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ABSTRACT

Increasing Stability in Extended Cavity Diode Lasers using Frequency Noise Feedback

McKinley Pugh
Department of Physics and Astronomy, BYU

Bachelor of Science

Extended cavity diode lasers (ECDLs) have a number of useful applications, but they mode
hop. We have observed an increase in frequency noise before mode hops in ECDLs. A feedback
system using frequency noise instead of amplitude noise has been developed.
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Chapter 1

Introduction

1.1 Diode Lasers

Lasers are an important tool in atomic physics, particularly in applications such as laser spec-

troscopy, laser cooling, and precision measurement. To be used in these types of applications, a

laser typically needs to have a stable frequency and a linewidth much narrower than an atomic

resonance. Diode lasers are appealing because they are durable, compact, and relatively inex-

pensive [1]. They are available in a number of different wavelengths and are capable of quick

modulations, making them viable for a number of applications from cancer therapy [2] to quantum

computing [3]. However, diode lasers naturally have linewidths that are much wider than atomic

transitions. This becomes a problem in applications like laser cooling where it is essential that the

laser linewidth be much smaller than the transition it is exciting. Diode lasers also have a tendency

to mode hop, causing abrupt changes in the frequency of the laser.

The linewidth of a laser is determined in large part by its laser cavity. In diode lasers, that

cavity is short and has low finesse. These factors allow the laser to be compact and to modulate its

frequency quickly. However, they come with the cost of giving the laser a wide linewidth.

1
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In addition to widening the linewidth of the laser, the low finesse of the cavity also makes diode

lasers very sensitive to optical feedback. Since the laser light escapes the cavity so quickly, any

outside light that gets coupled into the laser cavity can have a big effect on the laser’s frequency.

This sensitivity to optical feedback can be used to control the laser, but it also can introduce a great

deal of instability to the laser [4].

In order to understand how optical feedback affects the laser, we need to understand the laser’s

modes and mode competition. A mode is a three-dimensional description of the standing waves

that occur inside an optical cavity. Laser cavities are basically an optical cavity with the gain

medium inside, so they, too, have modes. Every mode in a cavity has a resonant frequency associ-

ated with it. The laser will lase at frequencies that match the resonant frequency of a mode but not

at frequencies where there is no resonance.

The three-dimensional mode can be broken into two independent parts: transverse and longi-

tudinal. Optical feedback can be used to control the longitudinal mode, but the transverse mode

is very difficult to control. To get around this, labs typically purchase single mode lasers, i.e.

lasers specifically designed to allow only one transverse mode. In these single mode lasers, the

longitudinal modes remain unconstrained.

There are an infinite number of longitudinal modes in a laser cavity. However, the number of

modes the laser can actually lase at are restricted by the gain curve of the gain medium. If a given

mode has a frequency that is outside the energy of the electron transitions inside the gain medium,

the laser cannot lase in that mode. The gain curves for diode lasers are very broad, though, so

though they don’t cover all the modes, they cover many, many modes.

If lasers were linear systems, they might operate in any combination of modes. However,

lasers operate by stimulated emission, and this makes them non-linear. The process works like

this: Lasers start with some spontaneous emission. Photons from these transitions can come from

any frequency within that transition’s linewidth, but if they do not match a mode of the cavity, they
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will not set up a standing wave in the cavity and the laser will not lase at those frequency. Other

photons are emitted into a mode of the cavity, and they may excite many modes. This does not last

long however, because of stimulated emission. As a photon moves through the gain medium, it

will stimulate other photons to be emitted into the same mode it is in. The more photons there are

in a mode, the more they stimulate other photons into that mode. Very quickly then, the mode with

even marginally the most gain sucks up all the energy from the gain medium, and the side modes

are suppressed. This process of one mode becoming more favorable and suppressing all the other

modes is called mode competition.

The gain of each mode in the laser is not constant. If the environment—the temperature, the

current, etc.—changes, the gain of the modes can change, and once a new mode starts getting

more gain than the others, the laser will jump to that mode. This is called a mode hop. Mode hops

cause sudden changes in laser frequency that can ruin experiments like laser cooling or precision

measurement that depend on a stable frequency. Locking the laser, the usual way of stabilizing

the frequency, can adjust for slow drift in the laser, but mode hops, with their sudden jumps in

frequency, will throw the laser completely out of lock.

1.2 Extended Cavity Diode Lasers (ECDLs)

As noted before, diode lasers have wide linewidths because the laser cavity is short and has low

finesse. Therefore, one way to decrease the linewidth is to effectively make the cavity longer and

of a higher finesse. In extended cavity diode lasers (ECDLs), this is done by adding a reflective

element outside the laser. The reflective element creates a longer cavity using the back of the laser

cavity as the other mirror, and because it reflects light back into the laser, it decreases the loss in

the cavity which raises the finesse. Together, these effects narrow the linewidth. However, adding

the reflective element adds additional boundary conditions to the laser cavity, making the mode
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Figure 1.1 Light from the laser diode exits the laser cavity and hits a reflection grating.
The reflection grating then reflects different wavelengths at different angles so that only
one wavelength is reflected directly back into the laser.

structure more complicated and increasing the number of parameters that must be controlled to

prevent mode hops.

