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ABSTRACT
Analyses of Nonlinearity Measures in High-Amplitude Sound Propagation

Michael Boone Muhlestein
Department of Physics and Astronomy, BYU
Master of Science

Military aircraft generate high-amplitude noise which can cause injury to attending personnel.
Efforts to mitigate the effects of this noise require a detailed understanding of the propagation of
the noise, which was shown previously to be nonlinear. This thesis presents an analysis of high-
amplitude noise propagation, emphasizing measures used to quantify the importance of
considering nonlinearity.

Two measures of the importance of nonlinearity are compared. These measures are the wave
steepening factor and a skewness estimate. The wave steepening factor is a measure of how
much nonlinear waveform steepening has occurred in a waveform. The skewness estimate is the
skewness of the first time-derivatives of the pressure amplitudes, and can be considered a
measure of the shock content in a waveform. These two measures are analyzed analytically in
terms of the Earnshaw, Fubini, Fay, and Khokhlov solutions to the Burgers equation. In
addition, an analysis of how discrete sampling affects the estimation of these quantities is also
presented. It is determined that the wave steepening factor is robust with respect to low
sampling rates, but the skewness of the first time-derivatives of the pressure amplitudes is not
robust, and requires very large sampling rates to be adequately estimated.

Using numerical and experimental techniques, the two nonlinearity measures are applied to more
complicated waveforms, such as Gaussian noise and noise with jet noise-like statistics. It is
found that the evolution of the two nonlinearity measures discussed above for noise signals is
distinctive in various ways. In particular, the skewness of the first time derivative of the pressure
amplitudes suggest that noise waveforms experience nonlinear phenomena faster than initially
sinusoidal signals, while the wave steepening factor suggests that they occur at approximately
the same rate. The measures are then applied to full-scale military aircraft. By comparing these
nonlinearity metrics with the results of the analytical, numerical, and experimental results found
in this thesis, it is determined that nonlinearity is likely to be significant in the near field of a
military aircraft at military and afterburner engine conditions.

Keywords: jet, nonlinear, shock, skewness, wave steepening factor
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1.1 Background 1

Chapter 1

Introduction

1.1 Background

High-amplitude jet noise propagation has been of interest since the early 1950’s, [1] and
the effects of nonlinearity in the propagation of such noise have been studied since the early
1970’s. [2] Recently, an interest in high-amplitude noise propagation has been renewed because
of a concern of the impact of such noise on the environment. In particular, the issues associated
with hearing loss of technicians working near military aircraft have resulted in funding for noise
propagation research. The majority of studies of jet noise propagation have assumed the
propagation of the noise is linear (e. g. Wall ef al. [3]). However, due to the high-amplitude
nature of some jet noise, the validity of the linear approximation is questionable. Since it is
difficult to quantify the impact of nonlinear terms in propagation models, or the importance of
nonlinearity, in certain scenarios — such as near-field jet noise propagation, due to the large
amount of energy at high frequencies and the complicated nature of an extended, directional
source — various measures of the importance of nonlinearity in arbitrary waveforms have been
proposed. This thesis presents the results of the effort to understand the interpretation of

nonlinear measures for high-amplitude noise propagation with applications to jet noise.
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1.2 Physical Phenomena

In order to help facilitate an understanding of high-amplitude sound propagation, a brief,
qualitative introduction to the physical phenomena associated with nonlinear propagation is
presented in this section. A more detailed explanation of these phenomena can be found in Ref.
[4] and as part of Chapter 2.

Certain physical phenomena associated with one-dimensional wave propagation are only
predicted by propagation models that include second-order corrections or higher. The
phenomenon most pertinent to this thesis which requires second-order corrections to model is
waveform steepening due to amplitude-dependent processes. The two physical processes which
drive the steepening of waveforms are convection and thermal variations. [4] The net effect of
these two processes causes the wave speed of a waveform to be amplitude dependent; higher
amplitudes will propagate faster than lower amplitudes, leading to shorter pressure rise times in a
waveform, hence the name waveform steepening. This deformation of waveforms is manifested
in the corresponding spectra by the interactions of acoustic energy with various frequencies. For
example, given a sound wave consisting of two different frequencies with significant acoustic
energy, nonlinear propagation will transfer energy from these two frequencies to the sum and
difference of the two frequencies. [5] Further propagation will cause additional transfer. In
short, from a frequency-domain perspective, second-order corrections to propagation models
cause all frequencies to interact with all other frequencies.

