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ABSTRACT
Modeling the Magnetic Ordering of Magnetite (Fe3O4) Nanoparticle Assemblies

Brittni Newbold Pratt
Department of Physics and Astronomy, BYU
Bachelor of Science

Magnetite nanoparticles have great potential for use in medical and other applications, so
understanding their properties is crucial. A property still left to be understood is the magnetic
ordering of assemblies of nanoparticles at the nanoscale. This paper addresses how the magnetic
ordering in magnetite nanoparticle assemblies changes as a function of nanoparticle size and
external magnetic field at high temperature. Nanoparticle assemblies were fabricated using organic
methods and placed on membranes. These samples were put through x-ray resonant magnetic
scattering (XRMS) which produced scattering images that provided information about the magnetic
ordering of the particles. Various images were obtained using XRMS for different field values
and temperatures. These images were reduced to one-dimensional scattering profiles. By fitting
these scattering profiles with a model, we found the percentages of ferromagnetic contribution,
antiferromagnetic contribution, and the random contribution. There is a large random contribution
as the field value approaches 0 Oe for Sample 9, the sample with the smallest particles, at 300 K.
For Sample 3, the sample with the largest particles, at 280 K and at 300 K, there is a slight increase
in the antiferromagnetic contribution and large random contribution at low field value. The larger
particles are thus demonstrating more antiferromagnetic ordering at low magnetic field values than
the smaller particles when placed in high temperature. Therefore, our methods yield information
about the magnetic ordering of magnetite nanoparticles and the possibility to control the magnetic
ordering through particle size.

Keywords: Magnetite nanoparticles, magnetic ordering, XRMS, scattering profiles
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Chapter 1

Introduction

This chapter introduces and provides the motivation for the topic of this thesis, which is studying
the magnetic ordering of magnetite nanoparticles. Section 1.2 explains the properties of magnetite
nanoparticles. The previous work done by members of this research group is then reviewed in

section 1.3. The chapter concludes by giving an overview of the thesis.

1.1 Motivation

Nanoparticles have become a topic of interest for scientists today because of their many ap-
plications in medical and other fields. Since the synthesis of the nanoparticles can be varied to
control the resulting shapes and sizes, they can be utilized in many ways. The optical properties of
nanoparticles also make them good candidates for applications in biomedical imaging, sunglasses
and heat mirror films [1,2]. Scientists have also studied magnetic nanoparticles with hopes of
improving agriculture through nanopesticides and for targeting drug delivery [3,4].

Magnetite nanoparticles are of special interest because they align in the presence of an external
magnetic field. This property makes them especially useful in magnetic resonance imaging because

their ability to align increases the image contrast allowing for more accurate detection of objects
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1.2 Magnetic Properties of Magnetite Nanoparticles 2

like tumors [5]. Their ability to align is also particularly useful for other medical applications like
drug targeting. Much has been learned through studying magnetite nanoparticles, but there is still
a lot left to discover about them. Magnetite nanoparticles have great potential for success in the
applications mentioned, so it is crucial that we understand their properties.

The goal of this project is to learn how the magnetic ordering in nanoparticle assemblies varies
depending on nanoparticle size, temperature, and strength of the magnetic field they are placed
in. Understanding these changes shows whether or not the magnetic ordering can be controlled
based on these parameters. Another goal of this project is to find the best method of preparation for
magnetite nanoparticles that yields uniform size distribution. Having a greater understanding of
how to control the magnetic ordering of the particles when self-assembled yields fruitful results
in medical and other applications. The following section discusses the magnetic properties of

magnetite nanoparticles.

1.2 Magnetic Properties of Magnetite Nanoparticles

Magnetite is made up of iron ions that create a net magnetization in a magnetite nanoparticle.
Fe30, is composed of Fe*! and Fe?! ions which have different magnitudes of spin and align
in a ferrimagnetic way throughout the spinel crystallographic structure [6]. This ferrimagnetic
arrangement creates a net magnetic moment at the scale of the nanoparticle. This net magnetization
is called a "nanospin".

The orientation of the nanospins is dependent upon the external magnetic field that they are
placed in. A demonstration of this is given in Fig. 1.1. In the absence of an external magnetic
field, the nanospins (represented by the blue arrows) are oriented randomly resulting in zero net
magnetization (see Fig. 1.1(a)). When an external magnetic field (represented by the red arrows) is

applied to a group of these particles, the nanospins tend to align with the field which maximizes
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Magnetite nanoparticles in Magnetite nanoparticles in
the absence of an external the presence of an external
magnetic field magnetic field

4 A

(@) (b)

Figure 1.1 Magnetite nanospins (blue arrows) are (left) randomly aligned in the absence
of an external magnetic field and (right) align with the external magnetic field (red arrows)
when present.

the net magnetization of the material (see Fig. 1.1(b)). This property is called superparamagnetism
and is a fundamental characteristic of magnetite nanoparticles [7]. A study performed by Chang-
Neg Shauo et al. [2] shows how magnetite nanoparticles displayed perfect superparamagnetism
above a certain temperature, known as the blocking temperature. Their study included magnetite
nanoparticles varying in size, and the blocking temperature of the particles depended on particle
size and separation distance. Karine Chesnel et al. [8] also conducted a study showing drastic
changes in the blocking temperature, when particle size increases from 5 to 11 nm. In this study,
they also show magnetization loops for magnetite nanoparticles at varying temperatures. These
magnetization loops demonstrated superparamagnetic behavior at high temperature.

The alignments of groups of nanoparticles lead to different magnetic orders. When a group of
nanoparticles all align in the same direction, referred to as "ferromagnetic ordering" at the nanoscale,

it produces a large net magnetization. On the other hand, if the nanospins align antiparallel, referred
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to as "antiferromagnetic ordering" at the nanoscale, the net magnetization becomes nearly zero on
average. When there is a lack of ordering among the nanoparticles, meaning there is not a pattern in
the way the nanospins are aligned, this is referred to as random ordering. The net magnetization

from random ordering also averages to zero.

1.3 Previous Work at BYU

This study began in 2013 when three batches of nanoparticles were created [9]. These batches
were labeled NP16, NP17, and NP18. NP16 is made of the largest particles, about 11 nm in diameter,
and NP18 is made of the smallest particles, about 5 nm in diameter. From each of these batches,
three samples with different concentrations were made. Samples 1-3 are from NP16, Samples 4-6
are from NP17, and Samples 7-9 are from NP18. This paper focuses on results from Sample 3
and Sample 9. The fabrication of the nanoparticles is explained in greater detail in Ch. 2. These
nanoparticles were then taken to the Stanford Linear Accelerator Center (SLAC) synchrotron and
scattering images were obtained through x-ray resonant magnetic scattering (XRMS). Section 3.1
describes the details of this experiment.

Dalton Griner, a previous group member, obtained one-dimensional profiles for the magnetic
and dichroic ratios of the samples from the scattering images. Sections 3.2 and 3.3 review how these
profiles were obtained. The magnetic and dichroic ratios provided information about the magnetic
signal of the nanoparticles [9]. This information can help us understand the magnetic ordering of
the nanoparticles.

Dallin Smith, another previous group member, created a base MATLAB code to model the
profiles. His work included creating an array which represented a chain of nanoparticles whose
magnetic ordering could be adjusted, allowing us to fit the experimental data [10]. This model is

discussed in greater detail in Sec. 4.1. My work in this study is focused on making refinements to
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this code to find how to most accurately model the nanoparticles and to use this model to fit the data.

