
Improving the Efficiency of the Levenberg-Marquardt Algorithm

Using Partial-Rank Jacobian Updates

Michael Zairan

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Dr. Mark Transtrum, Advisor

Department of Physics and Astronomy

Brigham Young University

April 2016

Copyright © 2016 Michael Zairan

All Rights Reserved

ABSTRACT

Improving the Efficiency of the Levenberg-Marquardt Algorithm
Using Partial-Rank Jacobian Updates

Michael Zairan
Department of Physics and Astronomy, BYU

Bachelor of Science

Fitting non-linear models to data is a notoriously difficult problem. The standard algorithm,
known as Levenberg-Marquardt (LM), is a gradient search algorithm based on a trust region ap-
proach that interpolates between gradient decent and the Gauss-Newton methods. Algorithms
(including LM) often get lost in parameter space and take an unreasonable amount of time to con-
verge, especially for models with many parameters. The computational challenge and bottleneck
is calculating the derivatives of the model with respect to each parameter to construct the so-called
Jacobian matrix. We explore methods for improving the efficiency of LM by approximating the Ja-
cobian using partial-rank updates. We construct an update method that reduces the computational
cost of the standard Levenberg-Marquardt routine by a factor of .64 on average for a set of test
problems.

Keywords: Data-Fitting, Optimization, Levenberg-Marquardt, Gauss-Newton, Broyden’s Method,
Partial-Rank Update

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Transtrum from the College of Physcial Math

and Sciences at BYU. He believed in me and patiently advised me as I asked endless questions to

understand the research better. He also allowed me to be curious and explore the topic, but steered

me in the right direction along the way.

I would also like to thank Alex Shumway for writing code for the singular value decomposition

method and for pushing me to work harder and be better.

Contents

Table of Contents iv

1 Background 1

2 Comparing Algorithms 8
2.1 Measuring Success . 8
2.2 Test Problems . 10

3 Update Methods and Results 12
3.1 Partial-rank updates . 12
3.2 Update Directions . 14
3.3 Results and Conclusions . 15

Appendix A Appendix Title 25
A.1 testlm.py . 25
A.2 levmarclass.py . 29
A.3 Updaterlm.py . 32
A.4 Updaterlmfull.py . 33
A.5 Updaterlmbroyden.py . 34
A.6 Updaterlmrandom.py . 35
A.7 Updaterlmsvmax.py . 36
A.8 Updaterlmsvmaxcycle.py . 37
A.9 Updaterlmsvmaxfrac.py . 38
A.10 Updaterlmsvmaxfraccycle.py . 39

Bibliography 42

iv

Chapter 1

Background

Physicists often want to fit models to experimental data. Motivated by physical considerations,

they generally have an idea of the sort of function that will fit the data points best. These functions

often depend on several parameters θ , where θ could be a vector. The goal is to find the values of

each parameter that make the function fit the data best. This is often done by a method known as

least squares. The quality of the fit is measured by finding how far off each data point is from the

model via

ri(θi) =
di− yi

σi
, (1.1)

where di is the ith data point measured with uncertainty σi, yi(θ) is the corresponding model

prediction, and ri(θ) is the so-called residual that measures the deviation between the model and

the experiment. The sum of each residual squared yields a value called the cost, defined by

C =
1
2 ∑

i
r2

i . (1.2)

The set of values for the parameters that minimizes C are known as the best fit by the least squares

method (Bates et al. 1988).

As a precursor to the commonly used Levenberg-Marquardt algorithm, we first consider the

Gauss-Newton method for finding the best fit (Hartley 1961). The method starts at initial point
1

2

in parameter space θ0 and calculates r(θ0) through 1.1. Ideally, θ0 should be close to the best fit

values of the parameters in parameter space. The Taylor series approximation of r(θ) at a point θ

nearby θ0 is

rm(θ) = rm(θ0)+ Jmµ(θµ −θµ0) (1.3)

where J is the Jacobian matrix given by

Jmµ =
∂ rm

∂θµ

. (1.4)

The next step in the algorithm is to compute the cost. Using the linear approximation, the total cost

by the least squares method is

C =
1
2 ∑

m
[rm(θ0)+∑

µ

Jmµ(θµ −θµ0)]
2. (1.5)

Taking the derivative of both sides with respect to θν yields:

∂C
∂θν

= ∑
m
[rm(θ0)+∑

µ

Jmµ(θµ −θµ0)]Jmν . (1.6)

At the minimum, ∂C
∂θν

= 0, thus, we have

∑
m
[rm(θ0)Jmν +∑

µ

JmµJmν(θµ −θµ0)] = 0, (1.7)

which can be written without indices as

JT r0 +(JT J)(θ −θ0) = 0. (1.8)

Solving for θ −θ0 gives

dθ = (θ −θ0) =−(JT J)−1(JT r). (1.9)

Each iteration of the Gauss-Newton algorithm calculates a step dθ by 1.9, then iteratively

updates the parameter values θ → θ +dθ until it has reached the minimum. A potential problem

3

arises if JT J is nearly singular. In such a case, the eigenvalues of (JT J)−1 are large, making θ −θ0

large. This makes the Taylor series approximation in Eq. 1.3, which assumed θ − θ0 is small, a

poor estimate. In order to prevent this from happening, Levenberg added a term λ I to the matrix

JT J in 1.9 (Moré 1978). If v is an eigenvector of (JT J) with eigenvalue λ1:

(JT J)v = λ1v, (1.10)

then the new matrix (JT J+λ I) satisfies

(JT J+λ I)v = (JT J)v+λ Iv = λ1v+λv, (1.11)

so that v is an eigenvector of JT J + λ I with eigenvalue λ1 + λ . Thus JT J + λ I will have no

eigenvalues smaller than λ . It can also be shown that the step size dθ decreases monotonically

with λ . The resulting algorithm is known as the Levenberg-Marquardt algorithm (Moré 1978).

