
Statistically Weighted Orbital Elements for Kuiper Belt Objects

Steven Maggard

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Darin Ragozzine, Advisor

Department of Physics and Astronomy

Brigham Young University

Copyright © 2018 Steven Maggard

All Rights Reserved

ABSTRACT

Statistically Weighted Orbital Elements for Kuiper Belt Objects

Steven Maggard
Department of Physics and Astronomy, BYU

Bachelor of Science

Thousands of asteroid-like objects reside in the Kuiper Belt Region. For accurate dynamical
classification, the precision of their orbits needs rigorously tested. Using an analysis pipeline we
created, we generated 30 statistically-weighted orbital clones for over 2000 Kuiper Belt Objects
(KBOs). These orbits are integrated backwards in time 50 Myr. We created a database from the
propagated orbits, from which we calculated the proper orbital elements for each KBO. We used the
method established by Ragozzine and Brown (2007) to determine each KBOs relation to the dwarf
planet Haumea. Currently, we have more than tripled the number of Haumea Family Members
established by Ragozzine and Brown (2007). We conclude that other collisional families can be
found using similar methods applied to Haumea and the orbital database we created.

Keywords: Haumea, Collisional Family, Kuiper Belt, KBOs, TNOs

ACKNOWLEDGMENTS

Professor Chip Galloway, for instilling in me a solid understanding of calculus. Without such, I

could never have delved into the realm of physics. Drs. Denise Stephens, Eric Hintz, and Joseph

Moody for guiding a complete novice in the field of astronomy. My rather large family. If I could

survive six sisters, few things can present much difficulty. Last but not least, Dr. Darin Ragozzine;

for guiding my way as I journeyed into the world of dynamical astronomy.

Contents

Table of Contents iv

List of Figures v

1 Introduction 1
1.1 Propagating Orbital Elements . 2
1.2 The Haumea Collisional Family . 4
1.3 Overview . 4

2 Methods 6
2.1 Open ORB . 6

2.1.1 Adjusting Weights of Observations . 7
2.1.2 Statistical Ranging . 7
2.1.3 Least Squares Solution (LSL) . 8
2.1.4 Covariance Sampling . 8
2.1.5 Virtual Observation Markov Chain Monte Carlo (VOMCMC) 8

2.2 REBOUND . 9
2.3 Haumea Family Members calculations . 10

3 Results and Conclusions 16
3.1 Database of Orbital Data . 16
3.2 Identifying all Haumea Family Members . 17
3.3 Conclusions . 17
3.4 Directions for further work . 19

Appendix A BUNSHIN 20

Bibliography 42

Index 43

iv

List of Figures

1.1 Multiple lines with slight variations can match a given set of data. Likewise, we

use a set of orbital clones to find the parameters to match the observational data for

every KBO. For clarity, this plot contains no important data apart from highlighting

why we used orbital clones. 3

2.1 This is a simple example of how REBOUND takes the positions of objects and

propagates their orbits over a specified time. These orbits are plotted in Cartesian

coordinates with the Sun as the origin. 9

2.2 E5453 is a known Haumea family member. This plot takes the conserved proper

orbital elements of the orbital clones based on observations of E5453 and plots

them in orbital element space. Darker, concentrated areas indicate where more

orbital clones had the same calculated proper elements. Haumea family members

fall within a small, compacted region. (Ragozzine & Brown 2007) 11

2.3 2014 LO28 is one of the new HFMs identified by our efforts. Its orbital elements

fall withing expected parameters. 12

2.4 The conserved proper elements, minimum ∆v, minimum δv, and histograms for

each component for E5453 . 14

2.5 The conserved proper elements, minimum ∆v, minimum δv, and histograms for

each component for 2014 LO28 . 15

v

Chapter 1

Introduction

From an early age, most individuals are familiar with the planets that orbit the Sun. Few, however,

learn about the Kuiper Belt region without taking an active effort to delve into astronomy.

The Kuiper Belt is a region of our solar system that extends from Neptune’s orbit to about fifty

astronomical units from our Sun (AU–the average distance between the Earth and the Sun). Thou-

sands of asteroid-like bodies–dubbed Kuiper Belt Objects (KBOs)–reside here. The categorization

of Pluto as a dwarf planet arose from the discovery of KBOs with comparable size to the former

ninth planet. The current list of dwarf planets in the Kuiper Belt includes: Pluto, Eris, Makemake,

and Haumea.

Haumea is of special interest. This dwarf planet is shaped like a football and spins very rapidly. It

completes one rotation on its axis in a mere four hours. This rapid spin originates from a collisional

impact during the early stages of the solar system. This collision flung shards of Haumea’s surface

throughout the Kuiper Belt. These shards, along with Haumea, comprise the Haumea collisional

family. In 2007, Ragozzine and Brown published a paper and identified seven KBOs as part of this

collisional family.

The motivation for this thesis builds upon their efforts as well as setting a foundation to better

understand the Kuiper Belt and the asteroid-like objects found in the region. We calculate the

1

1.1 Propagating Orbital Elements 2

orbits for each KBO and identify how accurate each calculated orbit is. To compensate for small

gravitational perturbations over the age of the Solar system, we take the calculated orbits and project,

or integrate, them backwards in time. We catalog these integrations to use in dynamical analysis

and demonstrate how to use the database by identifying several candidate Haumea Family members.

The process of calculating orbits from observational date to storing integrated orbits comprises the

BUNSHIN analysis pipeline we created for our research.

