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ABSTRACT

DFA ANALYSIS OF FINANCIAL DATA

Bronson Argyle

Physics Department

Bachelor of Science

Recent developments in the field of biophysics, both in findings and methods, have

consequences that extend not only into physics in general, but may have application

in a rigorous mathematical analysis of financial markets. Specifically, we apply the

interpretative power of the Detrended Fluctuation Analysis to an Exchange Traded

index Fund (ETF) mirroring the S&P 500. Not only do we verify the observation of

positive long-range correlations, but we also characterize the effects of bin size on

the DFA output. As a final application, we briefly examine the possibilities of using

the results of a localized DFA to assess a measure of corporate health.
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I Introduction

First developed by GoldBerger and others, Detrended Fluctuation Analysis serves

to quantify the fractality of an underlying data signal [1]. Though the literature is

replete with documentation [2] [3], it may be beneficial to offer a brief introduction

to the theoretical and mathematical foundations of this approach. Given a raw data

set x(t), we first remove large trends by subtracting a running, integrated average

M , thus

y(t) =
k∑

i=1

[x(t)−M ]. (1)

This integration effectively smooths the signal and is shown in the top plot of

Figure 1. We then separate y(t) into N/τ equal size nonoverlapping boxes, where N

is the total number of data points and τ is the fluctuation function parameter.

In order to quantify the fluctuations present in the signal, a linear

approximation is first constructed in each τ -size box using the Ordinary Least

Squares method of estimation. Thus, we find the estimated model ŷ(t) = β̂1t + β̂0 in

each box. Though the regression may be much more rigorous, i.e. of higher order, a

first order model is the convention. We will provide further reasoning for using the

linear fit after the initial outline of the method.

Given the estimated regression ŷ(t) corresponding to a given discrete box, we

construct the detrended fluctuation function F (τ) as the root mean square

deviation between y(t) and ŷ(t). Thus,

F 2(τ) =
1

N

N∑
t=1

|(y(t)− ŷ(t)|2. (2)

The summation is performed over all boxes to give an average fluctuation

〈F 2(τ)〉 as a function of τ . This same analysis is then performed for all possible

time scales (τ values). For example, the orange lines in Figure 1 correspond to an

average fluctuation for boxes of a given size (τorange) and produce the orange dot in

Figure 2; the blue lines correspond to an average fluctuation for boxes of a different

given size (τblue = 2τorange) and produce the blue dot in Figure 2. We expect a

power-law behavior given by,

〈F 2(τ)〉
1
2 ∼ τα. (3)

6



0
1

2
3

4
5

6
7

8
9

1
0

x
 1

0
4

0

0
.2

0
.4

0
.6

0
.81

x
 1

0
−

4

����
��
�

��
	�� 	
�����

 

 

O
ri
g

in
a

l 
D

a
ta

S
m

o
o

th
e

d
 D

a
ta

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

0

0
.2

0
.4

0
.6

0
.81

x
 1

0
−

4

����
��
�

��
	�� 	
����� F
ig

u
re

1:
T

h
e

to
p

p
lo

t
d
ep

ic
ts

b
ot

h
th

e
ra

w
d
at

a
si

gn
al

(b
lu

e)
an

d
th

e
in

te
gr

at
ed

si
gn

al
(g

re
en

)
ac

co
rd

in
g

to
eq

u
at

io
n

(1
).

T
h
e

in
te

gr
at

ed
d
at

a
is

th
en

se
p
ar

at
ed

ac
co

rd
in

g
to

a
gi

ve
n

w
in

d
ow

si
ze

(t
h
e

se
ct

io
n

fr
om

t=
10

00
to

16
00

is
d
ep

ic
te

d

in
th

e
lo

w
er

p
lo

t)
.

7



10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

α
1

α
0

Figure 2: A root-mean-square fluctuation is calculated from a linear fit in every

window in the bottom plot of Figure 1. We then plot the average fluctuation as a

function of window size.