The algorithm controls the size of the step dθ = −(JT J +λ)−1JT r by modifying λ . A large

value of λ corresponds to large eigenvalues and a small step size, while small values of λ cor-

respond to smaller eigenvalues and large steps. The art of the Levenberg-Marquardt algorithm is

fine-tuning λ to take the correct step size. If the step is too large and ends up increasing the cost,

the algorithm will reject the step and increase λ to try to take a smaller step in the next iteration.

In summary, the algorithm proceeds by applying the following steps:

1. Choose an initial value of parameters θ and damping parameter λ .

2. Calculate the residuals r(θ), the cost C(θ) and the Jacobian J(θ).

3. Calculate the step dθ using 1.9.

4. Evaluate the cost C(θ +dθ) at the new parameters.

5. If C(θ +dθ)<C(θ) then let θ = θ +dθ and λ = λ/3 Otherwise, do not change θ and set

λ = 2λ

6. Repeat steps 2 - 5 until a minimum is found.

4

The value of λ also controls the direction of the step. Note that the gradient of the cost is given

by ∇C = JT r. For λ = 0, dθ points in the Gauss-Newton direction:

dθ =−(JT J)−1
∇C. (1.12)

As we have seen, this will converge to the minimum of the cost if the algorithm is already close,

but at farther distances it can actually lead the algorithm to a point with a higher cost. In such

cases, the algorithm will reject the step and increase λ . As λ increases, the step moves away from

the Gauss-Newton direction and towards the −∇C direction, which is the steepest decrease in the

cost. This can be seen because if λ»1, (JT J+λ)−1 ≈ 1
λ

I, so that

dθ =− 1
λ
(∇C). (1.13)

Therefore, the algorithm uses λ both to interpolate between the Gauss-Newton direction and the

direction of the gradient and to modify the step size.

Geometrically, this process can be visualized for a typical cost surface, as in Figure 1.1. Each

location on the surface represents a set of values for θ and the colors show cost contours, with

the cooler colors representing lower costs. The algorithm seeks to reach the lowest contour on the

surface which represents the minimum cost possible, represented by the dark blue color. In the

figure, the black line represents all possible steps that (found by varying λ) the algorithm can take

if the algorithm’s current location is the red dot. We can see from this how increasing λ moves

away from the Gauss-Newton direction, which extends well into the orange contour, and towards

the direction of -∇C, decreasing the size of the step in the process.

The process is simple enough for problems with few parameters. However, when there are

many parameters to consider, it becomes much more difficult and computationally costly to explore

the parameter space and find the right fit. In science today, the trend is to use increasingly bigger

models. Weather models, for example, could use hundreds of parameters to make forecasts in the

5

Figure 1.1 A graph illustrating a typical cost contour. If the algorithm’s current position
is the red dot, the possible steps it can take by varying lambda are given by the black
line, with points farther from the red dot representing steps with small λ values and the
Gauss-Newton direction. Nearer points represent steps taken with larger λ values shift
towards the direction of -∇C. The color bar uses a log scale.

6

weather (Soman et al. 2010).

One approach that attempts to reduce the computational cost of the Levenberg-Marquardt algo-

rithm is Broyden’s method. Since the most computaionally expensive part of the algorithm is the

calculation of the Jacobian matrix, Broyden’s method only calculates it during the first iteration.

Instead of recalculating the full Jacobian matrix in subsequent steps, it uses partial information

from the Jacobian contained in the previous iteration to update the Jacobian using a rank-one up-

date (Gay & Schnabel 1978). If Ji−1 is the Jacobian from the previous iteration and Ji is the

Jacobian at the current parameter values, then Ji can be estimated by

Ji ≈ Ji−1 +
∆ri− Ji−1dθi

|dθi|2
dθ

T
i (1.14)

where ∆ri = ri− ri−1 is the change in the residual vector and dθi = θi−θi−1.

Broyden’s method can greatly reduce the computational cost, but the Jacobian approximation

can get increasingly poor with each iteration. Thus, the problem researched in this thesis is finding

a more efficient algorithm: one that reduces the computational cost of calculating J without sacri-

ficing accuracy. There is a large gap in the information content between Broyden’s method, which

calculates only the first Jacobian and approximates the rest by updating in one direction, and the

full Jacobian update at every iteration.

There is considerable evidence that the right balance could exist between these two extremes.

First, Broyden’s method is proven to converge for the related problem of root finding (Dennis

1971). If J is a square matrix (i.e. there are the same number of parameters as data points), then

there may exist some value of θ for which r(θ) = 0. However, the method only has mixed success

when there are more residuals than parameters (Transtrum & Sethna 2012). This suggests that with

the right information, an approximation can do very well.

Recently, the Levenber-Marquardt algorithm has been improved by including a second-order

correction known as the geodesic acceleration (Transtrum & Sethna 2012). Geodesic acceleration

7

gives us more reason to believe that not all information is essential to achieving accuracy. To

calculate the second-order approximation to dθ , the formula is

dθ = dθ1δ t +
1
2

dθ2δ t2. (1.15)

The dθ2 vector gives a more accurate approximation for dθ , but it only requires one additional

calculation of r once J is calculated. That substantial improvements can be made using little

information suggests that an efficient method for updating the Jacobian may be possible.

