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ABSTRACT
Flaring Rate of Northern Blazars

Lauren Hindman
Department of Physics and Astronomy, BYU
Bachelor of Science

Blazars, a subclass of Active Galactic Nuclei (AGN), are characterized by a jet of particles
accelerated by magnetic fields around supermassive black holes. For blazars, these jets are angled
toward Earth. These objects are known to change magnitude, or flare, often and sometimes rapidly.
It is thought that two mechalisms are mainly responsible for flaring: geometric instabilities in the
jets which occur stochastically, and periodic changes in jet or accretion disk activity add oriendation
from orbital perturbations. Using our Remote Observatory for Variable Object Research (ROVOR),
we monitored 192 of these objects using both V and R Johnson broadband spectral filters over the
course of a year. We comment on the variability observed and which mechanism may be most
responsible.

Keywords: Quasar, Active Galactic Nuclei
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Chapter 1

Introduction

1.1 Blazars; What We Know

A class of active galactic nuclei (AGN) called quasars are believed to be among the most luminous
and energetic objects in the universe. Quasars are relativistic jets thought to form when charged
matter in accretion disks around supermassive black holes (SMBH) interacts with their helical
magnetic field. When these jets are pointing toward Earth they are considered blazars.

Blazars are known to vary in brightness, or flare, regularly as well as rapidly. Flares occur at
seemingly random intervals and can occur on short timescales (<1 hour) as well as long (>6 months)
(Smith, Nair 1994). Some even vary at multiple timescales simultaneously.

Blazars are a not well understood subclass of AGN, especially when it comes to what causes
these flares. To be clear, there are a few blazars whose physical attributes we understand quite well,
but this is only the case after many years of constant observation. The flaring mechanisms found in
these particular objects typically seem to be unique to that particular blazar.

Over the past decade, a few theories for general flaring mechanisms have been determined.

Smooth, regular flares are attributed to orbital motion of the black hole itself, or environmental
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Figure 1.1 matter being accelerated away from a SMBH.

factors such as the possibility of a binary black hole system. Erratic flaring is thought to be caused by
instabilities in the jet. It is possible both of these mechanisms are at play in most blazars. Dominant

mechanisms in each blazar should be reflected in behaviour.

1.2 Ongoing Work

Particularly bright blazars are monitored for flaring across the world by an organization called the
Whole Earth Blazar Telescope (WEBT), though they tend to focus on the more famous blazars.
While a few of these objects are regularly observed, many others that are easily bright enough to be
observed optically with small ground based telescopes are typically disregarded for long term study.

Many have not even been observed since their discovery!
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1.3 Purpose

By observing a large sample of these objects we are hoping to find the flaring rate for a general
population. We also are attempting to determine what blazars are currently exhibiting flaring
behaviour which are not part of the famous population, and calculate current baseline magnitudes.
By finding a greater population of interesting blazars, we can gain the interest of larger organizations
such as WEBT and get some further analysis underway.

Widening our view and understanding of this phenomena will help us better understand the
environment surrounding these black holes and the processes they go through.

Additionally, we hope the quality of our findings will encourage other researchers with access
to smaller telescopes such as ours to be able to research optical variability, opening the door to a

population of researchers previously rarely involved in this kind of research.

1.4 Organization

This paper is organized as follows. Section two describes our observational methods, calibrations,

and approach to analyzing data. In section three we discuss our results.
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Method

To observe flares and calculate updated magnitudes, data were gathered from June 2015 to June
2016 using BYU’s 16" ROVOR telescope (Moody et al. 2012). Photometry was performed using

the software MIRA.

2.1 Object Selection

Candidate objects were chosen from the following astronomical catalogs: American Ephemeris,
Veron Cetty-Veron (Veron Cetty-Veron 2010) AGN catalog, and the Whole Earth Blazar Telescope
(WEBT) list of high-energy blazars. Objects were included based on the following criteria: optical

magnitudes brighter than 16.0, declination above 0°.

2.2 Observations and Reduction

Objects were observed between 3 to 22 nights throughout the year using ROVOR. Each observation
consisted of six one-minute images in the Johnson V filter and five one-minute images in Johnson

R.
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Figure 2.1 Photometry in MIRA with 11 standard objects. Circles represent each aperture.
The blazar is listed as object one. The standards are the following 11 objects

Photometry, or extracting photon flux data from images, was performed using MIRA. With
few exceptions, the aperture size was consistently 4, 6, and 8 pixels; one pixel is equivalent to 2.7
arcseconds. Figure 2.1 shows the overlay of the aperture the object. The ring outside of the aperture
helps with reducing error by integrating the background light in the field and subtracting it from the
aperture data. As you can see in figure 2.1, additional objects had photometry performed on them to
decrease our statistical error. These 11 objects are assumed to be standard.

