
Improving Material Simulation Efficiency by Improving Interpolation Schemes

Spencer E. Hart

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Gus L. W. Hart, Advisor

Department of Physics and Astronomy

Brigham Young University

April 2016

Copyright © 2016 Spencer E. Hart

All Rights Reserved

ABSTRACT

Improving Material Simulation Efficiency by Improving Interpolation Schemes

Spencer E. Hart
Department of Physics and Astronomy, BYU

Bachelor of Science

High-throughput alloy simulations can greatly increase the rate at which we discover and syn-
thesize new materials by giving narrower focus and clearer direction to physical materials exper-
imentation. In working towards a comprehensive database of potential alloys and their predicted
characteristics, we are seeking ways to increase the computational efficiency of our simulations.
One main opportunity for improvement is in calculating the energy contribution from electron
bands. Determining this energy contribution requires numerically integrating over the occupied
regions of the electron bands. For metals in particular, dense sampling of the electron bands is re-
quired to achieve sufficient accuracy in the integral (due to the lack of smoothness in the partially
filled electron bands of metals). Each sample point requires solving a large eigenvalue problem,
leading to longer computation time for denser sampling. This thesis describes attempts to interpo-
late the electron bands using trigonometric star functions and splines to achieve necessary accuracy
with sparser sampling. The findings I present here show that the interpolation methods we have
employed do not represent the bands well enough to be used to reduce sampling of the electron
bands.

Keywords: DFT, Integration, Electron, Bands, Interpolation, Splines, High-Throughput, Simula-
tions

ACKNOWLEDGMENTS

I would like to give my thanks to the following people: my amazing older brother and advisor,

Dr. Gus L. W. Hart, for being someone I can look up to in all aspects of life, including physics;

Jeremy Jorgensen and Matt Burbidge for putting up with my strong personality while we worked

on this project; Derek Thomas for laying the foundation of the spline aspect of this project; and

my wife for her patience, support, and editing during the writing process.

I would also like to thank the Office of Naval Research and the BYU Department of Physics

and Astronomy for providing funding.

Contents

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Motivation and Overview . 1
1.2 Alloy Simulations . 2

1.2.1 Crystalline Structure . 2
1.2.2 Thermodynamic Stability . 3
1.2.3 Density Functional Theory (DFT) . 5
1.2.4 DFT Accuracy and Efficiency Factors . 6

1.3 Electron Bands . 8
1.3.1 Implications of Multivalued Bands . 10
1.3.2 Periodicity of Bands . 11

2 Interpolation Methods 13
2.1 Trigonometric Star-Function Basis . 13

2.1.1 1D Fourier Expansion . 13
2.1.2 3D Fourier Expansion . 14
2.1.3 Star Functions . 16
2.1.4 dftintegrate (Python module) . 16

2.2 Periodic Spline Basis . 17
2.2.1 ksi (Julia package) . 19

3 Interpolation Results 20
3.1 Trigonometric Interpolation with dftintegrate . 20

3.1.1 Single-valued, Smooth, Periodic Toy Function 20
3.1.2 Multivalued, Smooth, Periodic Toy Function with Crossings 23
3.1.3 Aluminum Bands . 24

3.2 Periodic Spline Interpolation with ksi . 25
3.3 Untangling Bands Attempts . 26

3.3.1 SPD Decomposition . 27

iv

CONTENTS v

3.3.2 Path Tracing Between Sample Points . 27

4 Conclusions and Future Work 31

Bibliography 33

Index 35

List of Figures

1.1 2D Bravais Lattices . 4

1.2 Cubic Bravais Lattices . 4

1.3 VASP Electron Band Energy—Accuracy and Runtime 7

1.4 Aluminum Bands . 10

1.5 Spaced Aluminum Bands . 11

2.1 Spline Basis Function Example . 18

3.1 Integral Convergence of W1 Trig. Fits . 21

3.2 High-Symmetry Paths of W1 Trig. Fits . 22

3.3 Crossed W1 Trig. Fits . 23

3.4 Aluminum Band Trig. Fit . 25

3.5 Aluminum Band Dense Spline and Trig Fits . 26

3.6 Aluminum SPD Decomposition . 28

3.7 Point-to-Point Paths for Uncrossing Aluminum Bands 29

3.8 "Uncrossed" Aluminum Band Fit . 30

vi

Chapter 1

Introduction

1.1 Motivation and Overview

The development and use of new materials is vital to the continual progress of science and technol-

ogy. New materials have been crucial in shaping past civilizations, hence the names “Bronze Age”

and “Iron Age”. In the 20th century, the development of suitable semiconductor materials allowed

for the dawn of the “Silicon Age”. As we seek to further the reaches of science and technology in

the 21st century, bright minds are constantly coming up with novel ways to use the materials we

already have. Often, however, new ideas and inventions are inhibited by a lack of ideal materials

for their implementation. As we stretch the boundaries of what is possible with the materials we al-

ready have, it becomes increasingly important to discover and develop new materials. The process

of discovering and developing, unfortunately, tends to be very slow (in some instances taking more

than 20 years before the material was commercially available). In light of this, the White House

has issued the Materials Genome Initiative (MGI), which pushes to increase the rate at which new

materials are discovered, developed, and deployed [1].

In accordance with the MGI, our research group is concerned with the discovery and inven-

1

1.2 Alloy Simulations 2

tion of new metal alloys through high-throughput (HT) computational methods. This is primar-

ily accomplished with a program, AFLOW [2, 3], automatically running and analyzing results

from Density Functional Theory (DFT) simulations. Currently, the AFLOW database contains

“1,140,836 material compounds - with over 102,675,240 calculated properties (and growing)” [4].

The database represents more than 100 million CPU hours using BYU’s Fulton Supercomputing

Lab and additional CPU time on other supercomputers. Based on the $0.12/core/hour Sabalcore

Computing, Inc. charges for supercomputer rental, this amounts to over $12 million worth of su-

percomputer time for these simulations. Any increase in computational efficiency would reduce

the CPU time needed for each simulation, saving time and resources and allowing us to increase

our HT productivity.

