the space H ⊗H ′ [5]. This isomorphism associates the channel E with the density matrix

χ =
1
N

N

∑
j,k
| j〉〈k|⊗E

(
| j〉〈k|

)
,

where {|1〉 , |2〉 , . . . , |N〉} is an orthonormal basis for H . Or, in the reverse direction, it associates

the density matrix χ with the channel given by

E (ρ) = N TrH
(
χ(ρT ⊗1H ′)

)
,
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where the trace is over the H system, i.e. χ(ρT⊗1H ′) is an operator on H ⊗H ′ and TrH
(
χ(ρT⊗

1H ′)
)

is an operator on H ′.

With this isomorphism the quantum channels on a space are parametrized by density matrices

of a larger space. This can reduce a search for a desired channel to a search for a certain state. We

will use this idea in Section 2.3.

2.2 Quantum Cloning Channels

The identification of quantum channels with states allows us to more easily understand the space of

quantum channels. In particular, it allows us to more easily optimize over this space. In Section 2.3

we will present a simple example of this. In this section we introduce a prerequisite concept, that

of a quantum cloning channel. For classical information the operation of copying the information

is important and ubiquitous. For instance, it happens in a literal sense every time you download

a file. In the case of quantum information however no such copying operation is possible [1].

Suppose on the contrary there was a quantum channel that could copy a qubit, so |0〉 7→ |0〉 |0〉 and

|1〉 7→ |1〉 |1〉. By linearity we would have |0〉+ |1〉 7→ |0〉 |0〉+ |1〉 |1〉. This contradicts the premise

that the operation copies its input which should mean

|0〉+ |1〉 7→
(
|0〉+ |1〉

)(
|0〉+ |1〉

)
6= |0〉 |0〉+ |1〉 |1〉 .

So no such quantum channel exists! The result that quantum information cannot be copied is called

the no-cloning theorem. Though quantum information cannot be copied, it can be approximately

copied. One can devise quantum channels that can copy states to some approximation. Such

channels are called quantum cloning channels, or cloners [6]. More precisely, a quantum cloning

channel is a channel E : H →H ⊗H whose purpose is to (at least approximately) copy the

input state. We can quantify the accuracy with which a cloner copies its input with a function

called fidelity [7]. The fidelity F(ρ,σ) between states ρ and σ is, in a sense, a measure of how
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close they are to each other. A fidelity of 1 means the two are the same state. A fidelity of 0 means

they are orthogonal. If ρ and σ are qubits, as they will be in the case of interest below, the fidelity

is given by

F(ρ,σ) = Tr(ρσ)+
√

1−Tr(ρ2)
√

1−Tr(σ2).

Fidelity has several important properties, among which are convexity

F(ρ,ασ1 +βσ2)≥ αF(ρ,σ1)+βF(ρ,σ2), (2.1)

and invariance under unitary transformation

F(ρ,σ) = F
(
V (ρ),V (σ)

)
for all unitary transformations V . (2.2)

We will make use of these two properties later.

One way to quantify the accuracy of a cloner E is to average the fidelity between the input and

first output with the fidelity between the input and second output and then to average this over all

possible input states. So the accuracy Acc of E is

Acc(E ) =
∫

input
states

F
(
ρ,Tr2(E (ρ))

)
+F

(
ρ,Tr1(E (ρ))

)
2

dρ

/ ∫
input
states

dρ, (2.3)

where Tr1 is the trace over the first output and Tr2 the trace over the second.

2.3 Cloner for Known Purity

Another way of phrasing the no-cloning theorem is that an unknown quantum state cannot be

cloned perfectly. Of course a known state can be cloned perfectly. If for example we know before-

hand that the state to be cloned is |1〉 we can simply prepare the state |1〉 |1〉. This is an illustration

of a more general principle: the more one knows about the state before attempting to clone it the

more accurately it can be cloned. In general, we can ask the question of how well we can clone
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a state, given partial information about the state. Given some information about the state to be

cloned, the optimal cloning problem asks what quantum cloning channel will copy the input with

the highest accuracy, on average. We will use the Choi-Jamiołkowsk isomorphism to solve such a

problem.

