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ABSTRACT

Linear and Nonlinear Properties of Pancharatnam’s Phase in Polarization Optics

Hyrum Richardson
Department of Physics and Astronomy, BYU

Bachelor of Science

Pancharatnam’s phase is the additional phase beyond the dynamical phase of electromagnetic
radiation that arises due to polarization evolution, and although it is a fundamental property of
polarization, the linear and nonlinear properties it exhibits are not well understood or discussed. A
computer simulation extendable to any polarization circuit was developed that makes Pancharat-
nam’s phase more intuitive and understandable. Two types of interferometers were tested, a sym-
metric Sagnac interferometer and a Mach-Zehnder interferometer, to measure the linearity and
nonlinearity of Pancharatnam’s phase. The simulation and experimental results were compared
and shown to match closely. The linearity of Pancharatnam’s phase can be predicted and measured,
and our model is accurate to the physical phenomenon and useful for interferometry applications.

Keywords: Light Polarization, Pancharatnam’s phase, Berry’s Phase
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Chapter 1

Introduction

1.1 Motivation

Pancharatnam’s phase is a fundamental property of light polarization that is usually ignored in

simple systems. Pancharatnam’s Phase is a geometric phase shift that arises due to a change in

polarization. This phase shift happens independently of the dynamical phase (spatial or temporal

phase), so in systems where the optical path length changes, the geometric phase shift is not no-

ticeable. However, Pancharatnam’s Phase allows for phase control of fixed path length systems.

As shown in this research, that control can have nonlinear characteristics, which is of particular

interest in fast optical switching applications.

Pancharatnam’s phase is not widely considered in optical theory and not often included in op-

tics textbooks. In systems where optical path length changes or the change in polarization is not

significant the effect from Pancharatnam’s phase is not consequential enough to consider. This

research seeks to expand understanding of the properties of Pancharatnam’s phase, create an ani-

mation that makes the characteristics of the phase more intuitive, and compare our simulation to

established models and experimental data.

1



1.2 Background 2

The mechanics of Pancharatnam’s phase will be discussed in detail in Section 1.2. Chapter 2

details the computer model that we built. Chapter 3 describes the interferometers constructed to

measure Pancharatnam’s phase, and Chapter 4 shows the results of our tests and establishes the

validity of the computer model in predicting Pancharatnam’s phase.

1.2 Background

Electromagnetic radiation oscillates in the plane perpendicular to the direction of propagation. The

direction of that oscillation is the polarization of the light. The polarization can be represented in a

few different methods which are important to our research. The general form for the electric field

of light propagating in the z-direction is given by

~E(z, t) = (Exx̂+Eyeiδ ŷ)eiφ (1.1)

where δ represents the phase difference between the electric field’s x and y components (Ex and

Ey), and φ represents the dynamical phase as the wave propagates.

(a) Elliptical Polarization (b) Linear Polarization (c) Circular Polarization

Figure 1.1 Three example polarization states.

The particular state of polarization depends on the relationship between the Ex, Ey and δ terms

of the electric field equation. The general case for polarization is an ellipse as shown in Figure

1.1(a). Linear and circular polarization (Figure 1.1(b) and Figure 1.1(c)) can be considered
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special cases of the general case. The angle between the major axis of the ellipse and the x or y

axis is determined by
1
2

tan−1

(
2ExEy cosδ

E2
x −E2

y

)
(1.2)

The minor axis is always 90◦ from the major axis. The ellipticity is then determined by the ra-

tio between the minor and major axes. The special cases occur when the ellipticity factor is 0,

corresponding to linear polarization (δ = 0,π) or 1, corresponding to circular polarization (δ =

π/2).

The polarization state can also be represented by the normalized Jones vector Ex

Eyeiδ

 (1.3)

with the terms representing x̂ and ŷ componenets from Equation 1.1. Any change in polarization

can be represented by a Jones matrix operating on the polarization state vector.

