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ABSTRACT

Porous Cantilever Resonators for Chemical Sensing in Fluid Environments

Steven Noyce
Department of Physics and Astronomy, BYU

Bachelor of Science

Porous cantilever resonator sensors offer detection of trace chemical concentrations in oth-
erwise difficult sensing environments such as gases or liquids. Fabrication of such devices has
traditionally been difficult because microfabrication processes that can acheive high aspect ratios
are not generally compatible with porous materials. Here we report the fabrication of porous res-
onators made from a carbon infiltrated carbon nanotube structure. Resulting structure densities are
tunable in the range of 102 to 103 kg/m3. We perform resonance measurements on these structures
in vacuum, air, and water. We also present initial use of these devices as sensors.
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Chapter 1

Introduction

1.1 Cantilevers as Chemical Sensors

Micro-scale cantilevers (beams with one end held fixed and the other free to move) are commonly

used as extremely accurate chemical detectors [1]. Detection can be achieved in one of two primary

regimes: static deflection or resonance shift. In the static deflection method, one side of the can-

tilever is coated in a material that enhances the adhesion of the chemical to be sensed. When this

coated cantilever is exposed to the chemical, molecules adsorb to the adhesion promoter, changing

the surface stress on that side of the beam and causing the cantilever to bend. The amplitude of this

deflection can then be measured and calibrated to the concentration of the desired chemical. In the

resonance shift method, the entire cantilever is coated with an adhesion promoter, and the beam is

driven into resonance. When this vibrating beam is exposed to the chemical of interest, molecules

adsorb onto the surface of the cantilever, causing an increase in its effective mass and a resulting

shift in resonance frequency. This resonance shift can be measured by means of several methods

such as laser deflection or capacitative current.

The use of micro-cantilevers as chemical sensors is a powerful technique [1]. Utilizing pro-

1
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cesses from the semiconductor industry, these devices can be mass produced at low cost. In addi-

tion, small device size allows for sensors to be easily incorporated into many systems. Since the

micro-cantilever sensing method is not inherently dependent on the chemical to be sensed, large

arrays of cantilevers can be fabricated in which each beam receives a different coating. The array

can then provide simultaneous information on the concentration of many chemicals, becoming a

“chemical nose” [2].

Although other chemical sensing methods may compare favorably in some respects, micro-

cantilever sensing often offers advantages. An example is provided by quartz crystal microbalance

(QCM) based sensing. This method has become popular across many fields due to its ease of

use and high fidelity. While this method has become somewhat of a standard for single chemical

sensing, the large detector size has limited its use in parallel sensing applications, and the overall

cost of the method can be significantly higher than that of micro-cantilever based sensing.

1.2 Successes of Current Devices

Current solid cantilever based sensors are very successful. Extremely high sensitivities have been

achieved. One source reports an acheived mass sensitivity of seven zeptograms [3], or the approx-

imate mass of twenty gold atoms.

Parallelization has been realized in current cantilever sensors. Large arrays have been made,

allowing for many measurements to be performed simultaneously.

A great deal of work has gone in to exploring various coatings. If each cantilever in an array is

modified with a distinct coating, then each beam will be primarily sensitive to separate substances,

forming a chemical nose. Success has been found in designing coatings with high selectivity. In

addition, various methods of coating application have been explored.
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1.3 Limitations of Current Devices

Nearly all micro-cantilever sensors created as of the time of writing are solid devices , frequently

made of solid silicon-based materials such as silicon or silicon nitride. Although a few devices

have been made with increased surface roughness or a surface porous layer, fully porous devices

have not been well explored.

With a solid cantilever sensor, the device density is fixed by the chosen material. In order

for the mass of the cantilever to not become excessively larger than the mass of the analyte and

overpower it in the measurement, solid cantilever sensors must resultingly be made very thin. Thin

cantilevers, however, suffer from low quality factors in fluid environments due to the small amount

of energy in their resonant mode. As a result, solid cantilevers generally can only obtain high

quality factors and sensitivities in vacuum. When a solid cantilever sensor is exposed to air or

liquid, sensitivity drops drastically.

Solid cantilevers have faced limitations in many desireable arenas, as the majority of chemical

sensing applications necessitate measurement in gas or liquid.

1.4 Advantages of Porous Cantilevers

Porous devices have much higher surface areas than their solid counterparts. It is common for a

porous cantilever to have a surface area three orders of magnitude higher than a solid cantilever

of the same dimensions. Since sensitivity of a cantilever resonator is roughtly proportional to the

surface area of the beam available for adsorption, this increase in surface area could have a large

impact on sensitivity.

For a solid cantilever , the ratio of surface area to volume decreases quickly with an increase

in any dimension of the beam. For a fully porous cantilever with continuous pores, this ratio is

independent of geometry. Since the analyte mass is proportional to cantilever surface area and the
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cantilever mass is proportional to its volume, the neccessity of maintaining a favorable mass ratio

(the ratio of the mass of the analyte to the mass of the cantilever) leads to stringent constraints

on the mass of a solid cantilever that do not apply to a porous cantilever sensor. As a result,

a porous cantilever can be designed to have a higher quality factor in fluid environments than a

solid cantilever. This allows porous cantilever sensors to be used in environments that pose great

difficulty to solid cantilever sensors.

1.5 Potential Disadvantages of Porous Cantielvers

Concern has been expressed that a porous material would experience large amounts of thermoelas-

tic dampening (TED) that would cause energy loss and a decrease in quality factor. For resonant

cantilever sensors designed to be used in fluids, fluid damping is likely large. Increased TED for a

porous sample is not a concern if fluid damping remains dominant.

1.6 Previous Work on Porous Sensors

As the advantages of porosity in resonant sensors has been realized, several attempts have been

made to take advantage of this property [4]. One approach has been to increase the surface rough-

ness of a solid structure, leading to an approximate factor of two increase in surface area. Another

approach has been to fabricate devices with a thin porous layer atop a solid structure. This has

greatly increased the surface areas and resulting sensitivities of these sensors.

1.7 Limitations in Current Microfabrication Processes

Unfortunately, current microfabrication processes are not generally compatible with porous mate-

rials. Techniques that have been explored for the fabrication of porous micro-scale devices have
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found success mostly only in low aspect ratio regimes . In addition, most methods used to date

form isolated pores that do not provide diffusion paths through the entire structure.

1.8 Review of the CNT-M Process

The carbon nanotube templated microfabrication (CNT-M) process allows for full porous devices

to be fabricated on the microscale with high aspect ratios. This method allows for devices to be

realized with finely tunable porosity, and in a diverse range of materials [5].

In brief, the process relies on the vertical growth of carbon nanotubes from a micro-patterned

iron catalyst. After these carbon nanotubes have been synthesized, extruding the two dimensional

shape defined by the iron, the nanotubes can be coated in other materials. This other material

of choice infiltrates the structure, beginning to fill the interstices between carbon nanotubes. The

infiltration process can be continued until a solid device is obtained, or stopped to leave a structure

with controlled porosity.

1.9 Advantages of the CNT-M Process

The CNT-M process provides a versatile and scalable microfabrication method. There are several

relavant advantages to this technique. Firstly, the final device porosity is easily altered by changing

the process’ infiltration time. Not only can this process form a porous device, but the method

naturally lends itself to devices with largely continuous and often connected pores, providing long

diffusion paths that can even extend through the entire device. Secondly, this method is capable of

producing devices with ultra-high aspect ratios. For example, while competing high aspect ratio

processes such as reactive ion etching (RIE) struggle to reach aspect ratios above 20, CNT-M easily

acheives aspect ratios above 200. For cantilever sensors, a high aspect ratio fabrication technique

allows cantilevers to be made thick in the direction of motion, increasing quality factor in fluids.
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Thirdly, where other high aspect ratio microfabrication methods are highly material dependant,

CNT-M defines geometry independant from material, allowing for cantilever sensors to be created

from many materials using a single overarching method.

1.10 Description of this Work

Here we present the fabrication of porous cantilever sensors using the CNT-M process. We show

characterization and modeling of the device micro and nanostructure, including pore size, den-

sity, nanotube spacing, and coating diameters for various infiltration times. We show solution of

cantilever partial differential equations, including the development of a damping term and result-

ing relations. We show the characterization of the resonant characteristics of these cantilevers,

confirming models and exploring behavior. We show cantilever behavior across pressures and in

different environments, demonstrating the behavior of fluid damping and showing that Thermo

Elastic Dampening (TED) is not dominant even in atmospheric air conditions. We present use of

these cantilever beams as sensors employed in sensing water and acetone vapors down to ppm lev-

els in the case of the former. We also present numerical optimization of cantilever sensor properties

based upon the developed model.



Chapter 2

Fabrication

2.1 Fabrication Methods

To begin the fabrication process, a silicon wafer was coated with 30 nm of aluminum oxide (alu-

mina) by electron-beam evaporation. This coating acts as a diffusion barrier later on during the

carbon nanotube growth portion of the fabrication process. Subsequently, standard optical lithog-

raphy techniques are used to pattern approximately 1 µm of positive photoresist onto the substrate.

A 4 nm thick iron film was then deposited onto the sample by thermal evaporation. This procedure

was a line-of-sight deposition technique, such that metal was left either directly on the substrate

or on top of photoresist. When the sample was removed from the vacuum chamber of the thermal

evaporator, the iron was quickly oxidized under ambient conditions. Subsequently, the photoresist

was removed by sonication in n-methyl pyrolidone (NMP). As the photoresist dissolves it lifts off

the iron oxide on its surface. When the sample was taken out of solution, only iron oxide that was

initially deposited directly onto the alumina coated silicon substrate remains, forming a desired

pattern.

Carbon nanotube growth was the next phase of the fabrication process. The sample was first

7
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Figure 2.1 A process diagram showing the main fabrication and measurement steps.
a) Iron is patterned onto an alimina coated silicon substrate using standard optical pho-
tolithography, b) carbon nanotubes are grown from the iron catalyst, c) nanotubes are
coated in a filler material and the device is removed from the substrate, d) the base of the
device is clamped to a piezoelectric drive and laser deflection is used to measure vibration
amplitude.

heated in a tube furnace under a 230 sccm flow of hydrogen gas . As the furnace heats the sample,

the hydrogen gas reduces the iron oxide back to iron metal . The iron becomes increasingly mobile

on the surface as the temperature rises. Although all temperatures remain well below the melting

point of bulk iron metal, it should be noted that not only could this largely surface iron have

properties differing largely from the bulk, but also that the nature of metalic bonding allows for

significant thermal mobility in the solid state at small scales. As a result, the iron film dissociates

into nanoparticles on the alumina surface .