Lastly, a higher-order singular value decompostion of the second-derivative tensor, A, suggests

that changes in J are of low rank. Using the definition for J given by Eq. 1.4, we have

A =
∂

∂θν

Jmµ =
∂ 2rm

∂θµ∂θν

. (1.16)

This tensor (the Jacobian of the Jacobian) tells us how the Jacobian is changing, and it often reveals

that there are many directions in which the Jacobian barely changes at all. That means information

from J used in previous iterations could be still be valid as an approximation for J in the next

iteration. This is another reason to believe the right balance between derivative calculation and

approximation could yield more efficient results.

Chapter 2

Comparing Algorithms

2.1 Measuring Success

Some sort of objective measure is necessary to determine how successfully a method balances

accuracy and computational cost. We want a measure that can extrapolate in the limit of large

models, i.e., those with many parameters. In this way, we can efficiently test methods on small

problems and extrapolate those results to more realistic models.

One criterion to consider would be how often the algorithm thinks it has been successful.

As the Levenberg-Marquardt algorithm moves around parameter space in search of the minimum

cost, it is possible that it will get lost. There are many potential stopping criteria that one could

consider to that signal to the algorithm to terminate. The ones we implement are a maximum

number of steps for the algorithm to take (maxstop), a minimum step size (mindx) and a minimum

change to the cost (ftol) to stop the algorithm when the position in parameter space is hardly

changing, and a maximum value for λ (maxlam). Also, we implement a cutoff value for the cost

that tells the algorithm it is close enough to the known minimum cost for a specified test problem

(min cost). In practice, it would be impossible to know the minimum cost before running the

8

2.1 Measuring Success 9

algorithm, but implementing mincost works for the purpose of running trial problems. Of the

stopping criteria, mincost, ftol, and mindx are considered successes, while the others would be

signs that the algorithm got lost and are considered failures. The reason why the algorithm stopped

is helpful in determining the success of the algorithm, so we classify each run of the algorithm as

a "claimed succes" or "claimed failure."

Altough the algorithm stops for a reason that signifies a success, that does not necessarily

mean that it has found the minimum cost or is near it. Another criterion to determine the success

of the algorithm would be whether it is an "objective success" or "objective failure." To determine

whether or not the final cost that the algorithm ended up at was close enough to the minimum cost

to constitute an objective success, we set a threshold value for the cost below which all costs are

considered objective successes. The threshold value is found by multiplying the known minimum

cost Cmin by a constant β that is specific to each problem. If M is the number of data points and N

is the number of parameters, then β is found by using the Snedecor-Fisher F-distribution via the

formula:

β =
N

M−N
F(α,N,M−N)+1. (2.1)

If the algorithm found a cost C < βCmin then we classify it as an objective success.

The last factor to consider is how hard the algorithm has to work to find the minimum. We

use a measure called the effictive number of Jacobian evaluations (n jeve f f). Because a Jacobian

calculation amounts to N function evaluations (where N is the number of parameters), we define

n jeve f f by

n jeve f f = n jev+
n f ev

N
, (2.2)

Where n jev is the number of full Jacobian evaluations and n f ev is the number of residual function

evaluations.

We seek a measure of algorithm performance that accounts for the likelihood of the algorithm

having an objective success while also accounting for the computational cost of that success. Ulti-

2.2 Test Problems 10

mately, the number we decide to use was a number we called the effieciency score. The efficiency

score is the expected number of effective Jacobian evaluations necessary to achieve one objec-

tive success. We calculate the average number of algorithm runs to achieve an objective success

by modeling algorithm’s success rate as a geometric random variable with probability p (found

through trial data) of finding the minimum. The probability of achieving a success on the kth

attempt is (1− p)k−1 p. Thus, the expected value of the random variable X is

E(X) =
∞

∑
k=1

k(1− p)k−1 p. (2.3)

Exapanding this yields

E(X) = p[
∞

∑
k=1

(1− p)k−1 p+
∞

∑
k=2

(1− p)k−1 p+
∞

∑
k=3

(1− p)k−1 p...]. (2.4)

Notice that each summation is an infinite geometric series with ratio (1− p). Since the value of a

geometric series is given by ∑
∞
k=1 xp = 1/(1− x) if x < 1, we can apply that formula to every term

in the expected value to get

E(X) = p[1/p+(1− p)/p+(1− p)2/p+ ...], (2.5)

which simplifies to

E(X) = 1+(1− p)+(1− p)2 + ...=
∞

∑
k=1

(1− p)k−1 = 1/p. (2.6)

Thus, the number of attempts to achieve an objective success on average is 1/p where p is the

objective success rate. Multiplying this by the average amount of effective Jacobian evaluations

will yield the efficiency score, giving us a way to compare algorithms while taking into account

both the computational cost and the accuracy.

2.2 Test Problems

Once a way to compare algorithm efficiency has been established, we are equipped to try different

algorithms on test problems. We choose six previously studied test problems of varying difficulty

2.2 Test Problems 11

from the minpack test suite (see (Averick et al. 1991) for details). The first problem we include we

call IAD. It is a five parameter, 40 data point problem that solves a differential equation to simulate

thermal reactions. Another problem included is EDF, which also has five parameters. This problem

models exponential data fitting and has 33 data points. As a variation of this problem, we test

EDFproj, which has the same properties but solves for the two linear parameters in terms of the

other parameters, reducing it to a three parameter problem. The problem GDFproj that we include

is like EDFproj in that it models exponential data and reduces the problem by solving for linear

parameters. The difference, however is that it models Gaussian exponentials instead. The problem

has 65 data points and four parameters. The last two problems we include from the minpack test

suite are one we call ATRproj, which is a 16 data point, two parameter problem that simulates

thermistor resistance, and another that we call AERproj, which is an 11 data point, two parameter

problem that simulates enzyme reactions.