1.1 Propagating Orbital Elements

Orbits consist of several elements. With respect to this research, the semi-major axis, eccentricity,

and inclination are of greatest importance. The semi-major axis is the element that describes the

size of an orbit. Often, units of AU are used to describe the size of the orbits of bodies found in

our solar system. For example: Neptune’s orbit has a semi-major axis of 30 AU. The eccentricity

is a dimensionless value that describes the shape of the orbit. The closer the eccentricity is to

zero, the more circular the orbit. As the eccentricity approaches one, the orbit becomes closer

to elongated oval. If the eccentricity is equal to or greater than one, we are now dealing with an

unbound parabolic or hyperbolic orbit. The inclination refers to the angle between the plane of the

KBO’ s orbit compared with the plane of Earth’s orbit.

The Minor Planet Center gathers observational data on every sub-planetary body observed in our

solar system and compiles the data into a database. They also calculate the orbit for each object, but

fail to specify the uncertainties of the calculations. Thus, the accuracy and reliability of the orbits

are unknown. Additionally, the orbital elements (i.e. the semi-major axis, eccentricity, and orbital

angles) are not constant, but vary over time. Without further refinement of the data, dynamical

classification can never reach an acceptable level of precision.

Of the methods available for orbital calculation, we have chosen to use the Open ORB program.

1.1 Propagating Orbital Elements 3

4.5 5.0 5.5 6.0 6.5 7.0

0.005

0.010

0.015

0.020
Lines with slight differences can fit the same data points

Figure 1.1 Multiple lines with slight variations can match a given set of data. Likewise,
we use a set of orbital clones to find the parameters to match the observational data for
every KBO. For clarity, this plot contains no important data apart from highlighting why
we used orbital clones.

Mikael Granvik et al.(Granvik et al. 2009) developed the OpenORB program as a method to

rigorously calculate orbits for objects in our solar system. This program generates a specified

number of orbital clones, or orbits that match observational data, and calculates the statistical weight

of each clone. From these statistical weights, we can determine the accuracy of any orbit used for

dynamical classification. Fig 1.1 is a simplified expression of how multiple lines can fit the same set

of data. Observational data are the recorded position of objects at specific points in time and each

orbital clone has a calculated orbit that moves the object through the each recorded position.

With refined orbtital calculations, we can project the paths of these orbits backwards through

time. REBOUND (Rein & Liu 2012) is a program developed to project, or integrate, orbits over a

designated period of time. We used REBOUND to integrate the orbital clones 50 Myr to calculate

the proper elements. Proper elements are the averaged, osculating value of the orbital elements over

1.2 The Haumea Collisional Family 4

a period of at least 50 Myr. The likelihood of finding collisional families increases as more KBO’s

converge to a single point within the history of the solar system.

Using OpenOrb and REBOUND, we created our own database of statistically weighted proper

elements for multiple KBO’s that can be used for dynamical classification. We demonstrate the

potential this database has by building off the efforts made by Darin Ragozzine and Mike Brown

(Ragozzine & Brown 2007). In their publication, they identified seven KBOs that originated from

the surface of the dwarf planet Haumea. With our efforts, we have tripled the number of known

Haumea family members. Other students at BYU use our database to find other collisonal families

in the Kuiper Belt.

1.2 The Haumea Collisional Family

Haumea is a dwarf planet found in the Kuiper Belt region with a shape that resembles a football.

(Ragozzine & Brown 2007) This KBO is one of the fastest rotating objects in our solar system,

completing one rotation in just four hours. The rapid spin and peculiar shape are due to a collisional

impact during the early stages of the solar system that sent shards of Haumea’s surface flying

throughout the Kuiper Belt. Ragozzine and Brown identified seven Haumea Family Members

(HFMs). Initially, candidate family members were classified due to strong water-ice spectra.

Ragozzine and Brown proved that methods developed for classifying collisional families in the

asteroid belt apply to the Kuiper Belt with minor modifications. In the decade since their publication,

no new family members have been identified apart from the efforts of this thesis.

1.3 Overview

In Chapter 2, I elaborate on the methods we used to generate our database of orbital elements.

OpenORB uses a sequence of orbital calculations and statistical methods to generate orbital clones.

1.3 Overview 5

REBOUND takes these orbital clones and orbital data for the Sun and other giant planets from

NASA’s Horizon database and integrates their orbits 50 Myr. Since the effect of terrestrial planets

is minimal on the Kuiper Belt, they were excluded from the integrations to improve speed and

efficiency of the REBOUND program. Proper elements were calculated by averaging the oscillating

orbital elements. Others, such as the Asteroids Dynamic Site (AstDys) (Milani & Knezevic 2000),

calculate proper elements using Fourier transforms. Our simplified method produces results within

two standard deviations of theirs, which is sufficiently accurate for astronomy calculations. The

analytical pipeline is applied to every KBO with data held by the Minor Planet Center.

In Chapter 3, I show how we used the database to analyze several Kuiper Belt Objects. From

the database we generate, we apply the methods from Ragozzine and Brown (2007) to determine all

candidate Haumea Family Members.

Chapter 2

Methods

In this section, I discuss the methods we used to generate proper elements for every KBO. Open

ORB takes the observational data recorded by the Minor Planet Center as input and produces 30

statistically weighted orbital clones. REBOUND takes those clones and integrates, or projects, the

orbits back 50 Myr while accounting for the gravitational influence of the largest bodies in the solar

system. These steps form the BUNSHIN pipeline that we use to map out the Kuiper Belt.