If a waveform distorts sufficiently, portions of the waveform become nearly
discontinuous and are referred to as acoustic shocks. Because acoustic shocks have different
propagation behaviors than the rest of a waveform (discussed below), the propagation prior to
shock formation is called the pre-shock propagation regime. Any waveform that propagates
without linear losses will eventually form shocks, given a large enough propagation distance.
The distance at which a waveform propagating without linear losses will generate shocks is

called the shock formation distance. As might be expected, the shock formation distance is
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dependent upon the waveform and propagation geometry. In particular, the shock formation
distance is inversely proportional to the greatest time derivative of the waveform and the
characteristic frequency, and takes different forms for planar propagation and for cylindrical and
spherical spreading. [4] Thus, larger amplitudes and higher frequencies will decrease the shock
formation distance of a waveform, and geometric spreading will increase it. Since random noise
does not have a fixed greatest time derivative, the shock formation distance for different noise
waveforms will in general be different.

For propagation without linear losses, once a shock forms at the shock formation
distance, the shock will continue to grow stronger. After three shock formation distances, an
initially sinusoidal signal propagating without linear losses will approach a sawtooth wave-like
form. For this reason, the propagation of an initially sinusoidal signal without linear losses from
one to three shock formation distances is called the shock formation regime, and from three
shock formation distances on is called the sawtooth regime.

The propagation of shocks may be fully modeled using the Rankine-Hugoniot shock
relations, which are based on conservation of mass, momentum, and energy. [4] By making the
assumptions that the shocks in a waveform are weak, energy dissipation is concentrated at the
shocks, and shocks are true discontinuities (these assumptions are often valid for high-amplitude
noise propagation; see Ref. [4] for a discussion of these assumptions as they relate to acoustic
propagation), the Rankine-Hugoniot shock relations may be approximated using what is called
weak shock theory. Using weak shock theory, it can be shown that shocks propagate at the
average of the sound speeds of the pressure just before and after the shock wave. This means
that shock waves can propagate at, above, or below the small-signal speed of sound. An
example of the amplitude-dependent sound speed is shown in Figure 1.1. The variable P is a
normalized pressure and 7 is a normalized retarded time of arrival, which means signals
propagating at the small-signal sound speed will not change temporal location. The distance

from the source is denoted as x, and x,. is a critical distance that will be discussed below. The
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source waveform is a double N-wave (two shocks both in front of and behind the pulse center)
and the wave propagates as a plane wave without linear losses. Notice that the shocks that have
positive peak pressures arrive at earlier values of 7 as the pulse propagates, indicating
propagation speeds greater than the small-signal sound speed. Likewise, the shocks with
negative or zero peak pressures arrive later as the pulse propagates, indicating propagation

speeds less than the sound speed.

1 .
—Xx/x =0
c
—X/Xx =05
Cc
—_—X/X =1
C

Figure 1.1. An example of shock propagation and coalescence. The source waveform is a
double N-wave, and the propagation does not include linear losses. Weak shock theory and
the Earnshaw solution were used to predict the propagation. At x = x, the two positive

shocks merge, as do the two negative shocks.

Another aspect of shock propagation seen in Figure 1.1 is attenuation at shocks. [6]
Notice the overall amplitude of the pulse decreases as it propagates despite the fact that it is
propagating without ordinary losses. This is due to acoustic energy being transferred to thermal
energy at the location of a shock. [7] The excess attenuation at shocks is important because it

causes information about the source waveform to be lost as a signal propagates.
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The example of shock propagation shown in Figure 1.1 also demonstrates another
important phenomenon associated with shock propagation, called shock coalescence. [8] [9]
Shock coalescence occurs when one shock overtakes another shock. The two shocks merge and
propagate as a single shock in a manner distinct from either of the original shocks, thus losing
information about the original two shocks. In the example shown in Figure 1.1, the two positive
shocks coalesce at the critical distance x.. Because of shock coalescence and extra attenuation at
a shock, it is difficult to obtain source characteristics from measurements far from a high-
amplitude noise source.

The success of linear models in most applications of acoustics suggests that nonlinear
processes, which, strictly speaking, are always present in acoustic wave propagation, may be
dominated by counteracting processes. The most obvious process that opposes nonlinear
processes is that of absorption. While nonlinear effects generate energy at sum and difference
frequencies as sound propagates, atmospheric absorption due to thermoviscous effects and
molecular relaxation will attenuate the sound energy, particularly at high frequencies resulting
from sum-frequency generation. If a nonlinear process transfers energy to the sum and
difference frequencies more slowly than linear absorptive processes attenuate the energy, then
linear processes dominate and that nonlinear process is not important.

Another way linear processes may decrease the importance of including nonlinear terms
in propagation models is geometric spreading. Geometric spreading causes the amplitude of a
signal to decrease, causing the nonlinear generation of energy at sum and difference frequencies
to slow. Spherical spreading causes a signal to decrease in amplitude inversely with distance and
cylindrical spreading causes the amplitude to decrease inversely with the square root of distance.
In general, the geometric spreading of a signal may be both frequency and propagation distance
dependent.