1.4 Overview

This thesis addresses the procedures taken to determine the magnetic ordering of the nanoparticle
assemblies for Sample 9 at 300 K and Sample 3 at 300 K and at 280 K. Chapter 2 discusses the
fabrication methods for the nanoparticle assemblies used in this study. This section also describes
the fabrication methods attempted while trying to obtain larger nanoparticles. The techniques used
to determine the particle size distribution is then explained. Next, chapter 3 gives a review of the
synchrotron experiment in which the nanoparticle assemblies underwent XRMS and scattering
images were obtained. One-dimensional representations of the data were then used to acquire
magnetic and dichroic ratios that give information about the magnetic signal. Finally, chapter 4
explains the modeling process used to fit the magnetic ratios and determine the weight that each
magnetic order contributes to the magnetic signal in the samples. Additionally, this chapter covers
modifications made to the model discussed in section 1.3.

Our results and the future goals for this project are addressed in Ch. 5. Since my work was
primarily on modeling Sample 9 at 300 K and Sample 3 at 300 K and at 280 K, this chapter focuses
on the results from those samples. My results show that for Sample 9 at 300 K and Sample 3 at 300
K and at 280 K, there is mostly random ordering as we decrease the field value to zero; the fits from
Sample 3 at 300 K and at 280 K show a small peak in the antiferromagnetic order at low field value.
To more precisely determine how temperature and nanoparticle size affects the magnetic ordering
of the nanoparticle assemblies, future studies will include the modeling of the remaining samples

and implementation of error bars for the uncertainty.



Chapter 2

Fabrication of the Nanoparticles

This chapter discusses the fabrication of the three batches of nanoparticles used in this study,
NP16, NP17, and NP18. It also reviews the procedures taken to create new batches of nanoparticles,
which were called NP25 and NP26. The last section covers the methods used to image and analyze

these batches.

2.1 Overview of the Fabrication

The nanoparticles used in this study, NP16, NP17, and NP18, were fabricated using organic
methods [9]. To create NP16, an iron (III) oleate was mixed with oleic acid and octadecene. The
solution was then heated to 320° C, kept at that temperature for 30 min, precipitated with ethanol
and isolated through centrifugation. NP17 was fabricated by mixing an iron (III) acetylacetonate
precursor with hexadecene, octadecene, oleic acid, and oleylamine. The resulting solution was
heated to 200° C, kept at that temperature for 30 min, precipitated with ethanol and isolated through
centrifugation. NP18 was created using the same method as NP17 except with diphenyl ether instead
of octadecene. Different concentrations of the nanoparticles from these batches were deposited on

nine silicon nitrite membranes attempting to form monolayers of the particles. They were labeled as
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2.1 Overview of the Fabrication 7

Samples 1-9. Samples 1-3 came from NP16, Samples 4-6 came from NP17, and Samples 6-9 came
from NP18.

Figure 2.1 Heating mantle where the nanoparticles were held at 312° C for 30 min.

For use in future studies, I fabricated a new batch of nanoparticles, NP25, by using the organic
method done in a study by Jongham Park et al. [11]. I created an iron oleate by mixing iron chloride,
ethanol, distilled water, and hexane and heating it in an oil bath at 70° C for 4 hours. The organic
layer was then isolated and magnesium sulfate was used as a drying agent. I then filtered the solution
and evaporated the hexane using a rotary evaporator. The remaining solution was red and oily.
This iron oleate was combined with oleic acid and octadecene, heated to 312° C, and held there
for 30 min. Fig. 2.1 shows the nanoparticle solution in the heating mantle and the thermometer
that allowed the solution’s temperature to be monitored for 30 min. I then precipitated the solution
with ethanol, centrifuged it, and decanted it. As can be seen on the left in Fig. 2.2, this remaining
solution was dark and oily. The nanoparticle solution was dissolved in chloroform in three different
concentrations and deposited on three ultra-thin carbon membranes.

I also created another batch of nanoparticles, NP26 for TEM imaging purposes. I followed

the same procedure described in the previous paragraph using hexadecene instead of octadecene.
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Figure 2.2 Nanoparticle solutions NP25 (left) and NP26 (right) after being centrifuged
and decanted.

Since the boiling point of hexadecene is lower than that of octadecene, this solution was only heated
to 275° C, and held it there for 30 min. The solution was black and very wet, but became pasty
with centrifugation (See right image in Fig. 2.2). This nanoparticle solution was also dissolved in

chloroform in different concentrations and deposited on ultra-thin carbon membranes.

2.2 Determining Particle Size and Distribution

Transmission Electron Microscopy (TEM) was used to image the nanoparticles and to find
the size and the distribution of the nanoparticles. TEM allows high-resolution images by sending
a beam of electrons through the material, which scatters them. The electrons are then gathered
to produce an image of the material. Once TEM images of our nanoparticles were obtained, we
analyzed them using an image processing program called ImageJ. Through ImagelJ, we circled each
particle in the image and obtained an average diameter for the particles.

TEM and ImagelJ both indicated various particle size and distribution for NP16, NP17, and

NP18. The upper plots in Fig. 2.3 show the TEM images of NP16, NP17, and NP18 from left to
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Figure 2.3 TEM images of NP16, NP17, and NP18 from left to right. Distribution graphs
of particle diameter are also shown below the images. Figure taken from Griner’s senior
thesis [9, 12]

right. The nanoparticles, especially the smaller ones in NP18, tend to self-assemble in a hexagonal
lattice. The images were then analyzed using ImagelJ; the average diameter of the nanoparticles in
each sample are shown in Table 2.1 [9]. The distribution of the diameters is shown in the lower

plots of Fig. 2.3.

Table 2.1 The radii of NP16, NP17, NP18, NP25, and NP26 [9].

Batch Diameter (nm)

NP16 11.3+25
NP17 8.1x£1.7
NP18 561
NP25 13.2+6
NP26 14£5

I used these same techniques to determine the size and distribution of NP25 and NP26. A
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TEM image and distribution of the particles’ diameters for NP25 is shown in Fig. 2.4. As shown,
the nanoparticles are not very uniform in size, and a histogram of the particle size shows how
the diameters cluster around two different radii: 6 nm and 17.5 nm. The clustering around two
different radii could be due to the length of time the solution was held at 312° C or lack of sufficient
centrifugation. NP26 was created in an attempt to isolate larger nanoparticles and achieve more
uniform size. TEM images of NP26 were hard to achieve and analyze due to the density of the
nanoparticle solution; though the solution was very dense, the images show very few nanoparticles
(See Fig. 2.5). This result is mostly likely due to an error made during the fabrication; the methods

used to create NP26 should be attempted again in the future for comparison purposes.

NP25 Diameter Histogram

Frequency (# of nanoparticles)

0 5 10 15 20 25 30
Diameter (nm)

Figure 2.4 TEM image of NP25. Distribution graph of particle diameter is shown next to
the image.

Figure 2.5 TEM image of NP26.



Chapter 3

Synchrotron Experiment and Data

This chapter discusses the experiment performed at the Stanford Linear Accelerator Center
(SLAC) synchrotron. In this experiment, the samples of nanoparticles were put through x-ray
resonant magnetic scattering (XRMS) which produced scattering images. Details of the XRMS

experiment are given, followed by the procedure taken to obtain one-dimensional profiles.

3.1 Synchrotron Experiment

In 2013-2015, the NP16, NP17, and NP18 samples were taken to the Stanford Linear Accelerator
Center (SLAC) synchrotron where an experiment using x-ray resonant magnetic scattering (XRMS)
was conducted. In XRMS, circulary polarized x-rays are sent through a sample. Clockwise and
counterclockwise polarization are referred to as positive and negative polarizations, arbitrarily. As
the photon spins interact with the electron spins and as the energy of the x-rays is tuned to resonant
L edges, resonant magnetic scattering occurs. The x-rays are scattered due to the spatial variation of
the electronic and magnetic structures.

