Lauren Hindman

A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of
 Bachelor of Science

J. Ward Moody, Advisor

Department of Physics and Astronomy

Brigham Young University

Copyright © 2018 Lauren Hindman

All Rights Reserved

ABSTRACT
Flaring Rate of Northern Blazars
Lauren Hindman
Department of Physics and Astronomy, BYU
Bachelor of Science

Blazars, a subclass of Active Galactic Nuclei (AGN), are characterized by a jet of particles accelerated by magnetic fields around supermassive black holes. For blazars, these jets are angled toward Earth. These objects are known to change magnitude, or flare, often and sometimes rapidly. It is thought that two mechalisms are mainly responsible for flaring: geometric instabilities in the jets which occur stochastically, and periodic changes in jet or accretion disk activity add oriendation from orbital perturbations. Using our Remote Observatory for Variable Object Research (ROVOR), we monitored 192 of these objects using both V and R Johnson broadband spectral filters over the course of a year. We comment on the variability observed and which mechanism may be most responsible.

Contents

Table of Contents iii
1 Introduction 1
1.1 Blazars; What We Know 1
1.2 Ongoing Work 2
1.3 Purpose 3
1.4 Organization 3
2 Method 4
2.1 Object Selection 4
2.2 Observations and Reduction 4
2.3 Statistical Approach 6
3 Results 7
3.1 Data 7
3.2 Conclusions 20

Chapter 1

Introduction

1.1 Blazars; What We Know

A class of active galactic nuclei (AGN) called quasars are believed to be among the most luminous and energetic objects in the universe. Quasars are relativistic jets thought to form when charged matter in accretion disks around supermassive black holes (SMBH) interacts with their helical magnetic field. When these jets are pointing toward Earth they are considered blazars.

Blazars are known to vary in brightness, or flare, regularly as well as rapidly. Flares occur at seemingly random intervals and can occur on short timescales (<1 hour) as well as long (>6 months) (Smith, Nair 1994). Some even vary at multiple timescales simultaneously.

Blazars are a not well understood subclass of AGN, especially when it comes to what causes these flares. To be clear, there are a few blazars whose physical attributes we understand quite well, but this is only the case after many years of constant observation. The flaring mechanisms found in these particular objects typically seem to be unique to that particular blazar.

Over the past decade, a few theories for general flaring mechanisms have been determined. Smooth, regular flares are attributed to orbital motion of the black hole itself, or environmental

Figure 1.1 matter being accelerated away from a SMBH.
factors such as the possibility of a binary black hole system. Erratic flaring is thought to be caused by instabilities in the jet. It is possible both of these mechanisms are at play in most blazars. Dominant mechanisms in each blazar should be reflected in behaviour.

1.2 Ongoing Work

Particularly bright blazars are monitored for flaring across the world by an organization called the Whole Earth Blazar Telescope (WEBT), though they tend to focus on the more famous blazars. While a few of these objects are regularly observed, many others that are easily bright enough to be observed optically with small ground based telescopes are typically disregarded for long term study. Many have not even been observed since their discovery!

1.3 Purpose

By observing a large sample of these objects we are hoping to find the flaring rate for a general population. We also are attempting to determine what blazars are currently exhibiting flaring behaviour which are not part of the famous population, and calculate current baseline magnitudes. By finding a greater population of interesting blazars, we can gain the interest of larger organizations such as WEBT and get some further analysis underway.

Widening our view and understanding of this phenomena will help us better understand the environment surrounding these black holes and the processes they go through.

Additionally, we hope the quality of our findings will encourage other researchers with access to smaller telescopes such as ours to be able to research optical variability, opening the door to a population of researchers previously rarely involved in this kind of research.

1.4 Organization

This paper is organized as follows. Section two describes our observational methods, calibrations, and approach to analyzing data. In section three we discuss our results.