Various designs for creating an extended cavity have been studied [1, 5, 6]. I used the Littrow

method as shown in Figure 1.1. In this scheme, light from the laser exits the laser cavity and

directly hits a reflection grating. The grating separates the light depending on wavelength. The

0th order of the grating is directed away to the rest of the experiment. However, the 1st order is

reflected back to the laser, and the angle at which that 1st order reflects depends on the wavelength.

The grating feedback to the laser is affected by both the grating’s distance from the laser and

the grating’s angle relative to the incoming beam. For a narrow band of wavelengths, the reflection

grating acts like a mirror. It creates the new cavity and so the position of the grating determines

the length of the cavity which in turn determines the resonances. Therefore, fine changes in the

position of the grating will change the wavelength of the laser.

Rotational changes to the reflection grating will change which wavelength will be fed directly

back into the laser. This makes tuning the laser easier. With only a mirror creating the extended

cavity, there are theoretically an infinite number of modes that resonate in the cavity. But the

reflection grating reflects only one wavelength directly back into the laser. In this way, the position
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Figure 1.2 This an illustration of how the laser gain curve, the reflection grating angle,
the laser cavity modes, and the modes of the extended cavity affect the gain inside the
laser. To make an ECDL stable, the peaks of each of these curves must fall on top of each
other. If one of the peaks begins to drift, the laser may go multimode or mode hop.

of the reflection grating determines the allowed modes in the extended cavity and the grating angle

picks out which one of those modes the laser will lase in.

The extended cavity decreases the linewidth of the modes and allows one to tune the frequency

of the laser. However, it also adds complexity to mode competition. A schematic in Figure 1.2

demonstrates this problem. When the laser is single mode and stable, the gain from all the factors—

the gain medium gain curve, the reflection grating position and angle, and the laser cavity—are

aligned and pushing the laser into the same mode. Over time, however these factors will drift,

whether because of temperature change, mechanical drift, or some other change. Things do not

have to drift very far before the gain in the laser changes and a new mode becomes more favorable.

Then the laser mode hops.
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1.3 Passive vs. Active Control

There are two types of modifications that can be made to an ECDL to increase its stability. These

are called passive control and active control. Passive control attempts to increase the stability

of the laser by decreasing changes in its environment. Some ECDLs have passive control stable

enough that the laser can run a long time without mode hops. However, something—the current,

the temperature, the reflection grating, etc.—will eventually drift. Once something has drifted too

far, passive control can do nothing to correct it, and the laser will mode hop.

Passive control includes many factors. The most basic passive control will control the temper-

ature of the laser, the injection current, and provide some sort of optical isolation. Commonly, the

laser system is built on a floating optical table to decrease mechanical vibrations. In more advanced

control, an anti-reflective coating is added to the laser diode to remove one of the boundary con-

ditions and simplify the mode structure. These coatings are definitely effective, but they are also

expensive [7, 8]. In other cases, the entire ECDL set up is machined out of one piece of metal and

operated in vacuum to increase stability [6], and other set ups have been developed with significant

passive stability. For instance, Ricci et al. obtained a linewidth of 100 kHz and had a scan range

of 25 GHz [5]. Arnold et al. in their set up were to lock a 780 nm laser to a Doppler-free rudidium

transition for several days [1].

Active control is different because it attempts to detect drift in these passive elements and

correct for it. The major roadblock preventing active control is finding a usable measure for the

drift that can be used to understand what drifted and how to adjust the laser to move it away from

a mode hop.
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1.4 Previous Work

In Steven Chu’s lab at Stanford, amplitude noise on the laser was observed to increase before a

mode hop. Using that noise, Chiow et al. were able build a feedback system that greatly increased

the stability of their laser [8]. Previous students in my lab attempted to replicate their results, but

found that the amplitude noise only predicted mode hops when the laser was locked to a frequency

reference [9]. When the laser was free-running, the correlation between amplitude noise and mode

hops was lost. Therefore, they reasoned that the true predictor of mode hops was not amplitude

noise but frequency noise. As the laser approached a mode hop, the frequency noise increased

and this noise appeared on the lock signal. Since the lock signal was directly used to correct the

current, the noise was fed into the current and appeared as amplitude noise.

Noting that frequency noise, not amplitude noise, predicted mode hops presented an interesting

opportunity. To measure amplitude noise, part of the laser beam had to be split off and extra optical

components were required. However, since any lock system already has an error signal which

measures frequency drift, frequency noise could easily be measured from the already present error

signal. No additional optical components would have to be added. Instead, the system could be

easily implemented wherever there was already a lock.