Since the problems were created in the 1990’s, we also include a newer test problem called

DANN3, which models an artificial neural network in the brain. The problem is typical of the

kind of non-linear problems one would find in neuroscience, and involves solving the differential

equation
∂

∂ t
yi = tanh(∑

j
(w ji− y j)− yi). (2.7)

We test the algorithms on these problems by generating an ensamble of starting points that are

different distances from the minimum cost and running the algorithms from each point. In order to

test the algorithms on more test problems, we also create two versions of each problem, an "easy"

version and a "hard" version. The difficulty of a problem is altered by making the starting points

farther away from the minimum cost, making the algorithms work harder to find the minimum.

The efficiency score is calculated based on the results of these trials.

Chapter 3

Update Methods and Results

3.1 Partial-rank updates

We want to use a rank-one update to the Jacobian from the previous iteration to only update in

one direction (equivalent to 1/Nth the computational cost of a full Jacobian update). Given the old

Jacobian JO, we can calculate the directional derivative V of the true Jacobian Jtrue for the next

iteration in the direction v without knowing Jtrue. This is because the formula for the directional

derivative is found analytically beforehand and the problems have a function that uses that formula

to compute V given v. Therefore, we have the directional derivative

Jtruev =V. (3.1)

We would want that to hold true for our approximation of the new Jacobian, Jnew, so

Jnewv =V (3.2)

should be true, but we would want other directions to remain unchanged. For any direction u

orthogonal to v,

Jnewu = JOu (3.3)
12

3.1 Partial-rank updates 13

should hold as well. The correct approximation for Jnew is ultimately given by

Jnew = JO +
V − JOv

v2 vT . (3.4)

It should be noted that the approximate Jacobian given by 3.4 is actually the same formula as the

approximation of the Jacobian used by Broyden’s method in 1.14. Broyden’s method just chooses

the direction of the step dθ as the direction v in which to update each iteration. We will now

show the approximation satisfies condition 3.2 and 3.3. First, we will establish that it satisfies 3.2.

Plugging 3.4 into 3.2 yields

JOv+
V − JOv

v2 vT v =V. (3.5)

vT v = v2 so that will cancel with the denominator, leaving

JOv+V − JOv =V =⇒ V =V. (3.6)

The second condition is similarly satisfied. Plugging in 3.4 into 3.3 yields

JOu+
V − JOv

v2 vT u = J0u. (3.7)

Since u and v are orthogonal, vT u = 0, this leaves only

JOu = J0u. (3.8)

Therefore, 3.4 can be used to update the old Jacobian in only one direction.

The key to improving the algorithm, then, would be strategically picking the right directions

in which to update the Jacobian. We may also consider choosing to update in several directions in

one step, i.e. performing a partial-rank update. We come up with seven different ways to choose

that direction. In the next section, we will explain what motivated each method, and the trial data

produced by each method are presented at the end up the chapter in Tables 3.1-3.16.

3.2 Update Directions 14

3.2 Update Directions

With no information or insights into the problem, a way to pick a direction in which to update

would be picking a completely random direction each iteration. We implement this method and

call it "Random". It updates in a random direction, and then in the next step updates in another

random direction orthogonal to the direction in which it just updated. We first compare random

to the existing methods: the full Jacobian update ("Full") and Broyden’s method ("Broyden").

Surprisingly, Random has a better efficiency score than both Full and Broyden when it comes to

hard problems. With Random implemented, our goal is to use information from the problem to

achieve a lower efficiency score (a lower score corresponds to a more efficient algorithm) than

random can achieve.

It was speculated in chapter 1 that some directions may contain more information than others

and updating in those directions would be more essential to the success of the algorithm. The

direction that we suspected would be most pivital would be the direction of the singular value

decomposition with the largest singular value. A singular-value decomposition (SVD) can be

performed on any non-square matrix, and it involves taking a matrix J and writing it as

J =UΣV T , (3.9)

where U and V are orthogonal matrices (i.e. V TV = I) and Σ is a diagonal matrix with all positive

values. While determining the direction dθ to step in, the algorithm finds the inverse of JT J in 1.9.

Writing JT J in terms of the singular-value decomposition gives

(JT J)−1 =V ΣUTUΣV T . (3.10)

Since U is orthogonal, we get

(JT J)−1 =V Σ
2V T . (3.11)

Therefore, the square of the values in Σ are the eigenvalues of the inverse of JT J. Thus, the large

singular values of J correspond to greater eigenvalues for JT J, which motivated us to think that

3.3 Results and Conclusions 15

the directions (contained in V in 3.9) corresponding to the larger singular values contained more

critical information and could have a more profound impact on the Jacobian.

To test the effectiveness of the update method that performs an SVD and updates in the di-

rection of the largest singular value each iteration ("SVmax"), we compare it against the three

previously tested methods. Ultimately, we find SVmax to be less efficient as seen in Tables 3.15

and 3.16. We believe this is because SVmax updates in a similar direction each iteration, leaving

several directions unchanged for many steps. The Jacobian thus becomes an increasingly poor

approximation in those directions.