When the furnace reaches a temperature of 750 °C, a flow of 230 sccm of ethylene gas was

added to the previously flowing hydrogen gas. The ethylene gas provides a source of carbon for the

carbon nanotube synthesis . When ethylene molecules come into contact with iron nanoparticles,

the iron catalyzes their decomposition. This leads to mobile carbon atoms on the surfaces of the

iron nanoparticles. These carbon atoms have enough thermal energy to covalently bond together,

forming chains and rings on the surface of the iron catalyst particles. As this process continues,

a carbon nanotube begins to form, with new carbon atoms being added to the structure at the

nanotube/iron interface. This results in what was commonly described as the “growth” of carbon

nanotubes from iron catalyst “seed” particles such that the nanotubes then form a “forest.” The

length of the carbon nanotubes and resulting height of the forest can be controlled by the amount
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of time ethylene gas was flowed over the substrate at 750 °C.

Once the carbon nanotubes have been synthesized, the interstices between them can be infil-

trated with other materials in order to form a more robust structure. The nanotubes are not initially

bound to one another by any means other than Van Der Waals forces. By coating the outer sur-

face of each carbon nanotube with another material, however, each juncture where one nanotube

touches another can be locked by the coating material. This allows a forest of disconnected carbon

nanotubes to be joined into a single structure. If the nanotubes are coated with a thin layer of

material, or in other words if the interstices between nanotubes are filled to a small degree, then

an extremely porous structure can result . As filling continues, the pores in the composite material

will become smaller until a nearly solid structure was obtained.

There are many materials that could potentially act as filler materials in this process. Con-

ceivably any material that can be deposited by means of chemical vapor deposition (CVD) could

be used. Our group has successfuly explored several of these materials, such as carbon, nickel,

copper, tungston, silicon, silicon dioxide, silicon nitride, and others. [6]

This study primarily utilizes carbon as a filler material due to its ease of deposition. After

carbon nanotubes have been grown, the hydrogen and ethylene gas flows are replaced by an inert

argon flow while the furnace was heated further to 900 °C. When this temperature was reached, gas

flow was toggled back to the hydrogen/ethylene combination. Gas flow was continued at the stated

temperature for the desired infiltration time. At this heightened temperature, ethylene molecules

no longer need a catalyst to decompose. As a result, the molecules decompose readily throughout

the chamber, depositing carbon onto all exposed surfaces. When the desired infiltration time was

reached, gas flow was switched to argon to flush the hydrogen and ethylene while the sample was

cooled back to ambient temperature in an inert atmosphere.

The sample can be mechanically removed from the substrate or etched to release it.
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2.2 Device Characterization

The height of each device was directly measured by means of a micrometer. After being removed

from the silicon substrate, each device was placed in the measurement gap of a micrometer. The

micrometer was then tightened until it reaches its first force setpoint (the outer knob clicks once

and disengages).

A scanning electron microscope (SEM) was used to image the exterior of the devices after

fabrication.

2.3 Fabrication Results

The fabrication process was flexible over a large range of length scales. In this study, cantilevers

were fabricated with lengths ranging from 100 µm to 10 mm, widths ranging from 50 µm to 2

mm, and heights ranging from less than 10 µm to almost a milimeter. These fabricated devices

span at least two orders of magnitude in scale, and the fabrication process in not bounded on any

of the stated extremes except that the hight was nearing a limit of approximately 3 mm. The other

dimensions could easily be made either larger or smaller as desired with no real change in the

method.

High aspect ratio devices are easily obtainable with this fabrication process. Typical sidewall

straightness and device thickness can be seen in Figure 2.2.
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Figure 2.2 External image of a device obtained by SEM.



Chapter 3

Porosity and Micro/Nano Structure

Since both the microstructure and the nanostructure of these cantilevers strongly influences their

sensing behavior, a careful characterization of these properties follows in the current chapter.

3.1 Density Measurements

The porosity of the device material can be controlled through the time for which the structures

are infiltrated with a filler material. This variable porosity can be observed indirectly through a

variable density of the resulting device. Densities obtained using carbon as the filler material can

be seen in Figure 3.1 to range from less than 100 kg/m3 to more than 1000 kg/m3.

The mass of each device was determined by use of a microbalance. To improve accuracy, the

substrate with the device attached was first placed on the balance and the mass recorded. The

device was then removed from the substrate. Afterward, the substrate mass was determined once

more. In some cases, the device itself was then placed alone on the balance to determine its

mass directly. In general, however, the difference in mass of the substrate before and after device

removal proved a more robust measurement method as some devices were damaged in the course

of removal, altering their mass.

12
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Figure 3.1 The overall device material density is plotted against the time for which the
device was infiltrated. The filled dots represent the mean of several data points, while
the error bars indicate one standard deviation on each side of the mean. A model for the
infiltration process is also shown. The details of the derivation of this model can be found
in the text.

Since the in-plane area of each device was known from the geometry defined by the pho-

tolithography mask, the height was known by micrometer measurements, and the mass was known

from the microbalance result, the device density can be computed. The porosity of the devices can

be estimated from the device density.

3.2 Carbon Nanotube Spacing

Device porosity can also be measured directly. A focused ion beam (FIB) was first used to cut into

the side of a device, milling material away. Afterward, the device cross section cut by the FIB was

imaged by SEM. Images obtained by this method should more directly show the pore sizes and

filling fraction of the porous device.
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Due to the nature of the aligned carbon nanotubes being used as the basis to create a porous

structure, the resulting pores in the material were observed to be generally aligned and continuous.

This can be seen from the cross section in Figure 3.2. Porous materials most commonly have a

large fraction of pores that are isolated from other pores and the external environment. The nature

of this carbon nanotube scaffolded process is observed to create a large fraction of continuous

pores that are not isolated.

Figure 3.2 A cross section of the device material showing the degree of porosity and
pore size. Cross section obtained by FIB milling and imaged via SEM.

This method, although more direct than measuring overal device density, faces several chal-

lenges. The most important of these challenges is redeposition. When milling, sanding, or other-

wise creating a cross section in a porous material, removed material may redeposit into the pores,
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altering the porosity measurement. The process of redeposition can be clearly seen in Figure 3.3.

This figure shows a time lapse of a milling FIB cut. When the beam first opens an area, some pores

can be seen. As the cut continues, however, those pores vanish as newly milled material redeposits

into previously opened pores.

Figure 3.3 Time progression from left to right of a FIB cut being made into a device
infiltrated for 3 minutes. It is clear that redeposition is filling in exposed pores, preventing
a reliable estimate of porosity or nanotube spacing.

When the cut is complete, no pores remain to be imaged, as can be seen in Figure 3.4. This

image shows a smooth, almost polished surface that is the plane of the FIB cut seen in Figure 3.3.

When milling in this way, it is desireable to leave a smooth surface for imaging. Creating such

a smooth surface requires extra passes of the ion beam along that surface, but these extra passes

also promote redeposition. When these extra passes are omitted, a phenomenon called curtaining

results. This effect can be seen in Figure 3.3, where it is clear that the imaged surface is not smooth,

but resembles a curtain hung from the top of the page. By making a quick and rough cut such as

this, the pores can be imaged, but pore sizes cannot be estimated reliably by this method because

they are altered by the cutting process.

What can be measured by this technique, however, is the average distance between carbon

nanotubes, or the distance between centers of the coated carbon nanotube posts seen as circles in

the cross section. While Figure 3.3 can give some indication of what this distance is, it quickly

becomes clear that depth of the pores creates uncertainty as to what features are actually on the

plane of interest.
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Figure 3.4 FIB cut redeposition on a sample infiltrated for 3 minutes.

Both the problem of redeposition and the difficulty in determining what features lie on the

cross sectional plane can be avoided by filling the pores prior to cross sectioning the device. One

approach is to fill the pores with epoxy resin. This was done, using the epoxy M-Bond. After the

epoxy was cured, the sample was cross sectioned using abrasive mechanical TEM (Transmission

Electron Microscopy) sample preparation techniques. The imaged cross section obtained by this

method is shown in Figure 3.5.

This approach yeilds a better estimation of nanotube spacing, but the similarity between the

epoxy material and the coated carbon nanotubes as well as the poor conductivity of the epoxy

result in poor image quality.

To improve overall sample conductivity and provide greater contrast between coated carbon
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Figure 3.5 Imaged cross section perpendicular to nanotube growth direction giving an
indication of nanotube spacing. This sample was grown using 4 nm thick iron catalyst,
infiltrated for 2 minutes, impregnated with epoxy resin (M-Bond), cross sectioned using
mechanical abrasive TEM sample techniques, and imaged with the image plane parallel
to the cross sectional plane. Excess charging and limited contrast between epoxy and
carbon coating degraded this measurement.

nanotubes and filling material, the pores can be electroplated with nickel following the process of

Barrett et al [7]. This approach proved much more reliable than the previously described methods,

and the result can be seen in Figure 3.6.

The sample pictured in Figure 3.6 was fabricated with a 7 nm thick iron catalyst. Most can-

tilever samples in this study used 4 nm thick iron catalyst. It is known that catalyst thickness

influences carbon nanotube spacing. Future work will include nickel plating and cross sectional

imaging of a 4 nm iron catalyst sample. Figure 3.5 as well as all other figures with the exception
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Figure 3.6 A cross section of a nickel filled device center cut and imaged perpendicular
to the nanotube growth direction. Dark circles are coated carbon nanotubes. This cross
section gives a reliable estimate of carbon nanotube spacing. Some curtaining is visible
from the FIB cut (vertical lines). This sample was grown with a 7 nm iron catalyst.

of Figure 3.6 represent samples with 4 nm thick iron catalyst.
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3.3 Coated Carbon Nanotube Diameter

Alongside the average distance between neighboring carbon nanotubes, the other parameter that

largely influences pore size and porosity is the diameter of the coated carbon nanotubes. This

diameter is very different on the outside of a device than on the inside, as can be seen in Figure

3.7. This figure shows a broken cross section displaying the top edge of a device.

Figure 3.7 Capping is apparent on a the top of a sample infiltrated for 2 minutes

It is clear that the coated carbon nanotube diameter at the top of the image is very different

from that at the bottom. Resultingly, images such as Figure 3.8 that are taken looking at a structure

from the outside say little about the coated carbon nanotube diameter inside the structure.