Previous work in our lab was able to use frequency noise to increase the scanning range of a

laser [9]. However, the increases were not as large as expected from Chiow et al.’s results. We

therefore believed that a great deal of improvement could be done to demonstrate the true power

of using frequency noise to prevent mode hops.

1.5 Overview of Thesis

In Chapter 2, I discuss my experimental approach. I will describe my optical set up and the theory

behind my approach, including how I predict a mode hop and how my frequency noise feedback



1.5 Overview of Thesis 8

will work together with a regular lock circuit. I will then explain how I measure frequency noise.

In Chapter 3, I will show how frequency noise increases before a mode hop and will suggest the

direction this project will take in the future.



Chapter 2

Experimental Approach

In this chapter, I describe my optical set up and how I how I determined a relationship between

frequency noise and mode hops. I will then explain how I have taken that relationship and made a

viable error signal (Section 2.3) and fed back to the laser (Section 2.4).

2.1 Optical Set Up

Figure 2.1 shows a schematic of my basic optical set up. In this section, I will explain each of

the components in more detail, essentially following of the path of the light. First, I will describe

in detail how I built my ECDL and established optical feedback. I will then describe the purpose

and use of the optical isolator. A large section (Section 2.1.3) is devoted to semi-confocal optical

cavities and their use in this set up. Finally, I describe the method I used to frequency lock the

laser.

9
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Figure 2.1 Light exits the laser and goes through an optical isolator. It is then split and
enters two optical cavities. One cavity is used to monitor the laser’s mode while the other
is used to detect frequency noise. The black arrows indicate a typical lock circuit. An
error signal comes from the lock cavity and is used by a PID controller to adjust to piezo
controlling the reflection grating and to adjust the current. The blue lines indicate the new
feedback I am implementing. The frequency noise is converted into a DC signal by a
series of filters. A lock-in amplifier then uses lock-in detection to determine how to move
the laser to keep it stable. Its output is put through an integrator. This signal as well as a
modulation necessary for lock-in detection are added to the current signal from the PID
controller, and together, all three adjust the current of the laser. A temperature controller
stabilizes the temperature of the laser.
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2.1.1 ECDL Set Up

The laser I used in my experiments was a US Lasers 650 nm 5 mW diode laser. This laser was

certainly not the most stable I could have chosen, but since the goal of my project was only to

increase the stability of a given laser, this laser was good enough. It was single mode laser, which

was important. The laser could operate several minutes without a mode hop, and I was also able

to scan the laser through several free spectral ranges of my optical cavities without a mode hop. I

required no higher level of stability for the purposes of my project.

I created an extended cavity diode laser by using a few common optical components. The

laser was housed in a Thorlabs TCLDM9 laser mount. The reflection grating was mounted on a

piezo mount which allowed the grating to be moved and rotated electronically. The mounts were

connected using aluminum rods.

The laser was temperature controlled using a built-in thermoelectric cooler (TEC), which I

drove using lab built electronics. I controlled the current to the laser using a high stability, low

noise current driver developed by Erickson et al. [10, 11] This current driver was also designed to

allow a modulation to be added to the current.

2.1.2 Establishing Optical Feedback

When a reflection grating is put in an ECDL, it must be carefully aligned with the laser so that

changes in the grating’s angle and position affect the laser’s frequency. This occurs when optical

feedback is established meaning light reflecting off the grating couples into the laser cavity. To

establish optical feedback, both the grating angle and the grating position need to be aligned. It is

not enough for the grating to reflect light directly back into the laser; the wavelength it is reflecting

back must also be an allowed wavelength in the extended cavity the grating has created. Otherwise,

there are phase mismatches and no stable mode results. If there is no optical feedback, changes in

the grating will not change the frequency of the laser.
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Establishing optical feedback turns out to be rather simple. A laser becomes a laser when it

reaches threshold—round trip gain is equal to round trip losses. As one increases the current,

the gain increases until the laser passes threshold and lasing occurs. For this reason, diode lasers

are often characterized by a threshold current or the current at which threshold occurs. Adding a

reflection grating also increases the round trip gain by reflecting light back into the laser so losses

are decreased. Therefore, if the threshold current is lowered, optical feedback has been established.

In practice, the process works like this: The current on the laser is increased until the laser

hits threshold. This is sometimes described as the "flash" because the light coming from the laser

suddenly gets brighter. The current is then turned down, just below threshold. Then, the grating

is adjusted until the flash is seen again. The grating has fed back into the laser and increased

the gain enough to reach threshold—even at this lower current level. Once this has occurred,

optical feedback has been established. The current can be raised again as desired and adjusting the

reflection grating will change the frequency.