This thesis deals specifically with applying interpolation methods to DFT calculations in an

attempt to increase convergence rates of electron band energy calculations. It will be organized

as follows: Chapter 1 gives background into alloy simulations using DFT, specifically focusing on

the electron bands and the difficulties they present. Chapter 2 presents the different interpolation

techniques we applied to electron band data. Chapter 3 presents the results of the interpolations,

the issues that were encountered, and attempts to resolve them. Finally, our conclusions on the

interpolation methods and plans for future work will be presented in Chapter 4.

1.2 Alloy Simulations

1.2.1 Crystalline Structure

Simulating alloys first requires an understanding of the general structure of metals. Metals are

crystalline in structure, meaning they are very ordered and periodic. Crystalline structures are

described in terms of Bravais lattices (often just called lattices). Simply put, a lattice is a repeating

grid of points. Figure 1.1 shows examples of each of the five fundamental 2D Bravais lattices.

1.2 Alloy Simulations 3

Each lattice point (the green circles) represents an equivalent point in space (equivalent atom in

our case). The vectors between lattice points (denoted by a1 and a2) are called lattice vectors.

Since lattice points are equivalent, any integer combination of lattice vectors define a valid period

T of the lattice. (This concept is very important in section 2.1.2.) Each type of lattice also has

specific rotational symmetries associated with it: 90°, 180°, and 270° for a square lattice, but only

180° for the rectangular lattice. While 2D lattices are helpful for illustration, we are interested in

3D materials. In 3D, there are 14 unique types of Bravais lattices (three examples are shown in

Figure 1.2). The same principles and terminology that apply to 2D lattices also apply to 3D lattices,

though with an additional lattice vector (a3) and up to 48 rotational symmetry operations. Solid

State Physics by Harold Stokes [5] contains definitions and details for each type of 3D lattice.

In a pure metal, each lattice point would represent the same element. In alloys, however,

impurities are intentionally added to confer specific characteristics [7], such as the high impact

strength achieved in mangalloy by adding approximately 13% manganese to steel with about 1%

carbon. The addition of impurities can affect the crystalline structure in several ways. In solid

solutions, impurity atoms are randomly and uniformly distributed throughout the more abundant

element (called the solvent). The alloy simulations we run, however, are usually intermetallic

compounds rather than solid solutions. Intermetallic compounds are characterized by “distinct

chemical formulas” [8], meaning there is a particular ratio of two or more metals. The different

metals together form a distinct unit cell that is repeated throughout the material. I will limit further

discussions to this type of alloy.

1.2.2 Thermodynamic Stability

To determine whether or not a particular alloy will form, we have to ascertain if it is thermody-

namically stable. This requires calculating the ground-state energy of pure metals and the alloys

being simulated by solving Schrödinger’s equation—a very daunting task when you consider that

1.2 Alloy Simulations 4

Figure 1.1 The five fundamental 2D Bravais lattices: 1 oblique, 2 rectangular, 3 centered
rectangular, 4 hexagonal, and 5 square. [6]

Figure 1.2 The three cubic Bravais lattices. From left to right: simple-cubic, face-
centered cubic, body-centered cubic. [6]

1.2 Alloy Simulations 5

Schrödinger’s equation for a nanocluster of 100 Aluminum, with 1300 electrons, is a differential

equation with over 4000 variables! Density Functional Theory (covered in the following subsec-

tion) is an effective way to find an approximate solution of Schrödinger’s equation for many-body

systems like alloys. The following example illustrates how the alloy simulations work once you

have a method to calculate the ground-state energy.

If the alloy being simulated is a binary alloy (containing only two elements, which we will

arbitrarily call A and B), the ground-state energies of pure element A and pure element B are

first computed independently. The ground-state energy is next computed at a various A/B ratios

for each type of lattice. The energies of all the various A/B mixtures are compared against each

other and the energies of the pure elements. If none of the A/B mixtures have a ground-state energy

lower than the pure elements’ ground-state energies, the elements will separate into regions of pure

A and regions of pure B (since formation of the pure metals is more favorable than the mixture).

Otherwise, the A/B mixtures with the lowest energies are thermodynamically stable and likely to

form.

The same general technique is applied to alloys with three or more constituents. There is

the added complication, however. Rather than only comparing the ternary A/B/C mixtures to

each other and the pure elements, the ternary alloys must also be compared with the possible

binary mixtures (A/B, B/C, and A/C). Quaternary alloys must be compared with all possible ternary

and binary alloys as well as the pure elements. The pattern would continue for alloys with more

constituents.

1.2.3 Density Functional Theory (DFT)

One method to “approximate solution[s] to the many-body Schrödinger equation” is DFT [9].

A detailed explanation of DFT is outside the scope of this thesis. However, a brief description

is in order, since we are attempting to increase efficiency in certain aspects of DFT calculations,

1.2 Alloy Simulations 6

particularly when simulating metals and alloys. For a more detailed explanation of DFT, I defer the

reader to works dedicated to the topic, such as Density Functional Theory: A Practical Introduction

by Sholl and Stechel [10].

DFT is based on two theorems: 1) “The ground-state energy from Schrödinger’s equation

is a unique functional of the electron density;” 2) “The electron density that minimizes the en-

ergy of the overall functional is the true electron density corresponding to the full solution of the

Schrödinger equation” [10]. The first theorem indicates that a particular electron density and a

functional relationship is all that is needed to specify a ground-state energy. While the exact func-

tional relationship between the electron density and ground-state energy is unknown, there are

ways to approximate it implemented in DFT methods. The second theorem indicates that once we

know the functional relationship between the electron density and the energy, we need to vary the

electron density until we find the one that minimizes the energy.

While this general approach used in DFT can be stated succinctly, the details quickly become

complex. There are many available software packages that implement DFT methods (and take care

of most of the complex details automatically). We primarily use the Vienna Ab initio Simulation

Package (VASP) [9]. It is one of the most well-known codes for running DFT simulations.