Because diameter can vary at different locations on a structure, it is desirable to image device
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Figure 3.8 Top edge of a device infiltrated for 1 minute.

cross sections in order to view inner structure coating diameters. As a result of all the difficulty in

making clean cross sections that avoid redeposition as discussed above, cross sections for diameter

measurements were made by cleaving samples in planes parallel to the average carbon nanotube

growth direction. Using this breaking method, images such as Figure 3.9 can be obtained, yeilding

an accurate measurement of coated carbon nanotube diameter.

Similar images were taken for samples that were infiltrated for different amounts of time. A

sampling of these images can be seen in Figure 3.10.

One hundred coated nanotube diameter measurements were made on each of three replicates of

each infiltration time. The measured coated carbon nanotube diameters are summarized in Figure

3.11.
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Figure 3.9 Broken middle of a 3 minute infiltrated sample
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Figure 3.10 Inner coated carbon nanotube diameters at fill times of 1 to 6 minutes as
indicated in the image
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Figure 3.11 Cylindrical radius of coated carbon nanotubes is shown for various infiltra-
tion times
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3.4 Sidewall Carbon Capping

The observation that coated carbon nanotube diameter varies largely with location in the sample

and gets larger near the edges raises some concern. For a porous cantilever sensor to be effective,

there must be diffusion paths from the outside to the inside of the porous structure. If a structure

becomes capped by a nearly solid shell during fabrication then it may not preform well as a sensor.

Figure 3.12 Sidewall views showing external nanotube coating diameter of a device
infiltrated for 4 minutes.

Figure 3.12 shows a view of a device sidewall that has not been broken open. This is an external

surface that could potentially be capped with infiltration material. The figure is not conclusive in

any sense, but there is definitive depth to the image, suggesting that external porosity is maintained

and diffusion paths exist.

In Figure 3.13, however, we see two views similar to that of Figure 3.12, except that one is

taken near the middle of the height of a sample while the other is at the top edge. The image near

the top does not suggest diffusion paths as strongly as the image in the middle of the structure.

A more definite indication is given by Figure 3.14, which shows a broken cross section in the
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Figure 3.13 Two images showing the middle (left) and upper (right) sidewall of the same
device. Qualitatively these images suggest that there may be more sidewall capping near
the top of a device infiltrated for 4 minutes.

Figure 3.14 Two views of one 4 minute infiltrated device that has been broken open to
provide a cross section. Coated nanotubes near the device edge (left) have larger diame-
ters than those near the device center (right), and some sidewall capping is visible.

middle and at an edge of a sample. Here it is seen that the diameters are larger near the edge of the

device, but it does appear that diffusion paths still exist.



3.4 Sidewall Carbon Capping 26

Figure 3.15 Larger diameter coated nanotubes and some capping are apparent at the top
of a sample infiltrated for 3 minutes

Figure 3.15 shows that capping becomes a larger problem near the top of devices than it does

along the external sides.

Figure 3.16 shows that after only 5 minutes of infiltration, capping is becoming a concern. For

cantilevers studied, diffusion paths have existed. If capping begins to limit cantilever function as a

sensor, excess infiltration material could be removed or limited during growth, such as by heating

the sample in a low concentration of flowing water vapor in the case of carbon infiltration.

Figure 3.17 shows an initial exploration related to this potential solution. In this study, grown

carbon nanotube forests were afterward massed and exposed to a flow of 230 sccm hydrogen gas

bubbling through water vapor at various temperatures for 30 minutes. The samples were then



3.4 Sidewall Carbon Capping 27

Figure 3.16 Visible capping at the top of a 5 minute infiltrated device.

massed again and then scraped from the substrate, which was itself massed. The percent mass

remaining after the oxidation is shown in the figure. The height of the grown nanotubes forests

were also measured before and after the oxidation, with the percent height remaining following a

nearly identical trend as the mass remaining. This suggests that most of the mass removal occurs

on the outside of the forest, which is beneficial if the desire is to remove external carbon and allow

gas diffusion into the porous center of a cantilever sensor.

Additional confirmation that oxidation occurs more rapidly near the edges of CNT features can

be found in Figure 3.18 where we see square nanotube forest features receeding from the edges

more and more at higher temperatures. Note that each image represents a different sample, but that

each was originally fabricated on the same chip and cleaved and oxidized separately afterward.
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Figure 3.17 Data and models showing the percent of carbon nanotube mass and height
removed after 30 minutes of oxidation at various temperatures. The models acompanying
the data are fitted logistic curve models.

Note that the samples shown in Figure 3.18 were treated in the same way as the samples that were

measured to create Figure 3.17.

These results indicate that possible challenges with cantilever device capping could be over-

come by water vapor oxidation after the growth and infiltration steps.

Figure 3.18 Images of oxidized carbon nanotube forests. Each sample was exposed to
water vapor in hydrogen carrier gas for 30 minutes at 600 C, 650 C, and 800 C for the
images from left to right.
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3.5 Carbon Nanotube Morphology

The carbon nanotubes, before and after being coated, are generally not straight. Figure 3.19 shows

that nanotubes near the base of a structure twist a great deal and are far from straight.

Figure 3.19 The bottom (near the iron catalyst) of a broken open 5 minute infiltrated
device showing mostly twisting and non-parallel nanotube morphology.

Figure 3.20, however, shows that in the middle of a structure the coated carbon nanotubes are

mostly straight and parallel.

When carbon is used as the infiltration material, the resulting composite material is observed

to be highly compliant. The elastic modulus of the composite is typically between 1 and 5 GPa,

varying with infiltration time.



3.5 Carbon Nanotube Morphology 30

Figure 3.20 The center of a broken open 5 minute infiltrated device showing largely
parallel and straight nanotube morphology.



Chapter 4

Cantilever Resonance Modeling

4.1 Introduction

The word “cantilever” is another name for a fixed-free beam, or any bar-like shape that is clamped

at one end and free to move at the other end. In physics and engineering, countless structures are

frequently treated as cantilevers, such as a golf club, a flag pole, a computer monitor, and a diving

board. In addition, the same equation that describes a cantilever is equally valid for any beam (and

is actually easier to solve). This means that the equation and solution presented below is also valid

when solving systems such as I-beams in buildings, bridges, or any other odd shaped thing that is

a few times longer in one direction than the others.

We are used to treating all sorts of things as springs and using Hooke’s Law. That works great

for things that are pushed or pulled along the direction of their length, but what about when they

are pushed or pulled in a direction perpendicular to their length? This is where the beam equations

come in. When solved in all their gory detail, they can be complicated, but the solutions provide

simpler relationships that can be used more like Hooke’s Law.

The beam equations can be solved for any arbitrary shape (although their validity requires that

31
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one dimension be longer than the other two), but in order to simplify the already complicated

derivations, we will look only at rectangular beams. Cylindrical beams, triangular beams, and

others are not too hard to solve, but arbitrary shapes get complicated quickly.

In the sections below, we will first run through treating a cantilever as a Simple Harmonic

Oscillator, just as a review to provide some insight and useful identities before we dive into the

beam equation. We will also introduce a few new terms along the way.

4.2 Treating a Cantilever as a Simple Harmonic Oscillator

Because a cantilever is essentially a spring being pushed perpendicular to its length, Hooke’s Law

does not properly apply. If we apply it anyway, however, we begin with the following:

The force F is proportional to the displacement by the spring constant k, and we are going to

add some damping to the model (air resistance, thermo-elastic dampening, etc.) with a coefficient

c. We are also going to drive the oscillation with a sinusoidal driving force of angular frequency

ω . Then,

F =−kx− cx′+ sin[ωt]

or in other words,

mx′′ =−kx− cx′+ sin[ωt]

mx′′+ cx′+ kx = sin[ωt]

x′′+
c
m

x′+
k
m

x =
1
m

sin[ωt]

If we would have solved this equation with no damping and no driving force, we would have

found that the natural frequency of vibration is ω0 =
√

k
m . Since this is a useful quantity to think

about, let’s substitute it in:
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x′′+
c√
mk

ω0 x′+ω
2
0 x =

1
m

sin[ωt]

This looks great, but we don’t know much about that damping coefficient, c. A more common

measurement in many fields is the Quality Factor, Q, which is defined to be

Q = 2π
Energy Stored in the Oscillations

Energy Lost per Cycle

The quality factor is generally considered to be a property of the oscillator, similar to the

natural frequency. To give a couple examples, a tuning fork has a very high quality factor, while a

regular fork does not. Resonators with high quality factors take a long time to “ring down,” or stop

resonating. They also only respond to a narrow range of frequencies (they have a sharp resonance

peak), while low Q oscillators will respond to many frequencies (they have a broad resonance

peak). We will use Q for many reasons, but one of them is that it turns out that

Q =

√
mk
c

This means that we can easily substitute Q in for c in our differential equation to obtain:

x′′+
1
Q

ω0 x′+ω
2
0 x =

1
m

sin[ωt]

The solution to this equation has two parts, the transient part and the steady state part. Since

the transient part dies away quickly, the part that we are most interested in is the steady state part.