Consider the problem of optimally cloning a qubit given only the purity of that qubit. That is,

we are given a qubit about which we know nothing except its radius r in the Bloch ball, and we

wish to copy it as well as we can. Our desired cloner can be described as a quantum channel E

from a two-dimensional Hilbert space Hin to a four dimensional Hilbert space Hout = H1⊗H2

so that ρout = E (ρin) where ρin is the state to be cloned and ρout is the state that results from the

cloning.

Via the Choi-Jamiołkowski isomorphism the map E can be represented by a positive operator

χ such that ρout = E (ρin) = Trin
(
χ(ρT

in⊗1out)
)
, where 1out is the identity operator in Hout. The

problem of finding an optimal cloner reduces to the problem of finding the optimal corresponding

operator χ .

Using the definition of Eq. (2.3), the accuracy of the cloner E is then

Acc(E ) =
1

4πr

π∫
0

2π∫
0

F
(
ρin,Tr2(E (ρin))

)
+F

(
ρin,Tr1(E (ρin))

)
2

r sinθdφdθ , (2.4)

where the general input state with the specified radius r is given by

ρin(θ ,φ) =

r
(
cos θ

2

)2
+ 1−r

2 re−iφ cos θ

2 sin θ

2

reiφ cos θ

2 sin θ

2 r
(
sin θ

2

)2
+ 1−r

2

 .

The goal is to find a cloner E that will maximize the quantity in Eq. (2.4).

Let U be the quantum operation that switches the first and second qubits of a two-qubit state,
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so that Tr2
(
U (σ)

)
= Tr1

(
σ
)

and Tr1
(
U (σ)

)
= Tr2

(
σ
)
. Then

Acc(E ) =
1

4π

π∫
0

2π∫
0

(
F
(
ρin,Tr2 (E (ρin))

)
2

+
F
(
ρin,Tr1 (E (ρin)]

)
2

)
sinθdφdθ

=
1

4π

π∫
0

2π∫
0

(
1
2F
(
ρin,Tr1 (E (ρin))

)
+ 1

2F
(
ρin,Tr1 (U E (ρin))

)
2

+
1
2F
(
ρin,Tr2 (E (ρin))

)
+ 1

2F
(
ρin,Tr2 (U E (ρin))

)
2

)
sinθdφdθ ,

and by convexity we have

Acc(E )≤ 1
4π

π∫
0

2π∫
0

(
F
(
ρin,

1
2 Tr2 (E (ρin))+

1
2 Tr2 (U E (ρin))

)
2

+
F
(
ρin,

1
2 Tr1 (E (ρin))+

1
2 Tr1 (U E (ρin))

)
2

)
sinθdφdθ

=
1

4π

π∫
0

2π∫
0

(
F
(
ρin,Tr2 (E

′(ρin))
)

2
+

F
(
ρin,Tr1 (E

′(ρin))
)

2

)
sinθdφdθ

=Acc(E ′),

where

E ′ =
1
2
(E +U E ).

Notice that E ′ is symmetric in its outputs, i.e. E ′ = U E ′. The accuracy of the cloner E ′ is greater

than or equal to that of E . Thus if E is a cloner of maximum accuracy then E ′ is as well. So in our

search for a cloner of maximum accuracy we only need consider those cloners that are symmetric

in their outputs.

Because every input state contributes equally to the accuracy, the quantity of Eq. (2.4), we

can simply substitute V (ρin) for ρin, where V is a unitary transformation, without changing the
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integral. So

Acc(E ) =
1

4π

π∫
0

2π∫
0

(
F
(
V (ρin),Tr2 (E V (ρin))

)
2

+
F
(
V (ρin),Tr1 (E V (ρin))

)
2

)
sinθdφdθ .

(2.5)

Now applying to Eq. (2.5) the fact that fidelity is invariant under the unitary transformation V †

gives

Acc(E ) =
1

4π

π∫
0

2π∫
0

(
F
(
V †V (ρin),V

† Tr2 (E V (ρin))
)

2

+
F
(
V †V (ρin),V

† Tr1 (E V (ρin))
)

2

)
sinθdφdθ

=
1

4π

π∫
0

2π∫
0

(
F
(
ρin,Tr2

((
V †⊗V †)E V (ρin)

))
2

+
F
(
ρin,Tr1

((
V †⊗V †)E V (ρin)

))
2

)
sinθdφdθ

=Acc
((

V †⊗V †
)

E V
)
,

where the second equality is from the unitarity of V and the properties of the partial trace. So the

accuracy is invariant under the conjugation of its argument by any unitary transformation, i.e. E

and
(
V †⊗V †)E V have the same accuracy. Let

E ′ =
∫

unitaries

(
V †⊗V †

)
E V dV

/ ∫
unitaries

dV .