The importance of nonlinearity in the propagation of a signal relative to linear processes

may be quantified for an initially sinusoidal signal with the Gol’dberg number. [4] The
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Gol’dberg number I' is defined as a characteristic absorption length divided by a characteristic
nonlinear distortion length, and may be interpreted as the relative importance of nonlinearity in
propagation relative to absorptive processes. For an initially sinusoidal wave, the characteristic
absorption length is the inverse of the absorption coefficient at the frequency of the initial
sinusoid and the characteristic nonlinear distortion length is the shock formation distance of the
initial sinusoid. Since the shock formation distance of an initial sinusoid is well known for
planar, cylindrical, and spherical waves, the Gol’dberg number accounts for both the absorptive
and geometrical effects. A small absorption length and large shock formation distance will yield
a Gol’dberg number much less than one, which indicates that absorptive processes dominate the
propagation, and nonlinear processes may be ignored. On the other hand, a large absorption
length and small shock formation distance will yield a Gol’dberg number much greater than one,
and indicates that nonlinearity will be very important in the propagation. In the large Gol’dberg
number limit, the propagation of a signal may be well approximated by neglecting linear
absorption over a short distance relative to the absorption length. The Gol’dberg number will be
used extensively throughout this thesis.

It should be noted that the Gol’dberg number was defined in light of nonlinear
propagation with thermoviscous losses. Therefore, Gol’dberg number values obtained using
absorption coefficients based on relaxational or boundary layer phenomena must be carefully
interpreted. In particular, the effects of dispersion [6] [10] must be taken into account when
considering real measured data.

Since linear absorption is always present in real acoustic processes, linear processes will
dominate the propagation of a waveform if the wave propagates far enough, regardless of the
initial amplitude. If a waveform at some distance from the source develops shocks significant
enough to be considered sawtooth wave-like (thus having a sawtooth regime), once linear
processes dominate, it enters what is called the old-age regime of propagation. In the old-age

regime the propagation is characterized by unsteepening of the waveform rather than steepening,
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caused by the high absorption coefficients that are common to high frequencies. For specific
absorption processes, such as thermoviscous losses, the old-age absorption coefficients of the
nonlinearly generated harmonics of an initial sinusoid will never return to the linear predictions.

For this reason, Pernet coined the phrase “once nonlinear, always nonlinear”. [11]

1.3 Nonlinearity in High-Amplitude Noise Propagation

Nonlinearity has been suspected to be important in high-amplitude noise propagation
since before 1973. Pestorius and Blackstock [8] [9] showed both experimentally and
computationally that initially 160 dB re 20uPa broadband Gaussian noise in a plane wave tube
will generate significant shocks. Based on the spectra of the waveforms with significant shock
content that they measured, Pestorius and Blackstock suggested propagation nonlinearity as a
possible explanation to anomalously low high-frequency attenuation of measured jet noise.
Pestorius et al. [12] further showed that shocks would form in plane-wave-tube propagation of
broadband noise regardless of the initial phase distribution in the initial broadband signal. More
recently, Gee ef al. [13] studied outdoor, far field measurements of a large sound source capable
of producing overall sound pressure levels of 155 dB re 20uPa at a few hundred hertz. They
showed the measured harmonics of an initial sinusoid as far as 1 km from the source followed a
nonlinear propagation prediction significantly more closely than a linear propagation prediction.
This test showed nonlinear effects are important given spherical spreading and large propagation
distances, as well as in plane wave tubes.

In addition to computational and experimental efforts to understand the importance of
nonlinearity in high-amplitude noise propagation, various analytical descriptions of the evolution
of broadband spectra during nonlinear propagation were found from the mid 1970’s to the early
1990’s. Rudenko and Soluyan [14] showed that in the pre-shock propagation regime the high

frequencies of broadband noise spectra would trend as the inverse cube of frequency. Scott [15]
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showed that broadband noise which has developed significant shocks despite thermoviscous
absorption will have high-frequency amplitudes that trend as the inverse of the square of
frequency. Crighton and Scott [16] developed several asymptotic forms of the Burgers equation.
In 1991, Gurbatov et al. [17] showed by using an asymptotic form of the Burgers equation that
the low-frequency amplitudes of broadband noise with significant shock content follow a
frequency squared trend.

Most of the studies dealing with the importance of nonlinearity in broadband noise have
been constrained to idealized cases. For example, with the exception of Gee et al., the studies
discussed above are limited to one-dimensional problems, such as plane-wave tube
measurements or plane-wave assumptions. Furthermore, the analytical treatments are
constrained by either thermoviscous absorption or no linear absorption. While these
idealizations are not valid when considering more realistic and complex situations such as jet
noise propagation, they allow important insights into the nature of nonlinearity in broadband

noise propagation which may be applied to real world problems.