We decide to attempt three other methods, all utilizing an SVD. One we call "SVmaxcycle",

which performs an SVD and then updates in the direction corresponding to the largest singular

value in the first iteration, then the second largest singular value in the second iteration and so on

until the Jacobian has been updated in every direction contained in the SVD. It then recalculates

the SVD and repeats the updating process. Another method we implement is called "SVmaxp5",

which calculates an SVD every step and updates in the half the directions possible, corresponding

to the larger half of the singular values. For example, if there were 10 parameters, SVmaxp5 would

update in the 5 directions corresponding to the 5 largest singular values. Lastly, we use a method

that is a mix between the previous two methods called "SVmaxp5cycle" that updates in half the

directions with larger singular values in one step and then the rest of the directions in the next step

before recalculating the SVD.

3.3 Results and Conclusions

Tables 3.1-3.14 present the data from trial runs on the seven test problems, each with two difficulty

levels. The tables display both the success rate and the efficiency relative to the full Jacobian

update, then rank each method. Also included are two tables 3.15-3.16 with the cumulative results

3.3 Results and Conclusions 16

Table 3.1 Results from the easy version of AERproj. The relative efficiency and relative
success rate are in relation to the full Jacobian update. The methods were then ranked.

AERproj Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.9259 7 0.7892 3

Full 1.0000 6 1.0000 7

Random 1.0211 3 0.8194 6

Svmax 1.0793 1 0.7825 1

Svmaxcycle 1.0211 3 0.7912 4

Svmaxp5 1.0793 1 0.7825 1

Svmaxp5cycle 1.0211 3 0.7912 4

Table 3.2 Results from the hard version of AERproj.

AERproj Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 1.0270 4 0.8505 1

Full 1.0000 7 1.0000 7

Random 1.0540 3 0.8557 2

Svmax 1.0810 1 0.8684 3

Svmaxcycle 1.0270 4 0.8996 5

Svmaxp5 1.0810 1 0.8684 3

Svmaxp5cycle 1.0270 4 0.8996 5

3.3 Results and Conclusions 17

Table 3.3 Results from the easy version of ATRproj.

ATRproj Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.7331 7 0.5644 1

Full 1.0000 1 1.0000 7

Random 0.9831 6 0.6388 2

Svmax 1.0000 1 0.7223 5

Svmaxcycle 0.9873 4 0.6997 3

Svmaxp5 1.0000 1 0.7223 5

Svmaxp5cycle 0.9873 4 0.6997 3

Table 3.4 Results from the hard version of ATRproj.

ATRproj Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.6271 7 0.9023 4

Full 1.0000 2 1.0000 7

Random 1.1356 1 0.7270 1

Svmax 0.9153 5 0.9822 5

Svmaxcycle 0.9492 3 0.8901 2

Svmaxp5 0.9153 5 0.9822 5

Svmaxp5cycle 0.9492 3 0.8901 2

3.3 Results and Conclusions 18

Table 3.5 Results from the easy version of DANN3.

DANN3 Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.9394 5 0.8414 5

Full 1.0000 1 1.0000 6

Random 0.9798 2 0.6743 1

Svmax 0.9798 2 0.6748 2

Svmaxcycle 0.8889 7 0.7474 3

Svmaxp5 0.9798 2 1.0165 7

Svmaxp5cycle 0.9091 6 0.7999 4

Table 3.6 Results from the hard version of DANN3.

DANN3 Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.7778 5 1.0173 5

Full 1.0000 2 1.0000 4

Random 1.0476 1 0.6062 2

Svmax 0.7778 5 1.0933 7

Svmaxcycle 0.9048 4 0.6199 3

Svmaxp5 0.9206 3 1.0285 6

Svmaxp5cycle 0.6349 7 0.5650 1

3.3 Results and Conclusions 19

Table 3.7 Results from the easy version of EDF.

EDF Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.8037 6 0.5338 1

Full 1.0000 2 1.0000 6

Random 0.9018 4 0.7234 4

Svmax 0.7607 7 0.9255 5

Svmaxcycle 0.9571 3 0.5460 2

Svmaxp5 0.8650 5 1.0140 7

Svmaxp5cycle 1.0123 1 0.6788 3

Table 3.8 Results from the hard version of EDF.

EDF Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.1646 7 1.9686 7

Full 1.0000 2 1.0000 4

Random 0.8101 4 0.3127 1

Svmax 0.4557 6 1.3490 6

Svmaxcycle 1.0759 1 0.3642 2

Svmaxp5 0.6582 5 1.1921 5

Svmaxp5cycle 0.9620 3 0.6795 3

3.3 Results and Conclusions 20

Table 3.9 Results from the easy version of EDFproj.

EDFproj Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 1.0000 1 0.285054348 1

Full 1.0000 1 1 7

Random 1.0000 1 0.731929348 4

Svmax 1.0000 1 0.89048913 5

Svmaxcycle 0.992 6 0.724957269 2

Svmaxp5 1.0000 1 0.89048913 5

Svmaxp5cycle 0.992 6 0.724957269 2

Table 3.10 Results from the hard version of EDFproj.

EDFproj Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 1.0000 1 0.2619 1

Full 1.0000 1 1.0000 7

Random 1.0000 1 0.7260 4

Svmax 1.0000 1 0.8556 5

Svmaxcycle 0.9920 6 0.7118 2

Svmaxp5 1.0000 1 0.8556 5

Svmaxp5cycle 0.9920 6 0.7118 2

3.3 Results and Conclusions 21

Table 3.11 Results from the easy version of GDFproj.