In our experiment, XRMS was performed on each of the samples in the presence of an external

magnetic field. A diagram of the experimental setup is shown in Fig. 3.1. As illustrated, scattering

11



3.2 Estimation of Interparticle Distance from the XRMS Profiles 12

X-ray Magnetic Resonant Scattering (XRMS) Setup

Circular Polarized X-rays Nanoparticle Sample XRM5 Image

Figure 3.1 Experimental setup of the synchrotron experiment performed at the SLAC
synchrotron. Figure taken from Smith’s thesis [10].

patterns were captured by a CCD camera. XRMS images were obtained for each sample for both
positive and negative polarizations, with field values ranging from -3000 Oe to 3000 Oe, and

temperatures ranging from 10 K to 300 K [10].

3.2 Estimation of Interparticle Distance from the XRMS Pro-

files

In order to extract a magnetic signal from the XRMS data, the two-dimensional scattering
images were reduced down to one-dimensional profiles via azimuthal integration. Figure 3.2(a)
shows an example of a scattering image, and Fig. 3.2(b) shows its associated representation. The
scattering vector is defined as ¢ (the white arrow in Fig. 3.2(a)) and is an inverse distance, typically
in units of inverse nanometers. The reduced profile, as shown in Fig. 3.2(b), is then plotted as
a function of g. The color on the scattering image represents the intensity of the scattering, blue

corresponding to low and red corresponding to high intensity. An important feature in the scattering
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image is the red ring because this ring’s position and width give information about the interparticle
distance and correlation length, respectively. Each one-dimensional profile was obtained by first
subtracting a background image from the scattering image and removing the region that is covered
by the blocker. The dark blue disk at the center is a region masked by a beamstop, to prevent
the camera from being damaged by direct x-rays. Angular integration was used to sum a set of
concentric rings increasing in radius. Greater detail of obtaining these one-dimensional profiles can

be found in Griner’s thesis [9] and Smith’s thesis [10].
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Figure 3.2 (a) Scattering image from XRMS experiment. (b) One-dimensional represen-
tation showing intensity as a function of ¢ obtained by angular integration of a scattering
image. Image from Chesnel’s submitted paper [12].

The scattering profiles provide information about the interparticle distance and the correlation
length. The peak’s position is given by ¢* as shown in Fig. 3.2(b). The distance from the center
of one particle to another, also called the "interparticle distance", is estimated as d = 27 /g*. This
interparticle distance on the other hand, corresponds to d = L + 2r, where L is the separation
distance between the particles and r is the average radius of the particles in each sample that was
previously determined using TEM imaging. The values of the separation distances and interparticle
distances for the samples are given in Table 3.1. These results indicate that the particles in NP18 are

packed more closely together than the particles in NP16.
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Table 3.1 The radii, separation distances, and interparticle distances of Samples 1-3 and
7-9. Samples 4-6 are not included due to low signal output [9].

Sample Batch  2r(nm) L (nm) d (nm)

1 NP16 113 +£25 847 19.77
2 NPI16 113+£25 924  20.54
3 NP16 113 +£25 527 16.57
7 NPI8 56=*1 0.51 6.11
8 NPI8 56=*1 0.71 6.31
9 NPI8 56=*1 0.58 6.18

The full width half max (FWHM) of the scattering profile intensity peak is shown in Fig. 3.2(b).
The inverse of the FWHM gives the correlation length between the particles. A broad peak (large
FWHM) represents a short correlation length, meaning that the particles are more dispersed and less
ordered. A sharp peak (small FWHM) represents a long correlation length, meaning that particles

are more compact and ordered over a longer range [9].

3.3 Magnetic and Dichroic Ratios

The dichroic effect was exploited to extract the magnetic signal from the main charge scattering.
As mentioned in the previous section, each sample went through both positive and negative helicities.
As can be seen in Fig. 3.3(a), the scattering signal in the positive helicity /; is different from the
scattering signal in the negative helicity /_. This result is evidence of a magnetic component in the
scattering signal. By taking the difference of the intensities, we can extract the magnetic signal from
the charge signal. The intensities from the positive and negative helicities can be used to establish
a dichroic ratio. In addition to the standard dichroic ratio, we introduced a magnetic ratio. The

dichroic and magnetic ratios are defined below.
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This paragraph gives a brief derivation of the dichroic and magnetic ratios. The scattering factor

J can be written as
fx = feE fm, (3.1

where the £ sign refers to the helicity of the circularly polarized light, f. is the charge scattering,
and f, is the magnetic scattering. The scattering amplitude A of a nanoparticle assembly, as a

function of the scattering vector g, is given by

Ay (Q) = Z(fc,j :I:fm,j)eiqu = feSe £ finSm = Ac £ Ap. 3.2)

The factors s, and s,, are introduced in Eq. (3.2) as the spatial distributions of the charge and
magnetism, respectively, in the nanoparticle assembly. The charge amplitude is then defined as A,
and the magnetic amplitude as A,,. The scattering amplitudes are related to the intensity detected /
as:

I = |AL]? = |Ac)? £ (AcAL + ApAL) + [An|?. (3.3)

Assuming A,, < A., a dichroic ratio R; and a magnetic ratio R,, are to a first order defined in Eq.

(3.4) and Eq. (3.5) as:

_ _ Sm. 3.4
LA T AP A T AR s .
I =1 AAL+ARAE  AAL +ALAY
Ry = - ~ o 8. (3.5)
" \/1++I— |Ac|2+|Am|2 |AC| "

As can be seen in Eq. (3.4) and Eq. (3.5), R, is approximately proportional to s,,/s. and Ry, is
approximately proportional to s, [12]. An example of the magnetic and dichroic ratios plotted
together is shown in Fig. 3.3(b).

The reason for introducing the magnetic ratio was to access the magnetic signal more directly.
The magnetic ratio’s magnitude is approximately proportional to the magnetic structure factor s,

and as the external field value goes negative the magnetic ratio does as well. The position and width
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Figure 3.3 (a) Scattered intensity for the positive and negative helicities (I and /_) as a
function of ¢ for Sample 3 at 300 K and 3000 Oe. (b) The resulting dichroic and magnetic
ratios (R; and R,;,) as a function of q.

of the peak in the magnetic ratios provide information about the magnetic period and correlation
lengths between similarly ordered particles. If many particles are ordered ferromagnetically, we
expect the peak of the magnetic ratio to be around the same location, ¢*, as the peak for the
charge scattering in the XRMS profiles. Particles ordered antiferromagnetically contribute to a
peak at around ¢*/2. As the field value approaches zero, the peak position is expected to shift
closer to g = 0 as less particles are ferromagnetically ordered and more particles may be ordered

antiferromagnetically [10].



Chapter 4

Magnetic Order Modeling of Nanoparticles

This chapter discusses the MATLAB code used to model the experimental data obtained by the
methods described in Ch. 3. It covers the previous work done to create the code, as well as the
modifications I have made to the code. The different techniques used to obtain a more accurate

model are mentioned. Appendix B shows the full MATLAB code used for the model.

4.1 Modeling a Chain of Nanoparticles and Magnetic Ordering

A chain of nanoparticles was modeled by an array of particles with periods defined by the radius
of particles and separation between particles. A previous group member, Dallin Smith, created
the base MATLAB code which simulates the charge density function and the magnetic density
functions associated to a chain of nanoparticles [10]. The particle radius and the separation distance
between particles were represented by the variables centerR and centerL, respectively. The chain
of nanoparticles typically includes 100 nanoparticles with a distribution of sizes and separation
distances.