A waveplate is an optical device constructed out of a birefringent material that alters the po-

larization. The difference in index of refraction depending on incident polarization (birefringence)

creates a phase shift between horizontal and vertical components of the electric field. The overall

change in polarization depends on the angle between the optical axis, the orientation that has a

lower index of refraction. A waveplate can be generalized in the Jones matrix notation

Mξ (θ) =

 cos2 θ + eiξ sin2
θ sinθ cosθ − eiξ sinθ cosθ

sinθ cosθ − eiξ sinθ cosθ sin2
θ + eiξ cos2 θ

 (1.4)

where ξ represents the phase shift between the fast and slow axes of the waveplate. Quarter-wave

plates (ξ = π/2) and half-wave plates (ξ = π) are commonly used in optical systems to alter

polarization. Linear polarizers, which use absorption rather than birefringence, can use the same

matrix when ξ = 0. The effect from multiple optical devices can be computed by multiplying

the matrices representing them in reverse order. We use this method in Section 1.4 to show the

existence of Pancharatnam’s phase.
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A more visual way of representing polarization is on a Poincarè sphere, a useful graphical

tool for mapping unique polarization states and geometrical phase. The Poincaré sphere is an

abstract space where each point on a unit sphere represents a unique polarization state. A paper

from Vyas establishes the connection between Stoke’s parameters and a spherical interpretation

of a polarization space. [1] The polarization orientation and ellipticity are represented as points

on the surface of the sphere. The poles represent left-handed circularly polarized light (LCP)

and right-handed circularly polarized light (RCP) in Figure 1.2, and the equator represents linear

polarization at any angle. Any other point is an elliptical polarization state. Any two antipodal

(directly opposite) points are orthogonal and won’t interfere.

Figure 1.2 Poincaré Sphere (Image Source:goo.gl/Hb1mnk)

The Poincaré sphere gives us a three-dimensional space to visually represent any change in

polarization. As an example, RCP light passes through a quarter-wave plate with fast-axis π

2 from

horizontal which is represented by pt. A in Figure 1.3. By Jones matrices, we can compute the

resultant polarization:

1√
2

Mπ/2 (π/2)

 1

i

=
i√
2

 1

1

 (1.5)

The light after the waveplate is linearly polarized 45◦ from horizontal (equal parts horizontal and
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vertical). The i√
2

term in 1.5 is unimportant to the overall polarization. This process can be

represented on a Poincaré sphere as the great arc between the two polarization points represented

as the arc between pt. A and pt. B in Figure 1.3. The arc associated with a waveplate depends

on the phase properties of the waveplate (ξ ) and the angle between the fast axis and the electric

field of the incident light (θ ). The orientation of the polarization change (great arc) depends on the

angle θ .

Figure 1.3 Example of Waveplate effect
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1.3 Geometric Phase

In a 1988 paper titled "The Geometric Phase", Physicist Sir Michael Berry discussed the general

properties of geometric phase. [2] A simple example of geometric phase is a Foucault pendulum.

The pendulum oscillates as earth rotates around it, and its rotation from the plane of its original

oscillation is determined by its path around the axis of rotation. After one whole cycle (24 hours),

the total geometric phase shift is 360◦ for a pendulum at the poles, 0◦ at the equator, and some

other angle for any point in between.

Geometric phase is present in a number of systems involving a cyclic adiabatic process. When

these principles are applied to optical systems, the geometric phase is called Pancharatnam’s phase.

1.4 Pancharatnam’s phase

In 1956, S. Pancharatnam showed that a geometric phase separate from the dynamical phase arises

when an electromagnetic wave undergoes a polarization circuit. [3] Here we define a polarization

circuit as the cyclic evolution (change) of polarization that begins and ends at the same polarization

state. Figure 1.4 gives an example of a polarization circuit. Note that the solid angle enclosed by

path ABCA is equal to that enclosed by ACBA. In other words, the direction of the polarization

circuit is arbitrary.

By Pancharatanam’s theorem [3], the phase shift given a polarization circuit is

γ =−1
2

Ω(A,B,C) (1.6)

where Ω(A,B,C) is the solid angle of the spherical triangle (spherical excess) enclosed by points

A, B, and C on the Poincaré sphere (Figure 1.4). [4] We will use γ to represent Pancharatnam’s

phase in our figures. It is proportional to the solid angle Ω (area on the surface of the sphere

enclosed by the great arcs between polarization states). When the electromagnetic wave makes a
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Figure 1.4 Example of a polarization circuit on a Poincaré sphere (A, B, and C represent
three distinct polarization states)

complete circuit, the geometrical phase shift is equal to solid angle enclosed by the polarization

circuit. We will use this geometric interpretation of Pancharatnam’s phase to build an intuitive

model for Pancharatnam’s phase. [4]



Chapter 2

Computer Model

One focus of this research is to build a geometric model of Pancharatnam’s phase that could sim-

ulate any polarization circuit. By using a Poincaré sphere, the properties of Pancharatnam’s phase

can be made more intuitive and visual. As discussed in Ch. 1, the solid angle between three

polarization states mapped onto a unit sphere represents the geometric phase shift of a beam of

light passing through those polarizations. In this chapter, we discuss the construction of a visual

computer simulation and its predictions.