GDFprojA

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.876 6 1.1867 6

Full 1.000 1 1.0000 4

Random 1.000 1 0.9606 3

Svmax 0.488 7 6.3046 7

Svmaxcycle 0.972 4 0.6983 1

Svmaxp5 1.000 1 1.1817 5

Svmaxp5cycle 0.972 4 0.7850 2

Table 3.12 Results from the hard version of GDFproj.

GDFprojB

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.538 7 0.787 5

Full 1.000 2 1.000 7

Random 0.977 4 0.453 2

Svmax 0.632 6 0.851 6

Svmaxcycle 0.988 3 0.335 1

Svmaxp5 0.912 5 0.778 4

Svmaxp5cycle 1.006 1 0.539 3

3.3 Results and Conclusions 22

Table 3.13 Results from the easy version of IAD.

IAD Easy

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 1.0000 1 0.4587 1

Full 1.0000 1 1.0000 7

Random 1.0000 1 0.6091 3

Svmax 1.0000 1 0.6306 4

Svmaxcycle 0.9760 6 0.5886 2

Svmaxp5 1.0000 1 0.6996 5

Svmaxp5cycle 0.9760 6 0.7044 6

Table 3.14 Results from the hard version of IAD.

IAD Hard

Method Rel. Succ. Rate Succ. Rank Rel. Eff. Eff. Rank

Broyden 0.8300 7 1.4850 7

Full 1.0000 6 1.0000 6

Random 1.0900 4 0.9637 5

Svmax 1.1800 1 0.9060 4

Svmaxcycle 1.1200 3 0.6394 1

Svmaxp5 1.1300 2 0.7483 3

Svmaxp5cycle 1.0400 5 0.7128 2

3.3 Results and Conclusions 23

Table 3.15 Summary of overall results. Average were taken from the 7 easy problems
for average relative efficiency as well as average relative rank. Those averages were then
ranked.

Easy Problems

Method Avg. Rel. Eff. Rank Avg. Eff. Rank Rank

Broyden 0.67 1 2.57 2

Full 1.00 6 6.29 7

Random 0.74 3 3.29 3

Svmax 1.56 7 4.14 5

Svmaxcycle 0.69 2 2.43 1

Svmaxp5 0.90 5 5.00 6

Svmaxp5cycle 0.74 4 3.43 4

Table 3.16 Summary of overall results from the 7 hard problems.

Hard Problems

Method Avg. Rel. Eff. Rank Avg. Eff. Rank Rank

Broyden 1.04 7 4.29 4

Full 1.00 6 6.00 7

Random 0.66 2 2.43 2

Svmax 0.99 5 5.14 6

Svmaxcycle 0.64 1 2.29 1

Svmaxp5 0.92 4 4.43 5

Svmaxp5cycle 0.71 3 2.57 3

3.3 Results and Conclusions 24

from the trial problems. They give the average relative efficiency score relative to a full Jacobian

update as well as the average efficiency rank, calculated by averaging each method’s average rank

in relative efficiency over the seven problems.

Table 3.16 shows that the most efficient algorithm is SVmaxcycle. We believe this is the most

efficient algorithm because the directions with higher singular values do, indeed, contain more vital

information about the Jacobian. At the same time, the method keeps the Jacobian well updated by

eventually updating in all directions, instead of SVmax which only updates in the direction with

the largest singular values every time.

With these results on test problems, we are confident that SVmaxcycle is a partial-rank Jacobian

update method that can be used on real life problems. With models getting continually bigger,

SVmaxcycle can be used to lower the computational cost with minimal loss of accuracy.

Appendix A

Appendix Title

A.1 testlm.py

This file is the main python script that would test different update methods on the various test

problems.

import testing

reload(testing)

test = testing.test

organizedata = testing.organizedata

suborganizedata = testing.suborganizedata

getdetailedstats = testing.getdetailedstats

getstatssummary = testing.getstatssummary

import numpy as np

import models.toy.DANN3 as model

25

A.1 testlm.py 26

cmin=2.8467

alpha=2.1

lamda=.0001

modelname="DANN3"

#import models.minpack2mkt.IAD as model

#cmin=.0002484

#lamda=.0001

#alpha=3.485

#modelname="IAD"

import models.minpack2mkt.ATRproj as model

cmin=43.96

lamda=5000000

alpha=4.411

modelname="ATRproj"

import models.minpack2mkt.GDFproj as model

cmin=.02006

lamda=.0001

alpha=3.052

modelname="GDFproj"

A.1 testlm.py 27

import models.minpack2mkt.AERproj as model

cmin=1.53

lamda=.0001

alpha=5.12

modelname="AERproj"

import models.minpack2mkt.EDF as model

cmin=2.73244e-5

lamda=.00001

alpha=3.558

modelname="EDF"

import models.minpack2mkt.EDFproj as model

cmin=.0027432

lamda=.00001

alpha=3.558

modelname="EDFproj"

difficulty=1.0

maxstop=250

np.random.seed(0)

xis=model.xi + difficulty*np.random.randn(50,model.N)

N=len(xis[0])

A.1 testlm.py 28

import Updaterlmfull

Updaterfull=Updaterlmfull.Updaterlmfull(model.N)

import Updaterlmbroyden

Updaterbroyden=Updaterlmbroyden.Updaterlmbroyden(model.N)

import Updaterlmrandom

Updaterrandom=Updaterlmrandom.Updaterlmrandom(model.N)

import Updaterlmsvmax

Updatersvmax=Updaterlmsvmax.Updaterlmsvmax(model.N)

Updaters = {

"full": Updaterfull,

"broyden": Updaterbroyden,

"random": Updaterrandom,

"svmax": Updatersvmax,

}

f=open("Results.csv","a")

for Updater in Updaters.keys():

print "Running %s" %Updater

infos=test(model,xis,Updaters[Updater],lamda,maxstop,alpha,cmin)