1.2.4 DFT Accuracy and Efficiency Factors

Since determining alloy stability requires finding the difference between energies, which can be

quite small, we need our calculations of the ground-state energies to be rather accurate. In general,

our desired accuracy is within 10−3 eV per atom. There are several factors that contribute to the

total ground-state energy, including “electron kinetic energies, the Coulomb interactions between

the electrons and the nuclei, the Coulomb interactions between pairs of electrons, and the Coulomb

interactions between pairs of nuclei” [10].

Most of the contributions to the ground-state energy can be quickly determined once the elec-

1.2 Alloy Simulations 7

Figure 1.3 The electron band energy for metals converge slowly, requiring dense electron
band sampling and long run-times to achieve errors below 10-3 eV per atom. (Compare
this to semiconductors, like silicon, that require many fewer sample points for equivalent
accuracy.) This figure is a courtesy of Jeremy Jorgensen.

tron density has been solved for. However, the energy contribution of each electron in the potential

of the atomic nuclei and all other electrons is computationally expensive to determine accurately;

the energies of all the occupied electron states must be added together. In alloys, the allowed

electron energy states become a complicated, continuous, multivalued function, called the electron

bands (discussed in detail in the following section). To determine the energy contribution of the

electron bands, DFT codes integrate over the occupied states. We do not have access to an ana-

lytic form of the electron bands, so numerical integration techniques must be used. As with any

numerical integration, the accuracy of the result depends largely on the coarseness of the function

sampling; when greater accuracy is needed, simply increase the number of sample points. How-

1.3 Electron Bands 8

ever, getting electron band values through DFT is computationally expensive. Figure 1.3 shows

how the run-time increases with the number of electron band sample points.

Particularly in metals, the accuracy of electron band energy calculations converge slowly with

the simple numerical integration. Since this calculation accounts for the greatest variation in sim-

ulation run-times, we are focusing our efforts here to increase computational efficiency. Chapter 2

explores two different interpolation methods we investigated for their potential to achieve greater

accuracy with fewer sample points.

1.3 Electron Bands

In the Bohr model of atoms, we learn that electrons can only occupy certain discrete energy levels.

As atoms come together to form bonds, such as in molecular hydrogen (H2), the energy levels in

each atom change slightly—one up, and one down. This effect is called orbital splitting.

Each of these new molecular orbitals can be described by combining atomic orbitals and iden-

tified by a wavelength of the new orbital function envelope. If all the orbitals are combined con-

structively, the effective wavelength is equal to the length of the molecule or group of atoms. In

bulk materials, such as metals, there are enough atoms that this wavelength is essentially infinite

in comparison to the atomic scale. If all the orbitals are destructively interfering, the wavelength

is equal to the width of an individual atom, called the lattice constant or a in crystalline materials.

Rather than identifying each energy level by its wavelength, however, it is more convenient to use

the wave number

k =
2π

λ
. (1.1)

Since the effective wavelength (λ) of each energy level lies between infinity and a, expressed in

wave numbers, the domain of all possible energy states in the material is

0≤ k ≤ 2π

a
. (1.2)

1.3 Electron Bands 9

This domain is referred to as k-space or reciprocal space, since k is proportional to the recip-

rocal of the real-space variable λ . In three dimensions, k will become a vector k, and the domain

becomes a volume (called the Brillouin zone) defined by three vectors, b1, b2, and b3, called re-

ciprocal lattice vectors. These reciprocal lattice vectors are specific to the particular lattice of the

alloy or metal being described. For example, the reciprocal lattice vectors of a face-centered cubic

lattice always define a body-centered cubic lattice and vice versa. Reciprocal lattice vectors will

come up again in a different context in section 2.1.2.

If there are only a few atoms being considered, the energy function is still only defined at

discrete points in the domain of k . However the combination of many, many atoms in bulk

materials leads to enough orbital splitting that the formerly discrete atomic energy levels become a

collection of continuous functions, denoted electron bands. Similar to the multiple allowed energy

states in a single atom (1s, 2s, 2p, etc. orbitals), every point in the domain of k (the Brillouin zone)

also has multiple allowed energy states (hence the plural electron bands). DFT codes calculate the

different allowed energy levels at explicitly specified points or sample grids such as Monkhorst-

Pack [11]. The energy values for each point are returned, sorted by size: the lowest energy value

from all points is designated the first band, the collection of next lowest points the second band,

etc.

Electron band functions are notoriously hard to plot and visualize not only because they are

multivalued, but because of their 3D domain. Often, spaghetti plots are used, in which the band

values are determined along various straight-line paths between points with high symmetry. Figure

1.4 shows an example of one of these plots for pure aluminum on the right and the corresponding

high-symmetry points pictured in an FCC Brillouin zone on the left.

1.3 Electron Bands 10

Figure 1.4 Left: High-symmetry paths of aluminum electron bands where each panel is a
different path. This is sometimes called a spaghetti plot. Right: Corresponding Brillouin
zone with the high-symmetry points labeled [12].

1.3.1 Implications of Multivalued Bands

The multivalued nature of the electron bands presents a concern when trying to create an interpo-

lation. Since our interpolation schemes only fit single-valued functions, we must treat the electron

bands as multiple single-valued functions and interpolate each one individually. The simplest ap-

proach uses the convention mentioned earlier: all of the lowest energy values are the first function,

all of the second-lowest energy values are the second function, etc. (Results using this method

are presented in sections 3.1 and 3.2.) While separating the bands this way is easy, the functions

that result are not very smooth. To illustrate, I have added additional spacing between the energy

values at each sample point in Figure 1.5. The lack of smoothness requires more sample points to

build an accurate interpolation.