Mathematica was used to build the working geometric model of a polarization circuit. The

three polarization states are placed on a unit sphere with vectors pointing from the origin to each

point. The cross product of a pair of two vectors defines a plane that contains the two vectors

and the great circle between them. The intersection between the space enclosed by three planes

(defined by three permutative pairs of vectors), and the surface of the sphere gives the solid angle.

This area represents Pancharatnam’s phase γ (Figure 1.4).

By changing the position of one of the points, the enclosed solid angle will change. The

properties of Pancharatnam’s phase can be easily observed by the solid angle on the sphere. The

solid angle’s (γ) rate of change will depend on how the polarization circuit changes. Changing the

position of a point represents the rotation of a polarizer or waveplate. For clarity, the great circles

8
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(a) Linear Circuit (b) Solid Angle Graph

Figure 2.1 Example of linear polarization circuit. (a) Linear circuit represented on
Poincaré sphere. Angle φ increases as pt. D moves counterclockwise (as viewed from
above). (b) Graph of the solid angle’s dependence on φ .

(or great arcs) between each point have been included, along with arrows indicating the direction

of the polarization change (e.g. between pt. C and pt. A in Figure 2.1(a)) . It should be noted

again that the direction of the change is arbitrary as the area enclosed doesn’t change. The two

polarization circuits that were experimentally observed in Chapterr̃efch:mm are here modeled and

simulated to predict the properties of Pancharatnam’s phase.

First, a linear polarization circuit was modeled (Figure 2.1(a)). A linearly polarized beam

(point A) passes through a quarter-wave plate with fast-axis 45◦ from vertical (pt. A to pt. B),

then through a half-wave plate (pt. B to pt. C) at angle φ from vertical. Finally, another quarter-

wave plate with fast-axis 45◦ from vertical (the opposite direction) returns the polarization to the

original polarization (pt. C to pt. A) (also see Figure 3.1(a)). As the half-wave plate is rotated, pt.

D moves around the equator. As pt. D moves (φ increases), the solid angle γ increases with linear
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(a) Nonlinear Circuit (b) Solid Angle Graph

Figure 2.2 Example of nonlinear polarization circuit. (a) Linear circuit represented on
Poincaré sphere. Angle φ increases as pt. D moves counterclockwise (as viewed from
above). Nonlinearity depends on angle θ . (b) Graph of the solid angle’s dependence on
φ .

dependence on φ (Figure 2.1(b)) [5].

The results of this model match the Jones matrix prediction of the same polarization circuit.

(Mπ/2 represents a quarter-wave plate and Mπ represents a half-wave plate)

Mπ/2(π/4)Mπ(φ)Mπ/2(−π/4)

 1

0

=

 e2iφ

0

 (2.1)

The phase shift of the resultant wave compared to the incident wave is Pancharatnam’s phase γ .

The Jones matrix prediction shows that γ ∝ φ which matches our computer model in Figure 2.1(b).

Next, an example of a nonlinear polarization circuit was modeled (Figure 2.2(a)). A linearly

polarized beam is split by a beam splitter. Half of the beam passes through a half-wave plate with

fast-axis 45◦ from normal (pt. A to pt. B). The other beam passes through a half-wave plate with



11

Figure 2.3 Graph of nonlinear Pancharatnam’s phase with values of θ (see Figure 2.2(a))

(a) (b) (c) (d) (e)

Figure 2.4 Stills from animation for θ = π

8 from the attached .gif [6]

fast-axis 45◦ from normal tuned to a different wavelength than the beam (for example a 808 nm

half-wave plate for a 633 nm beam). This causes the polarization to overshoot or undershoot the

equator (pt. A to pt. C). The beams are recombined and passed through a rotating linear polarizer

(pt. B to pt. D and pt. C to pt. D)(also see Figure 3.1(b)). As pt. D moves (φ increases), γ increases

as shown in Figure 2.2(b). Note that if φ is decreasing instead of increasing, the direction of the

change in area is simply reversed, but the properties are effectively the same.