Examining the output of the DFA as a log-log relation, the α exponent emerges

as a linear slope parameter. The interpretation of this slope parameter is straight

forward:

α = 0.5 corresponds to no long term temporal correlations and is indicative of

random walk-based white noise in which each data point is completely uncorrelated

with any previous data,

0 < α < 0.5 is indicative of long-range power-law anti-correlations, sometimes

referred to as ”anti-persistent” correlations [4],

0.5 < α < 1 is indicative of long-range power-law correlations, and

α > 1 indicates the existence of correlations, though they no longer obey a

power-law form. For example, α = 1.5 corresponds to the integration of white noise

commonly referred to as ”brown noise.”

It has been shown that α is directly related to the Hurst exponent [5] [6] and

the signal fractal dimension [9]. Further, the proceeding interpretation is only valid

within a finite range of the possible values of τ . Intuitively, as the time window

shrinks, it becomes increasingly difficult to demonstrate fractality. Similarly,

repeating fluctuations (reoccurring movements in the data which would constitute

fractal-like relations) become more prevalent as the size of the time window

increases, i.e. τ increases. Empirically, Ausloos defines this scaling range to be
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roughly between log(τ) = 1 and log(τ) = 2.6 for most real or virtual foreign

exchange currency (FEXC) rates [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. We

assume that such constraints on the values of τ are valid in the S&P 500 as well.

As a final note in the explanation of the DFA, it has been shown that the results

of the analysis are surprisingly robust against more accurate box fits. For example,

using a cubic model ŷ(t) = β̂3t
3 + β̂2t

2 + β̂1t + β̂0, and proceeding in a similar

fashion to estimate the β coefficients using a least squares algorithm, produces a

DFA output only slightly different than the original linear estimation [22].

Though the usage of the DFA in biophysics requires a slightly different

technique, application of the DFA to any data presupposes discrete time data,

which advances at a constant rate, i.e. time steps are identical throughout the data.

Further, it is assumed that there are no missing data points; as pertaining to

financial markets, this means that the analysis ignores weekends, holidays, and

market downtime. Because actual trades rarely occur according to a perfect time

pattern—for example, trades only occurring at precisely every 5 sececonds—this

assumption is almost always violated in the raw data. Thus, in order to obtain a

constant sampling frequency and for the results of the DFA to be valid, data is

usually discretely binned; the bin mean, rather than the data itself, is then

examined.

Peculiarly, both the foreign exchange markets and interbeat heart intervals

(commonly referred to as ”RR intervals” and the initial application of the

Detrended Fluctuation Analysis in biophysics) demonstrate a distinct pivot in the

linear fitting of the DFA output [2] [7]. Two separate sets of points emerge with

different α values, depending on the range of τ examined. Though the explanation

may not shed light on the pivot in RR intervals, an interesting explanation has been

given for the FEXC data. Ausloos recognizes that large τ values are usually fitted

with α near to .5, indicating a random walk or no fluctuation correlations. As the

time scale shrinks, however, persistent or anti-persistent relationship emerge.

Ausloos proposes that persistent power-law relations (.5 < α < 1) have

corresponded with free-market (and ”runaway”) conditions, whereas anti-persistent

behavior (0 < α < .5) has accompanied strong political controls. Such a novel

connection, that is, a relationship between the Hurst exponent and public policy,

may prove helpful in examining the effects of various governmental controls.

As was previously mentioned, the Detrended Fluctuation Analysis has

produced intriguing results in the field of biophysics. Particularly, it has been

demonstrated that the relative health of an individual can be gauged (including the

diagnosis of atrial fibrillations and congestive heart failure), simply based on the

slope parameter of a DFA of the corresponding RR data [23]. Can this principle be

9



applied elsewhere? How robust is the analysis to parameter changes (i.e. binning

size, window size, etc.)? We seek first to replicate previous work by others,

identifying long range correlations in the fluctuations of security prices. Second, we

examine the relative effects of bin size and data-filtering. Finally, we briefly explore

the possibility of extracting meaningful information from the localized slope

parameter, i.e. a possible metric of the corporate ”health” of an underlying security.