In theory, smooth functions could be used to represent each individual band—there are visually

apparent smooth paths between each pair of symmetry points in Figure 1.4. Smooth functions are

1.3 Electron Bands 11

Figure 1.5 High-symmetry paths of aluminum electron bands are shown with additional
spacing added between the energy values at each point. This demonstrates the lack of
smoothness when electron bands are separated into individual functions by simply order-
ing the energy values at each point from least to greatest.

easily interpolated without many sample points, which is good for HT efficiency. It is difficult,

however, to arrange the sampled energy values so that you can individually interpolate the visu-

ally apparent smooth bands. This is especially true when dealing with sparse sample grids (the

sampling used to create the Figure 1.4 was very dense). Section 3.3 discusses the methods we

employed to untangle the individual smooth bands from one another.

1.3.2 Periodicity of Bands

One key feature of electron band functions is that they have a repeating unit cell, as do the metals

that generate them. Because of this, the discussion about crystalline structure in section 1.2.1

1.3 Electron Bands 12

also applies to the electron bands. While the electron bands are defined on a reciprocal lattice,

which is generally different from the lattice of the metal, the electron bands exhibit all of the

symmetry of the metal that generated them. VASP exploits this fact by reducing the Brillouin zone

sample points using the symmetry operations of the metal. The periodic nature of the electron band

functions motivated the selection of both interpolation methods described in the following chapter.

Chapter 2

Interpolation Methods

2.1 Trigonometric Star-Function Basis

2.1.1 1D Fourier Expansion

Undergraduates in physics learn early on in their coursework about using Fourier expansions to

approximate 1D periodic functions as a sum of sine and cosine functions or, equivalently, complex

exponential functions:

f (x)≈ a0 +
N

∑
n=1

an cos(
2πnx

L
)+bn sin(

2πnx
L

), (2.1)

f (x)≈
N

∑
n=−N

cn exp(
i2πnx

L
), (2.2)

where N specifies the number of terms in the expansion. (Notice that since each basis function in

the sums above is periodic in x with period L, the approximation of f must be as well—i.e. f (x+

L) = f (x).) An approximation of f can be defined by choosing N and determining appropriate

values of the coefficients an and bn or cn. If an analytical form of f is known, the coefficients can

be calculated exactly using Fourier’s trick (i.e. exploiting orthonormality) [13].

13

2.1 Trigonometric Star-Function Basis 14

However, if an analytic form is unavailable—either because it is not known or does not exist—

the coefficients can be determined by sampling the function at various points and solving an over-

determined matrix equation of the form Ax = b. If the Fourier expansion is expressed in complex

exponential form, the matrix equation is as follows:



exp(i2π(−n)x1
L) exp(i2π(1−n)x1

L) · · · exp(i2π(n−1)x1
L) exp(i2π(n)x1

L)

exp(i2π(−n)x2
L) exp(i2π(1−n)x2

L) · · · exp(i2π(n−1)x2
L) exp(i2π(n)x2

L)

...
...

...

exp(i2π(−n)xm
L) exp(i2π(1−n)xm

L) · · · exp(i2π(n−1)xm
L) exp(i2π(n)xm

L)





c−n

c1−n

...

cn−1

cn


=



y1

y2

...

ym


(2.3)

where m > n. Each row in the first matrix contains all the basis functions used in the expansion

evaluated at a particular sample point. The first column vector, (c−n,c1−n, . . . ,cn−1,cn), contains

the unknown coefficients we are trying to determine. The column vector on the right-hand side

contains the actual function values at the sample points. We can then use a computer program,

such as NumPy [14], to solve for the coefficients with the least squares method.

2.1.2 3D Fourier Expansion

The same principles and techniques used in 1D Fourier expansions carry over into higher dimen-

sional spaces, but with the added complication of considering in what direction (T) the function is

periodic:

f (r+T) = f (r). (2.4)

As mentioned in section 1.2.1, for a function defined on a particular lattice (with lattice vectors a1,

a2, and a3) any period T can be expressed as

T = (m1a1,m2a2,m3a3) (2.5)

2.1 Trigonometric Star-Function Basis 15

where m1,m2,m3 ∈ Z. In order to approximate such a function with Fourier expansion, the basis

functions need to be periodic in T as well. In 1D, the factor i2πn/L ensured the basis functions

were all periodic in L. For higher dimensions, we will replace this factor with an as yet undefined

vector G:

g(r) = exp(iG · r), (2.6)

g(r+T) = exp(iG · (r+T)) = exp(i(G · r+G ·T)) = exp(iG · r)exp(iG ·T). (2.7)

Now, as long as we choose G such that G ·T = 2πn, where n ∈ Z, the last exponential in equation

2.7 reduces to one, and we have shown that

g(r+T) = g(r). (2.8)

To determine appropriate G vectors for a lattice with lattice vectors {a1,a2,a3}, reciprocal

lattice vectors {b1,b2,b3} are defined such that

ai ·bj = 2πδi j. (2.9)

While bj vectors can be expressly determined for any set of ai vectors, this is unnecessary for

determining appropriate G vectors as long as we express r, and hence T, in terms of lattice vectors.

Choosing

G = (n1b1,n2b2,n3b3), (2.10)

where n1,n2,n3 ∈ Z, and using equations 2.5 and 2.9 yields

G ·T = 2π(n1m1 +n2m2 +n3m3) = 2πn′, (2.11)

where n′ ∈ Z. Equation 2.11 shows that our condition for periodicity in T in equation 2.7 is met

by our choice of G in equation 2.10. By iterating through all permutations of three integers for n1,

n2, and n3, we develop a set of G vectors that account for the directions and frequencies in which

our function is periodic. We can now define our 3D Fourier expansion:

f (r)≈∑
G

cG exp(iG · r) =
N1

∑
−N1

N2

∑
−N2

N3

∑
−N3

cG exp(i2π(n1α1 +n2α2 +n3α3)) (2.12)

2.1 Trigonometric Star-Function Basis 16

where r in expressed in lattice coordinates: (α1a1,α2a2,α3a3), α1,α2,α3 ∈ R.

Electron band sampling in VASP is usually done in lattice coordinates anyway, so there is no

need to transform r after extracting it from VASP outputs. At this point, we can use equation 2.12

and sample points to populate the left-hand side matrix in equation 2.3 (each column correspond-

ing to a particular {n1,n2,n3}, and each row corresponding to a particular sample point). First,

however, we want to form star functions to enforce the rotational symmetry of the electron bands.