In the nonlinear circuit, the angle θ (∠BC in 2.2(a)) has a significant effect on the properties

of the phase shift. If θ increases to π

2 , then the phase shift is the same as the linear circuit shown

in Figure 2.1(a). As θ decreases, the nonlinear effect is more pronounced (Figure 2.3).
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The animation of this process makes the nonlinear nature of Pancharatnam’s phase more ap-

parent and intuitive. Figure 2.4 shows a few stills of the animation. The stills shown are evenly

spaced in time. The rapid increase in area from Figure 2.4(b) to Figure 2.4(d) coincides with the

steep slope of the π

2 to 3π

2 range in 2.3. A link to a GIF of the animation has been included with

this paper. [6]

Our geometric model matches theoretical findings of other papers using a slightly different

methodology. [4, 7] Our model was intended to be more visual than others, but it nonetheless

agrees with other predictions.



Chapter 3

Methods and Materials

This chapter discusses the experimental methods we used to determine our model’s accuracy and

usefulness. We constructed a Mach-Zehnder and Sagnac interferometer, and tested each with a

linear and nonlinear polarization circuit. A Helium-Neon laser at of 633nm was the primary laser

for testing. All data is from the He-Ne 633nm laser except where indicated. First we describe the

Mach-Zehnder interferometer, with a linear and nonlinear polarization circuit. Then we describe

the Sagnac interferometer, with a linear and nonlinear polarization circuit.

The Mach-Zehnder interferometer allowed for the most customization of polarization path.

In the linear Mach-Zehnder case (Figure 3.1(a)), only one path changed polarization. Path A’s

(a) Linear Mach-Zehnder (b) Nonlinear Mach-Zehnder

Figure 3.1 Mach-Zehnder Interferometers (BS = Beam Splitter, λ

2 = Half-wave plate, λ

4
= Quarter-wave plate)

13
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polarization is unchanged. Path B passes through a quarter-wave plate with fast-axis 45◦ from

vertical, then through a half-wave plate on a rotating motor. Finally, it passes another quarter-wave

plate with fast-axis 45◦ from vertical (the opposite direction). The two paths are recombined, then

observed on a CCD.

The nonlinear Mach-Zehnder case requires both paths to change polarization and utilizes two

different kinds of half-wave plates. In the nonlinear Mach-Zehnder case (Figure 3.1(b)), Path A

passes through a half-wave plate tuned to 633nm. Path B passes through a half-wave plate designed

for 808nm, making the polarization elliptical. Then both passed through the same linear polarizer

to allow the two paths to interfere, then the pattern was observed on a CCD. The angle θ (see

Figure 2.2(a) between the resulting polarization of path B after the 808nm half-wave plate and the

linear polarization plane (equator) of the Poincaré sphere is found by calculating the effect of the

waveplate for an incident wavelength different from the wavelength for which is was designed.

The waveplate’s phase effect on the polarization is described by the equation:

∆φ =
2π

λ
∆nd (3.1)

where ∆φ is the resultant phase shift, ∆n is the difference between the fast- and slow-axis’s indices

of refraction, and d is the width of the wave-plate. [8] ∆φ is set to π for a waveplate. Solving for

∆nd and substituting ∆nd into the equation again for a wavelength of 633nm and solving for ∆φ

gives:

∆φ =
2π

633nm
808nm

2
=

808
633

π (3.2)

Equation (3.2) refers to the total polarization shift which overshoots the linear polarization equator.

We define θ as the angle between the plane and the point which is:

θ = ∆φ −π = (
808
633
−1)π ≈ 0.87rad (3.3)
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(a) Linear Sagnac (b) Linear Sagnac model

Figure 3.2 Sagnac interferometer and model (BS = Beam Splitter, λ

2 = Half-wave plate,
A = Path A, B = Path B)

This angle θ determines the nonlinearity of Pancharatnam’s phase as the linear polarizer in

Figure 3.1(b) rotates.

The Sagnac interferometers (Figure 3.3(a)) proved more stable for accurate measurements. In

the linear Sagnac interferometer, both beams pass through the same quarter-wave plate oriented 45◦

from vertical but in opposite directions. One path is pt. A to pt. B in Figure 3.2(b) (to LCP pole)

and the other is pt. A to pt. C (to RCP pole). Then both paths are brought to the same polarization

at pt. D and observed on a CCD camera. Pancharatnam’s phase γ has the same characteristics as

the linear Mach-Zehnder interferometer.

In the nonlinear setup, both paths of 633nm light pass through a half-wave plate designed for

808nm (with polarization shift defined in 3.2 above), but in opposite directions. One path is pt. A

to pt. B in Figure 3.3(b)(passing through the RCP pole) and the other is Pt. A to Pt. C (passing
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(a) Nonlinear Sagnac (b) Nonlinear Sagnac model

Figure 3.3 Sagnac interferometer and model (BS = Beam Splitter, λ

2 = Half-wave plate,
A = Path A, B = Path B)
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Figure 3.4 Example of Bitmap processing procedure

through the LCP pole). Then both paths are brought to the same polarization at pt. D and observed

on a CCD camera. The solid angle γ is simply twice that of Figure 2.2(a) for the same angle θ .