The magnetic ordering of the particles was modeled by arrays that assign the particles a spin-up

or spin-down orientation. Figure 4.1 shows the orientation and periods for nanoparticles that are

17
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Modeling Magnetic Ordering

H—I

Ferromagnetic Period

L% 7
~

Antiferromagnetic Period

Randomness: no period

Figure 4.1 Nanoparticle chain for (a) ferromagnetic particles, (b) antiferromagnetic
particles and (c) randomly oriented particles.

aligned ferromagnetically, antiferromagnetically, and those that are randomly oriented. As can
be seen in the figure, the magnetic period for ferromagnetic particles is equal to the interparticle
distance. The magnetic period for the antiferromagnetic particles is twice the interparticle distance.
The particles whose spins are oriented randomly do not have a magnetic period since we cannot
predict which particles are spin-up versus spin-down.

Spatial Fourier transforms of the magnetic orders were implemented that lead to peaks at certain
places in the g space. The Fourier transforms of the ferromagnetic and antiferromagnetic ordering
yield a representation of the ordering in the g space. Figure 4.2 shows the Fourier transforms for
ferromagnetic and antiferromagnetic ordering. As shown, each ordering has an associated peak in
the g space. For the ferromagnetic ordering, the fundamental peak is the one that is located at g = ¢*,
here ¢ = 1 nm~!. This magnetic peak is located at the same location as the main peak in charge

scattering profiles discussed in chapter 3. We note that there is also a peak located at ¢ = O for the
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Figure 4.2 Fourier transforms for the different magnetic orders. The ferromagnetic peak
occurs at ¢* and the antiferromagnetic peak occurs at ¢* /2. Arbitrary widths have been
assigned to the peaks.

ferromagnetic ordering due to the net magnetization it creates. However, this peak can be ignored
since in the experiment, this region is blocked by the beamstop. For the antiferromagnetic ordering,
the peak occurs at ¢ = ¢* /2, here ¢ = 0.5 nm ™!, which is halfway between the ferromagnetic peak
and g = 0. Randomly oriented particles do not produce a peak in the g space because the Fourier
transform averages to zero.

Each type of magnetic order was assigned a coefficient to represent a percentage of that
contribution in the nanoparticle chain. The coefficients for the ferromagnetic, antiferromagnetic,
and random contributions are cl, c¢2, and cO respectively. The sum of the coefficients must be
equal to one since they represent percentages of the assembly of nanoparticles. For each XRMS
run at the SLAC synchrotron, a magnetic field was applied which induced a net magnetization in
the nanoparticle assembly. The ferromagnetic ordering is the only ordering that contributes to this
magnetization because the spins of the antiferromagnetic and of the randomly aligned particles

sum to zero. Thus, the contribution of the ferromagnetic ordering, c1, is predetermined by the
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magnetization of the sample, which we call M... The other coefficients, c2 and c0, must be fit to the
experimental data to determine their values. We assume that the three coefficients add up to 1, or

100%. Equations (4.1) and (4.2) show the constraints mentioned above.

cl =M., 4.1
cl+c2+cO0=1. 4.2)

The ferromagnetic and antiferromagnetic orders were also assigned sigma values (sigl and sig2,
respectively) to represent the correlation length in the magnetic ordering. This was important in
determining how many particles in each order are correlated. The sigma values in the model affect
the widths of the peaks in the Fourier transforms. We are thus able to fit the width of the peaks in
the one-dimensional profiles from the scattering images by changing the sigma values.

After finding the Fourier transforms of the ferromagnetic and antiferromagnetic orders and
creating coefficients to assign percentages to their orderings, the model for the magnetic ratio was
defined. This was done by summing the Fourier tranforms with each order multiplied by their
respective coefficient. The result was then inserted into Eq. (3.5) for the magnetic ratio introduced
in chapter 3. Section 4.2 discusses the modifications that have been made to the code to improve the

model.

4.2 Modifications to Previous Model

This section discusses the alterations made to the previous model. It reviews how the changes

were implemented and the results of the changes that were made.
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4.2.1 Modeling Spatial Distance between Particles

To achieve a more accurate representation, we modified how the code models the spatial distance
between the particles. In the previous code, the separation distance between particles and the radii of
the particles were set by the same variable in the code. We added another loop to the sequence so that
the spacing between the particles is modeled independent of the particle size. This approach creates
a more accurate representation of the nanoparticles because the distance between the nanoparticles

in our samples is not correlated to their size.

4.2.2 Flattening Technique

We stopped using what was known as the "flattening technique" in order to obtain a more natural
fit. The previous model flattened the peak that occurs for the ferromagnetic ordering at ¢ = 0 to
a constant value. This technique was used to simplify the modeling process since we are more
concerned about modeling the ferromagnetic peak due to the magnetic ordering which occur at
greater g values. However, we found that we needed to include an additional component to recreate
the diffuse scattering centered about ¢ = 0. The peak at g = 0 is not measured in our scattering
experiment due to the beamstop. However, we may see the tail of this diffuse scattering contribution.
To create a more natural fit, we created coefficients c¢7 and sig7 to model the height and width of the

peak at g = 0, respectively.

4.2.3 Constraining Sigma Values

We constrained the sigma values so that the results of the model have physical meaning. The
previous model had unconstrained sigma values or no sigma values, which often led to small sigma
values being implemented in the model. A very small sigma value implies a short correlation length.

However, by definition, the correlation length cannot be smaller than one magnetic period. We
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Figure 4.3 Example of a fit for (a) the charge data and (b) the magnetic data.

therefore constrained the sigma values to at least 7 nm for Sample 3 and for Sample 9. This value

can be adjusted accordingly depending on the size of the nanoparticles.

4.2.4 Modeling the Magnetic and Dichroic Ratios

We corrected the expressions which model the magnetic and dichroic ratios. These expressions
previously contained an approximation that did not account for the imaginary part of the intensity
in Eq. (3.3). We included the imaginary part and implemented the equations for the dichroic and
magnetic ratios, given by Eq. (3.4) and Eq. (3.5) respectively, without the final approximation
displayed in these equations. We then corrected the MATLAB code so that it included the more

accurate ratios.

4.2.5 Creating a Global Fit

Since we included the charge contribution in the equations, we needed to model the charge data

to achieve a global fit which would include both charge and magnetic fits. To do this, we created a
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model to fit the charge scattering intensity, which corresponds to 1, +1_. We assigned a coefficient,
c6, and a sigma value, sigb, to model the height and width of the charge scattering peak, respectively.
Similarly, the variables c8 and sig8 were implemented to model the height and width of the peak
at g = 0. We took the Fourier transform of the nanoparticle chain described in section 4.1, before
it was assigned a magnetic ordering. We then took the absolute value of the Fourier transform,
multiplied it by ¢6, and normalized it to obtain the model. The model for charge scattering intensity
and the model for the magnetic ratio, defined in Eq. 3.5, were used to perform global fits of the
data. Figure 4.3 shows an example of a global fit, including a fit of the charge data and a fit of the
magnetic data. As seen in the figure, both fits are relatively good, with a low residual (shown by the
epl and ep2 values at the top of the figure). The ferromagnetic ordering, c1, contributes the most to
the model (see Fig.4.3(b)). The global fits for Sample 9 at 300 K and Sample 3 at 300 K and 280 K
are shown in Appendix A.

The final goal of these fits is to calculate the percentages of the different magnetic orders as a
function of field value. As mentioned in chapter 3, XRMS images were taken for each sample at
field values from H = 3000 Oe to H = -3000 Oe. We are interested in how the percentage of each
ordering changes as the field value goes from H = 3000 Oe to H = 0 Oe. After we obtain fits for the
profiles from H = 3000 Oe to H = 0 Oe, we then create a graph of the coefficients versus the field

value. These coefficients maps are shown and discussed in chapter 5.