A.2 levmarclass.py 29

objectivesuccesscosts=organizedata(infos,cmin,alpha,1)

suborganizedata(infos,cmin,alpha,1)

detailedstats=getdetailedstats(infos,N)

statssummary,successrate,efficiencyscore=getstatssummary(detailedstats,objectivesuccesscosts)

line="%s,%f,%i,%s,%f,%f \n" %(modelname,difficulty,maxstop,Updater,successrate,efficiencyscore)

print line

f.write(line)

f.close()

A.2 levmarclass.py

This file is the python script containing the Levenberg-Marquardt algorithm

import numpy as np

from numpy.linalg import inv

class levmar:

def __init__(self,Updater,maxstop=50,mincost=0,mindx=-0.00000001,maxlam=10000000,ftol=.000001,lamda=.001):

self.maxstop=maxstop

self.mincost=mincost

self.mindx=mindx

self.maxlam=maxlam

A.2 levmarclass.py 30

self.ftol=ftol

self.Updater=Updater

def levmar(self,r,v,x,args=(),lamda=.001):

self.N = len(x)

self.lamda=lamda

self.step=0

self.r=r

self.v=v

self.x=x

self.args=args

self.functioncounter=0

self.jaccounter=0.0

self.f=r(x,*args)

self.functioncounter+=1

self.jaccounter+=1.0/self.N

self.J=np.array([v(x,vj,*args) for vj in np.eye(len(x))]).T

self.Updater.reset(self) #Need to reset to load svd into updater.

self.jaccounter+=1

self.fold=self.f.copy()

self.dx=x*np.inf

self.msg=""

self.ftolcounter=0

while not self.checkstop():

self.step=self.step+1

A.2 levmarclass.py 31

#if printlevel==1:

print step,lamda,sum(f**2)

self.proposestep()

self.fold=self.f.copy()

#Update Jacobian

self.Updater.update(self)

#Accept or reject

if sum(self.fnew**2)<sum(self.f**2):

self.x=self.x+self.dx

self.f=self.fnew

self.lamda=self.lamda/2

self.Updater.reset(self)

else:

self.lamda=3*self.lamda

def proposestep(self):

self.dx=np.linalg.solve(np.dot(self.J.T,self.J)+self.lamda*np.eye(len(self.x)),-np.dot(self.J.T,self.f))

self.fnew=self.r(self.x+self.dx,*self.args)

self.functioncounter+=1

def checkstop(self):

if self.step>=self.maxstop:

self.msg="maxstop"

return True

A.3 Updaterlm.py 32

if sum(self.f**2)/2<self.mincost:

self.msg="mincost"

return True

if (sum(self.f**2)-sum(self.fold**2))!=0 and abs(sum(self.f**2)-sum(self.fold**2))<self.ftol:

if self.ftolcounter>3:

self.msg="ftol"

return True

else:

self.ftolcounter+=1

else:

self.ftolcounter=0

if self.lamda>self.maxlam:

self.msg="maxlam"

return True

if np.linalg.norm(self.dx)<self.mindx:

self.msg="mindx"

return True

else:

return False

A.3 Updaterlm.py

This python file contains the class from which all updater classes inherit.

import numpy as np

A.4 Updaterlmfull.py 33

class Updater(object):

def __init__(self,N):

self.N=N

self.nupdated=0

def update(self,lmclass):

pass

def reset(self,lmclass):

self.nupdated=0

A.4 Updaterlmfull.py

This python file contains the class used to perform the full Jacobian update during the Levenberg-

Marquardt algorithm.

import numpy as np

from Updaterlm import Updater

class Updaterlmfull(Updater):

def __init__(self,N):

Updater.__init__(self,N)

A.5 Updaterlmbroyden.py 34

def update(self,lmclass):

if self.nupdated==0:

lmclass.J=np.array([lmclass.v(lmclass.x,vi,*lmclass.args) for vi in np.eye(len(lmclass.x))]).T

lmclass.jaccounter+=1

self.nupdated=self.N

A.5 Updaterlmbroyden.py

This python file contains the class used to perform the Broyden update during the Levenberg-

Marquardt algorithm.

import numpy as np

from Updaterlm import Updater

class Updaterlmbroyden(Updater):

def __init__(self,N):

Updater.__init__(self,N)

def update(self,lmclass):

if self.nupdated<self.N:

lmclass.J=lmclass.J+np.outer(lmclass.fnew-lmclass.f-np.dot(lmclass.J,lmclass.dx),lmclass.dx)/np.linalg.norm(lmclass.dx)**2

lmclass.jaccounter+=1.0/self.N

self.nupdated+=1

A.6 Updaterlmrandom.py 35

A.6 Updaterlmrandom.py

This python file contains the class used to perform the rank-1 update in a random direction during

the Levenberg-Marquardt algorithm.

import numpy as np

from Updaterlm import Updater

from UpdateJ import UpdateJ

import sys

class Updaterlmrandom(Updater):

def __init__(self, N):

Updater.__init__(self,N)

self.Updated = np.zeros((N,N))

def reset(self,lmclass):

self.nupdated = 0

self.Updated *= 0.0

def ProjVOrthogonal(self, v):

vnew = v.copy()

vnew -= np.dot(np.dot(self.Updated, self.Updated.T), vnew)

return vnew/np.linalg.norm(vnew)

def GetNextV(self):

"""