Note that the form of E ′ gives it the special property E ′ =
(
V †⊗V †)E ′V for any unitary V . By



2.3 Cloner for Known Purity 18

the convexity of fidelity we can obtain

Acc(E ′) =Acc
(∫ (

V †⊗V †
)

E V dV

/∫
dV

)
≥
∫

Acc
((

V †⊗V †
)

E V
)

dV

/∫
dV

=
∫

Acc(E ) dV

/∫
dV

=Acc(E ).

Thus if E is a cloner of maximum accuracy then E ′ is as well. This implies that in our search for an

optimal cloner we need only consider cloners E with the special property that E =
(
V †⊗V †)E V

for any unitary V .

There is a density operator χ corresponding to an optimal cloner map E according to the

relation χ = 1
N ∑ j,k | j〉〈k|⊗E

(
| j〉〈k|

)
. The assumptions E =U E and E =

(
V †⊗V †)E V dictate

the form that χ can take. First, because E is symmetric

(1⊗U )(χ) =
1
N ∑

j,k
| j〉〈k|⊗U E

(
| j〉〈k|

)
=

1
N ∑

j,k
| j〉〈k|⊗E

(
| j〉〈k|

)
= χ, (2.6)

where U is the unitary channel that swaps the first and second qubits of a two-qubit state. Because

E =
(
V †⊗V †)E V , and hence (V ⊗V )E = E V , for any unitary V , we get

(V ⊗V ⊗V )(χ) =
1
N ∑

j,k
V
(
| j〉〈k|

)
⊗ (V ⊗V )E

(
| j〉〈k|

)
=

1
N ∑

j,k
V
(
| j〉〈k|

)
⊗E V

(
| j〉〈k|

)
= (1⊗E )(V ⊗V )

(
1
N ∑

j,k
| j〉〈k|⊗ | j〉〈k|

)

= (1⊗E )

(
1
N ∑

j,k
| j〉〈k|⊗ | j〉〈k|

)

= χ,

(2.7)

where V is the complex conjugate of V . The fourth equality can be seen by expanding V and V in

the standard basis, after which it becomes straightforward that ∑ j,k | j〉〈k|⊗ | j〉〈k| does not change
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when acted upon by V ⊗V . Equations (2.6) and (2.7) constitute constraints on the form that χ

can take. Two more constraints on χ come from the fact that it is a density matrix: χ must be have

trace 1 and χ must be positive, i.e. its eigenvalues must be nonnegative. Taking into account all

four of these constraints gives the form of χ as

χ =
1
2



A 0 0 0 0 A+B− 1
2 A+B− 1

2 0

0 B 1
2 −2B 0 0 0 0 A+B− 1

2

0 1
2 −2B B 0 0 0 0 A+B− 1

2

0 0 0 1−A−2B 0 0 0 0

0 0 0 0 1−A−2B 0 0 0

A+B− 1
2 0 0 0 0 B 1

2 −2B 0

A+B− 1
2 0 0 0 0 1

2 −2B B 0

0 A+B− 1
2 A+B− 1

2 0 0 0 0 A


with the eigenvalues of χ , namely 1−A−2B, 1

2(4A+2B−1), and 1
2(6B−1), nonnegative. Using this form

for χ and our definition of accuracy, it is a straightforward calculation to evaluate the accuracy in terms of

A, B and r. One gets

Acc(E ) = r2 (A+B)+
1− r2

2
+

√
(1− r2)

(
−r2 (A+B)2 + r2 (A+B)+

1− r2

4

)
. (2.8)

Maximizing Eq. (2.8) with respect to A and B while taking into consideration the positivity constraints

1−A−2B≥ 0, 1
2(4A+2B−1)≥ 0, and 1

2(6B−1)≥ 0 gives a maximum accuracy of

Acc(E ) =
1
3

r2 +
1
2
+

√
(1− r2)

(
1
4
− 1

9
r2

)
(2.9)

when A = 2/3 and B = 1/6. These values of A and B correspond to a well-known cloner called the the

Hillery-Bužek cloner [8]. Thus, when only the radius of a state in the Bloch ball is known a priori, the

optimal cloner is the Hillery-Bužek cloner, with accuracy given by Eq. (2.9). When r is 1 this evaluates to

5
6 as expected [8]. When r is 0 it evaluates to 1. This signifies that the maximally mixed state can be cloned

perfectly.
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Figure 2.2 The effect of E on the Bloch ball is a more complicated affine transformation.