2.1 Open ORB

Open ORB is a program created by Granvik et al. (2009) that calculates orbits from data collected

by the Minor Planet Center (MPC) through a sequence of Bayesian methods. Each method solves

the n-body problem which remains highly difficult to solve analytically. We discuss the preparations

in using this program and the process of each method Open Orb employs in the following sections.

6

2.1 Open ORB 7

2.1.1 Adjusting Weights of Observations

Surprisingly, MPC data does not have associated uncertainties. By uncertainty, we refer to the

precision of the KBO’s recorded position in each observation. In other words, data taken from a

primitive telescope from the late 19th century has the same established precision as data taken by

our modern day telescopes.

This thesis relies heavily on the efforts of Veres et al. (2017) which uses large global studies to

estimate the uncertainties as a function of observatory and time where each observation was taken.

We adjusted the weights of each observation from the Minor Planet Center based on this catalog.

2.1.2 Statistical Ranging

The first method Open Orb uses to calculate orbits generates 200 possible orbits using Markov

Chain Monte Carlo statistical ranging, also referred to simply as ranging. This technique takes two

random data points from the observation file to generate an orbital clone. These initial orbital clones

lack high degrees of accuracy, but narrow down the boundaries for the orbital elements considerably.

This technique can be compared to the variational principle used in quantum mechanics. The

variational principle uses known wave functions with adjustable paramaters to find an upper bound

to the energy level of the ground state of an electron. Likewise, statistical ranging uses a numerical

method to establish the boundaries for each orbital element.

Unlike the following processes, statistical ranging requires the observational arc to be much

smaller than the full data sets. We found the most efficient observational arc to use was ∼1 year,

but there were several cases that needed modified manually. The method to determine an acceptable

subset of the observational data to use for this initial process is ongoing.

2.1 Open ORB 8

2.1.3 Least Squares Solution (LSL)

The next process uses a linear least squares method to determine the best orbit of these estimates.

The 200 sample orbits generated by ranging and the full observational data set are taken as inputs

by LSL to generate a best fit orbit. If all we wanted was a likely set of orbital parameters, we would

stop here. But, the goal of our efforts is to establish a rigorous method to determine uncertainties in

orbital propagation.

Several KBOs include data from 1950 and earlier. When initially running the LSL method to

determine a best fit from the ranging generated orbits, the process would conclude all the data must

be outliers. To overcome this statistical error, we split the LSL process into two steps.

First, we created an observational data file to feed into the process. We took the original

observations and ignored all data retroactively added to the KBO’s data set. We fed this subset of

observations and the ranging orbits into the LSL process to generate a best fit orbit.

Then, we reran the LSL process and used the entire data set and the LSL orbit as inputs to

generate a best fit orbit for the entire data set.

2.1.4 Covariance Sampling

The orbit selected by LSL is run through a covariance matrix process that perturbs the orbit to assess

if the perturbed orbit satisfies the observational data. If the perturbed orbit still matches the data, it

is selected as a sample orbit. Once this process establishes 100 orbits that vary slightly from the

linear best fit, BUNSHIN moves to the last process in Open Orb.

2.1.5 Virtual Observation Markov Chain Monte Carlo (VOMCMC)

The final step uses a Virtual Observation Markov Chain Monte Carlo method that produces 30

orbital clones and determines the probability of each one. This method follows similar patterns

2.2 REBOUND 9

for ranging, but with better initial positions established for the numerical calculations. In effect,

VOMCMC produces a Bayesian posterior probability distribution for each parameter by assigning

each clone a weight. These weights are a measure of how well a particular clone fits the data. At

this point, we can integrate this orbits backwards in time.

2.2 REBOUND

Hanno Rein developed REBOUND, an open source orbital integrator. Orbital dynamics require

us to acknowledge several orbital elements as we propagate an orbit in time as can be seen in Fiq

2.1. This figure illustrates a simple simulation using REBOUND that uses NASA’s HORIZON

data of multiple KBOs. Each KBO has an individual inclination, semi-major axis, and eccentricity.

While there are the other orientation angles to consider, this thesis places emphasis on the elements

conserved beyond short time scales. In the following sections, the semi-major axis is described in

terms of AU, the inclination in terms of degrees from the orbital plane of Earth, and the eccentricity

is a dimensionless ratio always less than one for ellipses.

Figure 2.1 This is a simple example of how REBOUND takes the positions of objects
and propagates their orbits over a specified time. These orbits are plotted in Cartesian
coordinates with the Sun as the origin.

2.3 Haumea Family Members calculations 10

Taking the calculated orbital elements from Open Orb, we ran integrations for a simulated 50

Myr for every clone of each KBO. The proper elements are determined from averaging the values

over this period. Fig 2.2 plots the proper elements of E5453, a known Haumea family member, in

orbital element space. Ragozzine and Brown 2007 illustrated how the Haumea collisional family all

fall within a specific region of orbital element space. Fig 2.3 take plots the results of KBO 2014

LO28. Further investigation of this object almost guarantees it originated from Haumea, but it was

originally due to its orbital elements falling with specific parameters that prompted me to make it a

focus of my research.

For KBOs that were likely to be collisional family members, we pushed the integrations back to

the beginning of the solar system to analyze if there was indeed a point of convergence sometime in

the past.

2.3 Haumea Family Members calculations

Ragozzine and Brown 2007 established the method to determine the dynamical kick of each HFM

from the collisional center. Recently, Benjamin Proudfoot and Darin Ragozzine have refined this

process with a more accurate collisional center. The dynamical kick corresponds to the change in

orbital velocity from the primitive surface of Haumea to its present orbit.