An unexpected and irritating source of error arising in recent years when using ROVOR is what
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we call a herringbone pattern. Such patterns arise from a periodic ground plane voltage fluctuation
in our power source. Recently we have found increasing the annulus size in MIRA significantly

reduces the error from this fluctuation.

2.3 Statistical Approach

Flat fields, Darks and Biases, following standard photometry practices, were applied to each frame
before magnitudes were gathered. To increase reliability of photometry, 11 standard objects were
chosen within each field. These stars were compared with each other and only those with sufficient
signal and stability were used to calibrate the blazar.

The trend in magnitude vs time for each object was fit to a third degree polynomial. The R?
coefficient given in each fit gives the correlation coefficient.

To determine reliability of our data, the standard deviation of the data with respect to the fit was,
in each filter, compared to the standard deviation of the difference between filters. A ratio greater
than two in both filters means the filters were tracking together over time as would be expected for
low observational noise. Therefore this ratio was used as an indicator that error from the atmosphere

is neglegable.
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Results

3.1 Data

Magnitudes averaged over our observations can be seen in table 3.1. In the table, the R value
indicates the fit of a second degree polynomial to the data. As we interpret it, a value < 0.35
indicates stochastic variance and a value >0.75 indicates smooth variance.

Figure 3.1 shows the normalized magnitudes of the blazars over time. By normalized we
mean that he first magnitude in the sequence for each object was set to be the same value of 0.0.
Subsequent points show how much the magnitude varied from the first value. Thirteen objects stood
out with significant change in magnitude and a standard deviation ratio greater than two in both V
and R filters. Those objects are outlined in the top right corner. Three of those are in the famous
population, but the others are being identified as highly variable for the first time in this study. The
rest of the 192 objects are graphed behind the 13 in yellow to indicate that their variability was not
significant.

We have successfully found current baseline values for these 192 objects. These baselines can

be viewed in table 3.1 along with their correlation coefficients. Data missing in the table indicates
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Figure 3.1 Normalized reduced data. Note Magnitude scale is inverted; smaller magnitudes
indicate brighter object.

objects we were unsuccessful in observing often enough to be statistically significant.
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Variability Modes

4.0 4

Number

Figure 3.2 Blazar variability clusters.

Our data seems to fit comfortably into two categories: smooth or stochastic. This indicates two
kinds of flaring mechanism as predicted. As we have stated, there is a possibility that each object
behaves as a combination of these patterns; data needs to be taken over a longer period of time
before this can be determined.

The R? values of the 13 objects with significant deviation ratios are shown in figure 3.2. Two

groups can be seen. The group on the left is stochastic, and the right is smooth.

3.2 Conclusions

Overall we found four percent of our objects to flare over the observational period of a year.
Assuming this rate can be generalized over the entire population, this correlates to an average flaring
rate of once every 15 years. Obviously more data needs to be taken before we can know if this
number can be generalized or not.

This frequency is much lower than expected considering one of the primary characteristics
of blazars is their almost continuous flaring behaviour. Therefore we can conclude that either

many objects go dormant, or the categorization of many these objects needs to be reassessed.
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Additionally it is possible that a lower flaring frequency is a characteristic of brighter blazars, and
the assumed characteristic of higher frequency flaring is only found in the dimmer populations that

have previously been thoroughly observed.



Bibliography

Moody, J. W., Boizelle, B., Bates, K., Little, B., McCombs, T., Nelson, J.,Pace, C., Pearson, R. L.

II1, Harrison, J., Brown, PJ., and Barnes, J., PASP, 124, 956-962, 2012 (arXiv:astro-ph/0590641)

Veron-Cetty M.P, Veron P, Astron. Astrophys. 518, A10, 2010;

https://heasarc.gsfc.nasa.gov/W3Browse/all/veroncat.html

Smith, Alex G, Nair, A. D, PASP, 107, 863-870, 1995;
http://iopscience.iop.org/article/10.1086/133634/pdf

22



	Title Page
	Abstract
	Table of Contents
	1 Introduction
	1.1 Blazars; What We Know
	1.2 Ongoing Work
	1.3 Purpose 
	1.4 Organization

	2 Method
	2.1 Object Selection
	2.2 Observations and Reduction
	2.3 Statistical Approach

	3 Results
	3.1 Data
	3.2 Conclusions