2.1.3 Optical Isolator

Because diode lasers are so sensitive to optical feedback, it is important that the reflections making

it back to the laser should only be those from the reflection grating. Other reflections from optics

further on in the set up could disturb the mode of the laser. The optical isolator stops unwanted

reflections from getting back to the laser.

Optical isolators allow light to only go through in one direction. They do this by taking ad-

vantage of the Faraday effect. Two polarizers are placed on either end of the optical isolator, set

at 45° angles from each other. Between the two polarizers, the light is rotated 45° by the interac-

tion between the light and a magnetic field in a medium, a phenomena called the Faraday effect.

Though the Faraday effect is not the only way to rotate the polarization of light, it is unique in

that it rotates all light the same direction regardless whether the light is propagating parallel or
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antiparallel to the magnetic field. This means that coming in one direction, the light enters through

a polarizer, is rotated 45° and reaches the second polarizer polarized at exactly the right angle to

make it through. Coming in the other direction, however, the light is polarized and again rotated

45°, but this time the rotation puts the polarization of the light exactly 90° off from the polarizer.

No light comes through.

In my set up, the light coming from the laser is allowed through the optical isolator, but light

hitting the optical isolator from the other direction does not make it to the laser.

2.1.4 Semi-Confocal Optical Cavities

Optical cavities are useful in this context because they can be used to observe the mode of the laser

or to see small changes in the laser’s frequency. I will first discuss the theory of optical cavities

before going on to describe the particular qualities of semi-confocal cavities and their use in my

optical set up.

Optical cavities at their most basic are two mirrors a distance L apart. Light bounces between

the two mirrors in the cavity and at each bounce, some of the light is transmitted and some is

reflected back as shown in Figure 2.2a. With each pass the light makes through the cavity, it

picks up a phase shift. If the round-trip length is equal to an integer number of wavelengths, the

transmitted light adds constructively. However, if the round trip length and the wavelength are not

integer multiples, the phases of each pass do not match, and the light adds deconstructively.

In Appendix A, I go through the derivation of the transmission through an optical cavity. Here,

I only quote the results. The transmission through an optical cavity is given by

T =
Tmax

1 + F sin2(φ)
(2.1)

where Tmax is the maximum possible transmission through the cavity, φ is the phase shift picked

up after every round trip through the cavity, and F is the finesse. The shape of T as a function of φ
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Figure 2.2 On the left, light enters the optical cavity and bounces between the mirrors,
with some light being reflected and some transmitted every time it hits one of the mirrors.
The relative phases of each of the passes determine if the transmitted fields add construc-
tively or deconstructively. The graph on the right shows the theoretical transmission of
light through the cavity as a function of the phase φ picked up after each pass through the
cavity with Tmax = 1 and F = 200.
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is shown in Figure 2.2b. It is important to note that φ depends on both the wavelength of the light

in the cavity and on the length of the cavity so changes in either will result in the peak-like pattern.

In order for the analysis done in Appendix A to hold true, we must have a stable optical cavity,

a cavity where light bouncing between the mirrors does not "walk" away from the optical axis and

out of the cavity. There are numerous possible configurations that create a stable optical cavity. In

my experiment, I chose to use semi-confocal cavities.

Semi-confocal cavities are best understood by first explaining confocal cavities. In confocal

cavities, two mirrors with the same radius of curvature are positioned so that the distance between

them is equal to the radius of curvature. Therefore, their foci both hit at the same spot, halfway

between the two. Semi-confocal cavities work similarly but instead of using two curved mirrors,

they place one flat mirror at the focus of a curved mirror. This creates an optical cavity that is

something like a confocal cavity folded in half. Two round trips through a semi-confocal cavity

work out like one round trip through a confocal cavity. (See Appendix C.4 of [12] for more about

semi-confocal cavities.)

Semi-confocal cavities are useful because of how the resonances of their modes line up. In

other optical cavities, each of the modes has independent, possibly unrelated resonate frequencies.

However, in a semi-confocal cavity, all the odd modes and all the even modes stack up, meaning

that though many modes might be excited in the semi-confocal cavity, there will be only two

resonant frequencies. This makes semi-confocal cavities especially useful for observing the mode

of a laser. In other optical cavities, one must very carefully couple into the TE00 mode, and only

the TE00, to observe the mode of the laser since the different modes have different resonances. Not

so for semi-confocal cavities. One simply has to couple to some of the modes of the cavity, and it

does not matter which ones. This makes alignment much easier.

How does one use semi-confocal optical cavity to observe the mode of a laser? As we saw

before, transmission through the cavity depends on φ, and we noted that both the length of the
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Figure 2.3 Data collected by scanning an optical cavity and looking at the response on
a photodiode placed at the end of the cavity. Graph (a) shows the laser in single mode
operation. In graph (b), the laser is multi-mode. Note how the peaks decrease in hight
and the additional peaks that crop up in between peaks when the laser is multi-mode.

cavity and the wavelength of the light affect φ. As the length of the cavity is scanned, a photodiode

can be placed on the end of the cavity to observe transmission. When the length of the optical

cavity makes the round trip of the light an integer number of wavelengths long, the response on the

photodiode is the greatest. Off resonance, there is little response.