2.4 Decomposition of Single-Qubit Channels

In Section 2.1.1 we mentioned in particular three types of channels: unitary transformations, bit flips, and

generalized amplitude damplings. These are simple and have easily understood physical meaning [3]. On

the other hand consider the quantum channel E with the Kraus matrices0.78901 −0.32682

0.16276 0.51813

 ,

0.17911 0.69911

0.23097 0.095671

 ,

−0.23097 −0.095671

0.40005 0.16571

 ,

−0.13279 0.055003

−0.18582 0.29528

 .

The effect of E on the Bloch ball is pictured in Fig. 2.2. This affine transformation is visibly more compli-

cated than those pictured in Section 2.1.1.

Unitary transformations are simply rotations of the Bloch ball, bit flips involve only scalings of the axes,

and generalized amplitude dampings involve axis scalings along with a translation. Rotations, scalings and

translations are the building blocks of any affine transformation. This suggests that the complicated affine

transformation induced by E might by the composition of an appropriate generalized amplitude damping

(to provide the correct translation) and a combination of unitary transformations and bit flips (to provide

the correct rotation and scalings). In fact, by judiciously choosing a generalized amplitude damping whose

translation is the same as that of E we can see that E can be written as the composition of a bit flip, a

unitary transformation and a generalized amplitude damping. The effects of each factor in the composition

are illustrated in Fig. 2.3.
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Figure 2.3 Decomposition into simpler channels: an example. The channel E is the
composition of a bit flip followed by a unitary transformation followed by a generalized
amplitude damping. The effects these three composition factors have on the Bloch ball
are shown.
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The question arises whether we can similarly write any single-qubit quantum channel as the composition

of these simpler channels. Such a decomposition would allow us to understand any evolution of a qubit in

terms of simple channels whose physical interpretations are clear. Unfortunately, no such decomposition

exists. The image of a single-qubit quantum channel is necessarily contained by the Bloch ball, and its

intersection with the Bloch sphere, the surface of the Bloch ball, is often much less than the full surface.

All of the simple quantum channels described above have images that intersect the Bloch sphere at two

antipodal points, one point, or nowhere. Compositions of these channels will have images that intersect the

Bloch sphere in a similar way. Not all single-qubit quantum channels have images whose intersection with

the Bloch sphere has this property, showing that they are not all compositions of the simple channels. This

is made precise in the following theorem:

Theorem. Single-qubit quantum channels cannot in general be written as the composition of bit flips, gen-

eralized amplitude dampings, and unitary transformations.

Proof. Given a single-qubit quantum channel E , define I(E ) to be the intersection of the image of E with

the set of pure states, i.e. those states on the surface of the Bloch ball.

Let E be a nonunitary channel that is the composition of bit flip, generalized amplitude damping, and

unitary channels {Ei}, so E = E1E2 · · ·En. Let Ek be the left-most channel in the composition that is not a

unitary transformation. (If they are all unitaries then E itself would be unitary, which is not the case). First

note that

imageE ⊆ E1E2 · · ·Ek−1(imageEk).

And note that for any unitary channel U and set of states S we have

{pure states}∩U (S) = U
(
{pure states}∩S

)
,
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as unitary transformations do not alter the purity of states. As E1 through Ek−1 are all unitary this means

I(E ) = {pure states}∩ imageE

⊆ {pure states}∩E1E2 · · ·Ek−1(imageEk)

= E1E2 · · ·Ek−1
(
{pure states}∩ imageEk

)
= E1E2 · · ·Ek−1

(
I(Ek)

)
.