II Preliminary Normalization

In order to answer these questions, we perform a DFA of historic trade data for an

ETF following the S&P 500 (SPY). We chose to use all recorded during-hours

trades occurring from January 1993 to December 2002. This data was obtained

using the Wharton Research Data Services (WRDS) available via the University of

Pennsylvania and constitutes tick-by-tick trade records, spanning the nine year

range, for SPY. The high volume and resolution (recorded trades) make SPY an

ideal candidate for DFA. See Figure 3. Further, we assume major trends, i.e.

•Obtained via Yahoo Finance 

•Obtained via Wharton Research Data Services (WRDS)

Figure 3: This is the raw dataset which was used. Notice the large number of outliers

in the original data (blue).

inflation, are adequately addressed by the detrending process previously described.

Notice the red line is the same data obtained via Yahoo Finance [8]. As we will

demonstrate, the large number of outliers have a peculiar effect on the output of the
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DFA. Though data is usually quite dense (especially beyond 2002, where there are

approximately 15-30 data points per second), we extrapolate between sparse data

points such that our shareprice matrix S has trade information for every second

that the market is open. Fluctuations were then calculated similar to Liu et al.[21],

except that S corresponds to the share price and does not explicitly reflect the

number of outstanding shares. Thus, we define the fluctuation G at time t according

to

G(t) = ln(S(t + ∆t))− ln(S(t)) ∼=
S(t + ∆t)− S(t)

S(t)
. (4)

which represents a normalized fluctuation from one transaction price (at time t) to

the next (at time t + ∆t). We chose to not address interday fluctuations, though it

may be fruitful to examine the results of expanding A (defined by equation (5)) to

include intraweekly trends. As has been noted, the intraday fluctuations must be

removed in order to avoid spurious, faux-correlations [21] (see Figure 4). We thus

calculate the intraday pattern vector A in the following manner:

A(tday) ≡
∑N

j=1 |G(tday)|
N

. (5)

where tday represents a specific time throughout the trading day, G(tday) represents

the fluctuation at time tday given via equation (4), and the index j ranges over all N

trading days in the dataset. In short, given a specific intraday time, the

corresponding entry A(tday) represents the average fluctuation at a given time of all

trading days. Thus, A(tday) is calculated for every second of the trading day, that is,

tday ∈ [0, 23400]. We then form the normalized fluctuation vector g(t) by dividing

every entry in G(t) by the corresponding entry of A(tday), that is

g(t) =
G(t)

A(t∗)
where t∗ = t mod 23400. (6)
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III Preliminary Analysis

We first perform the DFA on all nine years of data and obtain the output shown in

Figure 5. We used 1 minute bins. Notice that a slope parameter of α0 = .61

corresponds to long-range power-law correlations; that is, large fluctuations are

followed by large fluctuations, and small fluctuations are followed by small

fluctuations. Further, note that the DFA seems to break apart for smaller window

sizes.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

� ��
��
�
�

�	��

�����

1993 − 2002 SPY
 1 minute bins 

α
1
 = .48

α
0
=.61

Figure 5: DFA performed

on the entire dataset

(1993-2002, inclusive). 1

min bins were used in

order to achieve homoge-

nous sample spacing. We

note that α0 = .61 is

indicative of long-range

power-law correlations.

Also, note the seeming

disintegration of the

analysis with decreasing

window size.

IV Effects of Bin Size on DFA

In an effort to better understand the increase in noise for smaller windows, we

perform the DFA on the entire dataset for various bin size. We consider three

different bin sizes: 60 s, 300 s, 600 s for the data sample spanning 1993-2002;

respective DFA results are shown in Figure 6. We note the increase in chatter noise

with increasing bin size. Though we may preemptively suppose that this is

demonstrative of a weakness of the analysis, it is in fact due to noise in the original

dataset.