When the laser is single mode, it has a very narrow linewidth centered on one wavelength. As

one scans the length of the cavity, the signal on the photodiode resembles a number of peaks like

those predicted Figure 2.2b. But should the laser begin to operate in multiple modes, light at new

wavelengths would be produced. Those new wavelengths would resonate at different lengths of

the cavities than before. On the signal from the photodiode, new peaks would appear. Figure 2.3

shows the output from a photodiode at the end of an optical cavity both when the laser is single

mode and when other modes are starting to be excited. It is obvious at a glance to see the difference

between the two.

Instead of changing the length of the cavity, one can also change the wavelength of the light
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through the cavity. Near resonance, very small changes in the wavelength cause big changes in

the transmission. For this reason, optical cavities are frequently used as a frequency reference that

lasers are locked to.

In my optical set up, I have two semi-confocal cavities, and I take advantage of both ways of

using the optical cavities. With one cavity, which I call the monitor cavity, I use to observe the

laser’s mode. Using this cavity, I can see when the laser is single mode, when it is starting to go

multimode, and, important for this project, I can see when the laser mode hops. The other cavity

I call the lock cavity. I held the length of this cavity constant, and I locked the laser to this cavity.

I was able to measure frequency noise on the laser by measuring the noise of the response of the

photodiode at the end of the cavity.

Using both cavities together, I was able to observe both the frequency noise and the quality

of the mode of the laser at the same time. That way I was able to establish whether there was a

relationship between the frequency noise on the laser and the laser’s tendency to mode hop.

2.1.5 Locking the Laser

To lock my laser, I used a side lock. Side locks are not the most effective ways of locking a laser,

but they are one of the easiest to implement. To create a side lock, one takes the signal from a

frequency reference—in my case, I used one of the peaks of my optical cavity—and subtracts an

offset. This then creates a viable error signal (a signal that goes both positive and negative where

the desired position is the zero-point) that can then be put into a PID control to feed back to the

laser. Because it is so simple, a side lock can be implemented without an additional optics and only

simple electronics. Side locks do have draw backs, however. For one thing, they cannot be used to

lock to the peak of a resonance because otherwise the error signal would always be negative and

never positive. They are also very susceptible to amplitude noise; since both changes in amplitude

and changes in frequency change the response on the photodiode in the same way, the side lock
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cannot tell the difference between the two. In order to get a very tight lock, one would be better off

using the Pound-Drever Hall lock [13]. However, my goal in this project was not to get the tightest

lock possible. I only wanted to lock the laser so that I could observe its frequency noise before it

mode hopped and went out of lock. If my method for increasing laser stability worked for a side

lock, it would would for a Pound-Drever Hall lock, so I chose the simpler lock to avoid dealing

with the unnecessary complications of a more sophisticated lock.

I used a PID circuit to generate feedback for the laser. The PID circuit took the error signal,

processed it, and generated the feedback signal to control the lasers current and the reflection

grating. By adjusting these parameters, the PID circuit moved the laser’s frequency until the error

signal was zero—and the laser was locked to the cavity.

In Section 1.2, I discussed how the reflection grating changes the mode in the laser cavity. The

current also affects the modes by changing the index of refraction of the gain medium. Indeed, it

is possible to lock the laser using only the current. However, the lock can tolerate more drift and

the laser can be scanned further if the current and the grating are adjusted together.

It is also possible to adjust the grating’s angle and position separately. This also allows the lock

to compensate for more drift, and the laser can be scanned further. It is not necessary, however.

Since I only had one piezo driver, I scanned the grating position and angle together. This limited

my lock but was not a problem. My goal was to increase the stability of a given lock. A less-than

perfect lock for a starting point was perfectly acceptable.

2.2 Predicting a Mode Hop

As noted before, amplitude noise predicted a mode hop for ECDLs, but only when the laser was

locked. In order to test this, I used my lock cavity to look at the frequency of the laser. I used an

oscilloscope to take the Fast Fourier Transform of the signal from the cavity to see the frequency
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noise on the laser. At the same time, I scanned the monitor cavity in order to observe the mode of

the laser. By watching the monitor cavity, I was able to tell if the laser was single mode, multimode,

or if it mode hopped. Therefore, I could observe both the frequency spectrum of the laser and its

mode at the same time.

Rather than wait for the laser to mode hop on its own, I scanned the grating position and angle

using a piezo driver. Small adjustments to the grating move the frequency of the laser, but the laser

will not mode hop. Eventually though, the changes go too far, and the laser mode hops or goes

multimode. Thus, scanning the laser essentially simulates the effect of letting the laser run for a

long period of time but is more efficient. Scanning the laser also gives a certain level of control not

available if the laser is free-running or locked because one can deliberately approach a mode hop

and observe the laser’s behavior as it comes near.