2.1.3 Star Functions

By approximating the electron bands using equation 2.12, we can ensure that the periodic nature of

the bands is maintained. However, the 3D Fourier expansion does nothing to enforce the rotational

symmetry of the bands. To enforce rotational symmetry, we collect all of the basis functions that

are symmetrically equivalent into one term with one coefficient. The resulting function is called a

star function, since each term contains multiple components that each point in a different direction.

As part of the DFT simulations, VASP outputs rotation matrices for the material being simu-

lated. The matrices represent all applicable rotation symmetries. By applying each matrix opera-

tion to a particular (n1,n2,n3) triplet (representing a unique G vector), we generate all equivalent

triplets and group them. The process is repeated with a new, unvisited (n1,n2,n3) triplet until

the desired number of unique triplet groups—each defining a star function—is achieved. Once

the star-functions are all determined, they can be used to populate a matrix (like in equation 2.3)

where each column contains a unique star function and the rows correspond to sample points. Least

squares methods can then be employed to solve for appropriate coefficients.

2.1.4 dftintegrate (Python module)

I assisted Matt Burbidge in assembling a Python 3 module to implement trigonometric star func-

tions as an interpolation scheme for electron band data from VASP. It includes data extraction from

2.2 Periodic Spline Basis 17

the VASP output files, fitting electron band data to a star function expansion, and evaluation and

integration of the fit. The module is available publicly in Python through pip (using the command

“pip install dftintegrate”).

Currently, dftintegrate does not employ analytic integration methods to integrate only a portion

of the domain. It instead integrates using a 3D equivalent of the rectangle method. The integral for

the entire domain, however, is easily obtained from the fit, since it is simply the c0 coefficient (all

other terms integrate to 0 over a full period).

The performance of this module on two toy problems and actual DFT data are reported in

Chapter 3.

2.2 Periodic Spline Basis

A spline interpolation method uses piece-wise polynomials to construct basis functions. The poly-

nomials are joined together at locations called knots in such a way that the overall basis function

retains a high level of smoothness between the individual polynomials. For example, the first and

second derivatives of adjacent polynomials can be equated at the knot that connects them. The left

of Figure 2.1 shows a 1D example where four 3rd-degree polynomials have been joined together.

There are many different ways to choose the degree of polynomials, where they are joined, etc.

Since the electron band functions that we are trying to interpolate are periodic, I will specifically

address spline basis functions that are also periodic.

In periodic spline basis functions, the knots, or adjoining points, are uniformly spaced. The

individual basis functions are all constructed using the same piece-wise polynomials, but shifted to

other knot intervals (illustrated by the right of graph in Figure 2.1). The number of basis functions

is equal to the number of unique knots specified; because we are dealing with periodic functions,

knots 1 and 6 in Figure 2.1 right are equivalent, implying we need five basis functions. Each basis

2.2 Periodic Spline Basis 18

Figure 2.1 Left: Example of a single periodic spline basis function. Each colored seg-
ment represents a distinct 3rd-degree polynomial. The marked points are the knots. Right:
Example of a set of 5 basis functions. Each is a shifted form of the piece-wise polynomial
on the left.

function has a d + 1 non-zero segments, or elements, where d is the degree of the polynomials

used.

In higher dimensions, there is a knot vector for each dimension. For example, the first knot

vector, (x1,x2,x3, . . . ,xN), would be equally spaced knots in the x dimension (with x1 and xN being

equivalent, since we are dealing with periodic basis functions). Similar vectors would be chosen for

the y and z dimensions. In one dimension, each basis function consisted of individual polynomial

segments for each unique knot. In higher dimensions, each unique combination of x, y, and z

coordinates corresponds to a distinct, multi-dimensional, polynomial, denoted an element. Further

details about generalizing to higher dimensions are beyond the scope of this paper.

To determine the appropriate coefficients for the interpolation, each element of the spline needs

a sample data-point. The sample points either coincide with the knots or centered between them

(depending on the parity of the degree of the polynomials being used). Therefore, particular set of

2.2 Periodic Spline Basis 19

knot vectors, combined with the degree parity, determines the sampling scheme for that interpola-

tion. In our case, we decide on the uniform sampling scheme and polynomial degree first, and then

we use these to determine the knot vector.

A Monkhorst-Pack grid [11] is generally used for sampling the Brillouin Zone in VASP and

many other DFT codes. Monkhorst-Pack grids are uniform in k-space, which is exactly what is

needed for periodic spline interpolations. However, VASP also uses the symmetry of the alloy to

reduce the uniform grid to a set of symmetrically distinct points. While this improves calculation

time by reducing the number of points evaluated, it also introduces difficulties in using a spline

interpolation, since the full uniform grid is needed for the spline interpolation. To recover a uniform

grid, we can reapply the symmetry operations to the reduced grid and include the new points this

produces. However, in non-SC structures this also introduces extraneous points not part of the

original Mankhorst-Pack grid. These extraneous points must removed from the sample before

proceeding. In order to avoid these complications during our spline interpolation testing phase, we

did not use the built in Monkhorst-Pack grid, as there is no option in VASP to disable the symmetry

reduction. Instead, we generated a Monkhorst-Pack sampling grid independently and used VASP

to evaluate the bands at each point explicitly.

2.2.1 ksi (Julia package)

Previous work had been done by Derek Thomas to produce a Python module for building spline

interpolations. The original version, used as a proof-of-concept, only accounted for up to two

dimensions and suffered from performance issues. Jeremy Jorgensen and I rebuilt the original

Python module in a Julia package called ksi and extended the code to account for up to three

dimensions. The Julia package is stored in a private GitHub repository owned by Dr. Gus Hart.