The same nonlinear characteristics are present.

The data from each of these interferometers is presented in 4, but due to software and other

limitations described below, we needed a unique method of determined the characteristics of the

phase shift for each interferometer. The software associated with the camera used to detect inter-

ference patterns produced bitmap frames of the pattern. Although the interference pattern shift is

visible, a way to measure the phase shift numerically was needed. One of the greatest difficulties

in the measurement process was the change in intensity as the analyzer rotated. As angle φ reaches

π (refer to Figure 3.3(b)), Pt. D and Pt. B become antipodal and the intensity from that arm of the

interferometer goes to zero. We saturated our camera by increasing the total intensity of the laser

in order to get as much data as possible when the intensity dropped.

A unique data processing procedure that could extrapolate the phase from a changing intensity

interference pattern was needed. Each frame of the interference pattern was run through a custom

built program that took a pixel brightness measurement (analogous to intensity) at the same set of

pixels for each picture in the series. We selected the area indicated by the red line in Figure 3.4 to

measure on each frame. The line is four pixels wide, and the average of the two horizontal pixels

inside the line was associated with a vertical pixel coordinate. By lining up the vertical placement
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(a) Data points with cosine wave regression (b) Peak position vs time graph (arb. units)

Figure 3.5

along the x-axis of a new graph, a view of the interference waveform can be seen (Figure 3.5(a)).

A general cosine function is defined

f (x) = a+bcos(kx−d) (3.4)

with a, b, and d dependent and with k fixed. Wavenumber k was set equal to the mean of the

wavenumbers of the cosine wave in a few example frames. This fits a cosine wave close to the

data points for each frame, but maintains the same period between frames. This assumption was

made because the path length and alignment of the setup is unchanged, and so the period of the

interference pattern remains unchanged. (see A.2 for the Matlab code used for this process)

The y-coordinate of each peak was recorded for each frame. The result is a peak coordinate vs.

polarizer angle as the polarizer in the optical setup rotates. The movement of the peak is directly

related to the phase shift from Pancharatnam’s phase. Figure 3.5(b) shows an example of one of

these graphs that was acquired during the testing process. This particular graph is not meaningful,

but it illustrates clearly what the graph represents. It graphs the position of one particular intensity

peak, the one that starts at 215 pixels down the red line in Figure 3.4. As time progressed (polarizer

rotated), the peak shifted up to about pixel 150 and then down to 230 and so on.



Chapter 4

Results and Discussion

In this chapter, we discuss the results of the interometer measurements and their significance. First,

we discuss the linear measurements that served as a proof of concept for our measurement system

and Pancharatnam’s phase. Then we discuss the data from the nonlinear interferometers. Finally,

we compare these results with our simulation and discuss the implications of our research.

4.1 Linear Interferometer Data

The first tests were used to verify the existence of Pancharatnam’s phase and check the accuracy

of our data analysis procedure. The first tests were done using an Argon-Ion laser with the lin-

ear Mach-Zehnder interferometer and 514nm waveplates to match the laser (Figure 3.1(a)). The

intensity was measured at particular points for different waveplate rotation speeds.

The data collected was fit to a cosine wave regression. Figure 4.1(a) shows the data collected

as the rotating motor ran with 3 V while Figure 4.1(b) shows the data with 6 V to the motor. The

graph shows the intensity at a single point on a time graph. Note that time is analogous to the

angle of the waveplate in the motor φ . The 3 V and 6 V data have different periods, which is to be

expected because the waveplate is rotating faster with a larger voltage across the motor. Table 4.1

19



4.1 Linear Interferometer Data 20

(a) 3 volt (b) 6 volt

Figure 4.1

shows the three different speeds that were tested and the measured results.

Table 4.1 Linear Interferometer Results: Column 1 refers to the voltage across the motor
turning the waveplate. Column 2 is the observed period of the motor divided by 2 (as the
observed period for a half rotation of the half-wave plate is equivalent to one rotation on
the Poincare sphere). Column 3 is the period measured by CCD (see Figure 4.1). Column
4 is the percent error between the theoretical and experimental values.