I observed the frequency noise both when the laser was locked and not locked in order to

establish that the relationship to frequency noise was not a result of my lock. Unfortunately, due

to the nature of optical cavities, I could see the noise much better when the frequency was near the

cavity’s resonance. When the laser was locked, the laser was always near resonance, but this was

not the case when the laser was not locked. While this meant that the unlocked data were not as

good as the locked data, they were still sufficiently accurate to be be used. Further discussion of

the data will be described in Section 3.1.

2.3 Measuring and Using Frequency Noise

Once a correlation between frequency noise and mode hops is established, the problem is how

to measure that noise and to feedback on to the laser. In this section, I will discuss both how I

measured the level of frequency noise on my laser and how I used lock-in detection to feed back

to the laser.
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Figure 2.4 The signal passes through a series of filters in order to create a voltage pro-
portional to the amplitude of the noise. The high pass filters need cut off frequencies
significantly above the modulation frequency 90 Hz but also low enough to catch most
the noise. The low pass filter has the same time constant so that the change in noise level
due to the modulation is passed.

2.3.1 Converting Noise into a Usable Signal

In order to know how to feed back to the laser, we need a dc voltage that is proportional to the

amount of frequency noise on the laser. The circuit I designed to do this is given in Figure 2.4. My

original signal comes from the error signal for the laser’s lock. As discussed in Section 2.1.4, my

method of locking the laser includes adding an offset to the signal from the lock cavity. However,

since I am only interested in the noise, all I need is a signal that changes with changes in frequency,

which my error signal does. I do not want my signal to record the offset, so I pass the error signal

through a high pass filter to remove the dc offset and ensure that the signal only contains the noise. I

then put the signal through a half-wave rectifier and a low pass filter. The rectifier cuts the negative

part of the signal, and the low pass filter smooths it out to create a voltage that is proportional to
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the amplitude of the noise.

In choosing time constants for my filters, I had to be conscious of two factors. The first was

the shape of my noise. The frequency noise of my laser followed a 1/f shape, with most the noise

below 10 kHz (see Section 3.1 for discussion). In some ways, this was good because I did not have

to worry about getting high speed op amps that could capture very high frequency noise, say in the

MHz or GHz range. I did have to make sure that I designed my high pass filter with a low enough

cut-off frequency that I passed the band of frequencies I was interested it.

The other factor I had to take into consideration was the modulation of the laser. I will discuss

lock-in detection in more detail in the next section (Section 2.3.2), but a key component is adding

a small modulation to the current. For this application, I modulated the current at 90 Hz. This

modulation in the current could potentially change the frequency of the laser. However, the PID

circuit is fast enough to catch any drift and correct for it. The end result of the modulation, then,

is to only make the laser a little more or a little less stable. So it should not show up on the error

signal. However, a change in current also changes the amplitude of laser and since the optical

cavity can’t distinguish between a change in amplitude and a change in frequency, this modulation

still shows up on the error signal.

When I pass the error signal through the series of filters, I want to see how the frequency noise

is changing, not how the modulation is changing the amplitude. Therefore, I want my high-pass

filter to have a cut-off frequency far above 90 Hz. Balancing these two demands, I settled for a

cut-off frequency of 1 kHz. To further ensure that the modulation was completely killed, I used a

second order high pass filter.

I used the same time constant for my low pass filter, this time to ensure that the change in noise

level due to the modulation is passed through the filter.

Because the noise I was measuring had very small amplitudes, sometimes less than a mV, I

also used active filters in the high pass stage. These filters produce gain, so the noise is big enough
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for the rectifier to work.

2.3.2 Lock-in Detection

A good error signal goes both positive and negative. Otherwise, it is impossible to tell by looking

at the signal at a single point in time whether factors, like current to a laser, should be increased or

decreased to move the laser away from a mode hop. But the amount of frequency noise is always

positive. Adding an offset, like was done with the side lock, would make an error signal that went

positive and negative, but it would lock the laser to a certain level of noise. My goal is to move the

laser to the lowest possible level of noise. An offset won’t do. Instead, I used lock-in detection.

Lock in detection is often used to extract a very small signal from a large amount of noise. It

works like this: Suppose that the input to the lock-in amplifier is

V = Vi sin(ωit+ θ). (2.2)

The lock-in amplifier generates a reference signal at ωr

V = Vr sin(ωrt). (2.3)

The lock-in amplifier then multiplies the two signals together so that

V = ViVr sin(ωit+ θ) sin(ωrt) (2.4)

=
1

2
ViVr cos((ωi − ωr)t+ θ) +

1

2
ViVr cos((ωi − ωr)t+ θ). (2.5)

Then the amplifier low-pass filters the signal, and this is where the interesting stuff happens. Low-

pass filtering can also be thought of as time-averaging the signal. The average of cos(ωt) is zero

for any ω except in the special case when ω is zero. Therefore, the signal is always killed except

for the case when ωi = ωr. In that case,

V =
1

2
ViVr cos θ. (2.6)
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This is fantastic because we have now generated a dc signal that is proportional to Vi and also

cos θ—this depends on both the amplitude and the phase of the incoming signal.