Chapter 3

Interpolation Results

3.1 Trigonometric Interpolation with dftintegrate

3.1.1 Single-valued, Smooth, Periodic Toy Function

The simplest case I tested the dftintegrate module on was the function:

W1(r) = exp(cos(2πx)+ cos(2πy)+ cos(2πz)). (3.1)

This function is convenient to work with since it is defined on a simple cubic lattice where {a1,a2,a3}=

{x̂, ŷ, ẑ}; the lattice coordinates are simply Cartesian coordinates. I generated two types of sample

data sets from this function for testing. The first (referred to as unreduced) is an even sampling

of the unit cell in all dimensions. For the second type (referred to as reduced), any symmetrically

equivalent duplicates were removed. This latter set more accurately reflects VASP DFT calcu-

lations, where the primary mode of sampling also involves a symmetry reduced set of points. I

tested each type of sampling scheme with varying degrees of coarseness, from a maximum of 3

divisions in each dimension to a maximum of more than 40. After formatting the data to be read

in by dftintegrate, I created a trigonometric star-function fit of equation 3.1 using each sampling

20

3.1 Trigonometric Interpolation with dftintegrate 21

100 101 102

N sample divisions in each dimension.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Ab
so

lu
te

 e
rr

or

Trigonometric Fit of W1 Function
Convergence of Full-Period Integral

Unreduced Points
Reduced Points

Figure 3.1 Full-period integral convergence of trigonometric fits of W1 generated with
increasing sample points.

scheme and density.

The first method I used to quantify the goodness of the fit was integrating over the entire unit

cell. The value of this integral for the fit is trivial to obtain; it is simply the c0 coefficient value

(since all other terms integrate to zero when integrating a full period). By integrating equation 3.1

in Mathematica exactly, I was able to calculate an absolute error. Figure 3.1 shows the absolute

error as a function of sample divisions in each dimension.

While the integral does converge to well below the 10−3 error limit we are looking for, this plot

shows two unexpected outcomes: 1) since the basis functions enforce all of the symmetry of the

toy function, we do not expect differences between fits generated with the reduced and unreduced

sample points; 2) we expect the absolute error to converge until double precision at 10−16, but

instead it plateaus at 10−8. We have not yet determined the reason for either of these outcomes.

3.1 Trigonometric Interpolation with dftintegrate 22

Figure 3.2 Left: High-symmetry paths of W1 and fits constructed with increasing num-
bers of sample points (n) in each dimension. Right: Corresponding Brillouin zone with
the high-symmetry points labeled [12].

Though these outcomes are somewhat disconcerting, the trigonometric fits still converged to well

below the target electron bands energy error threshold of 10−3 in both the reduced and unreduced

cases. As such, we continued with further testing of the code’s performance.

In addition to checking integral convergence, I plotted equation 3.1 and the fits made from

various sample densities evaluated along certain high-symmetry lines in the unit cell, shown in

Figure 3.2. This plot quite clearly shows the fit converging, with the n = 7 and n = 8 lines very

difficult to distinguish from the actual values of the W1 function. These fits were all generated

from the reduced sample data sets.

While further quantification is in order, figures 3.1 and 3.2 give quantitative and qualitative

support indicating that our dftintegrate package is reasonably accurate in approximating our toy

function.

3.1 Trigonometric Interpolation with dftintegrate 23

Figure 3.3 Left: Full-period integral convergence of trigonometric fits of crossed W1
functions generated with increasing sample points. Right: High-symmetry paths of
crossed W1 functions and fits constructed with increasing numbers of sample points (n)
in each dimension.

3.1.2 Multivalued, Smooth, Periodic Toy Function with Crossings

While the single valued W1 function is a useful test case to check that our interpolation method is

properly implemented, it misses the typical complexity of the electron bands, which are multival-

ued functions. To test the behavior of dftintegrate on multivalued functions, I used the regular W1

function, as defined in equation 3.1 and a shifted version:

W1′(r) =W1(r+(0.5,0.5,0.5)). (3.2)

For each sample point, the function returned values from both W1 and W1′ sorted from least to

greatest. This simulates VASP data, where the data at each point is an ascending list of values. We

fit all of the lower values with one set of coefficients, and then all the higher values with another

set. This will introduce cusps at any location the functions cross, so each interpolation is fitting a

non-smooth function.

3.1 Trigonometric Interpolation with dftintegrate 24

We did not expect the trigonometric star-function basis to fit these crossed functions as well as

the single-valued smooth function; however, we were hoping it would do well enough. The left

of Figure 3.3 shows that the convergence of a full period integral, though not as smooth as in the

single-valued case, still comes within 10−7 of the right answer. On the right, the actual function

and several fits are shown evaluated along various paths.

While there are still concerns, these results are encouraging for using the dftintegrate module

to represent actual DFT calculations. In the next section, however, I will show that in practice

our implementation of trigonometric star-function interpolants did not do as well as we hoped on

actual systems.

3.1.3 Aluminum Bands

When testing the trigonometric star-function basis on Aluminum (or any other real system) we

do not have an analytic solution to the integral of the energy bands available, so I will not use

convergence plots to quantify the effectiveness of the fit. To gain a qualitative idea of how well the

fit is representing the electron bands, I present spaghetti plots along high-symmetry lines. Figure

3.4 shows actual band values—obtained by fine sampling in VASP—compared with trigonometric

star-function interpolants of the lowest two bands built with symmetry-reduced sample grids of

varying coarseness.

The interpolation of the first band looks reasonable along the paths involving Γ. However, it is

quite apparent that the first band fit is not very good between points X, W, and L, and the interpola-

tion of the second band does not look very good along any path. In the toy problem in the previous

section, the trigonometric fit was able to handle the complexities introduced by the crossing. It

appears, however, that the actual bands—being much more than bi-valued—have too many cross-

ings and irregularities for the trigonometric basis to account for. The visual discrepancies between

the actual data and the fits show that the trigonometric interpolation implemented in dftintegrate is

3.2 Periodic Spline Interpolation with ksi 25

X W L K
FCC high-symmetry points

10

5

0

5

10

En
er

gy
 (m

eV
)

Trigonometric Fits of First Two Aluminum Bands
Higher Aluminum Bands Included for Perspective

VASP Data
n=4
n=6
n=8

Figure 3.4 Aluminum band data sampled along high-symmetry lines is shown compared
to various trigonometric fits. Each fit is constructed with a different symmetry-reduced
sample, where n is the number of sample divisions in each dimension.

unfit for any of our production-line code without some way to account for the crossings. Attempts

to address band crossings are address in section 3.3.