Chapter 2

Method

To observe flares and calculate updated magnitudes, data were gathered from June 2015 to June 2016 using BYU's 16" ROVOR telescope (Moody et al. 2012). Photometry was performed using the software MIRA.

2.1 Object Selection

Candidate objects were chosen from the following astronomical catalogs: American Ephemeris, Veron Cetty-Veron (Veron Cetty-Veron 2010) AGN catalog, and the Whole Earth Blazar Telescope (WEBT) list of high-energy blazars. Objects were included based on the following criteria: optical magnitudes brighter than 16.0 , declination above 0°.

2.2 Observations and Reduction

Objects were observed between 3 to 22 nights throughout the year using ROVOR. Each observation consisted of six one-minute images in the Johnson V filter and five one-minute images in Johnson R.

Figure 2.1 Photometry in MIRA with 11 standard objects. Circles represent each aperture. The blazar is listed as object one. The standards are the following 11 objects

Photometry, or extracting photon flux data from images, was performed using MIRA. With few exceptions, the aperture size was consistently 4,6 , and 8 pixels; one pixel is equivalent to 2.7 arcseconds. Figure 2.1 shows the overlay of the aperture the object. The ring outside of the aperture helps with reducing error by integrating the background light in the field and subtracting it from the aperture data. As you can see in figure 2.1, additional objects had photometry performed on them to decrease our statistical error. These 11 objects are assumed to be standard.

An unexpected and irritating source of error arising in recent years when using ROVOR is what
we call a herringbone pattern. Such patterns arise from a periodic ground plane voltage fluctuation in our power source. Recently we have found increasing the annulus size in MIRA significantly reduces the error from this fluctuation.

2.3 Statistical Approach

Flat fields, Darks and Biases, following standard photometry practices, were applied to each frame before magnitudes were gathered. To increase reliability of photometry, 11 standard objects were chosen within each field. These stars were compared with each other and only those with sufficient signal and stability were used to calibrate the blazar.

The trend in magnitude vs time for each object was fit to a third degree polynomial. The R^{2} coefficient given in each fit gives the correlation coefficient.

To determine reliability of our data, the standard deviation of the data with respect to the fit was, in each filter, compared to the standard deviation of the difference between filters. A ratio greater than two in both filters means the filters were tracking together over time as would be expected for low observational noise. Therefore this ratio was used as an indicator that error from the atmosphere is neglegable.

Chapter 3

Results

3.1 Data

Magnitudes averaged over our observations can be seen in table 3.1. In the table, the R^{2} value indicates the fit of a second degree polynomial to the data. As we interpret it, a value <0.35 indicates stochastic variance and a value >0.75 indicates smooth variance.

Figure 3.1 shows the normalized magnitudes of the blazars over time. By normalized we mean that he first magnitude in the sequence for each object was set to be the same value of 0.0. Subsequent points show how much the magnitude varied from the first value. Thirteen objects stood out with significant change in magnitude and a standard deviation ratio greater than two in both V and R filters. Those objects are outlined in the top right corner. Three of those are in the famous population, but the others are being identified as highly variable for the first time in this study. The rest of the 192 objects are graphed behind the 13 in yellow to indicate that their variability was not significant.

We have successfully found current baseline values for these 192 objects. These baselines can be viewed in table 3.1 along with their correlation coefficients. Data missing in the table indicates

Figure 3.1 Normalized reduced data. Note Magnitude scale is inverted; smaller magnitudes indicate brighter object.
objects we were unsuccessful in observing often enough to be statistically significant.
R^{2}
0.73
0.24
0.76
0.25
0.33
0.65
0.36
0.090
0.62
0.49
0.19
0.75
0.79
0.43
0.80
1 VC MAG Measured V Measured R

 R.A.
01939.8
0249.4
02913.8
04547.2
05154.8
05334.9
05452.2
0579.9
1945.1
1945.1
12240.6
1238.7
15032.7
15734.8
15950.2
2749.8
272.2
0
0