A.7 Updaterlmsvmax.py 36

This should be overloaded

Default is a random v

"""

v = np.random.randn(self.N)

return v/np.linalg.norm(v)

def update(self,lmclass):

if self.nupdated < self.N:

v = self.ProjVOrthogonal(self.GetNextV())

self.Updated[:,self.nupdated] = v[:]

self.nupdated += 1

lmclass.jaccounter+=1.0/self.N

lmclass.J = UpdateJ(lmclass.J, v, lmclass.v(lmclass.x,v,*lmclass.args))

A.7 Updaterlmsvmax.py

This python file contains the class used to perform the rank-1 update using the svmax method.

import numpy as np

from Updaterlmrandom import Updaterlmrandom

class Updaterlmsvmax(Updaterlmrandom):

def __init__(self, N):

Updaterlmrandom.__init__(self,N)

def reset(self, lmclass):

A.8 Updaterlmsvmaxcycle.py 37

Updaterlmrandom.reset(self,lmclass)

u,s,vh = np.linalg.svd(lmclass.J)

self.vh = vh

def GetNextV(self):

return self.vh[self.nupdated]/np.linalg.norm(self.vh[self.nupdated])

A.8 Updaterlmsvmaxcycle.py

This python file contains the class used to perform the rank-1 update using the svmaxcycle method.

import numpy as np

from Updaterlmrandom import Updaterlmrandom

class Updaterlmsvmaxcycle(Updaterlmrandom):

def __init__(self, N):

self.i = 0

Updaterlmrandom.__init__(self,N)

def reset(self, lmclass):

Updaterlmrandom.reset(self,lmclass)

self.J = lmclass.J

u,s,vh = np.linalg.svd(lmclass.J)

A.9 Updaterlmsvmaxfrac.py 38

self.vh = vh

def GetNextV(self):

if self.i == self.N:

u,s,vh = np.linalg.svd(self.J)

self.vh = vh

self.i = 1

return vh[0]

else:

self.i += 1

return self.vh[self.i - 1]

A.9 Updaterlmsvmaxfrac.py

This python file contains the class used to perform the partial-rank update using the svmaxp5

method.

import numpy as np

from Updaterlmrandom import Updaterlmrandom

class Updaterlmsvmaxfrac(Updaterlmrandom):

def __init__(self, N, frac):

self.frac = frac

A.10 Updaterlmsvmaxfraccycle.py 39

Updaterlmrandom.__init__(self,N)

def reset(self, lmclass):

Updaterlmrandom.reset(self,lmclass)

u,s,vh = np.linalg.svd(lmclass.J)

self.vh = vh

def GetNextV(self):

return self.vh[self.nupdated]/np.linalg.norm(self.vh[self.nupdated])

def update(self,lmclass):

for i in range(int(self.N*self.frac)):

Updaterlmrandom.update(self, lmclass)

A.10 Updaterlmsvmaxfraccycle.py

This python file contains the class used to perform the partial-rank update using the svmaxp5cycle

method.

import numpy as np

from Updaterlmrandom import Updaterlmrandom

class Updaterlmsvmaxfraccycle(Updaterlmrandom):

A.10 Updaterlmsvmaxfraccycle.py 40

def __init__(self, N, frac):

self.frac = frac

self.i = 0

Updaterlmrandom.__init__(self,N)

def reset(self, lmclass):

Updaterlmrandom.reset(self,lmclass)

self.J = lmclass.J

u,s,vh = np.linalg.svd(lmclass.J)

self.vh = vh

def GetNextV(self):

if self.i == self.N:

u,s,vh = np.linalg.svd(self.J)

self.vh = vh

self.i = 1

return vh[0]

else:

self.i += 1

return self.vh[self.i - 1]

def update(self,lmclass):

for i in range(int(self.N*self.frac)):

A.10 Updaterlmsvmaxfraccycle.py 41

Updaterlmrandom.update(self, lmclass)

Bibliography

Averick, B. M., Carter, R. G., & Moré, J. J. 1991, The MINPACK-2 test problem collection (pre-

liminary version), Tech. rep., Argonne National Lab., IL (USA). Mathematics and Computer

Science Div.

Bates, D. M. W., Bates, D. G. D. M., & Watts, D. G. 1988, Nonlinear regression analysis and lts

applications No. 519.536 B3

Dennis, J. 1971, Mathematics of Computation, 25, 559

Gay, D. M., & Schnabel, R. B. 1978, Nonlinear Programming, 3, 245

Hartley, H. O. 1961, Technometrics, 3, 269

Moré, J. J. 1978, in Numerical analysis (Springer), 105–116

Soman, S. S., Zareipour, H., Malik, O., & Mandal, P. 2010, in North American Power Symposium

(NAPS), 2010, IEEE, 1–8

Transtrum, M. K., & Sethna, J. P. 2012, arXiv preprint arXiv:1201.5885

42

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	1 Background
	2 Comparing Algorithms
	2.1 Measuring Success
	2.2 Test Problems

	3 Update Methods and Results
	3.1 Partial-rank updates
	3.2 Update Directions
	3.3 Results and Conclusions

	Appendix A Appendix Title
	A.1 testlm.py
	A.2 levmarclass.py
	A.3 Updaterlm.py
	A.4 Updaterlmfull.py
	A.5 Updaterlmbroyden.py
	A.6 Updaterlmrandom.py
	A.7 Updaterlmsvmax.py
	A.8 Updaterlmsvmaxcycle.py
	A.9 Updaterlmsvmaxfrac.py
	A.10 Updaterlmsvmaxfraccycle.py

	Bibliography