4.3 Automating the Code using Julia

Instead of manually fitting each graph, we implemented Julia code to optimize the fit. It became
very tedious and time-consuming to manually change the variables which have been discussed above,
so we decided to automate the code using the programming language, Julia. Dr. Mark Transtrum

helped significantly in translating the MATLAB code to Julia code. We used a function which
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defined the arrays in the same way as the MATLAB code, but instead of assigning the coefficients
and sigma values set numbers, they took in variables. We then ran it through an optimized function
in which we gave initial parameters. The optimized function then adjusts the parameters until the
residual is minimized. We are still currently working on this automation process, but so far our
results are close to what we have achieved with the manual fitting. Once we finish automating the

code, we expect to obtain results much faster.



Chapter 5

Results and Discussion

This chapter discusses the results found by fitting the data using the MATLAB code presented
in the previous chapter. My work focused primarily on accurately fitting the data for Sample 9 at
300 K and Sample 3 at 300 K and 280 K. The following sections present the magnetic ratios and
coefficient maps for those samples at various field values. The global fits are shown in Appendix A.
The results for each sample are compared to display how the magnetic ordering changes for large

versus small particles. Future goals for this project are then mentioned.

5.1 Sample 9 at 300 K

The magnetic ratios from the XRMS profiles for Sample 9 at 300 K indicate a large contribution
of ferromagnetic ordering and random contribution. Figure 5.1 shows the normalized magnetic
ratios for Sample 9 at 300 K for different magnetic field strengths. As seen in the figure, there is a

peak in intensity at ¢* ~ 1 nm~!

corresponding to an average interparticle distance d = 6.28 nm,
and for lower g values the intensity remains relatively flat. Since there is not evidence of a peak
in intensity at ¢* /2, we expect to see very little antiferromagnetic contribution as the field value

decreases. A small antiferromagnetic contribution causes a large random contribution at low field

25
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values.
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Figure 5.1 Normalized magnetic ratios for all field values of Sample 9 at 300 K.
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Figure 5.2 Coefficient map for Sample 9 at 300 K. Mostly random contribution occurs as
the field value approaches zero.

Similar to the XRMS results for Sample 9 at 300 K, our model indicates mostly ferromagnetic

ordering and random contribution as the field value approaches zero. The coefficient map from our
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model is shown in Fig. 5.2. The percentage of ferromagnetic ordering, labeled as c; on the graph,
follows the magnetization of the sample (discussed in Sec. 4.1), which is labeled as M. This is to
be expected since the ferromagnetic ordering is the only ordering contributing to the magnetization
in our model. The random contribution, ¢, increases as the field value approaches zero. The
antiferromagnetic contribution, c,, stays consistently lower than about 3%. Thus our model shows a
much greater percentage of the particles ordering randomly rather than antiferromagnetically as the
field value approaches zero. The results from our model support what we had predicted from the

experimental data and confirm the superparamagnetic nature of the nanoparticles.

5.2 Sample 3 at 300 K

The magnetic ratios from the XRMS profiles for Sample 3 at 300 K indicate the presence of
antiferromagnetic ordering as the field value approaches zero. The normalized magnetic ratios
for Sample 3 at 300 K are shown in Fig. 5.3. The ferromagnetic peak occurs at g* = 0.38 nm ™!
corresponding to an average interparticle distance d = 16.53 nm. At ¢*/2, a significant change in
the intensity occurs, with the formation of a plateau at H = 100 Oe and H = 200 Oe. The flattening
and increase in intensity at this location suggest antiferromagnetic ordering; thus, in our model we
expect to find a greater percentage of antiferromagnetic ordering for these field values.

My results from the model show that there is some antiferromagnetic ordering and mostly
random contribution as the field value approaches zero. Figure 5.4 shows the coefficient map for
Sample 3 at 300 K. The percentage of ferromagnetic ordering, c;, follows the magnetization of
the sample, M., as it did for Sample 9. The random contribution, ¢y, increases as the field value
approaches zero. The antiferromagnetic contribution, c,, increases at H = 100 Oe and H = 200
Oe by 9.5%. Although we expected to see a greater percentage of antiferromagnetic ordering, our

results indicate noticeable antiferromagnetic ordering at low field value.
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Figure 5.3 Normalized magnetic ratios for all field values of Sample 3 at 300 K. At ¢ * /2
the intensity increases for the magnetic ratios of H = 100 Oe and H =200 Oe. This implies
a greater antiferromagnetic contribution at these field values.
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Figure 5.4 Coefficient map for Sample 3 at 300 K. A small increase in the antiferromag-
netic contribution is present at H =100 Oe.
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5.3 Sample 3 at 280 K

Similar to Sample 3 at 300 K, the magnetic ratios for the XRMS profiles for Sample 3 at 280
K indicate the presence of antiferromagnetic ordering at low field values. As seen in Fig. 5.5, the
ferromagnetic peak occurs at the same value as Sample 3 at 300 K. Like at 300 K, the signal at
around ¢* /2 changes significantly with H. Because of this flattening, we expect to see an increase

in antiferromagnetic ordering as the field value decreases.
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Figure 5.5 Normalized magnetic ratios for all field values of Sample 3 at 280 K. At
g* /2 the intensity increases for the magnetic ratio H = 200 Oe, suggesting a significant
antiferromagnetic contribution at this field value.

From our model we found that there is a small peak in the antiferromagnetic ordering at 200
Oe but mostly random ordering as the field value decreases. The coefficient map from our model
can be seen in Fig. 5.6. The coefficient map shows that the ferromagnetic ordering follows the
magnetization and the random contribution increases as the field value decreases. The percentage of
antiferromagnetic contribution peaks to 5% at H = 200 Oe. Our model thus suggests noticeable

antiferromagnetic contribution at low field value, but mostly random contribution.



5.4 Discussion of Results 30

Mapping Coefficients For Sample 3 at 280 K

Percentage (%)

500 1000 1500 2000 2500 3000
Field Value (Oe)

Figure 5.6 Coefficient map for Sample 3 at 280 K. A small peak in the antiferromagnetic
contribution is present at H = 200 Oe.

5.4 Discussion of Results

From the XRMS profiles of Sample 3 and Sample 9, we predicted a larger antiferromagnetic
contribution for Sample 3 than Sample 9 as the field value decreases. Comparing Fig. 5.1, Fig. 5.3,
and Fig. 5.5, it can be seen that the shape of the magnetic ratios for Sample 9 remain unchanged
and the shape of the magnetic ratios for Sample 3 flatten and increase as the field value decreases.
We had expected to find a greater percentage of antiferromagnetic ordering at low field value for
Sample 3 than our model shows, but we did find a larger contribution of antiferromagnetic ordering
in Sample 3 than in Sample 9. Thus, the results from our models confirm that there is slightly more
antiferromagnetic ordering in the larger particles in Sample 3 than there is in the small particles in

Sample 9 at high temperature.
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5.5 Conclusion

This paper has discussed how we have determined the magnetic ordering of Sample 9 and
Sample 3 at high temperature as a function of field value. Our results show that Sample 3 has
slightly more antiferromagnetic ordering for low field value than Sample 9. This indicates that at
high temperature the larger nanoparticles show more antiferromagnetic ordering for low field value
than the smaller nanoparticles. We have found that by modeling the experimental data we are able
to make conclusions regarding the magnetic ordering of the nanoparticles. These results lead to

greater understanding of magnetite nanoparticles properties.

5.6 Future Outlook

There is still much to be done in continuation of this project. My study focused primarily on
comparing the magnetic ordering for large versus small particles at high temperature. We will
need to fit the remaining data for the other samples at low temperature to see how low temperature
contributes to the magnetic ordering. Another future goal of this project is to implement error bars
for the ordering coefficients to determine the percentage range for each coefficient, which would
help us make stronger conclusions. We will also continue optimizing the preparation method of the

nanoparticles to achieve even size and distribution to be used for future studies.