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
19	B3 0225+389	22859.2	+39845	15.8	18.83	17.86	0.11
20	1ES 0229+200	23248.6	+20 1717	14.7	16.88	16.14	0.14
21	AO 0235+164	23838.9	+16370	15.5	18.41	17.50	0.24
22	S2 0241+62	24457.6	+62286	15.7	16.75	15.66	0.68
23	$4 \mathrm{U} 0241+61$	24519.1	622914	12.2	16.86	15.69	0.31
24	3C 48	31948.16	+413042.1	12.5	13.12	12.52	0.82
25	3C 110	41716.7	-5 5345	15.9	17.39	17.26	1
26							
27	MG 0509+0541	5925.9	+54135	16	15.62	15.18	0.60
28	HS 0624+6907	6302.4	+6954	14.4	14.43	14.09	0.49
29	1ES 0647+250	65046.5	+2530	15.3	15.84	15.45	0.92
30	MS 07007+6338	7529.4	+63 3333	15.7	15.58	15.33	0.26
31	7ZW 118	7713.2	+64 3559	14.6	15.37	14.92	0.58
32	B2 0709+370	7139.4	+36567	15.5	15.70	15.48	0.72
33	4C 41.30	74541.6	+314256	15.6	15.68	15.54	0.72
34	OI+90.4	7576.7	+95635	15	17.21	16.57	0.37
35	NAME DISPUTE	7580.1	+392030	14.4			
36	IRAS 07598+6508	8430.4	+645953	15.5	14.67	14.45	0.62

$\begin{array}{lcccc}\text { Dec } & \text { VC MAG } & \text { Measured V } & \text { Measured R } & R^{2} \\ +212041 & 15.9 & & & \\ +521858 & 15.3 & 15.34 & 14.90 & 0.93 \\ \text { +76 154 } & 14.7 & 14.69 & 14.46 & 0.98 \\ +245941 & 15.9 & 16.49 & 16.10 & 0.73 \\ +44262 & 15.6 & 15.58 & 15.30 & 0.38 \\ +354438 & 16 & 16.81 & 16.51 & 0.07 \\ +765310 & 15.7 & 16.26 & 15.94 & 0.18 \\ +51829 & 15.7 & & & \\ +525937 & 16 & 16.52 & 15.90 & 0.82 \\ +19544 & 15.8 & 15.39 & 15.06 & 0.95 \\ +1543 & 16 & & & \\ +34250 & 16 & 16.37 & 16.13 & 0.78 \\ +12531 & 16 & 18.69 & 18.53 & 1 \\ +41521 & 15.3 & & & \\ +32242 & 15.8 & 15.82 & 15.52 & 0.34 \\ +545438 & 16 & 16.23 & 15.93 & 0.93 \\ +681318 & 15.9 & & & \\ +124856 & 15.2 & 15.61 & 15.25 & 1\end{array}$
 Number

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
55	TON 488	10100.7	+30321	16	17.013	16.63	0.28
56	CSO 38	101155.7	+294141	16			
57	TON 1187	10133.1	+355122	15.4	15.98	15.55	0.78
58	SBS 1010+535	101326.6	+53168	16	16.44	16.15	0.38
59	PG1011-040	101420.7	-4 1839	15.5			
60	PG1012+008	101454.9	+033 37	15.6			
61	TON 34	101956.6	+27442	15.7	16.39	16.01	1
62	B3 1019+397	102237.5	+39 3151	16	17.11	16.79	0.71
63	MK 142	102531.3	+514035	16	15.70	15.22	1
64	SBS 1047+550	105045.7	+54 4720	16	16.93	16.85	0.45
65	RX J10547+4831	105444.6	+48339	15.7	16.59	16.35	0.29
66	TON 52	1147	+314111	16	16.63	16.39	1
67	3C 249.1	11413.8	+765858	15.7	15.52	15.21	0.54
68	MK 421	11427.2	+381232	12.9	13.14	12.71	0.97
69	HS 1103+6416	11610.8	+6408	15.8	15.87	15.43	1
70	4C 16.30	11715.1	+16283	15.7	16.75	17.00	1
71	TON 1388	11198.8	+211918	14.7	15.01	14.76	1
72	SBSG $1116+518$	111943.1	+513335	15	17.36	17.08	0.42