Upon solving, the steady state solution to this equation is:

(
ω2

0 −ω2)
m
(

1
Q2 ω2ω2

0 +
(
ω2

0 −ω2
)) sin[ωt]− ωω0

mQ
(

1
Q2 ω2ω2

0 +
(
ω2

0 −ω2
)) cos[ωt]

This is written out as a sum of a sine and a cosine, but the origin of time zero is arbitrary, so

all we can measure in a steady state oscillation is the amplitude and the phase. We can think of
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this as translating the above function into the form Acos[ωt +φ ], where A is the amplitude and φ

is the phase shift. For the amplitude, we simply need to use the pathagorean theorem, such that the

amplitude is:

A =

√√√√√
 (

−ω2 +ω2
0
)

m
(

1
Q2 ω2ω2

0 +
(
−ω2 +ω2

0
)2
)
2

+

 −ωω0

mQ
(

1
Q2 ω2ω2

0 +
(
−ω2 +ω2

0
)2
)
2

Upon simplification, we have:

A =
1

m

√(
ωω0

Q

)2
+
(
ω2

0 −ω2
)2

Next, to find the difference in phase between the drive and the response, we need to take the

arctangent of the ratio of the amplitude of the cosine to the amplitude of the sine, as follows:

φ = arctan

 −ωω0

mQ
(

1
Q2 ω2ω2

0 +
(
−ω2 +ω2

0
)2
)
/

 (
−ω2 +ω2

0
)

m
(

1
Q2 ω2ω2

0 +
(
−ω2 +ω2

0
)2
)


Upon simplification, we have:

φ = arctan

(
ωω0

Q
(
ω2−ω2

0
))

These are the desired results. In order to understand them, it is helpful to look at some plots.

For the following plots, the resonant frequency will be set to 5 cycles per second, and the mass to

2 kg.
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Figure 4.1 Example plots of the simple harmonic oscillator solution showing the effect
of quality factor on the behavoir.

4.3 Fitting Cantilever Resonance Data

Although it is true that the Simple Harmonic Oscillator equation does not entirely describe a can-

tilever, it does provide the functional forms of the amplitude versus frequency and phase shift

versus frequency. Thus, although we will go on to solve the cantilever equations in order to learn a

great deal about how cantilevers vibrate and what their resonant frequencies will be and such, we

have already covered enough ground that we can discuss fitting cantilever resonance data. Fitting

is useful in this case because it allows for a much better estimation of the resonance frequency

than simply measuring the frequency at which the response is a maximum, and also because fitting

is the most reliable method of determining the Quality Factor of a cantilever (an estimation can

be obtained by measuring the resonance peak’s full width at half maximum and dividing by the

resonant frequency).

4.4 Cantilever Equation Solution

To predict a cantilevers resonant frequency and other characteristics, it is required to solve the beam

equation for a cantilever rather than simply the harmonic oscillator equation. The partial differ-
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ential equation describing a cantilever under the assumption of small deflections and no damping

is

EWH3

12
uxxxx =−WHρutt

We will now proceed to describe and solve this equation.

4.4.1 Definition of Variables

Let the function u(x, t) be the deflection of the cantilever section at position x and time t, where the

cantilever is clamped at position x = 0 and free at the position x = L (where L represents the length

of the cantilever). Also let subscripts represent partial derivatives in the variable subscripted, and

constants be defined as follows:

• E - The Youngs Modulus of the cantilever material

• W - The width of the cantilever

• H - The height of the cantilever, or thickness in the direction of vibration

• L - The length of the cantilever

• ρ - The density of the cantilever material

• c - A damping coefficient, likely a function of other variables, that will be explored later

For simplicity, let a constant β be defined as

β =

(
12

EWH3

) 1
4

4.4.2 The Boundary Conditions

• u(0, t) = 0
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• ux(0, t) = 0

• uxx(L, t) = 0

• uxxx(L, t) = 0

4.4.3 Separation of Variables

Let u(x, t) = f (x)g(t), then

EWH3

12
f ′′′′(x)
f (x)

=−WHρ
g′′(t)
g(t)

= α
4

4.4.4 The Time Equation

WHρg′′(t) =−α
4g(t)

and so

g(t) =C1 cos
(

α2
√

WHρ
t
)
+C2 sin

(
α2

√
WHρ

t
)

4.4.5 The Spacial Equation

f ′′′′(x) =
12α4

EWH3 f (x)

or

f ′′′′(x) = α
4
β

4 f (x)

and so

f (x) =C3 cos[βαx]+C4 sin[βαx]+C5Eβαx +C6E−βαx
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or

f (x) =C3(cos[βαx]+ cosh[βαx])+C4(cos[βαx]− cosh[βαx])

+C5(sin[βαx]+ sinh[βαx])+C6(sin[βαx]− sinh[βαx])

4.4.6 Applying Boundary Conditions

Since u(0, t) = 0 we know that f (0) = 0 and thus C3 = 0. Also, since ux(0, t) = 0 we know that

f ′(0) = 0 and thus C5 = 0. As a result,

f (x) =C4(cos[αβx]− cosh[αβx])+C6(sin[αβx]− sinh[αβx])

f ′′(x) =C4
(
−α

2
β

2 cos[αβx]−α
2
β

2 cosh[αβx]
)
+C6

(
−α

2
β

2 sin[αβx]−α
2
β

2 sinh[αβx]
)

f ′′′(x) =C6
(
−α

3
β

3 cos[αβx]−α
3
β

3 cosh[αβx]
)
+C4

(
α

3
β

3 sin[αβx]−α
3
β

3 sinh[αβx]
)

Thus, since uxx(L, t) = 0, f ′′(L) = 0, we have

C4
(
−α

2
β

2 cos[αβL]−α
2
β

2 cosh[αβL]
)
+C6

(
−α

2
β

2 sin[αβL]−α
2
β

2 sinh[αβL]
)
= 0

As a result,

C6 =C4
−cos[αβL]− cosh[αβL]

sin[αβL]+ sinh[αβL]

Such that
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f (x) =C4

(
(cos[αβx]− cosh[αβx])+

−cos[αβL]− cosh[αβL]
sin[αβL]+ sinh[αβL]

(sin[αβx]− sinh[αβx])
)

Also, since uxxx(L, t) = 0, we must have f ′′′(L) = 0, or

C4
−cos[αβL]− cosh[αβL]

sin[αβL]+ sinh[αβL]

(
−α

3
β

3 cos[αβL]−α
3
β

3 cosh[αβL]
)

+C4
(
α

3
β

3 sin[αβL]−α
3
β

3 sinh[αβL]
)
= 0

Which simplifies to

1+ cos[Lαβ ]cosh[Lαβ ]

sin[Lαβ ]+ sinh[Lαβ ]
= 0

or

1+ cos[Lαβ ]cosh[Lαβ ] = 0

This means that α cannot take on any value, but only certain discrete values, the nth of which

we will call αn

To simplify our discussion, let us define a new variable, kn, such that kn = αnβL. For clarity,

this means that αn is now given by αn =
kn
βL .

Re-writing the equation above with this new variable, we have

1+ cos(kn)cosh(kn) = 0

The possible values of kn are given by the roots of the above transcendental equation. The first

10 of these values are:

Since the hyperbolic cosine function grows rapidly, it can be seen that these solutions are nearly

given by
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kn Value

k0 1.875104068711961

k1 4.694091132974175

k2 7.854757438237613

k3 10.99554073487547

k4 14.13716839104647

k5 17.27875953208824

k6 20.42035225104125

k7 23.56194490180644

k8 26.7035375555183

k9 29.84513020910282

Table 4.1 The first ten constants governing cantilever bending behavior

cos(kn) =
−1

cosh(kn)
≈ 0

which means that

kn ≈
(

n+
1
2

)
π, n ∈ Z

This approximation is not accurate for the first possible value (n = 0), but quickly becomes

extremely accurate as n increases.

4.4.7 Substituting for the Separation Constant

Since αn =
kn
βL , and β =

(
12

EWH3

) 1
4 , we can now substitute into the previously found equations

f (x) =C4

(
(cos[αβx]− cosh[αβx])+

−cos[αβL]− cosh[αβL]
sin[αβL]+ sinh[αβL]

(sin[αβx]− sinh[αβx])
)
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g(t) =C1 cos
(

α2
√

WHρ
t
)
+C2 sin

(
α2

√
WHρ

t
)

To obtain

f (x) =C4

((
cos
(

knx
L

)
− cosh

(
knx
L

))
+
−cos(kn)− cosh(kn)

sin(kn)+ sinh(kn)

(
sin
(

knx
L

)
− sinh

(
knx
L

)))

g(t) =C1 cos

(
k2

n
H
L2

√
E

12ρ
t

)
+C2 sin

(
k2

n
H
L2

√
E

12ρ
t

)

4.4.8 The Final Solution

As a result of the above derivations, it can be seen that

u(x, t) =
∞

∑
n=1

f (x)g(t)

Therefore, after combining constants and replacing them with counterparts that have different

values for different values of n (which we call An and Bn), we obtain for the final solution

u(x, t) =
∞

∑
n=1

((
cos
(

knx
L

)
− cosh

(
knx
L

))
+
−cos(kn)− cosh(kn)

sin(kn)+ sinh(kn)

(
sin
(

knx
L

)
− sinh

(
knx
L

)))
(

An cos

(
k2

n
H
L2

√
E

12ρ
t

)
+Bn sin

(
k2

n
H
L2

√
E

12ρ
t

))

Where An and Bn may be determined from the initial shape of the beam.

4.4.9 The Resonant Frequency

The natural frequency of the cantilever is then
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ω0 = k2
n

H
L2

√
E

12ρ

f0 =
k2

n
2π

H
L2

√
E

12ρ

4.4.10 Resonant Modes

Since the natural frequencies of the beam depend on k2
n, it is informative to give a table of the

values of k2
n, and also to give a table of the values of k2

n/k2
1. Such a table is provided in Table 4.2.

This means that the first “harmonic” of a cantilever has ∼6.3 times the frequency of the funda-

mental, the second “harmonic” ∼ 17.5 times the frequency of the fundamental, etc. This is clearly

different than many other systems such as instrument strings and similar. In fact, these other modes

are not harmonics, but simply other resonant modes. Due to the fixed-free boundary conditions of

a cantilever, the frequencies are not integer multiples, but conceptually the modes are similar to a

harmonic series.
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k2
n k2

n/k2
1

3.516015268500151 1.