Figure 7 shows the same analysis performed on a filtered dataset. A simple

mid-range filter is applied to the stock price set (we include all prices S such that

20 < S < 200). Notice that the filtered DFA is smooth and we see a total

disappearance of the short-range chatter. Further, the various DFAs (60 s, 300 s,

and 600 s bins, respectively) are almost identical. A more rigorous analysis should

be performed in order to more forcefully draw the conclusion of bin-size invariance
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Figure 6: DFA performed on entire dataset using different bin sizes (60 s, 300 s, and

600 s). Notice the increasing noise at the lower end of the analysis output as we

increase bin size. This would seem to suggest that the DFA becomes less and less

robust against outliers with increasing bin size. In reality, this deterioration seems to

be a result of noise in the original dataset.
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Figure 7: DFA performed on filtered dataset using different bin sizes (60 s, 300 s,

and 600 s). Notice the relatively smooth DFA output, though the general shape and

intercept is much different than the unfiltered data (compare with figure 6).

(an analysis including a wider range of bin sizes performed over a wider range of

securities), but these preliminary results suggest that the DFA is robust against

moderate variance in data bin sizes. Though this is noteworthy, it is also interesting

to recognize the dramatic shift that occurs as a result of the filter (notice the change

in intercept and overall shape).
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V Localized DFA

The DFA examined in the previous section was performed on all nine years of SPY

data. What are the results if we examine, instead, a localized DFA? For instance,

what are the results of examining a year-by-year DFA spanning 1993-2002? We

perform such an analysis for the raw (unfiltered) data as well as the filtered data

(using the same mid-range filter as before). The results are shown in Figure 8 using

5 minute bins. Though a more powerful examination should be performed on these

localized DFAs, there are two notable features.
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Figure 8: Localized DFA is reported for the years 1994 - 2002, inclusive. Blue is the

original dataset without any filtering. Red is the same analysis but after a simple mid

range filter, excluding every share price below 20 and above 200. Notice the strong

overlap between the two analyses, except for the years 1998 and 2002, which contain

most of the outliers.

We note strong agreement between the filtered and unfiltered data (note the

almost perfect overlapping between the two sets, red (filtered) over blue

(unfiltered)). This is surprising given the results of Figure 6 and 7. Namely, the
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localized DFA is surprisingly robust against outliers; we propose that this is due, in

part, to the fact that the localized DFA allows outliers to be safely ”contained”

within a single DFA and thus do not affect the other localized DFAs. We note that

the two analyses that are different (occurring in 1998 and 2002) correspond to

periods with a high number of data outliers. Filtering effects are demonstrated by

the differences between filtered and unfiltered data points in the 1998 and 2002

DFAs. The strong agreement in all other years results from a low number of original

outliers within those years. This seems to suggest that DFAs performed on datasets

which are temporally shorter are more robust against outliers in the original dataset

than DFAs on temporally longer data because we can effectively cull out the DFAs

that have been affected by the outliers.

The second notable feature is the variance that we observe between the

localized DFAs. Though the DFAs performed on 1994 and 1995 are relatively

similar, compare either of these with 1998 or 2001. It would seem that there is

something fundamentally different about the year 2001 than, say, 1996. What is the

nature of this difference? First, the variance may be due to noise, not the noise

caused by incorrect data points (which have been filtered out), but the tick-by-tick

noise fluctuations inherent in the ”real” data points. Simply put, the stochastic

movements of the price may explain the differences in DFA output.

Though this explanation is entirely possible, it is also possible that there is

information in a given localized period that is not in a subsequent period, and the

presence and absence of this information is manifested in the heterogenous DFA

outputs.

Further, it may be possible to connect this ”localized information” with a

metric of corporate health, i.e. P/E ratios, firm capital, investment outlays, etc. A

more rigorous analysis should be pursued to examine these various possibilities.

VI Conclusion

The Detrended Fluctuation Analysis has been employed with relevant results to

financial data. Using the DFA, we have recognized long-range correlations in SPY.

Further characterization of the DFA method has demonstrated that the analysis is

robust against data outliers (though this robustness seems to wane as the

underlying data set grows temporally because of the inclusion of data point

outliers). Finally, the diversity of DFA output when the analysis is performed on

successive data sections may be demonstrative of localized information. To examine

this possibility, more in depth analysis should be performed on a wider multiplicity

of securities. Such analysis may ultimately demonstrate the DFA’s ability in

financial markets, as in biophysics, to distinguish between health and sickness.
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