Now suppose instead of a pure sine wave, the input is some function V = f(t). If we expand

f(t) using a Fourier Series, we get

V =
V0
2

+
∞∑
n=0

Vn sin
(
nωt+ θ

)
. (2.7)

When this goes through the lock-in amplifier, the only part that will survive will be the sine wave

of frequency ωr. The lock-in amplifier will be able to tell how much of the signal was that sine

wave at ωr and the phase of that wave.

When put in practice, lock-in detections pulls a very small signal out of noise by "marking" it

with the frequency ωr. The lock-in amplifier generates the reference sine wave, and it sends that

wave to the device that will create the signal we are trying to detect. For instance, one might be

trying to detect an LED on the other side of the room with a simple photodiode. The generated

sine wave is sent to the LED and modulates its voltage. The intensity on the photodiode is then put

into the amplifier. By multiplying by the frequency reference, the lock-in amplifier can throw out

all the noise but keep the LED’s modulated signal.

In my application, I am less interested in the amplitude of my signal but in the phase. I cannot

tell which way to move the current if I only look at the noise level on my laser. However, if I move

the current slightly up or down, I can see how that affects the noise. The lock-in amplifier does

just that. The sine wave it generates dithers the current slightly. I then feed the measured noise

into the lock-in amplifier, and it registers the phase of the signal. If the signal is in phase with the

reference, that means that an increase in current increases the noise. If it is out of phase, then an

increase of current decreases the noise. In phase corresponds to a positive cos θ; out of phase, a

negative cos θ. I now have an error signal that tells me how changes in current change the noise,

going both positive and negative.

I can then take the output from the lock-in amplifier and input it into a controller. In this case,
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I used a simple integrator.

2.4 Preventing a Mode Hop

With the whole system up and running, I have three sources of error detection adjusting the envi-

ronment of the laser: the lock to the frequency reference, the frequency noise feedback, and the

dithering from the lock-in detection. These all work together to keep the laser locked without a

mode hop.

The lock to the frequency reference uses a PID controller and has the fastest time scale. The

lock is unique in my set up because it adjusts the grating as well as the current. Within the lock,

the current has a faster time scale than the grating. In my set up, I have one piezo driver controlling

both the grating angle and the grating position.

The frequency noise feedback only adjusts the current. When the current is modulated, the PID

controller compensates to keep the laser locked to the cavity. Because the PID controller changes

both the current and the piezos, it will partially, but not entirely cancel the current modulation,

doing the rest of the compensation with the piezos. That way, when the modulation increases or

decreases the current, it causes the current and the piezos to change in such a way that the frequency

of the laser remains the same, but the conditions which could lead to a mode hop change. If the

frequency noise on the laser increases or decreases when the current is increased, the integral

controller on the noise feedback will adjust the laser to reduce or increase the current such that the

laser is moved to the point where the frequency noise is minimized.



Chapter 3

Results and Conclusions

3.1 Increased Frequency Noise Before Mode Hops

To test that frequency noise predicted a mode hop, I put the laser in single mode operation and then

intentionally moved it towards a mode hop. I examined both the mode and the frequency noise of

the laser at the same time by using both my optical cavities, one scanned and one held steady.

Though mode hops are very fast occurrences, I could tell when the laser was approaching a mode

hop because the peaks started to get smaller and wider. I was then able to look at the frequency

noise of the laser when I knew it was coming close to a mode hop.

In Figure 3.1, I compare the frequency noise of the laser when it is stable and single mode to

when the laser is approaching a mode hop. It is clear that the noise increases as the laser comes

closer to a mode hop. The biggest changes are in the lower end of the spectrum. However, the noise

baseline also rises. All of these data were taken with the laser unlocked. There was no chance,

then, of noise being fed back from the lock as we suspect happened in Chu’s experiment.

Because optical cavities are so sensitive to frequency changes, we believe this noise is due to

frequency noise. However, it is possible that some of this is amplitude noise as well. The optical

25



3.1 Increased Frequency Noise Before Mode Hops 26

(a) Modes of the laser

(b) Frequency Noise

Figure 3.1 The modes and frequency noise of the laser at four different times are shown.
All were taken with the laser unlocked. In graph (a), the signal of the ramped cavity is
plotted. In graph (b), the Discrete Fourier Transform of the un-ramped cavity is graphed
on a log plot. The blue lines correspond to a very clean single mode. The black line
corresponds to the worst mode, and the closest to a mode hop. It is clear that the clean-
est modes have lowest noise. Note that as the laser approaches a mode hop, the noise
increases the most in the lower end of the spectrum, though the baseline rises as well.

cavity as we have it set up cannot differentiate between the two. Further work will be required to

completely separate the two kinds of noise.
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3.2 Conclusions and Future Work

I have established that there is a correlation between mode hops and noise. I believe this noise is

frequency noise. However, there is a chance that some of the noise I observed was amplitude noise

as well.