22.03449156466677 6.266893025770666

61.69721441354911 17.54748193680845

120.9019160523057 34.38606115720301

199.8595301168034 56.84262292810201

298.5555309677301 84.9130359707132

416.9907860566054 118.5975469994144

555.1652475557627 157.8961424114017

713.0789179789761 202.8088229216248

890.731797198302 253.3355884936946

1088.123885220102 309.4764391294211

1305.255182044067 371.2313748287158

1542.125687670212 438.6003955915831

1798.735402098535 511.5835014180225

2075.084325329038 590.1806923080342

2371.172457361719 674.3919682616182

2686.999798196578 764.2173292787744

3022.566347833616 859.656775359503

3377.872106272833 960.710306503804

3752.917073514229 1067.377922711676

4147.701249557803 1179.659623983122

Table 4.2 Cantilever mode frequency constants
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4.5 Adding a Linear Damping Term

The above solution is extremely useful, but for some applications more information is needed. For

example, the above solution did not consider the effect of damping. Below are the differences

in solution when a linear damping term is added to the equation. The differential equation now

becomes

EWH3

12
uxxxx =−WHρutt− cut

This leads to a time equation of

g(t) = e
−ct

2HWρ

(
C1 cos

(
t
√

4HWα4ρ− c2

2HWρ

)
+C2 sin

(
t
√

4HWα4ρ− c2

2HWρ

))
while the spacial equation remains the same.

The final solution is then:

u(x, t) =
∞

∑
n=1

((
cos
(

knx
L

)
− cosh

(
knx
L

))
+
−cos(kn)− cosh(kn)

sin(kn)+ sinh(kn)

(
sin
(

knx
L

)
− sinh

(
knx
L

)))
(

An cos

(
t
√

EH4W 2ρk4
n−3L4c2

√
12L2HWρ

)
+Bn sin

(
t
√

EH4W 2ρk4
n−3L4c2

√
12L2HWρ

))
e
−ct

2HWρ

4.5.1 The Resonant Frequency

The natural frequencies of the cantilever are then:

ω0 =

√
EH4W 2ρk4

n−3L4c2
√

12L2HWρ

f0 =

√
EH4W 2ρk4

n−3L4c2

2π
√

12L2HWρ



4.6 Adding a Drive Term 45

4.5.2 The Effect of Damping with Respect to Geometry

When damping is included in the model, it effects the resonant frequency differently for different

changes in the geometry of the cantilever.

4.5.3 Relating the Damping Coefficient to the Quality factor

From the decay rate, we can see that

c =
2π f0HWρ

Q

As an approximation, we can estimate this as

c≈ W
Q

(
kn

H
L

)2√Eρ

12

Apart from the approximation, we can exacly write the resonance frequency as

fn =
k2

n
2π

H
L2

Q√
3+12Q2

√
E
ρ

This is the damped resonant frequency of a cantilever experiencing linear fluid damping. This

frequency depends on the quality factor of the system, which is determined both by properties of

the beam itself and the nature of the fluid damping. As expected, this frequency is always less than

the undamped resonant frequency, approaching that limit as the quality factor tends to infinity.

4.6 Adding a Drive Term

In order to solve for the spectrum as we did with the harmonic oscillator model, we need to include

a drive term. The equation to solve in this case is then
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EWH3

12
uxxxx =−WHρutt− cut +asin(ωt)

4.7 Nonlinearities

All above solutions have assumed that deflections are small. When deflections are larger, can-

tilevers experience what is called the geometric nonlinearity, which causes the resonance peak to

shift and begin to roll over, like the classic illustration of an ocean wave. This nonlinearity is

described by the following equation.

EWH3

12
uxxxx−

3
2

EWHuxxu2
x =−WHρutt− cut

4.8 Quadratic Drag

In most environments a microcantilever is exposed to, the Reynolds number of the fluid flow around

the cantilever is small. When this is the case, the above linear drag model is sufficient. If, how-

ever, the Reynold’s number becomes larger (than about 1000), it may become necessary to add a

quadratic drag term and solve the equation

EWH3

12
uxxxx =−WHρutt− cu2

t

4.9 Timoshenko Beam Theory

All of the above PDEs come from what is called Euler Bernoulli Beam Theory. This theory is

powerful and widely used, but it assumes that the material of the beam cannot deform in shear and
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also ignores rotational inertial effects. A much better model of beam motion is the Timoshenko

Beam Theory. The primary equation that this theory provides is

EWH3

12
uxxxx−

(
ρWH3

12
+

EρWH3

12κG

)
uxxtt =−

WH3ρ2

12κG
utttt−WHρutt

Where

• G - The Material Shear Modulus

• κ - The Timoshenko Shear Coefficient, geometrically determined, normally 5
6

For a beam with rectangular cross section,

κ ≈ 6(1+ν)

7+6ν

with ν being the Poisson’s Ratio of the material.

4.10 Cantilever Relations

4.10.1 Stress-Displacement Relations

In the following equations,

• δ is the displacement of the end of the cantilever

• σ is the applied stress

• F is the applied force

• ε is the strain

• ν is the Poisson’s ratio of the cantilever material (about .2)

and the other variables are as defined previously.
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Basic Relation

δ =
3σ(1−ν)

E
L2

H

σ =
6L

WH2 F

ε =
E
σ

Derived Relations

For quick reference, the above equations can be arranged into the following forms:

δ =
18(1−ν)

EW

(
L
H

)3

F

σ =
E

3(1−ν)

H
L2 δ

F =
WH2

6L
σ

F =
EW

18(1−ν)

(
H
L

)3

δ



Chapter 5

Resonance Testing

5.1 Cantilever Mount and Drive

In preparation for resonance testing, a device was placed on the tip of a piezoelectric bimorph,

with the base of the cantilever lining up with the top edge of the piezoelectric. This stack was then

clamped between two stainless steal plates, with the top edge of the plates also aligned to the top

of the piezoelectric as shown in Figure 5.1.

The piezoelectric was used to drive the cantilever into resonance. A sinusoidal voltage sig-

nal applied to the piezo causes it to oscillate, providing mechanical energy to the system at the

frequency of the sinusoid. The portion of this energy the cantilever received and retained was

frequency dependant. When the piezoelectric drove energy into the system at a frequency near a

resonant mode frequency of the cantilever, the cantilever oscillation amplitude was increased. At

other frequencies, the cantilever did not oscillate appreciably.

The effect of changing the power of the driving force from the piezoelectric on the response of

the cantilver can be seen in Figure 5.2. Note that the measured resonant frequency of the cantilever

does shift with applied voltage to the piezoelectric.

49
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Metal Base
Metal
Clamp

Piezo-
electric

Cantilever Laser

Figure 5.1 A cantilever is mounted by clamping it directly between a stainless steel plate
and a piezo-electric bimorph. The top of the clamp, the top of the piezo-electric, and the
bottom of the cantilever are all aligned. During resonance testing, a laser is reflected from
the tip of the cantilever to be measured by a photodiode.
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Figure 5.2 Effect of driving voltage on resonance peaks

Figure 5.3 shows that the cantilever tip deflection angle varies linearly with the applied voltage

to the piezoelectric.
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Figure 5.3 Effect of drive voltage on cantilever tip deflection

5.2 Cantilever Measurement

A laser was reflected from the tip of the device to a photodiode for measurement. The tip of the

reflected beam was centered on the photodiode, causing the total amount of light reaching the

photodiode face to vary with the deflection of the cantilever.

A lock-in amplifier was used to provide a sinusoidal voltage to the piezoelectric at a controlled

frequency, driving the cantilever into resonance. The same instrument was simultaneously used to

measure the voltage across the photodiode. The amplifier was locked to its output. As a result, the

lock-in amplifier produced the component of the photodiode response at the drive frequency.

The lock-in amplifier was computer controlled by means of LabVIEW software. This allowed

for controlled frequency sweeps, precise timing, and data collection replication to promote statis-

tical validity of the results obtained.

The resonant peak of a given cantilever can be scanned with high accuracy and tracked with

fidelity. This can be seen to some degree in Figure 5.4, where 1000 resonance peak scans taken
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over a period of approximately 10 hours are superimposed. The resonance and measurement are

seen to be quite consistent over this time period. Additionaly, when these data sets are fitted and the

actual resonant frequency observed over time, it becomes clear that the resonant frequency cycles

with the same approximate period as a typical air conditioning system. Since these measurements

were not taken in a controlled environment, it appears that much of the apparent noise in the data is

not coming from the measurement, but is rather the result of a correct measurement of a cantilever

experiencing a time variable environment.

Figure 5.4 Shown are 1000 scans of the same resonance peak. It can be seen that the
parameters of the peak can be measured reliably and accurately. The shifts in the peak
are largely due to temperature variations in the room during the excess of 10 hours during
which this data was taken.

A Lorentzian curve resulting from a simple harmonic oscillator model of the cantilevers was fit

to each data set in order to compute resonance frequencies and quality factors. Although in some

cases cantilever resonance peaks can deviate from the simple harmonic oscillator model, devices

tested were found to be in good agreement with the model. An example of this agreement can be

seen in Figure 5.5.
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Figure 5.5 A set of resonance data ploted alongside a Lorentzian fit of the same. Details
of the fitting function can be found in the text.

5.3 Nonlinearities

In some cases, however, behavior deviating from that of a simple harmonic oscillator was observed.

For example, when cantilevers were driven to large amplitudes, nonlinear effects became apparent.

These effects were modeled by numerically solving the cantilever partial differential equation with

linear damping. Results of this modeling can be seen in Figure 5.6.

A corresponding measurement verifying the trends predicted by the model can be seen in Fig-

ure 5.7

These nonlinear effects can be used to glean more information about the cantilevers and their

environments, such as by providing an additional method of measuring fluid damping.
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Figure 5.6 A series of simulated resonance peaks showing increasing nonlinear behavior
for increasing drive amplitudes.
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Figure 5.7 Actual cantilever resonance peaks taken at different drive amplitudes that
show nonlinear behavior.
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5.4 Multiple Resonant Modes

Although the fundamental resonant mode of the cantilevers was the most frequently studied, mul-

tiple modes were observed in some cases. Flexural modes in the direction of the cantilever height

as well as in the direction of the width were seen, in addition to torsional beam modes. Figure 5.8

shows the frequency response of one cantilever, illustrating the first and second flexural modes of

a cantilever in the direction of the height of the beam (the most frequent mode direction studied).
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Figure 5.8 A frequency scan showing multiple resonance modes of a single cantilever.