Appendix A

Model Fits

Appendix A shows the model fits for Sample 9 at 300 K and Sample 3 at 300 K and 280 K. For
each sample, seven global fits were achieved for various field values. Figures A.1 and A.2 display
the model fits for Sample 9 at 300 K. Figures A.3 and A.4 display the model fits for Sample 3 at
300 K. Figures A.5 and A.6 display the model fits for Sample 3 at 280 K. The charge (left) and

magnetic (right) fits are shown in each figure.
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Figure A.2 Model fits for Sample 9 at 300 K and H = 400, 200, and 0 Oe.
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Figure A.3 Model fits for Sample 3 at 300 K and H = 3000, 1000, 600, and 400 Oe.
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Figure A.6 Model fits for Sample 3 at 280 K and H = 200, 100, and 0 Oe.



Appendix B

MATLAB Code

Appendix B displays the MATLAB code used to import the data, fit the data, and generate the

coefficient maps in Sections B.1, B.2, and B.3, respectively.

B.1 Importing Data

close all; clear;

9% Import data from spreadsheet

[~, ~, rawl] = xlsread ( 'C:\ Users\ Brittni\Desktop\Magnetic Ordering of
Magnetite NPs\Sample 9 300K Positive\Sample 9 Field 300 K', '300K Mag Ratio
", "A2:H293");

s rawl (cellfun (@(x) ~isempty(x) && isnumeric(x) && isnan(x),rawl)) = {''};

[~, ~, raw2] = xlIsread ( 'C:\Users\Brittni\Desktop\Magnetic Ordering of
Magnetite NPs\Sample 9 300K Positive\Sample 9 Field 300 K', '300K Charge (I
++I1—)", "A2: H293");

raw2 (cellfun (@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw2)) = {''};

9% Replace non—numeric cells with NaN

R1 = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawl); % Find non—numeric
cells

39



B.1 Importing Data

©

rawl (R1) = {NaN}; % Replace non—numeric cells

10 R2 = cellfun (@(x) ~isnumeric(x) && ~islogical (x),raw2); % Find non—numeric
cells

1n raw2(R2) = {NaN}; % Replace non—numeric cells

12 9% Create output variable

13 datal reshape ([rawl {:}],size (rawl));
14 data2 = reshape ([raw2{:}],size(raw2));
15 9% Clear temporary variables

16 clearvars rawl Rl;clearvars raw2 R2;

17 %% Removing NaN

18 for j=1l:length (datal (1,:))

19 for i=1:length(datal (:,1))
20 if (isnan(datal(i,j)))
21 datal (i,j)=0;

2 end

23 end

2 end

s for j=1:length(data2(1,:))

26 for i=1:length(data2(:,1))
27 if (isnan(data2(i,j)))
28 data2 (i, j)=0;

29 end

30 end

31 end

32 % Separating Data

w
by

g=datal (2:end,1);
4 intl_O=datal (2:end,8);

w

s intl_200=datal (2:end,7);

0

6 intl1_400=datal (2:end,6);

w

7 intl_600=datal (2:end,5) ;

w
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40
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42

43
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56

57

58

59
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61
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64

65

66

67

B.1 Importing Data

41

intl_1000=datal (2:end ,4);
intl_2000=datal (2:end,3);
intl_3000=datal (2:end,2);

g=data2 (2:end,1);

int2_0=data2 (2:end,8) ;
int2_200=data2 (2:end,7) ;
int2_400=data2 (2:end,6) ;
int2_600=data2 (2:end,5);
int2_1000=data2 (2:end ,4) ;
int2_2000=data2 (2:end,3) ;
int2_3000=data2 (2:end ,2);
save('M_On.mat"','q"', " "intl_0")

save( 'M_200n.mat','q"', "int1_200")
save( 'M_400n.mat','q"', "intl1_400")
save( 'M_600n.mat','q"', "intl_600")
save( 'M_1000n.mat"',"'q"', "intl_1000")
save( 'M_2000n.mat',"'q"', "int1_2000 ")
save( 'M_3000n.mat"', 'q"', "int1_3000")

save('C_On.mat"',"'q"', " "int2_0")

save( 'C_200n.mat"',"'q"', "int2_200")

save ('C_400n.mat', 'q"', "int2_400 ")

save( 'C_600n.mat"',"'q"', "int2_600")
save( 'C_1000n.mat',"'q"', "int2_1000 ")
save ( 'C_2000n.mat"',"'q"', "int2_2000 ")
save('C_3000n.mat"','q"', '"int2_3000 ")
Mi=load ( 'M_On");

M2=load ( 'M_200n");

M3=load ( 'M_400n");

Md=load ( 'M_600n");

M5=load ( 'M_1000n");
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7

72
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79

80
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85

86

87
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89

90

91

92

93

94

95

96

B.1 Importing Data

42

Mé6=1oad (
M7=1oad (
Cl=load(
C2=load(
C3=load (
Cd=1load(
C5=1load(
Cé6=1oad (
C7=load (
ql=Ml.q;
intl=MI.
int2=M2.
int3=M3.
int4=M4.
int5=M5.
int6=M6.
int7=M7.
int21=Cl

int22=C2.
int23=C3.
int24=C4.
int25=C5.
int26=C6.

int27=C7

set (0, 'DefaultAxesFontSize'
set (0, 'DefaultAxesFontWeight', "demi ")
set (0, 'DefaultAxesLineWidth',2);

set (0, 'DefaultLineLineWidth ' ,2.5);

figure

'"M_2000n ") ;
"M_3000n ") ;
'"C_On");

'C_200n");
"C_400n ") ;
"C_600n");
"C_1000n");
"C_2000n ") ;
"C_3000n");

intl_O;
int1_200;
int1_400;
intl_600;
int1_1000;
int1_2000;
int1_3000;
.int2_0;
int2_200;
int2_400;
int2_600;
int2_1000;
int2_2000;
.int2_3000;
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97 plot(ql,int7 ,ql,int6/max(int6 )+max(int7),ql,int5/max(int5)=*max(int7),ql,int4/
max(int4 )smax(int7),ql,int3 /max(int3 )+max(int7),ql,intl /max(intl )+max(int7
))

9 title ('Magnetic Ratio — Sample 9 300 K at Different Field H'")

9 legend ( '3000 Oe', '2000 Oe', '1000 Oe', '600 Oe', '400 Oe', '100 Oe")

wo xlabel('q (nm”{—1})")

10

ylabel ("Intensity (a.u.)")

102 grid on

03 figure

104 plot(ql,int27 ,ql,int26/max(int26)+max(int27),ql,int25/max(int25)*max(int27),ql
,int24 /max(int24 )sxmax(int27),ql,int22/max(int22 )xmax(int27),ql,int21 /max(
int21)smax(int27))

15 title ("Scattering Intensity — Sample 9 300 K at Different Field H')

ws legend ( '3000 Oe', '2000 Oec', '1000 Oec', '600 Oc', '400 Oe', '100 Oec')

107 xlabel ('q (nm*{—1})")

s ylabel ('Intensity (a.u.)")