3.2 Periodic Spline Interpolation with ksi

In testing the implementation of the ksi Julia package, we started directly with spaghetti plots of

fitting Aluminum bands, as pictured in Figure 3.5. This interpolation was made using a 24×24×

24 sample grid and 22nd-degree polynomials (the highest degree allowed for this sample grid). The

interpolation matches the first two bands extremely well, especially compared to trigonometric fits

built using the same grid. On most paths, the fits of the third, fourth, and fifth bands do well.

3.3 Untangling Bands Attempts 26

Figure 3.5 Data sampled (N = 24) along high-symmetry lines from the first five Alu-
minum bands are shown compared to spline interpolations (left) and trigonometric inter-
polations (right). Maximum degree (d = 22) polynomials were used in the spline inter-
polations (courtesy of Jeremy Jorgenson).

However, they show ringing on the Γ to X and Γ to L paths. Presumably, this is also due to cusps

created when bands cross.

While the spline interpolation appears much more promising than the trigonometric interpola-

tion, the ringing will potentially introduce greater inaccuracy in the band integration than we can

tolerate. Addressing band crossings (section 3.3) will also be important before we can use the ksi

package in production-line code.

3.3 Untangling Bands Attempts

As mentioned in section 1.3.1, separating the bands into individual, single-valued functions by

sorting the energy values at each sample point from least to greatest is simple, but creates functions

that are not very smooth. If we could separate the bands into individual functions with greater

smoothness (like we can see on the spaghetti plots), our interpolation methods should be more

3.3 Untangling Bands Attempts 27

effective. Below, I discuss the different methods we used to try and untangle the electron bands

and effect our attempts had on the trigonometric interpolation.

3.3.1 SPD Decomposition

Our first attempt at untangling the bands used SPD decomposition. The SPD is in reference to S,

P, and D atomic orbitals. One of the values VASP can calculate is the projectability of each energy

value onto S, P, and D atomic orbitals. To visualize this, I created a spaghetti plot with varying

colors to represent the S and P projectability at each sample point (Aluminum does not have any D

electrons so there is no D projectability in this case). More cyan represents more S character, while

more magenta represents more P character. More yellow represents a lower S and P projectability.

The SPD decomposition spaghetti plot generally shows smooth color gradients that match the

smooth paths visually apparent in the original spaghetti plots (namely Figure 1.4). However, the

SPD character still varies too much between different parts of the same band to make it useful when

trying to untangle sparser sample sets. For example, the lowest band shows high S character near

Γ, but between X , W , and L, several other bands that obviously are not smoothly connected to the

lowest also show high S character, while the lowest band starts to exhibit much more P character

in that region. The plot discouraged us from using SPD decomposition to attempt untangling the

bands; if anything, it shows that SPD decomposition would lead to poor decisions when trying to

untangle the bands.

3.3.2 Path Tracing Between Sample Points

We next tried a very manual approach to untangling the bands. We took a symmetry-reduced set

of sample points and used VASP to sample finely in a straight path from one point to the next.

Figure 3.7 demonstrates this for the 10 reduced sample points of a 4x4x4 grid. By tracing the

paths visually from point to point, we determined which energy values likely belonged to the same

3.3 Untangling Bands Attempts 28

Figure 3.6 Aluminum band data sampled along high-symmetry lines is shown with the
color representing the S and P character of each sample point. The S and P character
depicted is relative to the maximum S and P character found in that band. For example,
in the lowest band the greatest S character is at Γ, while the greatest P character at X ,
making the points cyan and magenta respectively.

band. For example, the second energy values at k-point 6 and 10 should probably be grouped with

the lowest energy values for the other 8 sample points.

This approach was intended as a proof-of-concept that untangling the bands could help the

interpolation methods. (Since it requires very fine sampling between points and manual grouping

of energy values into individual bands, it is not a candidate for HT calculations even if it works.)

Figure 3.8 shows the VASP data, original interpolations with untangling attempts, and new inter-

polations after attempting to untangle the bands. None of the uncrossing attempts show significant

improvement over the original interpolations. While the uncrossed fits may better approach the ac-

tual band values near W , significant wiggling has been introduced near Γ. I tried many variations

3.3 Untangling Bands Attempts 29

1 2 3 4 5 6 7 8 9 10
K-point #

15

10

5

0

5

10

15
En

er
gy

 (m
eV

)
Paths for the first 4 bands between 10 irreducible k-points

4x4x4 offset sample grid.

Figure 3.7 The electron bands were sampled densely between the 10 irreducible k-points
of a 4x4x4 sample grid of aluminum. The paths indicate that the second value at k-points
six and ten could be grouped with the lowest value at all other k-points to make a smooth
first band.

and combination of the untangling for the 6×6×6 and 8×8×8 grids, none of which performed

better than what is pictured here.

3.3 Untangling Bands Attempts 30

Figure 3.8 Densely sampled high-symmetry paths are compared to trigonometric inter-
polations generated using coarse sample data. The dashed lines are the interpolations
after attempting to uncross the bands using path tracing.

Chapter 4

Conclusions and Future Work

Neither of the interpolation schemes we investigated was able to represent the complexity of the

multivalued electron band functions in a satisfactory way. While the trigonometric interpolation

approximated test functions well qualitatively (looking at the spaghetti plots) and quantitatively

(considered the integral convergence), the large visual discrepancy between the VASP data and

interpolation in Figure 3.4 destroys any hope of applying this method directly to DFT sample data.

The spline interpolation shows more promise than the trigonometric interpolation, but still shows

significant oscillations in Figure 3.5, likely due to the crossings and cusps inherent in the bands’

multivalued nature. These oscillations will introduce more error into the total band energy than we

can tolerate.