5.5 Resonant Frequency dependance on Geometry

As expected, cantilever resonant frequencies were found to vary with beam geometry as predicted.

An example of this can be seen in Figure 5.9
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Figure 5.9 Length dependence of resonant frequency



Chapter 6

Fluid Drag

Because these porous cantilever sensors are meant to be used in fluid environments, understanding

fluid drag on these beams becomes a major concern. Much can be determined by changing the

pressure a cantilever is exposed to while it is resonating. Figure 6.1 shows how a resonance peak

shifts and scales as pressure is varied.

Figure 6.2 shows how the damped resonant frequency of a beam changes with pressure. This

frequency is expected to go down with increased pressure, as the beam effectively gains the mass

of the air it drags with it or pushes out of its way.

Figure 6.3 shows the variation in quality factor with gas pressure. The quality factor goes down

as pressure is increased because more energy is lost to the fluid.

Figure 6.4 shows the damping ratio as it changes with pressure. This ratio is related to the

quality factor by ζ = 1/(2Q) but can be more convenient to discuss when discussing how different

sources of damping add, because while damping ratios add and are a measure of damping from a

source, quality factors are related by the sum of inverses being the inverse of the effective.

Figure 6.5 distinguishes between damping coming from fluid drag and that coming from other

sources such as clamping loss or internal Thermo Elastic Dampening (TED).

We can see from Figure 6.5 that TED is certainly not dominant when pressures reach near

57
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Figure 6.1 Resonance data of a single cantilever in a gas environment of three different
pressures are shown alongside a model fitted to each case that was used to extract the
resonance frequency and quality factor.
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Figure 6.2 The resonant frequency of a given beam is shown as the beam is exposed to
different gas pressures.
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Figure 6.3 The quality factor of a given beam is shown as the beam is exposed to different
gas pressures.
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Figure 6.4 The value of the damping ratio (ζ = 1/(2Q)) for a given cantilever is shown
as it varies with the environmental gas pressure.
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Figure 6.5 The value of the damping ratio (ζ = 1/(2Q)) for a given cantilever is shown
for a range of environmental gas pressures. It can be seen that at atmospheric pressure
approximately half of the total damping is due to fluid damping, the other half being due
to clamping and other losses.

atmospheric or fluid viscosity increases. It is likely that much of the other damping is due to

clamping losses.



Chapter 7

Sensing

Cantilever resonant frequencies were measured at several levels of humidity. The cantilever was

placed in an isolated gas environment with controlled humidity. The humidity was changed by

means of saturated salt solutions. When an open container of a saturated salt solution is placed

within a closed chamber, the local relative humidity reaches equilibrium at a value dependant on

the particular salt used. In this study, a dessicant was used to obtain nearly 0% relative humidity,

a saturated aqueous solution of calcium chloride (CaCl2) was used to obtain approximately 34%

relative humidity, and deiononized water was used to obtain nearly 100% relative humidity.

For a given cantilever beam, several resonance measurements were taken at different humidities

in a randomized order. The resonance frequency of the beam was tracked continuously as it moved

from one steady state value to another after the salt solution had been replaced and the local relative

humidity was equilibrating.

The results of multiple resonance measurements of one cantilever exposed to three relative

humidity values multiple times in randomized order is shown in Figure 7.1. This data shows that

the response of the cantilever changes consistently with the relative humidity, with variance much

smaller than the difference in response between the humidity levels tested. The trend observed is as

expected. As relative humidity is increased, it is expected that more water molecules will adsorb
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onto the available cantilever surface area [8] [9] [10] [11] [12]. These adsorbed molecules add

mass to the cantilever beam, decreasing its resonant frequency. Figure 7.1 shows that the resonant

frequency of the beam studied decreases at higher relative humidity levels.

The quality factor of the cantilever was also found to vary with the relative humidity, although

not nearly as significantly as the resonant frequency. Although relative humidity would not be

expected to have a large impact on fluid damping experienced by a cantilever, adsorbed materi-

als would be expected to have some impact on the internal losses in a porous resonator such as

thermoelastic damping (TED) [13].

The relative humidity could have some impact on the elastic modulus of the device. This effect

was not explored in detail, but it is expected that the change in the mass of the beam may contribute

more heavily to the change in resonant frequency of the cantilever.
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Figure 7.1 Histogram of measured resonance frequencies at various levels of humidity.

In addition to measuring cantilever responses at a humidity level steady state, beams were

tracked as the humidity in the chamber changed. An example of this equilibration data can be seen
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in Figure 7.2. It could be argued that the beam took a very long time to respond to a stimulus,

but the cantilever responded on the same time scale as the humidity in the chamber was changed.

More work is required to determine the time response of the cantilever sensor.
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Figure 7.2 Equilibration between humidity levels

The resonant response of cantilevers was observed to vary strongly with the gas pressure of the

measurement environment [14]. Many of these changes in response were expected. For example,

as pressure increases, cantilever quality factor is expected to decrease as more damping is present

and the device loses more energy per cycle to fluid damping forces [15]. Additionaly, as pressure

increases, the resonant frequency of a cantilever resonator is expected to decrease as a result of

fluid damping [16].

Both the resonant frequency and the quality factor of a given cantilever beam can be seen to

vary with environment pressure in Figure 7.3. In this figure, however, note that the horizontal axis

is pumping time, not pressure. This data was taken with zero time corresponding to ambient air

pressure (about 680 Torr), while as pumping time goes on the pressure drops down to nearly 1 Torr.
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Expected behavior for both resonant frequency and quality factor is demonstrated in this case.
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Figure 7.3 A trace of a single device resonance frequency and quality factor over time
as the pressure in the chamber was lowered from atmospheric pressure to approximately
1 Torr.

Other chemicals can also be sensed. In the few hours the new testing system has been setup, ini-

tial data on sensing acetone vapor has been obtained. More work is needed to increase consistency

and obtain more data, but rough preliminary results are shown in Figure 7.4
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Chapter 8

Modeling and Sensitivity Optimization

Micro-cantilevers are used as extremely accurate chemical sensors, but their performance in fluid

environments has generally been poor. Making these sensors porous has the potential to increase

sensitivity by up to four orders of magnitude and simultaneously allow for accurate detection in

fluid environments. High aspect ratio microfabrication methods using porous materials have not

previously been available, but the newly developed carbon nanotube templated microfabrication

(CNT-M) process makes such fabrication possible. Proof of concept devices have been fabricated

and tested, but these devices were not optimized in any way. We present the modeling and sensitiv-

ity optimization of these new devices. Our results suggest performance gains of over three orders

of magnitude above the proof of concept devices. It is additionally shown that, under the applicable

constraints, higher porosity and longer devices both independently offer higher sensitivities.

8.1 Nomenclature

8.1.1 Design Variables

• L is the length of the cantilever
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• W is the width of the cantilever

• H is the height of the cantilever

• R is the radius of the coated carbon nanotubes after filling

• D is the distance between nearest neighbor carbon nanotubes

• A is the amplitude (the maximum cantilever tip deflection)

8.1.2 Intermediate Variables

• ρ is the effective density of the cantilever device

• E is the effective stiffness of the cantilever

• f0 is the fundamental resonant frequency of the cantilever

• fn is the frequency of the nth resonant mode of the cantilever

• fdn is the frequency of the damped nth resonant mode of the cantilever

• f1 is the frequency that yields the highest slope on a resonance peak

• Q is the cantilever quality factor

• S is the surface area of the porous cantilever

• x is the distance from the base along the length of the cantilever

• δ is the deflection of the cantilever

• Γ is the hydrodynamic function of the cantilever

• Re is the Reynolds number characterizing the fluid flow around the cantilever during reso-

nance

8.1.3 Objective Function

• σ is the sensitivity, measured in response amplitude per analyte concentration
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8.1.4 Constants

• ρ f is the density of the fluid environment

• η is the viscosity of the fluid environment

• ρm is the density of the coating material

• d is the distance between the base of the cantilever and a base plate above which the beam is

mounted

8.2 Methods and Models

Due to the unique nature of the micro-cantilevers that provide a basis for this study, models of

several of their characteristics are not currently found in the literature. As a result, a large amount

of first principles modeling will be presented in this section alongside variations of some models

commonly in use in this field.

8.2.1 Constraints and Bounds

Variable bounds used in this study (determined by manufacturability) are:

• 500 µm < L < 10 mm

• 150 µm < W < 2 mm

• 10 µm < H < 2 mm

• 10 µm < R < 1 mm

• 50 µm < D < 150 µm

• 0 mm < A < 1 mm

Constraints used in the optimization are:
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• R < D√
3

• A≤ L
10

• A≤ d
2

These constraints respectively prevent the beam from being more than entirely filled with ma-

terial, limit the amplitude in order to prevent cantilever failure or nonlinear resonance effects, and

limit the amplitude such that the beam will not come into contact with the base plate it is mounted

above.

8.2.2 Gaussian Windowing

A method was developed and implemented that will be referred to as Gaussian Windowing. This

method is an alternative to spline based or k-weighted interpolation methods. The advantage of

this method is that it is not simply a mathematical construct, but rather has a great deal of physical

relevance.

Models of physical systems that are discontinuous or not differentiable prove difficult for op-

timization methods. Since physical systems rarely exhibit discontinuity or non-differentiability on

a bulk scale, it could be claimed that a model with these features is inherently flawed. This is

not always the case, however. Physical systems do often exhibit these sharp transitions on a small

scale due to the nature of quantum mechanics, but bulk systems rarely show these features due to

decoherence or, more generally, variance.

Gaussian Windowing samples a (possibly discontinuous or non-differentiable) model function

at multiple points and returns a gaussian weighted average of the results. This effectively models

variance in the intermediate model variables, which indeed is always present, with the standard

deviation often known through experimental experience with the system.

Use of this method is demonstrated in the following section. It should be noted that this method

not only produces models with continuous gradients for use in gradient based optimization, but it
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also has the potential to create physically accurate models from inaccurate models that assume no

variance, regardless of whether the model is then used for optimization purposes.