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
73							
74	S4 1128+38	113053.4	+381520	16	19.34	18.55	
75	TON 580	11319.4	+31147	16	16.67	16.36	1
76	MK 180	113626.5	+70928	14.5	14.68	14.14	0.79
77	WAS 26	114116.1	+215622	14.9	15.39	15.13	
78	RX J11479+2715	114754.4	+27150	15.4	16.42	16.11	1
79	CBS 147	11509.5	+345631	16	17.93	17.51	0.57
80	OM+280	115019.2	+241754	15.7	16.70	16.18	1
81	PG 1151+118	115349.3	+112830	16	16.30	16.01	1
82	TON 599	115931.9	+291445	14.4	17.03	16.63	0.9
83	GQ Com	124421	+275412	15.6	16.66	16.25	1
84	PG 1206+459	12858	+454036	15.7	15.58	15.35	1
85	PG 1211+143	121417.7	+14313	14.2	14.78	14.56	1
86	1ES 1212+078	101511	+7324	16	16.85	16.12	1
87	ON+325	121752	+3071	15.6	14.90	14.48	1
88		121920.9	+63838	15.7			
89	PG 1216+069	RS4	1221.9	+301037	15.9		

Measured V	Measured R
15.53	14.86
15.99	15.68
13.12	12.91
16.19	16.04
15.07	14.6
16.77	16.48
17.13	16.63
18.37	17.86
16.33	15.94
16.33	15.92
15.71	15.37
16.23	15.96
16.29	16.03
17.29	16.73
15.72	15.28
16.09	15.76
18.56	18.57

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
109	TON 1565	131217.7	+351523	15.6	15.53	15.24	1
110	TON 153	131956	+272810	16	15.97	15.77	0.48
111	PG 1322+059	132349.6	+654148	15.8	15.66	15.42	1
112	Q 1326-0516	132928.6	-53136	15.6			
113	4C 55.27	133411.6	+55125	16	18.20	18.02	1
114	TON 730	134356.6	$+253852$	15.9	15.95	16.59	0.48
115							
116	CSO 1022	135326	+362049	16	16.52	16.18	1
117	MK 662	13546.4	+232549	15.4	15.51	15.08	0.99
118	PB 4142	135435.6	+18518	15.9	16.36	15.99	1
119							
120	TON 182	14516.2	+255534	15.5	16.10	15.81	0.54
121	PG 1404+226	14621.9	+22 2347	15.8	15.98	15.67	1
122							
123	PG 1411+442	14923.9	+261821	15.7	14.94	14.63	1
124	PG 1411+442	141358.9	+435859	15			
125	PG 1415+451	14170.8	+44566	15.7	15.91	15.51	1
126	1E 1415+259	141756.6	+254325	16	17.08	16.53	1

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
127	OQ+530	141946.6	+542314	15.7	15.67	15.13	0.86
128	KUV 14207+2308	142257.7	+225441	15.6	16.01	15.65	1
129	2E 1423+2008	142613.4	+195525	16	16.84	16.39	1
130	PKS 1424+240	14270.5	+23480	15	14.76	14.36	0.96
131	MK 813	142725	+194952	15.3	14.98	14.70	1
132	TON 202	142735.7	+263214	15.7	16.83	16.56	1
133	MK 1383	14296.6	+1176	14.9	14.54	14.21	1
134							
135	PG 1437+398	143917.5	+393244	16	16.94	16.42	0.81
136	MARK 478	144218.6	+352514	14.6	14.71	14.36	1
137	PG 1444+407	144646	+40356	15.7	16.07	0.5315 .75	
138	$3 C 305.0$	144927.4	+63157	13.7	14.17	13.57	1
139	MK 830	145026.6	+583945	16	17.31	16.78	0.57
140	MK 840	1548.5	+143126	16	16.51	15.90	0.96
141	1H 1515+660	151747.5	+652523	15.9	17.09	16.82	0.84
142	MCG 11.19.006	151925.3	+653342	13.9	15.73	15.09	0.99
143							
144							