We tried to mitigate the issues caused by the multivalued nature of the bands by reordering

the function values at each sample point. Our attempts to uncross the bands, both by explicitly

sampling paths between sample points and by using SPD decomposition, were unsuccessful. We

received no insights on reordering the bands (manually or automatically) from the SPD decompo-

sition spaghetti plots. While it was not a feasible HT solution, tracing paths between sample points

appeared to indicate which sample points had function values that needed to be reordered. How-

ever, Figure 3.8 gave no indication that reordering the function values made any improvements to

31

32

the trigonometric fit.

Since none of our efforts in using an interpolation scheme to increase efficiency and accuracy

have yielded favorable results, we are exploring new avenues. In particular, Agapito et. al. [15]

have done work in Quantum Espresso (another DFT simulation program similar to VASP) that

greatly reduces the size of the matrix used to calculate band energy sample points while still re-

taining accuracy up to a sufficiently high energy level. Their approach would allow us to more

densely sample the bands while decreasing computation time. We are currently trying to integrate

their method into our current HT codes for further testing.

Bibliography

[1] M. G. Initiative, “About the Materials Genome Initiative,” https://www.mgi.gov/about (Ac-

cessed December 1, 2015).

[2] S. Curtarolo et al., “AFLOW: An automatic framework for high-throughput materials discov-

ery,” Computational Materials Science 58, 218–226 (2012).

[3] S. Curtarolo et al., “AFLOWLIB.ORG: A distributed materials properties repository from

high-throughput ab initio calculations,” Computational Materials Science 58, 227–235

(2012).

[4] C. for Material Genomics, “Automatic - FLOW for Materials Discovery,” http://www.

aflowlib.org/ (Accessed April 16, 2016).

[5] H. T. Stokes, Solid State Physics: for Advanced Undergraduate Students, 4 ed. (Brigham

Young University, Provo, UT, 2007).

[6] “Bravais lattice,” https://en.wikipedia.org/wiki/Bravais_lattice (Accessed December 5,

2015).

[7] J. William D. Callister, Materials Science and Engineering: An Introduction, 6 ed. (John

Wiley & Sons, Inc., Hoboken, NJ, 2003), p. 68.

33

https://www.mgi.gov/about
https://www.mgi.gov/about
http://www.aflowlib.org/
http://www.aflowlib.org/
http://www.aflowlib.org/
http://www.aflowlib.org/
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice

BIBLIOGRAPHY 34

[8] J. William D. Callister, Materials Science and Engineering: An Introduction, 6 ed. (John

Wiley & Sons, Inc., Hoboken, NJ, 2003), p. 274.

[9] U. W. Computational Materials Physics, “What is VASP?,” https://www.vasp.at/index.php/

about-vasp/59-about-vasp (Accessed December 5, 2015).

[10] D. S. Sholl and J. A. Stechel, Density Functional Theory: A Practical Introduction (John

Wiley & Sons, Inc., Hoboken, NJ, 2009).

[11] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev.

B 13, 5188–5192 (1976).

[12] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations:

Challenges and tools,” Computational Materials Science 49, 299–312 (2010).

[13] D. S. Durfee, Physics phor Phynatics, 1 ed. (Brigham Young University, Provo, UT, 2006),

pp. 48–50.

[14] “NumPy v1.10 Manual,” http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/

numpy.linalg.lstsq.html (Accessed January 9, 2016).

[15] L. A. Agapito, A. Ferretti, A. Calzolari, S. Curtarolo, and M. Buongiorno Nardelli, “Effective

and accurate representation of extended Bloch states on finite Hilbert spaces,” Phys. Rev. B

88, 165127 (2013).

https://www.vasp.at/index.php/about-vasp/59-about-vasp
https://www.vasp.at/index.php/about-vasp/59-about-vasp
https://www.vasp.at/index.php/about-vasp/59-about-vasp
https://www.vasp.at/index.php/about-vasp/59-about-vasp
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.linalg.lstsq.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.linalg.lstsq.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.linalg.lstsq.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.linalg.lstsq.html

Index

Alloy, 3
intermetallic compound, 3
solid solution, 3

Bravais lattices, 2
Brillouin zone, 9, 19

Density Functional Theory (DFT), 5
dftintegrate, 16, 20

Efficiency, 6
Electron bands

origin, 8
sampling, 16
SPD decomposition, 27
uncrossing, 26

Fourier expansion
1D, 13
3D, 14

Ground-state energy, 3

High-throughput, 1

Integration, 6, 21
with trigonometric interpolation, 16

K-space, 9
ksi, 19, 25

Materials Genome Initiative, 1

Periodic, 2
electron bands, 11
splines, 17

Spaghetti plots, 9

Splines, 17
Star functions, 16
Symmetry, 2, 16

Thermodynamic stability, 3

VASP, 6

35

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation and Overview
	1.2 Alloy Simulations
	1.2.1 Crystalline Structure
	1.2.2 Thermodynamic Stability
	1.2.3 Density Functional Theory (DFT)
	1.2.4 DFT Accuracy and Efficiency Factors

	1.3 Electron Bands
	1.3.1 Implications of Multivalued Bands
	1.3.2 Periodicity of Bands

	2 Interpolation Methods
	2.1 Trigonometric Star-Function Basis
	2.1.1 1D Fourier Expansion
	2.1.2 3D Fourier Expansion
	2.1.3 Star Functions
	2.1.4 dftintegrate (Python module)

	2.2 Periodic Spline Basis
	2.2.1 ksi (Julia package)

	3 Interpolation Results
	3.1 Trigonometric Interpolation with dftintegrate
	3.1.1 Single-valued, Smooth, Periodic Toy Function
	3.1.2 Multivalued, Smooth, Periodic Toy Function with Crossings
	3.1.3 Aluminum Bands

	3.2 Periodic Spline Interpolation with ksi
	3.3 Untangling Bands Attempts
	3.3.1 SPD Decomposition
	3.3.2 Path Tracing Between Sample Points

	4 Conclusions and Future Work
	Bibliography
	Index