8.2.3 Surface Area vs Coating Radius

Assume the carbon nanotubes are hexagonal close packed. This model will look at the surface area

contributed by one coated carbon nanotube of total radius R where the distance between carbon

nanotubes is D.

The growing surface area is then

sg = 2πRH

If the shrinking surface area is approximated by flat edges rather than arcs, then

ss = 6
(

2D− 4R√
3

)
H

The maximum value of R, Rmax, will occur when Ss = 0, so

Rmax =
D√

3

If arcs are treated properly, then

c = 2D− 4R√
3

ss = 6
(

2Rsin−1
( c

2R

))
H

ss = 6
(

2Rsin−1
(

D
R
− 2√

3

))
H
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These two surface area models, sg and ss, are each active in a separate regime. sg is the correct

model for R < D
2 , while ss is the correct model for R > D

2 . It is necessary to combine these two

models together, but doing so in a piecewise manner would result in a non-differentiable function.

Multiple methods exist for combining them more correctly, such as gaussian windowing.

Plotting these functions for typical values of the constants yields the plot shown in Figure 8.1.
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Figure 8.1 Graph of surface area models created from circular assumption.

We then must find the number of nanotubes in the beam. Assuming the carbon nanotubes are

hexagonal close packed, the distance between each nanotube is related to the side length of the

hexagon in which it resides by

D = 2

(√
3

2
a

)
or, solving, we have

a =
D√

3
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The area of the hexagon belonging to each nanotube is then

ACNT =
3
√

3
2

a2 =

√
3

2
D2

The number of nanotubes per cantilever (NCNT ) can then be estimated by the base area of the

cantilever (L∗W ) divided by the area occupied by each nanotube as follows:

NCNT =
LW

ACNT
=

2LW√
3D2

The surface area of the beam is then given by the surface area of one coated carbon nanotube

multiplied by the number of nanotubes in the beam, or

S = NCNT ∗ s =
2LW√

3D2
s

8.2.4 Material Occupied Volume

The simplest model of the volume occupied by material (not including pores) that avoids collision

issues is that of a hexagonal linear approximation. If each coated carbon nanotube is approximated

as a hexagon, then the volume of a coated nanotube is

vm =
3
√

3
2

R2H

This leads to the entire material occupied volume being represented by

Vm = NCNT ∗ vm =
3
√

3
2

NCNT R2H

A more accurate model is given by properly treating the intersection of cylinders. To find the

intersection area of two circles of radius R and distance between centers, D, we must first find the

angle θ subtended by the two radii that define the sector in which intersection occurs. An isosceles
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triangle is formed by these two radii and the corresponding chord. This triangle can be divided into

two right triangles with hypotenuse R and one side length of D/2, with the remaining side having

a length half that of the chord. The angle of this triangle which stems from the center of the circle

is then given by

cos−1
(

D
2R

)
such that the angle of interest is twice that given above, or

θ = 2cos−1
(

D
2R

)
The area of the sector is then given by

Asect =
θ

2
R2 = cos−1

(
D
2R

)
R2

Before computing the area of the isosceles triangle, we must know the chord length. Using the

Pythagorean theorem on the right triangle, we have

(
D
2

)2

+
(c

2

)2
= R2

leading to

c =
√

4R2−D2

The area of the isosceles triangle is then given by

Atri =
1
2

c
D
2
=

D
4

√
4R2−D2

Since the intersection area is the difference between the area of the sector and the area of the

isosceles triangle, we now have a accurate equation to model for when the nanotubes begin to
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touch each other.

Aint = Asect−Atri

= cos−1
(

D
2R

)
R2− D

4

√
4R2−D2
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Figure 8.2 Plot of area occupied by the nanotubes in a horizontal cross-section. Com-
paring the circular intersecting model with the hexagonally close packed model.

8.2.5 Device Density

The device density ρ (dependent on the material density ρm) varies simply with the volume occu-

pied by material Vm.

The mass of the cantilever will be equal to the density of the material ρm multiplied by the

material occupied volume Vm, and the density of the cantilever device will be its mass divided by

its volume which is simply equal to LWH, so for the device density we have
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ρ =
ρmVm

LWH

8.2.6 Device Elastic Modulus

The Young’s Modulus of the cantilever beam can be obtained through existing models of the mod-

ulus of porous materials [17].

One simple model of the elastic modulus of a porous material is

E = Em

(
1− p

pc

) f

where p is the porosity (occupied volume over total volume), pc is the critical porosity beyond

which the modulus is zero (assumed 1 for our model), Em is the elastic modulus of the material,

and f is an empirical factor that is material dependent (values typically range from 1 to 2, a value

of 1.5 was used in this model) [18]. The figure below shows the relationship between porosity and

elastic modulus.

8.2.7 Resonant Frequency

For a simple, undamped beam, the mode resonant frequencies can be found through solution of the

cantilever differential equation to be

fn =
k2

n
2π

H
L2

√
E

12ρ

Where the values of kn are the solutions to the trancendental equation

1+ cos(kn)cosh(kn) = 0

The first four kn values, for reference, are shown in Table 8.1.
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Figure 8.3 Plot of the elastic modulus as a function of the porosity of the carbo-nanotube
beam.

kn Value

k0 1.87510406871

k1 4.69409113297

k2 7.85475743824

k3 10.9955407349

Table 8.1 The first four constants used in the resonant frequency equation to find different
modes

8.2.8 Damped Resonant Frequency

The above results give the undamped resonant frequency. Damping not only alters the quality

factor, but also the resonant frequency. Thus, the damped resonant frequency depends on the

extent of damping, which can be portrayed through the quality factor. These damped resonant

frequencies are given by
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fd0 =
k2

n
2π

H
L2

Q√
3+12Q2

√
E
ρ

This relation comes from solving the cantilever differential equation with a linear damping term

and substituting in the quality factor for the damping term by comparing the obtained ring-down

decay rate in the solution to the definition of the quality factor.

8.3 Resonant Mode Shapes

The undamped mode shapes can be found by solving the cantilever differential equation, and are

given by

δ (x) = A
(

C1 +
−cos(kn)− cosh(kn)

sin(kn)+ sinh(kn)
C2

)
where

C1 = cos
(

knx
L

)
− cosh

(
knx
L

)
and

C2 = sin
(

knx
L

)
− sinh

(
knx
L

)

8.3.1 Hydrodynamic Function

The hydrodynamic function for a circular beam can be found analytically [19] [20] to be

Γcirc(ω) = 1+
4iK1(−i

√
iRe)√

iReK0(−i
√

iRe)
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Figure 8.4 Plot of the deflection shape for each of the three first resonant modes of a
cantilever beam

This analytic result can then be corrected [19] to show that the hydrodynamic function of a

rectangular beam is given by

Γrect(ω) = Ω(ω)∗Γcirc(ω)

where

Ω(ω) = Ωr + iΩi

Ωr =
∑

6
i=0Ciτ

i

1+∑
12
i=7Ciτ i−6

Ωi =
∑

18
i=13Ciτ

i−13

1+∑
2
i=19 4Ciτ i−18
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τ = log(Re)

and the constants Cn, in order from C0 to C24 are: 0.91324, −0.48274, 0.46842, −0.46842,

0.044055,−0.0035117, 0.00069085,−0.56964, 0.4689,−0.13444, 0.045155,−0.0035862, 0.00069085,

−0.024134,−0.029256, 0.016294,−0.00010961, 0.000064577,−0.000044510,−0.59702, 0.55182,

−0.18357, 0.0079156, −0.014369, and 0.0028361 [19].

8.3.2 Reynolds Number

The Reynolds number for the fluid flow around the beam is given by [19] to be

Re =
πρ f f0W 2

2η

8.3.3 Quality Factor

The quality factor of the beam effects sensitivity by determining the sharpness of the resonant

peak. The quality factor, Q, is defined as

Q = 2π
Energy in the Mode

Energy Lost per Cycle

Since the damped resonant frequency has been shown previously to be given by

fd0 =
k2

n
2π

H
L2

Q√
3+12Q2

√
E
ρ

we can solve for the quality factor to obtain

Q =

√
3

b2−12

where



8.3 Resonant Mode Shapes 80

b =
k2

n
2π fd0

H
L2

√
E
ρ

Then, since the damped resonant frequency is also given by

fd0 =
f0√

1+ πρ f W
4ρH Γr

We can then simplify the expression for b to obtain

b =

√
12+

3πρ fW
ρH

Γr

which, together with the above results, determines the quality factor. This result can be seen

plotted against several variables in Figure 8.5.
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Figure 8.5 Assortment of plots showing the how changing each design variable will
effect the quality factor of the beam

Four other models for the quality factor were explored. Some showed similar behavior, while

some began producing results but need additional work to become viable models. The models not
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presented are much more complex, and should correspondingly offer more accurate results when

completed. The results of these models will be presented in a future work.