109 grid on

B.2 Modeling Code

clear; close all;

2 % Experimental parameters

3 H = 200 ; % Magnetic field — experimental value

4+ VSM = 0.052; % Magnetization— experimental value

s fecr = 11; % real part of the charge form factor for Fe304

6 fci = 26 ; % imaginary part of the charge form factor for Fe304
7% Fitting parameters

8 N=100; % number of nanoparticles in the chain

9 pix=10; % number of points to define one period

10 sets=11; % number of distributions in the mix
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centerL = 0.62; sigmalL=0.01;
unit = nm)
centerR = 2.75; sigmaR=0.01;

radius R (unit = nm)

% mean value and variance for the spacing L

% mean value and variance for the particle

OFFcha = .03 ;% Offset baseline for charge profile

OFFmag = .0 ; % Offset baseline for magnetic ratio profile

c(1)=VSM; % Ferromagnetic contribution

c(2)=.009; % AF contribution

c(3)=0;% Triple contribution (this is no longer implemented in the model)

(

c(4)=0; % Quadruple contribution (this is no longer implemented in the model)

c(5)= I—(c(1)+c(2)); % Random contribution

c(6)= 5.25; % Charge

c(7)= .33; % Central q = 0 peak height magnetic

c(8) = —2.7; % Central q = 0 peak height charge

sigma=zeros (1,7); % values for peak widths

sigma0 = 1; % Width of the Gaussian distribution of set averaging.

sigma (1) =8.8; % FERRO

sigma (2)=8; % AF

sigma (3)=7; % Triple (this 1is
sigma (4)=7; % Quadruple (this

no longer implemented in the model)

is no longer implemented in the model)

sigma (5)=7; % Random (NO IMPACT because NO PEAK)

sigma (6)=11; % Charge

sigma(7)=0.2; % central gq=0 peak in the q space

sigma(8)= 0.09; % central q

0 peak in the q space

9% Gaussian distribution for charge density function

z(1,:)=linspace(—3,3,sets); % defining the range [—3.3] (arbitrary unit)

zf (1 ,:)=exp(—z(1,:)."2./(2%sigma0."2)); % Gaussian function using sigma as

variance

9% Charge Density Function
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38 begL=centerL —sigmal./2; enL=centerL+sigmal/2; % Range of L values (beginning
and end values)

3 begR=centerR —sigmaR /2; enR=centerR+sigmaR/2; % Range of R values (beginning
and end values)

4 period=2xcenterR+centerL; % calcuation of the period (unit = nm)

41 x=linspace (0,(period)*N,Nxpix); % spatial x scale to define the density
profile (unit = nm)

2 L=linspace (begL,enL,sets); % distribution of L values (equally spaced)

13 R=linspace (begR,enR,sets); % distribution of R values (equally spaced)

4 yl=zeros(sets+1,sets+1,N«pix); % Setting a support for density profile
function

45 % Building the density profile function (including all the different sets of

values for L and for R)

s for k = l:sets

47 for j = l:sets

48 tau= 2%R(k)+L(j);

19 for i=1:length(x)

50 w = x(i)— tau=xfloor(x(i)/tau)—R(k); % parameter to define the location

within particle (w=0 at the center of particle)

51 if abs(w)<= R(k) % condition for being inside the particle of radius R
5 yl(k,j,i) = pi*(R(k)"2 — w”2); % Charge density function of

spherical particles projected into 1D axis

53 else

54 yl(k,j,i) = 0; % cmpty spacec between particles

55 end

56 end

57 yl(k,sets+1,:)= yl(k,sets+1,:)+zf(1,j)* yl(k,j,:):; % Adding all the sets

of charge density functions weigthed with the Gaussian zf
58 end

59 yl(sets+1,sets+1,:)=yl(sets+1,sets+1,:)+zf(1,k)*yl(k,sets+1,:);



60
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46

end

o1 yl(sets+1,sets+1,:)=yl(sets+1,sets+1,:)/max(yl(sets+1,sets+1,:)); % averaged

charge density profile

62 %% Magnetic Density Function

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

=
°

80

81

82

83

84

85

y2=zeros(sets+1,sets+1 ,N«xpix); % setting the function for the magnetic density

length of x = Nxpix

a given set j

for j=l:sets
for 1 = l:sets
h = 1;
for k = I:length(yl(1,1,:))—1 % length of yl =
if yl(i,j,k)==
it yl(i,j,k+1)~=0
findp(i,j,h) = k; % vector idenfying the position x (left
extremity ) of the h_ieth particle in
h = h+1;
end
end
end
% Now, h = last particle
findp(i,j,h)=2«findp(i,j,h—1)-findp(i,j.h—=2); % adding the last particle N
+ 1 (does not physical meaning)
end
end
v=ones (5,length(findp (1,1,:))); % defines the different

i) is FERRO by default)
for i=1:length(findp (1,1,:))
if mod(i,2)== 1 % ANTIFERRO order
v(2,1)= 1;
else
v(2,i)= —1;

end

magnetic orders

(v(l,
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end

v(5,:)=

2#rand ([1,length (findp (1,1,:))])—1; % RANDOM order

for s=1:length(v(:,1)) % number of different orders (basically s = 1:5)

for i = 1:sets

for j=1l:sets

for

end

for

end

for

end

end

end

f = l:length(findp(i,j,:))—1
if findp(i,j,f)~= 0 && findp(i,j,f+1)
lens(i,j,l)= f;

end

g = l:lens(i,j,1)
spin(i,j,findp(i,j,g):findp(i,j,g+1))= v(s,g); % Building spin

density functions (of +1 and —1's)

f = 1:length(yl(1,1,:))

y2(i,j,f) = yl(i,j,f).*spin(i,j,f); % Building the magnetic
density fucntion (multiplying the charge density function
by the spin function)

y2(sets+1,sets+1,f)= y2(sets+1,sets+1,f)+ y2(i,j,f)xzf(l,i)*zf
(1,j); % Adding all the sets of magnetic density functions

weigthed with the Gaussian zf

y2(sets+1,sets+1,:)=y2(sets+1,sets+1,:)/max(y2(sets+1,sets+1,:));

y2_flat (:)=y2(sets+1,sets+1,:);

y3(s,:)=y2_flat; % normalized magnetic density function for each order (s

=1:5)

end

109 %% Convolving by Gaussian distributions to account for limited magnetic
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correlation lengthes in real space

for a=1:length(y3(:,1))% number of orders (basically a = 1:5)
zfl (a,:)=exp(—x."2/(2=xsigma(a)”2)); % Gaussian function, unit for sigma =

nm of variance sigma(a)
y3(a,:)=y3(a,:).xzfl(a,:); % multiplying the magnetic profile with
Gaussian distribution (magnetic correlation length)

end

zflnew (1 ,:,:)=exp(—x."2/(2*sigma(6)"2)); % Gaussian function for charge, unit
for sigma = nm

yl(sets+1,sets+1,:)=yl(sets+1,sets+1,:).xzflnew(1,1,:); % this line is causing
an error because the rhs is 1x1000x1000 and the 1lhs is 1x1x1000

% 1f defining the correlation length lambda as the FWHM of the Gaussian
distribution , lambda ~ 2.35 sigma

% 1f defining the correlation length lambda as twice FWHM (~foot to foot) of
the Gaussian distribution , lambda ~ 4.7 sigma

9% Scattering intensity (Fourier Transform)

% Charge scattering term

cha = zeros (1 ,Nxpix);

cha(:)=fftshift(fft(yl(sets+1l,sets+1,:) ,Nxpix)); % Fourier Transform of the
scattering density profile s_c

intC

abs(cha).”2; % Absolute value squared = amplitude squared of s_c
intC = c(6)*intC/ max(intC) + OFFcha; % Normalizing + offset
% Magnetic scattering term
mag = zcros (6 ,Nxpix);
for a=1:length(y3(:,1))
mag(a,:)=fftshift(fft(y3(a,:) Nxpix)); % Fourier Transform of the magnetic

density profile s_m

t = —length (mag(1,:))/2:1:1length(mag(1,:))/2 — 1; % recenters the FT around q
=0
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Bo t = t*2xpi/((period)=N); % scales the variable for q = 2pi / d with proper
unit (= nm*—1)