Using this new location and the established method, we ran calculations to determine ∆v for

each candidate HFM.

With orbital mechanics, having multiple objects in one system impacts the orbital parameters.

Large, relatively close bodies can perturb the orbits of nearby objects. For the Kuiper Belt, Neptune

has the greatest sway in affecting the orbits of KBOs. We compensate for this by calculating the δv,

the resonate dynamical kick that allows the eccentricity and inclination to vary while conserving the

Tisserand as can be seen from the following equations,

2.3 Haumea Family Members calculations 11

Figure 2.2 E5453 is a known Haumea family member. This plot takes the conserved
proper orbital elements of the orbital clones based on observations of E5453 and plots
them in orbital element space. Darker, concentrated areas indicate where more orbital
clones had the same calculated proper elements. Haumea family members fall within a
small, compacted region. (Ragozzine & Brown 2007)

2.3 Haumea Family Members calculations 12

Figure 2.3 2014 LO28 is one of the new HFMs identified by our efforts. Its orbital
elements fall withing expected parameters.

2.3 Haumea Family Members calculations 13

T =
aN

a
+2cos(i− iN)

√
aN

a
(1− e2). (2.1)

We used the calculated resonate and non-resonate dynamical kicks to determine the probability

of each KBO’s relation to the dwarf planet Haumea. It is left to other astronomers to research other

statistical probabilities to determine the true shattered remains of Haumea’s primoridial surface.

A sample of these calculations are found in the following figures. Fig. 2.4 shows the results for

a known HFM and Fig. 2.5 shows the results for a newly identified HFM.

2.3 Haumea Family Members calculations 14

Figure 2.4 The conserved proper elements, minimum ∆v, minimum δv, and histograms
for each component for E5453

2.3 Haumea Family Members calculations 15

Figure 2.5 The conserved proper elements, minimum ∆v, minimum δv, and histograms
for each component for 2014 LO28

Chapter 3

Results and Conclusions

In Chapter 2, we described the process in which we generated a database of proper orbital elements

(semi-major axis, eccentricty, and inclination) for every KBO whose observational data is archived

be the Minor Planet Center. We demonstrate an example of how to use the database and what

conclusions we can draw from our efforts.

3.1 Database of Orbital Data

As demonstrated with the identification of more HFMs in Sect. 2.4, the database generated by

our pipeline at the end of Sect. 2.3 can be used for dynamical classification of every KBO in our

solar system. For each KBO in our database, we have generated 30 statistically weighted orbital

clones which were integrated over 50 Myr. The orbital elements and Cartesian coordinates for these

KBOS can be extracted from any point in within the integration period thanks to the nature of the

Simulation Archive bin files generated by REBOUND (Sect. 2.3).

16

3.2 Identifying all Haumea Family Members 17

3.2 Identifying all Haumea Family Members

We identify several KBOs that have been proven as originating from the dwarf planet Haumea. For

each KBO, Table 3.1 gives the proper semi-major axis, eccentricity, and inclination after all the

weighted orbital clones have been consolidated into one set of orbital values. The dynamical kick

and resonant dynamical kick of each clone are likewise consolidated into one set of values.

The dynamical kick, ∆v, measures the change in orbital velocity experienced by a KBO with

the primordial collision of Haumea as the origin. The resonant dynamical kick, δv, likewise

determines the change in orbital velocity but also takes into account the gravitational perturbations

from Neptune. KBO K14HJ9Z, the thirteenth KBO in Table 3.1 illustrates the importance of

accounting for Neptunian resonances. The standard dynamical kick for this object is far too large

to be considered part of the Haumea Family. The story changes, however, after we adjust a few

parameters due to Neptune’s influence and we can readily see that this KBO must originate from

the dwarf planet. By contrast, KBO K14F43P could not have originated from Haumea’s surface

despite a possible resonance with Neptune. The lowest resonate dynamical kick for this object is

just outside the acceptable velocity dispersion for the collisional family.

3.3 Conclusions

The BUNSHIN pipeline created a database that contains orbital elements of known KBOs from

today to 50 Myr in the past. With the bin files created by the REBOUND program, we can know the

orbit of each KBO at any point of time recorded in our database. Using the orbital data, we calculated

the proper elements for every KBO. Building on the efforts of Ragozzine and Brown (2007), we

identified many more Haumea Family members beyond the original seven KBOs identified. As

mentioned in Chapter 1, the MPC and AstDys have both calculated orbital elements for KBOs.

The former calculates the osculating, or instantaneous, elements while the latter uses a sequence of

3.3 Conclusions 18

Table 3.1 With the BUNSHIN pipeline, the proper elements, ∆v, and δv are calculated.
The ∆v values represent the dynamical kick the KBO would have experienced if it had
originated from Haumea. The δv values use the same calculations, but with an extra
parameter for the possibility of an orbital resonance with Neptune. Haumea family
members cannot have a greater dynamical kick than 150 m s−1. (Ragozzine & Brown
2007)