8.3.4 Lorentzian Amplitude

When the cantilever is treated as a simple harmonic oscillator, the response amplitude function is

given by the following Lorentzian curve

A =
A0√(

f f0
Q

)2
+
(

f 2
0 − f 2

)2

The first derivative of this function is

dA
d f

=−
A0

(
4 f 3 +2 f f 2

0

(
1

Q2 −2
))

2
(

f 4 + f 2 f 2
0

(
1

Q2 −2
)
+ f 4

0

)3/2

The second derivative is

d2A
d f 2 = A0

t0 +6 f 6Q4 +5 f 4 f 2
0 Q2 (1−2Q2)

t1

√
f 4 + f 2 f 2

0

(
1

Q2 −2
)
+ f 4

0

where

t0 = 2 f 2 f 4
0
(
Q4−4Q2 +1

)
+ f 6

0 Q2 (2Q2−1
)

and

t1 =
(

Q2 ( f 2− f 2
0
)2

+ f 2 f 2
0

)2

Solving for where the second derivative is zero and identifying which of the solutions corre-

sponds to a global maximum in the first derivative yields the frequency f1 at which maximal slope
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magnitude is obtained (t0, (t1 and t2 are terms used as intermediate expressions to simplify the final

statement)

t0 =−6144Q10 +8208Q8−7752Q6 +3729Q4

t1 =
√

t0−828Q2 +69

t2 =
3
√
−512Q6 +1416Q4−870Q2 +18t1 +145

f1 =
f0

3Q

√
64Q4−5t2 + t2

2 +2Q2 (5t2 +22)−11
2t2

The maximal value of the slope is then given simply by dA
d f ( f 1)

Using a linear approximation about the resonance frequency, we have the approximation

A = A1 +
dA
d f

( f 1)∆ f

Since the derivative of the resonance frequency with mass is given by

d f0

dm
=−

k2
0

4π

H
L2

√
ELWH
12m3

The frequency shift ∆ f is then given with another linear approximation by

∆ f =−
k2

0
4π

H
L2

√
ELWH
12m3 ∆m

Substituting this result into the previous expression for the amplitude at the point of maximal

slope provides

A = A1−
dA
d f

( f 1)
k2

0
4π

H
L2

√
ELWH
12m3 ∆m
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The change in mass is proportional to the surface area of the cantilever and the concentration

of the chemical to be sensed

∆m ∝ [m]S

When substituted assuming equality rather than proportionality, this leads to

A = A1−
dA
d f

( f 1)
k2

0
4π

H
L2

√
ELWH
12m3 [m]S

The maximum value of this amplitude function is given by

Amax =
Q

4π2 f 2
0

The amplitude function can be normalized by this maximum value if desired.

8.3.5 Sensitivity

Many of the previously discussed characteristics of the beam that have been modeled could be

considered objectives in their own right. For example, it is desirable to maximize the quality factor

of a sensor, while it is also desirable to minimize the mass of the sensor. It was initially unclear

how these separate aspects of the beam could be brought together into a single objective. We

determined that the sensitivity of the sensor is the most important objective that relies on all other

characteristics of the device. Our model for sensitivity follows.

Sensitivity (σ ) is the objective to be optimized. It is dependent upon each other model of

cantilever behavior presented in the previous sections.

Sensitivity is essentially how much the measured amplitude changes for a given change in the

concentration of the chemical to be sensed. This concept can be visualized in Figure 8.6, where as

mass adsorbs onto a cantilever beam that is being driven at frequency f1, the added mass causes
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Figure 8.6 Plot showing the critical concept in micro-cantilever sensors. f1 is the fre-
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the resonance peak to shift to lower frequencies, causing a change in output proportional to the

frequency response function slope (the red dot moves along the green line in Figure 8.6). This can

be stated more formally as

σ =
dA

d[m]

And, using the first approximation found in the Lorentzian Amplitude section, leads to

σ =−dA
d f

( f 1)
k2

0
4π

H
L2

√
ELWH
12m3 S

8.3.6 Optimization

An interface sensitivity function was designed to take rescaled design variables and send the scaled

versions into the original sensitivity function, afterward returning the negative of the rescaled result
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(proper for minimization, since sensitivity is to be maximized). The variable values and objective

values are also stored for future reference and analysis such as tracking the optimizer path through

parameter space or creating convergence plots.
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Figure 8.7 Plot showing the change in sensitivity error over the life span of the particle
swarm optimization

Rescaling design variable values and sensitivity values to order one proved extremely important

in obtaining reliable results from the optimizers.

Two primary optimization algorithms were used: Particle Swarm Optimization (PSO) and

a modified limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method that properly

handles bounds and constraints. PySwarm was the PSO implementation used, and the SciPy opti-

mization package provided the BFGS implementation.

A convergence plot indicating the performance of the PSO algorithm can be seen in Figure

8.7, while a similar plot indicating the performance of the BFGS algorithm on this problem can

be seen in Figure 8.8. The BFGS algorithm took largely fewer function calls to converge, and this

improvement increases when automatic differentiation is used in place of finite differencing.
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Figure 8.8 Plot showing the convergence for BFGS optimization sensitivity

Finite differencing was primarily used to provide gradients to the BFGS optimization method.

Automatic differentiation was also implemented using the “AD” python package. This improved

gradient source will be used in future work in this area to improve the speed and accuracy of the

BFGS optimization method or other gradient optimization implementations that will be explored

in future work.

8.4 Results

Due to the unique nature of the devices studied, the models describing their characteristics in terms

of fabrication controllable variables is a feat and a result in its own right.

The unification of many aspects of micro-cantilever sensor function into one central objective,

sensitivity, offers many insights to the field that have previously not been frequently implemented.

For this reason, the dependence of sensitivity on the design variables is presented as a result rather

than a premise.
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Figure 8.9 Plot showing the relationship between the length of the beam and its sensitiv-
ity

It can be seen in Figure 8.9 that sensitivity increases with cantilever length for a porous device.

At a critical length the sensitivity begins to decrease with length. This occurs because the plotted

values are the optimum sensitivity values with the indicated variables fixed, and an amplitude

constraint becomes active at transition point. The basics of this result shows the longer the better

but the constraint is inhibiting extra long micro-cantilever beams.

In Figure 8.10 it can be seen that the sensitivity tends to lower values the wider the beam

becomes. This is a result of higher fluid drag forces on wider cantilever beams. Therefore the

thinner the better.

Figure 8.11 shows that the taller the nanotube beams are manufactured the more sensitive

the beam will become. This trend is a result of thicker cantilevers having more energy in their

resonant mode and thus a higher quality factor. In contrast to the width, an increase in height

will not significantly increase the fluid drag. Note that this increase in sensitivity with height is

only possible for porous sensors. For a solid sensor, increased thickness would quickly lead to the
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Figure 8.10 Plot showing the relationship between the width of the beam and its sensi-
tivity

mass of the sensor overpowering the mass of the analyte. Solid sensors must resultingly be made

extremely thin, but porous sensors can gain great increases in sensitivity by moving to thicker

geometries.

Figure 8.12 shows clearly that the constraint to have a large enough spacing between nanotubes

relative to the coating radius must be satisfied, and also that an optimum value would be expected

to lie near the median of feasible values.

As can be seen in Figure 8.13, an optimal coating radius appears in the middle of the range

of feasible values. This would be expected because it follows expectations of surface area depen-

dence. A surprising result was found, however, when constraints were added as can be visualized

in Figure 8.14. Here the optimum sensitivity is plotted where optimization occurred with indicated

variables (coating radius and nanotube spacing) fixed. Under the influence of the constraints, the

profile is such that smaller coating radii are more favorable. This means that with constraints con-

sidered, optimal devices should be made as porous as is possible under the appropriate bounds,
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Figure 8.11 Plot showing the relationship between the height of the beam and its sensi-
tivity

strengthening the position of porous devices.

The optimizers used performed well and produced results consistent with each other. Under

optimization, all design variables were pushed up against bounds or constraint barriers. Although

this is not uncommon for such problems, it was an unexpected result for this particular problem.

Several of the design variables were expected to have intermediate optimum values, but interaction

effects and constraints caused this to not be the case.

Although this behavior can at times be the result of an optimizer exploiting a flaw in a model,

after careful scrutiny this was not found to be the cause in this case. In contrast, the optimizer was

pointing out correct results that had not been intuitive and thus had not been considered.

As a general rule we discovered that the longer, taller, thinner and more porous you can man-

ufacture a carbon nanotube scaffolded micro-cantilever the more sensitive it will be as a chemical

concentration sensor.
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beams sensitivity.
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8.5 Optimization Conclusion

The modeling and optimization presented here show that previously fabricated proof of concept

porous cantilever sensors have been created with far from optimal parameters. This optimization

proposes that the sensitivities of these initial devices could be improved by up to three orders of

magnitude.

In addition, the interactions modeled here show that some trends in the microcantilever sensor

field may be moving in non optimal directions. For example, many cantilevers are moving toward

shorter geometries, while we suggest (at least for porous sensors) that optimization would suggest

moving toward longer beams. Also, thin beams prevail in the field, but these results suggest that

thick porous beams could have orders of magnitude higher performances.

Expected trends were confirmed and new insights pointed out by the optimizers, offering a

great deal to the field of microcantilever chemical concentration sensing.



Chapter 9

Conclusion

The porous cantilever resonant sensors studied in this work show promise in offering advantages

in the field of chemical concentration sensing. Fabrication has been shown to be successful and

flexible. High aspect ratios have been obtained, and variable porosities acheived. Physical and res-

onant properties of the fabricated devices were characterized. Thermo Elastic Dampening (TED)

was found not to be dominant in environments of interest. Changes in cantilever resonant response

were shown for variable environmental conditions such as pressure and relative humidity.

9.1 Future Work

In order to diversify elements in a cantilever array, each cantilever could be coated with a layer of

material that promotes adhesion of a particular chemical to be sensed. Coating materials were not

studied in this work, but other work has been done in this arena. Future work could explore the

application and effects of coating materials on these porous cantilever sensors.

In this work, several device geometries were tested, and numerical optimization was performed,

but no physical optimization took place. If such optimization were to be carried out, clamping and

drag losses could be minimized, increasing device performance. In addition, an optimal porosity
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could be confirmed.

Diffusion times could pose a challenge for porous sensors if they are overly long. Determina-

tion of diffusion times into these porous beams would be a valuable addition to this work.

The relationship between cantilever porosity and chemical sensitivity was discussed, but is in

need of experimental confirmation.



Appendix A

Carbon Nanotube Growth Studies

Figure A.1 shows samples placed at different locations in the furnace. All samples were identical,

prepared with 4 nm paterned iron catalyst atop 30 nm alumina on native silicon. It can be seen

that the center of the furnace is not necessarily the ideal sample placement location. Slightly

downstream of center can have higher growth rates with higher consistency. Note that distances

here are measured from the inside of the ceramic ledge that supports the quartz tube.

Figure A.2 investigates the re-use of a substrate for consecutive growths. Between each growth,

previous nanotubes were measured and removed. Iron loss and iron carbon contamination may be

primary causes of the decreased growth rate in consecutive runs.

The results shown in Figure A.3 were obtained by setting both the hydrogen flow rate and

the ethylene flow rate to the sccm value indicated in the plot during growth. As a result, the gas

mixture composition was retained while total gas flow rate was adjusted.
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Figure A.1 CNT growth rate versus furnace placement position
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