Future work needs to more carefully pin down the frequency noise before a mode hop. For one

thing, in my set up, I locked the laser to the cavity or didn’t have a lock at all. This posed two

problems. The first was that frequency noise far away from a resonance was hard to detect. The

other was that changes in amplitude showed up exactly the same as changes in frequency. What I

should have done was lock the cavity to the laser and monitored amplitude noise separately. This

would have gotten rid of the frequency noise verses amplitude noise ambiguity. This would also

keep the resonance of the cavity near the frequency of the laser, where frequency noise would

show up better, without having to do any feedback to the laser. That way, any noise observed

would certainly not be due to feedback from the lock. Unfortunately, I did not realize this until it

was too late.

The next thing to do would be to plot the level of noise verses current. We believe that the

noise should follow a U-like shape, with low noise in the middle where the laser is stable and

higher noise on either side as the laser approaches a mode hop in either direction. I have observed

that the noise does increase before a mode hop, but I do not know exactly what the noise as a

function of current looks like.

Once the frequency noise of the laser is better understood and characterized, then it would be

time to go back to the noise filtering circuit and the lock-in amplifier and start testing exactly how

this feedback increases the stability of the laser. The stability could be tested both by seeing how

long the laser could run without a mode hop and by seeing how far the laser could be scanned

without a mode hop.

Previous work in our lab was able to increase the scanning range of the laser using frequency
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noise feedback [9] but not nearly as much as we expected, especially compared to the results from

Chiow et al. [8]. I have made improvements to the optical set up and the electronics used in this

previous work. In particular, I redesigned the circuit to measure noise so that it gave a much cleaner

dc signal. Hopefully, with the improvements I have made, once the frequency noise is understood,

setting up the feedback will go fairly smoothly.



Appendix A

Transmission Through Optical Cavities

The transmission through an optical cavity can be derived using complex analysis. We describe

the incident light as

E(z, t) = E0e
i(kz−ωt). (A.1)

At each mirror, a fraction of the electric field t is transmitted and a fraction r is reflected. There-

fore, after the light is transmitted through both mirrors, it has picked up a factor of t2. With every

round trip through the optical cavity, it also picks up a factor of r2. Typically, when talking about

transmission and reflection, we talk about the fractions of intensity, not electric field. These frac-

tions of given the symbols T and R and are related to the portion of the electric field transmitted

and reflected by the relations T = t2 and R = r2. Since the total fraction of light both transmitted

and reflected is 1, T and R are related by T + R = 1. To avoid confusion with the total transmis-

sion through the optical cavity (which is also given the symbol T ), we will replace r2 with R and

t2 with 1−R from here on on out.

In the cavity, we must also take into account that the electric field is a wave evolving in time as

it travels through the cavity. This means that with each pass from mirror to mirror, the electric field

also picks up a phase shift φ. This phase shift depends on the length of the cavity, the wavelength

29
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of the light, and the mode of the cavity that the light couples into.

Putting together the transmission, reflection, and the phase shift after n passes through the

cavity, the transmitted electric field is given by

E(z, t) = E0(1−R)Rnei(kz−ωt)+i(2n+1)φ. (A.2)

The total electric field transmitted through the cavity is a sum of the transmitted electric field

after every pass through the cavity,

Etot(z, t) =
∞∑
n=0

E0(1−R)Rnei(kz−ωt)+i(2n+1)φ (A.3)

= E0(1−R)ei(kz−ωt+φ)
∞∑
n=0

Rne2inφ. (A.4)

We recognize that the sum in Eq. 2.4 has the form of a geometric series
∑∞

n=0 a
n where a = Re2iφ.

It can be proven that geometric series will converge to 1
1−a so

Etot =
E0(1−R)ei(kz−ωt+φ)

1−Re2iφ
. (A.5)

To see what we would measure on a photodiode at the end of the cavity, we need to calculate

the intensity.

I ∝ EE∗ =
(1−R)E2

0

(1−Re2iφ)(1−Re−2iφ)
(A.6)

=
(1−R)E2

0

1− 2R cos(2φ) +R2
(A.7)

Using the double angle identity and some algebra, we can finally write the total transmitted inten-

sity, T , in the form

T =
Tmax

1 + F sin2(φ)
(A.8)

where Tmax is the maximum possible transmission and F is the finesse given by

F =
4R

(1−R)2
. (A.9)
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