KBO Name Semi-Major Axis (AU) Eccentricity Inclination(◦) ∆v(m s−1) δv (m s−1)

f6400 44.2104 0.12897 27.8994 75.9467 75.6248

U8193 43.3493 0.13427 27.1999 83.0167 18.0226

V5530 41.8081 0.13734 27.3826 145.6948 83.7463

K08Q43B 41.7579 0.09237 27.6340 117.5445 76.0852

c6723 44.3302 0.13578 28.0004 96.9874 91.1670

K10OC7O 42.2779 0.13547 26.8373 130.5444 48.5941

K10VK1K 43.1682 0.10665 27.9888 82.9455 49.1014

K11Uf2K 40.7253 0.10131 27.1585 149.4930 134.6936

K13U15Q 42.7597 0.12018 27.2276 37.7317 22.3339

l1954 43.3273 0.12530 28.7764 132.1368 131.8391

K14F43P 44.8442 0.15148 28.5321 171.2117 152.1488

K14F71T 43.5650 0.15424 28.5317 205.7718 148.7843

K14HJ9Z 43.1395 0.16607 26.6267 250.3192 19.7613

K14L28O 42.9248 0.11291 27.2592 16.6888 13.3396

K14Qi1W 44.2854 0.10624 27.9889 139.2483 65.3407

K14UM4F 45.4034 0.13028 26.6249 130.8308 122.8445

K14X40S 42.3395 0.16251 27.5320 253.5191 103.5059

K14Y50B 41.6956 0.10022 26.9927 101.7069 85.0416

K15AS1J 43.2888 0.13746 28.1587 125.3066 97.4022

K15FY5N 41.8586 0.08886 27.6065 127.0085 69.9292

3.4 Directions for further work 19

Fourier transforms to calculate the proper elements. Our analysis pipeline consistently falls within

acceptable limits of standard deviations when compared with the MPC and AstDys assessments.

While our orbital element calculations fall in acceptable values, one of the key initial motivations

for research is determining the uncertainties for the proper elements. We are currently finishing

these final calculations for each KBO and will publish our results within the next few months. Our

preliminary values for these calculated uncertainties tend towards 0.2 AU in semi-major axis, 0.001

in eccentricity, and 0.0005 degrees in inclination.

3.4 Directions for further work

Further work consists of identifying other collisional families in the Kuiper Belt and acquiring the

spectra to completely prove the origin of candidate HFMs classified by this thesis. Any dynamicist

can access the archival data at any point in time for any KBO to use in their efforts to dynamically

classify the Kuiper Belt Region.

Appendix A

BUNSHIN

This code, BUNSHIN, takes its name from the Japanese term "bunshin no jutsu" which translates to

"clone technique," quite fitting for a code that generates thousands of orbital clones. The code we

use for our research is given below.

from subprocess import call

import os

import time

import math

import rebound

import pandas

import smtplib

import numpy as np

from sys import argv

kboname = argv[1] #The Linux script will feed in each KBO

20

21

time.sleep(4)

print("Beginning BUNSHIN for: "+kboname)

time.sleep(4)

#Establishing the time needed to run Open Orb for each KBO

starttime=time.time()

#setting the save path for the output

destination = 'output/'+kboname

call(['mkdir',destination])

out=os.chdir('./'+destination)

Cleaning out old data.

call(['rm',kboname+'.ranging.orb'])

call(['rm',kboname+'.lsl.orb'])

call(['rm',kboname+'.step.lsl.orb'])

call(['rm',kboname+'.cov.sampling.orb'])

call(['rm',kboname+'.vomcmc30.orb'])

call(['rm','problematic_observation_sets.des'])

#getting observational data

mpcfile=kboname+'.mpc'

call(['cp','/fslhome/subok114/MPCdata/mpcfiles/'+mpcfile,mpcfile])

if os.path.exists(mpcfile):

22

print('Observational Data Acquired')

time.sleep(1)

else:

print('Observational Data Not Found')

time.sleep(1)

#Preparing the directory to run OpenOrb

call('/fslhome/subok114/python_codes/OrbitalPreparation.sh')

#converting the file into mpc3 format

mpc3file=kboname+'.mpc3'

os.system('/fslhome/subok114/oorb-master/main/oorb --task=tompc3

--obs-in='+mpcfile+' --obs-out='+mpc3file)

##

corrects uncertainties in MPC3 data files

using Veres et al. 2017 results in Tables 2, 3, 4, and 5

mpc3weightedfile = kboname+'.w.mpc3'

#getting range to write file

beta = sum(1 for line in open(mpc3file))

mpc3w = open(mpc3weightedfile,'w')

23

fileobject = open(mpc3file)

changelist = fileobject.read().split('\n')

#print(changelist)

newstring=[]

for index in range(beta):

year =changelist[index][21:25]

month = changelist[index][21:25]

#Table 2

if changelist[index].endswith('0703') & int(year) < 2014:

if int(year) == 2013 & int(month) >= 9:

RAerr="0.800"

Decerr="0.800"

else:

RAerr="1.000"

Decerr="1.000"

elif changelist[index].endswith('0703') & int(year) >= 2014:

RAerr="0.800"

Decerr="0.800"

elif changelist[index].endswith('0691') & int(year) < 2003:

RAerr="0.600"

Decerr="0.600"

elif changelist[index].endswith('0691') & int(year) >= 2003:

RAerr="0.500"

24

Decerr="0.500"

elif changelist[index].endswith('0644') & int(year) < 2004:

if int(year) == 2003 & int(month) >= 9:

RAerr="0.400"

Decerr="0.400"

else:

RAerr="0.600"

Decerr="0.600"

elif changelist[index].endswith('0644') & int(year) >= 2004:

RAerr="0.400"

Decerr="0.400"

#from table 3

elif changelist[index].endswith('0704'):

RAerr="1.000"

Decerr="1.000"

elif changelist[index].endswith('0G96'):

RAerr="0.500"

Decerr="0.500"

elif changelist[index].endswith('0F51'):