Voltage Waveplate period (s) Measured period (s) % error

3 6 5.81 3.17

6 2.4 2.59 7.92

8 1.7 1.42 16.47

Much of the error in these measurements was attributed to inconsistency in the power supply

of the Argon-Ion laser. In both Figures 4.1(a) and 4.1(b), many of the data points are far from the

cosine function. This leads to a lower accuracy in our measured period numbers in 4.1. Never-

theless, this data verifies the existence of Pancharatnam’s phase. We have shown in our computer

simulation 2.1(b) that the phase shift is directly related to the angle of polarizer. This matches our

interferometry data. A linear relationship between polarizer angle and phase shift will give a sine

function of intensity at any given point.
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4.2 Nonlinear Interferometer Data

The best data for the nonlinear case of Pancharatnam’s phase came from the nonlinear Mach-

Zehnder interferometer (Figure 3.1(b)). Figure 4.2(a) presents an important characteristic of Pan-

charatnam’s phase. This data shows the position of a single peak through two full cycles of the

polarizer, demonstrating the characteristic that Pancharatnam’s phase continues to build rather than

cycling back to zero. A comparison between the theoretical model (Figure 3.3(b)) and the exper-

imental data (Figure 4.2(a) is shown in Figure 4.2. This graph isolates a single period of the

polarizer and shows the closeness of our model to the actual phenomonon despite the noise in the

experimental data.

(a) Peak position over multiple cycles (ex-

perimental data)

(b) Superposition of theoretical prediction

(line) and experimental data (dots)

Figure 4.2 Data from Nonlinear Mach-Zehnder interferometer

By observing the position of all of the interference pattern peaks, we can get a better idea of

the accuracy of our model. This is shown in Figure 4.3. Each vertical line of four dots represents

a single frame from the camera, and each dot represents the position of an intensity peak of the

interference pattern. In the data, some inconsistency of image collection procedure is apparent.

We measured the actual rotation of the analyzer and we found that while it is close to the repeating

period of the data, it doesn’t match due to the fluctuations discussed. We found that the framerate of

our image acquisition software fluctuated over the course of data collection. For example, it would
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Figure 4.3 Experimental data (black dots) compared with simulation (red line)

record from 6-8 frames per second depending on the computer speed with which it could save

the images. The linear case demonstrated that the pattern should oscillate strictly periodically,

so we should expect that a constant polarizer speed should give us a periodic pattern. To more

accurately measure the validity of our model, in this graph we scaled and repeated the simulation

line according to the average period of the data to eliminate error from our image system.

The data from the interferometer matches the simulation well. Many of the fluctuations in the

interferometer data are repeated vertically which we can attribute to error in our image collection

system. For example, between 2π and 3π , the experimental data dips below the prediction, but the

same dip is repeated vertically for all 4 peaks in the interference pattern. This indicates to us that

the error was caused by the image acquisition system (perhaps the framerate sped up during that

time) or a vibration in the table which would effect the whole interference pattern.

Despite these inconsistencies, many parts of our data match the prediction made by our simu-

lation very well. From 0 to π in Figure 4.3 demonstrates the accuracy of our model.
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4.3 Conclusion

These experiments verified previous measurements of Pancharatnam’s phase, in both the linear and

nonlinear cases. A geometric simulation of Pancharatnam’s phase that can apply to any arbitrary

circuit was created and shown to predict well the nonlinearity of the phase change. The data

collected is consistent with the theory presented.

The simulation that we created provides a visual for Pancharatnam’s phase that builds intuition

and increases understanding of this important phenomenon. We found that this model is useful for

predicting phase changes of any kind of polarization circuit, even those with characteristics that

are less predictable. The novel method of detecting the phase variation using peak intensities from

a cosine curve fit has important implications and can be reused in future research.

Pancharatnam’s phase exists in any system that changes polarization. A better understanding of

its properties can improve interferometry research by allowing researchers to monitor and control

phase in ways besides changing path length. We hope this research can be continued by further

investigating these properties and will contribute to an ever improving understanding of light.



Appendix A

Source Code

A.1 Mathematica

The code for creating the nonlinear animation as described in Section 2 and cited as [6].