R^{2}
0.29
0.52
0.45
1
0.97
0.32
0.91
0.70
0.90
0.36
0.22
0.30
0.40
0.89
0.86
0.34
0.91

 VC MAG Measured V Measured R

Number

R^{2}
0.38
0.41
0.24
0.57
0.69
0.74
0.72
0.10
0.37
0.89
0.25
0.86
0.78
0.78
0.16
0.19
0.21

Measured R

禺

 む
Z
Z
Z

Number	Object	R.A.	Dec	VC MAG	Measured V	Measured R	R^{2}
181	4C 31.63	22314.9	+314538	15.6	15.61	15.21	0.49
182	2ZW 171	221153.9	+184149	15.4			
183	KUV 22497+1439	22528	+145449	15.9	16.11	15.75	0.25
184	4C 11.72	225410.5	+113638	15.8	15.86	15.41	0.13
185	MK 926	23443.5	-8418	13.8	14.66	14.07	0.79
186	PB 5235	23445	+31146	15.8	15.95	15.69	0.80
187	PB 5250	2373	+43257	15.5	15.40	14.71	0.80
188	4C 09.72	231117.7	+10815	16	16.15	16.00	0.86
189	3C 465.0	233843	+27322	13.3	13.67	12.96	0.01
190	4C 09.74	234637	+9 3045	16	16.28	16.07	0.08
191	1ES 2344+514	23474.8	+514218	15.5	15.38	14.62	
192	PKS 2349-014	235156.1	-1913	15.3	16.37	15.80	

Table 3.1 VC MAG: Measured V magnitude at the time of discovery as given in Veron Cetty; Measured V\& R: Averaged magnitudes through ROVOR's observations; R^{2} : Correlation coefficient found with our data. Missing data indicates data which was unable to be reduced reasonably

Figure 3.2 Blazar variability clusters.

Our data seems to fit comfortably into two categories: smooth or stochastic. This indicates two kinds of flaring mechanism as predicted. As we have stated, there is a possibility that each object behaves as a combination of these patterns; data needs to be taken over a longer period of time before this can be determined.

The R^{2} values of the 13 objects with significant deviation ratios are shown in figure 3.2. Two groups can be seen. The group on the left is stochastic, and the right is smooth.

3.2 Conclusions

Overall we found four percent of our objects to flare over the observational period of a year. Assuming this rate can be generalized over the entire population, this correlates to an average flaring rate of once every 15 years. Obviously more data needs to be taken before we can know if this number can be generalized or not.

This frequency is much lower than expected considering one of the primary characteristics of blazars is their almost continuous flaring behaviour. Therefore we can conclude that either many objects go dormant, or the categorization of many these objects needs to be reassessed.

Additionally it is possible that a lower flaring frequency is a characteristic of brighter blazars, and the assumed characteristic of higher frequency flaring is only found in the dimmer populations that have previously been thoroughly observed.

Bibliography

Moody, J. W., Boizelle, B., Bates, K., Little, B., McCombs, T., Nelson, J.,Pace, C., Pearson, R. L. III, Harrison, J., Brown, P.J., and Barnes, J., PASP, 124, 956-962, 2012 (arXiv:astro-ph/0590641)

Veron-Cetty M.P., Veron P., Astron. Astrophys. 518, A10, 2010; https://heasarc.gsfc.nasa.gov/W3Browse/all/veroncat.html

Smith, Alex G., Nair, A. D., PASP, 107, 863-870, 1995; http://iopscience.iop.org/article/10.1086/133634/pdf