There are two cases:

1. If Ek is a generalized amplitude damping then I(Ek) is either one point or empty, in which case

E1E2 · · ·Ek−1
(
I(Ek)

)
is one point or empty.

2. If Ek is a bit flip then I(Ek) =
{
|0〉〈0| , |1〉〈1|

}
. So E1E2 · · ·Ek−1

(
I(Ek)

)
is a set of two orthogonal

pure states.

In either of these two cases E1E2 · · ·Ek−1
(
I(Ek)

)
, and hence I(E ), is contained in a set that consists of two

orthogonal pure states. We have shown that the image of any nonunitary single-qubit channel that is the

composition of the simple channels will intersect the Bloch sphere in at most two points and that these two

points must be orthogonal pure states.

We will now construct a nonunitary single-qubit quantum channel F for which I(F ) is not con-

tained in a set of two orthogonal points, implying that F is not the composition of bit flips, general-

ized amplitude dampings, and unitary transformations. Let |ψ1〉 =
(√

1+α |0〉+
√

1−α |1〉
)
/
√

2 and

|ψ2〉 =
(√

1−α |0〉+
√

1+α |1〉
)
/
√

2 where 0 < α < 1. Let A1 = |ψ1〉〈ψ1|0〉〈0|, A2 = |ψ1〉〈ψ1|1〉〈0|,

A3 = |ψ2〉〈ψ2|1〉〈1|, and A4 = |ψ2〉〈ψ2|0〉〈1|. One can check that the Ai satisfy the condition to be Kraus

operators for a quantum channel which we will call F .

A straightforward calculation shows that F (|0〉〈0|) = |ψ1〉〈ψ1| and F (|1〉〈1|) = |ψ2〉〈ψ2|. So I(F )

includes |ψ1〉〈ψ1| and |ψ2〉〈ψ2|. The overlap
∣∣〈ψ1|ψ2〉

∣∣2 =√1−α2 is between 0 and 1 (as α is between

0 and 1), so |ψ1〉〈ψ1| and |ψ2〉〈ψ2| are distinct but not orthogonal. Finally, note that that |0〉〈0| and |1〉〈1|

are orthogonal while their images aren’t, implying that F is not a unitary transformation. So by the above
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arguments F cannot be written as the composition of bit flips, generalized amplitude dampings, and unitary

transformations.



Chapter 3

Conclusions

When the only information known about a qubit is its purity the accuracy of cloning is bounded by Eq. (2.9),

where r is the radius of the qubit in the Bloch ball. This bound is achieved by the Hillery-Bužek cloner

described in [8]. The accuracy with which a state can be cloned increases as the purity, and hence the

amount of information contained in the state, decreases. This is to the point where a completely mixed

state, which contains no information, can be reproduced with perfect accuracy. This hints at a principle of

conservation of information. Mixed states are "easier" to reproduce while pure states, containing a full bit

of information, can only be copied approximately. A message encoded in mixed states, as opposed to pure

states, could be copied more accurately per qubit, i.e. less information would be lost per qubit. But it would

also take more qubits to encode, as mixed states hold less information. This trade-off enforces the general

principle of quantum mechanics that (quantum) information cannot be copied.

Another way of viewing the above result is seen in the general principle that the more specified the qubit

is prior to cloning, the more accurately it can be cloned. Knowing that the radius in the Bloch ball of the

state to be cloned is 0 entirely specifies it as the maximally mixed state, the unique state at the center of the

Bloch ball. It is thus no surprise that states with radius 0 can be cloned perfectly; we know perfectly the state

to be cloned and can thus simply prepare another copy. Similarly states of radius nearly 0 are all similar to

each other, so knowing that the radius of the unknown state to be cloned is close to 0 will nearly specify the

state. Thus they are easier to clone. For an unknown state closer to the surface of the Bloch ball, however,

25
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there is intuitively more distance between the different possibilities of what the unknown state could be.

This leaves the state less specified and thus harder to clone.

A qubit is the simplest quantum system and can be thought of as the building blocks of the universe.

The evolution of a qubit, like any quantum system, is described by a quantum channel. In Section 2.4

we found that single-qubit quantum channels cannot in general be written as the composition of certain

simple channels, namely unitaries, bit flips, and generalized amplitude dampings. This suggests that even

the evolution of the simplest quantum systems can be complex.
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