RAerr="0.200"

Decerr="0.200"

elif changelist[index].endswith('0G45'):

RAerr="0.600"

Decerr="0.600"

elif changelist[index].endswith('0699'):

25

RAerr="0.800"

Decerr="0.800"

elif changelist[index].endswith('0D29'):

RAerr="0.750"

Decerr="0.750"

elif changelist[index].endswith('0C51'):

RAerr="1.000"

Decerr="1.000"

elif changelist[index].endswith('0E12'):

RAerr="0.750"

Decerr="0.750"

elif changelist[index].endswith('0608'):

RAerr="0.600"

Decerr="0.600"

elif changelist[index].endswith('0J75'):

RAerr="1.000"

Decerr="1.000"

#from table 4

elif changelist[index].endswith('0645'):

RAerr="0.300"

Decerr="0.300"

elif changelist[index].endswith('0673'):

RAerr="0.300"

Decerr="0.300"

elif changelist[index].endswith('0689'):

26

RAerr="0.500"

Decerr="0.500"

elif changelist[index].endswith('0950'):

RAerr="0.500"

Decerr="0.500"

elif changelist[index].endswith('0H01'):

RAerr="0.400"

Decerr="0.400"

elif changelist[index].endswith('0J04'):

RAerr="0.400"

Decerr="0.400"

elif changelist[index].endswith('LCOGT'):

RAerr="0.400"

Decerr="0.400"

#for catalog PPMXL, GAIA-DR1

#elif changelist[index].endswith('0Y28'):

RAerr="0.300"

Decerr="0.300"

#for catalog USNO-B1.0, USNO-B2.0

elif changelist[index].endswith('0568'):

RAerr="0.500"

Decerr="0.500"

#for catalog GAIA-DR1

elif changelist[index].endswith('0568'):

RAerr="0.100"

27

Decerr="0.100"

#for catalog PPMXL

elif changelist[index].endswith('0568'):

RAerr="0.200"

Decerr="0.200"

#for catalog GAIA-DR1

elif changelist[index].endswith('T12'):

RAerr="0.100"

Decerr="0.100"

#default error

else:

RAerr="1.000"

Decerr="1.000"

#from table 5

if int(year) < 1890:

RAerr="10.00"

Decerr="10.00"

elif int(year) <= 1950:

RAerr="5.000"

Decerr="5.000"

elif int(year) <= 1996:

RAerr="2.500"

Decerr="2.500"

if int(changelist[index][18]) == 2:

28

newstring.append(changelist[index][:41]+RAerr+" "+Decerr+changelist[index][53:])

else:

newstring.append(changelist[index])

for index in range(beta):

mpc3w.write(newstring[index]+'\n')

mpc3w.flush()

mpc3w.close()

print('Weighted mpc3 file created')

time.sleep(1)

##

#running through Open Orb

#creating the ranging.mpc3 file

mpcshortfile=kboname+'.ranging.mpc3'

mpcsf=open(mpcshortfile,'w')

fileobject = open(mpc3weightedfile)

linelist = fileobject.read().split('\n')

fulldata=len(linelist)-1 #because the list is 1 too long

ranglist=[]

#This section determines when the first observation of the object

29

#was made. For ranging, we'll ignore all observations

#retroactively attributed to the KBO.

for line in range(fulldata):

if linelist[line][19] == '*':

year = linelist[line][21:25]

month = linelist[line][25:27]

day=linelist[line][27:29]

#This section takes all the oservational data from when the KBO

#was discovered until the end of the year

for line in range(fulldata):

if linelist[line][21:25] == year:

if int(linelist[line][25:27])>=int(month):

if int(linelist[line][27:29])>=int(day):

ranglist.append(linelist[line])

#This section takes the observations until about a year from

#the initial discovery and adds it to the ranging file

for line in range(fulldata):

if linelist[line][21:25] == str(int(year)+1):

if int(linelist[line][25:27])<=int(month):

ranglist.append(linelist[line])

#the actual writing of the ranging file

for line in range(len(ranglist)):

30

mpcsf.write(ranglist[line]+'\n')

mpcsf.flush()

mpcsf.close()

##

#Creating a step_lsl file

lslshortfile=kboname+'.lsl.mpc3'

lslsf=open(lslshortfile,'w')

lsllist=[]

for line in range(fulldata):

if linelist[line][21:25] == year:

if int(linelist[line][25:27])>=int(month):

if int(linelist[line][27:29])>=int(day):

lsllist.append(linelist[line])

for line in range(fulldata):

if int(linelist[line][21:25]) > int(year):

lsllist.append(linelist[line])

for line in range(len(lsllist)):

lslsf.write(lsllist[line]+'\n')

lslsf.flush()

lslsf.close()

##

#Running Open ORB

31

#if os.path.exists(mpcfile):

#ranging

alphatest = 0

while alphatest < 5:

os.system('/fslhome/subok114/oorb-master/main/oorb --task=ranging

--conf=oorb.conf.2bk --obs-in='

+mpcshortfile+' --orb-out='+kboname+'.ranging.orb')

alphatest += 1

time.sleep(1)

if os.stat(kboname+'.ranging.orb').st_size > 0:

print('###')

print('###')

print('################ Ranging Successful ############################')

print('###')

print('###')

break

else:

print('###')

print('###')

print('################ Running Ranging Again ############################')

print('############## '+str(alphatest)+' #######################')

print('###')

print('###')