1 Clear["`*"]

2 SetDirectory[NotebookDirectory[]];

3 j = \[Pi] (808/633 − 1);

4 q1 = {Sin[\[Pi]/2] Cos[0], Sin [\[Pi]/2] Sin [0],

5 Cos[\[Pi ]/2]}; q2 = {Sin[j] Cos[0], Sin[ j ] Sin [0], Cos[j ]};

6 q3[k_] = {Sin[\[Pi]/2] Cos[k], Sin [\[Pi]/2] Sin[k ], Cos[\[Pi ]/2]};

7

8 o = {0, 0, 0};

9

10 list2 = Table[{k,

11 RegionMeasure[

12 DiscretizeRegion [

13 ImplicitRegion [

14 x^2 + y^2 + z^2 == 1 &&

15 If [k < \[Pi ], {x, y, z}.Cross[q1, q2] <

24
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16 0 && {x, y, z}.Cross[q1, q3[k ]] >

17 0 && {x, y, z}.Cross[q2, q3[k ]] < 0,

18 y > 0 &&

19 z > 0 || {x, y, z}.Cross[q1, q2] >

20 0 && {x, y, z}.Cross[q1, q3[k ]] <

21 0 && {x, y, z}.Cross[q2, q3[k ]] < 0], {x, y,

22 z }]]]}, {k, \[Pi]/64, 2 \[Pi] − \[Pi]/64, \[Pi ]/32}];

23

24 PoincareSphere2 =

25 Graphics3D[{Opacity[0.1],

26 Sphere[{0, 0, 0}, 0.98], {Opacity [0.5],

27 Polygon[{{−1.1, −1.1, 0}, {1.1, −1.1, 0}, {1.1, 1.1, 0}, {−1.1,

28 1.1, 0}}]}}, ImageSize −> Large];

29 StoC[{r_, \[Theta]_, \[Phi]_}] := {r Sin [\[Theta]] Cos[\[Phi ]],

30 r Sin [\[Theta]] Sin [\[Phi ]], r Cos[\[Theta]]};

31 greatcircle2 [{\[Theta]1_, \[Phi]1_}, {\[Theta]2_, \[Phi]2_}] :=

32 Module[{}, c = StoC[{1, \[Theta]1, \[Phi ]1}];

33 d = StoC[{1, \[Theta]2, \[Phi ]2}];

34 q = Normalize[d − Dot[d, c]/Dot[c, c] c ];

35 ParametricPlot3D[Cos[w] c + Sin[w] q, {w, 0, 2 Pi}]]

36 point [\[Theta]_, \[Phi]_] =

37 Point[{Sin[\[Theta]] Cos[\[Phi ]], Sin [\[Theta]] Sin [\[Phi ]],

38 Cos[\[Theta ]]}];

39 points2 =

40 Graphics3D[{PointSize[.02], {point[j , 0], point [\[Pi ]/2, 0],

41 point [\[Pi ]/2, k ], point [\[Pi ]/2, \[Pi ]]}}];

42 labels2 =

43 Graphics3D[{Text[H, {1.15, 0, 0}], Text[V, {−1.15, 0, 0}],

44 Text[LCP, {0, 0, 1.15}], Text[RCP, {0, 0, −1.15}]}];

45 arrows2 =
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46 Graphics3D[{Thickness[Small], Arrowheads[Large],

47 Arrow[{o, #}]}] & /@ {q1, q2, q3[k]};

48

49 pics2 = Table[

50 Show[PoincareSphere2, points2, labels2 , arrows2,

51 greatcircle2 [{ j , 0}, {\[Pi ]/2, k}],

52 ContourPlot3D[

53 x^2 + y^2 + z^2 == 1, {x, −1, 1}, {y, −1, 1}, {z, −1, 1},

54 ContourStyle −> {Opacity[0.3], Green},

55 RegionFunction −>

56 Function[{x, y, z},

57 If [k < \[Pi ], {x, y, z}.Cross[q1, q2] <

58 0 && {x, y, z}.Cross[q1, q3[k ]] >

59 0 && {x, y, z}.Cross[q2, q3[k ]] < 0,

60 y > 0 &&

61 z > 0 || {x, y, z}.Cross[q1, q2] >

62 0 && {x, y, z}.Cross[q1, q3[k ]] <

63 0 && {x, y, z}.Cross[q2, q3[k ]] < 0]],

64 Mesh −> None]], {k, \[Pi]/64, 2 \[Pi] − \[Pi]/64, \[Pi ]/32}];

65 Export["PancharatnamFinalNL.gif",

66 Table[{Show[pics2[[i ]]],

67 Show[ListLinePlot[ list2 , ImageSize −> Large],

68 Graphics[{PointSize[Large], Red, Point[{ list2 [[ i ]]}]}]]}, {i , 1,

69 64, 1}]];

70 Manipulate[{Show[pics2[[i ]]],

71 Show[ListLinePlot[ list2 , ImageSize −> Large],

72 Graphics[{PointSize[Large], Red, Point[{ list2 [[ i ]]}]}]]}, {i , 1,

73 64, 1}]
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A.2 Matlab

The code for Matlab analysis program referred to in Section 3.