1

w

1 %% Combining the different magnetic orders with weights ¢ and normalizing

12

2
]

mag (5 ,:)=ones(l,length(mag(1l,:)));

133 for a=1:2 %Only using the F and AF components (random component not included)

134 mag(a,:)=mag(a,:)/max(abs(mag(a,:))); % Normalizing each component to |
before incorporating weight

135 mag (6 ,:)=mag(6,:)+c(a)*xmag(a,:); % Adding the FTs of the different
magnetic order with respective weights ¢

136 end

137 % Builds the Magnetic Ratio profile

138 RM = abs((fcixreal (cha)+fcr+*imag(cha)).*real (mag(6,:))—(fcrxreal(cha)—fciximag

(cha)).ximag(mag(6,:)))./abs(cha);
139 RM(:)= RM(:) /max(RM(:) )+ OFFmag;

1

=

0 %% Gaussian function for the central peak at q = 0

m x(2,:)=linspace(—3,3,Nxpix);

w2 zf1 (7 ,:)= exp(—x(2,:).2"2/(2«sigma(7)"2)); % Gaussian function , variance sigma
(7) defined in respect to x(2)= [—3,3]

w3 RM = RM + ¢(7)=zfl (7,:); % Adding the Gaussian peak (located at g = 0) with an

amplitude c(7) for the magnetic profile

1

=
=

zf1 (8,:) = exp(—x(2,:)."2/(2+sigma(8)"2)); % Gaussian function , variance sigma
(8) defined in respect to x(2)= [—3,3]
s intC = intC + c(8)*zf1(8,:);% Adding the Gaussian peak (located at g = 0) with
an amplitude c(8) for the charge profile
e % Normalization using the peak outside q = 0
147 flat = RM;

1

=

s flac (1, [Tength (flat(1,:))/2-50:1ength (flat(1,:))/2+50])= flat (1, length(flat
(1,:))/2+51);
129 RM = RM/max(flat);

150 %plmport and normalize the experimental data
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50

dataC = importdata('C_200n.mat"'); % imports the experimental

dataM = importdata( 'M_200n.mat'); % imports the cxperimental

qC
EI

scattering profile (I+ + I—)

ratio (I+ — I—)/sqrt(I+ + I—)

dataC.q; % loads the experimental q values for charge

data: charge

data: magnetic

intensity

dataC.int2_200; % loads the charge scattering intensity

EI=EI/max(EI);

950

for

end

t2

dataM .q; % loads the experimental q values for RM

= dataM.intl1_200; % loads the experimental intensity RM

Residual

i=1l:length(t)

tfindingBeg (i)=abs(t(i)—q(l));

a=min(tfindingBeg):

if (tfindingBeg(i)==a)
tPlaceBeg=i;

end

tfindingEnd (i)=abs(t(i)—q(end));

b=min(tfindingEnd);

if (tfindingEnd (i)==b)
tPlaceEnd=i;

end

t(tPlaceBeg:tPlaceEnd); % range for the cxperimental

% Residual for the charge intensity

modell = intC(1,tPlaceBeg:tPlaceEnd); % Seclected portion

intensity applied to the experimental range

data

of

modell = interpl (t2 ,modell ,q); % Interpolation of the model

epl

t

he experimental data at same q values)

= mean(abs(modell (2:end —2)—-EI(2:end—-2))); % Residual

the

(to

abs

ERM/max (ERM) ; % normalizes the intensity (for comparison purposes)

modeled charge

compare with

(model — data)
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erl = mean((modell (2:end —2)— EI(2:end—-2)).72); % variance = square (model —

data)

% Residual for the magnetic ratio

model2 = RM(1, tPlaceBeg:tPlaceEnd); % Selected portion of the modeled magnetic

ratio applied to the experimental range
model2 = interpl (t2 ,model2,q); % Interpolation of

the experimental data at same q values)

ep2 = mean(abs(model2(2:end —2)-FRM(2:end —2))); % Residual = abs (model — data)

er?2
data)

9% Visualisation

set (0, 'DefaultAxesFontSize ',13);

set (0, 'DefaultAxesFontWeight', "demi ")

set (0, 'DefaultAxesLineWidth',2);

set (0, 'DefaultLineLineWidth ',2.5);

figure; plot(t,intC, " 'r',q,El,"'b"', 'LineWidth"',2)

title ({[ 'Sample9_300K "],[ '"H="',num2str(H)," ', 'epl="

,num2str (OFFcha)],[ 'c6=",num2str(c(6)),"' ', 'sigb=",num2str(sigma(6)),"'

the model

,num2str (epl) '

(to compare with

mean (( model2 (2:end —2)-FRM(2:end —-2)).72); % variance = square (model —

", '"OFFcha="

c8=",num2str(c(8)),"' ", 'sig8=",num2str(sigma(8))],[ 'centerR=",num2str (

centerR) ;' , 'sigR=",num2str (sigmaR) , '
siglh=",num2str (sigmalL) ]}, "interpreter ', 'none ")

xlabel ('qg (nm” {—1})")

ylabel ('Scattering Intensity (a.u.)"')

legend ( 'Model ', "Data ")

xlim([—.1 1.5])

ylim ([ -=0.05 2])

grid on

figure

skip=1;

plot(t(l:skip:end) RM(1:skip:end),'r"',q(l:skip:end) ERM(1:skip:end), 'Linewidth

,'centerL=",num2str(centerL) , "'

b}

k]
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"2)
19 hold on
200 plot(t,OFFmagxabs (mag(5,:)),t,c(l)*abs(mag(l,:)).t,c(2)=xabs(mag(2,:)))

20

title ({[ "Sample9_300K "] ,[ '"H=",num2str (H),"' ', 'ep2=",num2str(ep2),"' ', OFFmag="
,num2str (OFFmag) ],[ 'cl=",num2str(c(1))," ', 'c2=",num2str(c(2)),"' ', 'cO=",

num2str(c(5))," ', 'c7=",num2str(c(7))],[ 'sigl=",num2str(sigma (1)), ',

sig2=",num2str(sigma(2)),"' ', 'sig7=",num2str(sigma(7))]}, "interpreter ',
none ')

202 xlabel ('q (nm™{—1})")

203 ylabel ('Magnetic ratio (a.u.) ')

204 legend ( 'Model ', "Data ', 'c_0","'c_1",'c_2")

205 xlim([—.1 1.5])

206 ylim ([ —0.05 21])

207 grid om

B.3 Generating Coefficient Maps

1 clear; close all; %plotting ¢ values

2 ¢l1=[.575,.448,.259,.176,.122,.052,.007];
3¢2=[.001,.041,.01,.01,.007,.009,1e—6];
4c5=[.424,511,.731,.814,.871,.928,.993];
sM= [.575,.448,.259,.176,.122,.052,.0077;
¢ for a=1:length(cl)

7 Mc(a)=cl(a);

s end

v x=[3000,2000,1000,600,400,200,0];

10 set(0, 'DefaultAxesFontSize ' ,13);

1n set(0, 'DefaultAxesFontWeight', 'demi')

2 set(0, 'DefaultAxesLineWidth ' ,2);

13 set(0, 'DefaultlLinelineWidth',2.5);



20
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figure;

plot(x,c5,'-s"',x,cl,'=s',x,c2,'=s ' ,x,Mc, '—

hh=legend ('C_{0} ', 'C_{1}','C_{2} ', ' M_{c}"):

set (hh, 'Fontsize ',14);
xlabel ('Field Value (Oe) ")
ylabel ( 'Percentage (%) ')
title ( 'Mapping Coefficients

grid on

For Sample 9 at

)

300 K')
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