32

##

lsl subset

if os.stat(kboname+'.ranging.orb').st_size > 0:

os.system('/fslhome/subok114/oorb-master/main/oorb --task=lsl

--conf=oorb.conf.m --obs-in='

+lslshortfile+' --orb-in='+kboname+'.ranging.orb --orb-out='

+kboname+'.step.lsl.orb')

time.sleep(1)

lsl

if os.stat(kboname+'.step.lsl.orb').st_size > 0:

os.system('/fslhome/subok114/oorb-master/main/oorb --task=lsl

--conf=oorb.conf.m --obs-in='

+mpc3weightedfile+' --orb-in='+kboname+'.step.lsl.orb --orb-out='

+kboname+'.lsl.orb')

time.sleep(1)

covariance sampling

if os.stat(kboname+'.lsl.orb').st_size > 0:

os.system('/fslhome/subok114/oorb-master/main/oorb

--task=covariance_sampling

--conf=oorb.conf.m --obs-in='

+mpc3weightedfile+' --orb-in='+kboname+'.lsl.orb --orb-out='

+kboname+'.cov.sampling.orb')

time.sleep(1)

33

#running vomcmc with only 30 orbital clones

if os.stat(kboname+'.cov.sampling.orb').st_size > 0:

os.system('/fslhome/subok114/oorb-master/main/oorb --task=vomcmc

--conf=oorb.conf.v30k --obs-in='

+mpc3weightedfile+' --orb-in='+kboname+'.cov.sampling.orb

--orb-out='+kboname+'.vomcmc30.orb')

time.sleep(1)

if os.stat(kboname+'.vomcmc30.orb').st_size > 0:

#epoch propagation for the day of the eclipse

os.system('/fslhome/subok114/oorb-master/main/oorb

--task=propagation --conf=oorb.conf.v30k

--epoch-mjd-tt=57986'

+' --orb-in='+kboname+'.vomcmc30.orb

--orb-out='+kboname+'.eclipse.v30.orb')

time.sleep(1)

#extracting orbital elements from eclipse.v30.orb

#At a later date, convert this process into a Python DataFrame

eclipse30file = kboname+'.eclipse.v30.orb'

vomcmc30file = kboname+'.vomcmc30.orb'

wgt30file=kboname+'.vomcmc30.wgt'

sma30file=kboname+'.eclipse.v30.sma'

ecc30file=kboname+'.eclipse.v30.ecc'

inc30file=kboname+'.eclipse.v30.inc'

Oma30file=kboname+'.eclipse.v30.Oma'

oma30file=kboname+'.eclipse.v30.oma'

34

mean30file=kboname+'.eclipse.v30.mean'

sma30 = open(sma30file,'w')

ecc30 = open(ecc30file,'w')

inc30 = open(inc30file,'w')

wgt30 = open(wgt30file,'w')

Oma30 = open(Oma30file,'w')

oma30 = open(oma30file,'w')

mean30 = open(mean30file,'w')

alpha = sum(1 for line in open(eclipse30file))

observations = alpha - 4

element30= open(eclipse30file).read().split('\n')

weight30= open(vomcmc30file).read().split('\n')

for index in range(observations):

sma30.write(element30[index+4][18:38]+'\n')

ecc30.write(element30[index+4][40:60]+'\n')

inc30.write(element30[index+4][62:82]+'\n')

Oma30.write(element30[index+4][84:104]+'\n')

oma30.write(element30[index+4][106:126]+'\n')

mean30.write(element30[index+4][128:148]+'\n')

wgt30.write(weight30[index+4][223:]+'\n')

sma30.flush()

35

ecc30.flush()

inc30.flush()

Oma30.flush()

oma30.flush()

mean30.flush()

wgt30.flush()

sma30.close()

ecc30.close()

inc30.close()

Oma30.close()

oma30.close()

mean30.close()

wgt30.close()

else:

time.sleep(10)

print('***VOMCMC File empty***')

OrbFail = open('/fslhome/subok114/output/00_text_files/OrbFail.txt','a')

OrbFail.write(str(kboname)+'\n')

time.sleep(10)

else:

time.sleep(10)

print('***Covariance Sampling File empty***')

OrbFail =

36

open('/fslhome/subok114/output/00_text_files/OrbFail.txt','a')

OrbFail.write(str(kboname)+'\n')

time.sleep(10)

else:

time.sleep(10)

print('***Lsl File empty***')

OrbFail =

open('/fslhome/subok114/output/00_text_files/OrbFail.txt','a')

OrbFail.write(str(kboname)+'\n')

time.sleep(10)

else:

time.sleep(10)

print('***Step Lsl File empty***')

OrbFail = open('/fslhome/subok114/output/00_text_files/OrbFail.txt','a')

OrbFail.write(str(kboname)+'\n')

time.sleep(10)

else:

time.sleep(10)

print('***Ranging File empty***')

OrbFail = open('/fslhome/subok114/output/00_text_files/OrbFail.txt','a')

OrbFail.write(str(kboname)+'\n')

time.sleep(10)

##

#for clearing out the uneeded files after Open Orb is complete

37

call('/fslhome/subok114/python_codes/AftermathCleanup.sh')

##

endtime=time.time()

totaltime= str((endtime-starttime)/60)

if os.stat(kboname+'.eclipse.v30.orb').st_size > 0:

print('***Analysis of '+kboname+' complete***')

print('Time needed to process '+kboname+': '+totaltime+' minutes')

time.sleep(1)

else:

print('***Analysis of '+kboname+' failed***')

time.sleep(1)