1 clear ;

2 close all ;

3

4 temp = xlsread(' .\MZNL1data.csv');

5 d=�ipud(temp(2:end,2:end));

6

7 modelfun0 = @(b,x) b(1) + b(2)*cos(b(3)*x+b(4));

8

9 imax=10;

10 k=zeros(imax,1);

11

12 for i=1:imax

13

14 beta0 = [mean(d(i ,:) ) , max(d(i ,:) )−min(d(i,:)) , 2*pi/150, 0];

15

16 mdl0 = �tnlm(1: length(d),d( i ,:) ,modelfun0,beta0);

17

18 k( i )=mdl0.Coe�cients {3,1};

19

20 end

21

22 kavg = mean(k);

23

24 modelfun = @(b,x) b(1) + b(2)*cos(kavg*x+b(3));

25

26 framenum = min(size(d));

27 param=zeros(framenum,3);
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28

29 for i=1:framenum

30

31 beta = [mean(d(i ,:) ) , max(d(i ,:) )−min(d(i,:)) , 0];

32

33 mdl= �tnlm(1:length(d),d( i ,:) ,modelfun,beta);

34

35 param(i ,:) =mdl.Coe�cients {:,1};

36 end

37

38 x=1:length(d);

39 pks=zeros(framenum,10);

40 locs=zeros(framenum,10);

41

42 for i=1:framenum;

43

44 [pk, loc ] = �ndpeaks(modelfun(param(i,:) ,x)) ;

45

46 pks( i ,1: length(pk))=pk;

47 locs ( i ,1: length( loc))=loc;

48 end

49

50 for i=10:−1:1

51 if sum(locs (:, i )) == 0

52 locs=locs (:,1: i−1);

53 end

54 end

55

56 simdata = xlsread( ' simulationdata .csv ') ;

57
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58 close all ;

59

60 sim808 = �nd(simdata<0.8686 & simdata>0.8684);

61 sim808x = simdata(sim808+length(simdata));

62 sim808y = simdata(sim808+2*length(simdata));

63

64 shift = 8;

65 sim808y(1: shift ) = sim808y(1:shift ) + 2*pi;

66 sim808y = circshift (sim808y,−shift) ;

67

68 a=di�( locs (:) ) ;

69 b=intersect( �nd (a<−10),�nd(a>−400));

70 yrepeat = round(mean(−1*a(b)));

71

72 c=di�(b);

73 c(c > 100) = [];

74 xrepeat = mean(c);

75

76 sim808x = sim808x * xrepeat/(2*pi);

77 sim808y = sim808y * yrepeat/(2*pi);

78 run( ' eqline .m')

79

80 eqshift =shift+28;

81 eqy(1: eqshift ) = eqy(1: eqshift )+pi;

82 eqy = circshift (eqy,[0,− eqshift ]) ;

83 eqy=eqy−eqy(1,1);

84

85 eqx=eqx*xrepeat/pi;

86 eqx=eqx+sim808x(1,1);

87 eqy=eqy*yrepeat/pi;
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88 eqy=eqy+sim808y(1,1);

89

90 hold on

91 for i=0:5

92 for j=0:3

93 %plot(sim808x+i*xrepeat,sim808y+j*yrepeat,'black')

94 plot (eqx+i*xrepeat,eqy+j*yrepeat,'black ')

95 end

96 end

97

98

99 plot ( locs , 'black . ')

100 hl = xlabel( 'Analyzer angle (\varphi) (rad) ') ;

101 ylabel ( 'Phase shift (\gamma_P) (rad)')

102

103 set(hl , ' Interpreter ' , ' latex ')

104 for i=0:7

105 xtickloc ( i+1) = i*xrepeat;

106 end

107 set(gca, 'XTick', xtickloc )

108 xticks = ['0 ' ; ' \pi ' ; '2\pi ' ; '3\pi ' ; '4\pi ' ; '5\pi ' ; '6\pi ' ; '7\pi ' ; '8\pi ' ;];

109 set(gca, 'XTickLabels', xticks )

110

111 for i=0:7

112 ytickloc ( i+1) = i*yrepeat;

113 end

114 set(gca, 'YTick', ytickloc )

115 yticks = ['0 ' ; '2\pi ' ; '4\pi ' ; '6\pi ' ; '8\pi ' ;];

116 set(gca, 'YTickLabels', yticks )

117 hold o�
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