##

if os.stat(kboname+'.eclipse.v30.orb').st_size > 0:

#This next section is based off of rebound.50M.py

numofobs = 30 #for the v30 files we're working with

observations = str(numofobs)

ssdata = pandas.read_table('/fslhome/subok114/ssdata.txt', delimiter=',',header=None)

smafile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

+observations+'.sma'

eccfile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

38

+observations+'.ecc'

incfile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

+observations+'.inc'

Omafile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

+observations+'.Oma'

omafile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

+observations+'.oma'

meanfile ='/fslhome/subok114/output/'+kboname+'/'+kboname+'.eclipse.v'

+observations+'.mean'

sma = open(smafile)

ecc = open(eccfile)

inc = open(incfile)

Oma = open(Omafile)

oma = open(omafile)

mean = open(meanfile)

smalist = sma.read().split('\n')

ecclist = ecc.read().split('\n')

inclist = inc.read().split('\n')

Omalist = Oma.read().split('\n')

omalist = oma.read().split('\n')

meanlist = mean.read().split('\n')

smaarr=np.zeros((numofobs,1))

39

eccarr=np.zeros((numofobs,1))

incarr=np.zeros((numofobs,1))

Omaarr=np.zeros((numofobs,1))

omaarr=np.zeros((numofobs,1))

meanarr=np.zeros((numofobs,1))

for index in range(numofobs):

smaarr[index]=float(smalist[index])

eccarr[index]=float(ecclist[index])

incarr[index]=math.radians(float(inclist[index]))

Omaarr[index]=math.radians(float(Omalist[index]))

omaarr[index]=math.radians(float(omalist[index]))

meanarr[index]=math.radians(float(meanlist[index]))

#***

#onto the rest of rebound

sim=rebound.Simulation()

sim.add(m=1.0, hash='Sun')

sun = sim.particles[0]

for i in range(5,9):

sim.add(a=ssdata[0][i], e=ssdata[1][i], inc=ssdata[2][i],

omega=ssdata[3][i], Omega=ssdata[4][i], M=ssdata[5][i],

40

m=ssdata[6][i], hash=str(ssdata[7][i]), primary = sun)

for obs in range(numofobs): #run through each orbital clone of the kbo

sim.add(a=smaarr[obs], #semi-major axis

e=eccarr[obs], #eccentricity

inc=incarr[obs], #inclination

Omega=Omaarr[obs], #argument of periapsis

omega=omaarr[obs], #argument of ascending node

M=meanarr[obs], #mean anomaly

primary=sun)

#***

#Adjusting initial velocities to run backgrounds

for ipart in range(len(sim.particles)):

sim.particles[ipart].vx=-sim.particles[ipart].vx

sim.particles[ipart].vy=-sim.particles[ipart].vy

sim.particles[ipart].vz=-sim.particles[ipart].vz

sim.status()

#copied from rebound.lsl.prep.py by Steven Maggard

#which is based off of intfakefam.py by Darin Ragozzine

sim.integrator="whfast"

safile = "rebound."+kboname+".bin"

41

saint=1.0e6

sim.initSimulationArchive(safile,interval=saint)

sim.dt=2.0

starttime=time.time()

sim.integrate(50e7*2.0*np.pi)

endtime=time.time()

integrationtime=(endtime-starttime)/3600

sim.status()

print("Time needed to integrate "+kboname+": "+str(integrationtime)+" hours.")

time.sleep(1)

#***

call(['cp',safile,'/fslhome/subok114/output/00_binfiles'])

if integrationtime < 4:

Success = open('/fslhome/subok114/output/00_text_files/Success.txt','a')

Success.write(str(kboname)+'\n')

#run analysis.py

else:

print("Rebound Integration took over 4 hours. This KBO needs rerun.")

ReboundFail = open('/fslhome/subok114/output/00_text_files/ReboundFail.txt','a')

ReboundFail.write(str(kboname)+'\n')

Bibliography

Granvik, M., Virtanen, J., Oszkiewicz, D., & Muinonen, K. 2009, Meteoritics and Planetary Science,

44, 1853

Milani, A., & Knezevic, V. 2000, AstDyS-2

Ragozzine, D., & Brown, M. E. 2007, The Astronomical Journal, 134, 2160

Rein, H., & Liu, S.-F. 2012, A&A, 537, A128

42

Index

BUNSHIN, 20

Covariance Sampling, 8

dynamical kick, 10
resonate dynamical kick, 10

Haumea, 1

Kuiper Belt, 1
Kuiper Belt Objects (KBOs), 1

Linear Least Squares (LSL), 8

Minor Planet Center, 2

OpenORB, 3

Proper Elements, 5

REBOUND, 3, 9

Statistical Ranging, 7

Tisserand, 10

Virtual Observation Markov Chain Monte Carlo
(VOMCMC), 8

43

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Propagating Orbital Elements
	1.2 The Haumea Collisional Family
	1.3 Overview

	2 Methods
	2.1 Open ORB
	2.1.1 Adjusting Weights of Observations
	2.1.2 Statistical Ranging
	2.1.3 Least Squares Solution (LSL)
	2.1.4 Covariance Sampling
	2.1.5 Virtual Observation Markov Chain Monte Carlo (VOMCMC)

	2.2 REBOUND
	2.3 Haumea Family Members calculations

	3 Results and Conclusions
	3.1 Database of Orbital Data
	3.2 Identifying all Haumea Family Members
	3.3 Conclusions
	3.4 Directions for further work

	Appendix A BUNSHIN
	Bibliography
	Index