1.4 Nonlinearity in High-Amplitude Jet Noise

Interest in the importance of nonlinearity in jet noise arose due to anomalously low high-
frequency attenuation rates of measured jet noise in the 1960’s. In 1971 Pernet and Payne [2]
first showed that nonlinearity may be part of the cause of the low attenuation rates. During the
rest of the 1970’s and early 1980’s, several papers dealing with noise measurements of model
scale jets, such as Gallagher [18], and of full-scale jets, such as Morfey and Howell [19] and
Morfey [20], were published with the perspective of finite-amplitude propagation effects. These
papers generally found that nonlinearity in high-amplitude jet noise propagation is important.
However, by the mid 1980°s, the interest of the aeroacoustics community in the effects of

nonlinearity on jet noise propagation had significantly waned.



1.4 Nonlinearity in High-Amplitude Jet Noise 9

Recently, there has been renewed funding and interest in the importance of nonlinearity
in jet noise due to concerns about the environmental impact of jet noise, in particular the hearing
loss of technicians working near military aircraft. Several studies of full-scale military aircraft —
in particular, Gee et al. has studied noise measurements of the F/A-18E engine, [21] the F-22A
Raptor, [22] [23] and the F-35A Joint Strike Fighter [24] [25] — have shown nonlinearity is
important in far-field high-amplitude jet noise propagation, and is important to some degree in
near-field propagation. While Gee et al. studied noise radiating from stationary jets, McIlnerny et
al. [26] studied military aircraft flyover measurements and found similar results.

In addition to full-scale jet measurements, a significant number of studies have been
based on laboratory-scale jets. [27] [28] [29] [30] There has been some debate as to the
importance of nonlinearity in the propagation of noise radiating from laboratory-scale jets. On
the one hand, Gee et al. have shown preliminary results that suggest that nonlinearity is
important in the noise radiated from Mach 2.0 unheated jets, [29] and that there is significant
shock formation in the near-field propagation of unheated supersonic jets. [30] On the other
hand, Baars et al. have shown evidence that any nonlinearity in waveforms measured near a fully
expanded Mach 3 jet is due to source phenomena, and not due to nonlinearity in propagation.
However, both Gee et al. [30] and Baars et al. [28] state that the sampling rates used in their
investigations may not have been sufficiently high to adequately resolve characteristics of
nonlinearity.

While the importance of nonlinearity in far-field measurements of full-scale jets has been
shown conclusively, the degree of importance of nonlinearity in near-field propagation has not
yet been established. In an attempt to aid in establishing the importance of nonlinearity in these
cases, this thesis provides an extended analysis of some statistical measures of the effects of

nonlinearity.
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1.5 Measures of Nonlinearity

Several measures of the importance of nonlinearity in noise propagation have been
defined. Some of these measures are based on spectral methods, such as an indicator derived by
Morfey and Howell, and some are based on time-domain statistical methods, such as skewness
estimates. In this section, we will discuss some of the history behind a subset of these measures.

Morfey and Howell [19] derived a cross-spectral form of the Burgers equation which
explicitly separates the impact of nonlinearity in a measureable quantity. This quantity, written
as Qpz,, 18 the quadspectral density between the pressure and the squared pressure, and is
considered an indicator of nonlinearity. The quadspectral density has been used in several
studies of jet noise propagation. [19] [23] [26] [27] [31] While potentially a useful way of
characterizing near-field jet noise propagation nonlinearity, it is beyond the scope of this thesis
to consider the quadspectral density. Another way the effect of nonlinearity may be visualized
using spectra is to compare the asymptotic spectral slopes of the measured jet noise waveforms
with the analytically derived solutions described above. However, there are two problems with
this method: First, the analytically derived solutions rely on planar waves propagating with
thermoviscous absorption. Since jet noise propagates with a more complicated atmospheric
absorption and has a complicated geometry, these assumptions are not valid. Secondly, it has
been shown that jet noise close to the source can also have similar slopes to those described in
Section 1.2. [32] Thus, whether the spectral slopes are due to source phenomena or propagation
phenomena becomes difficult to discern.

Time-domain statistics may be more useful than the spectral methods of determining the
role of nonlinearity in near-field jet noise propagation. In 1982 Gallagher [18] defined a metric
called the wave steepening factor. The wave steepening factor is the absolute value of the mean
negative pressure slope in a waveform divided by the mean positive pressure slope in the
waveform, and may be interpreted as a measure of how much distortion has occurred in the

waveform due to nonlinear propagation. More on the details of the wave steepening factor will
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be given in Chapter 2. In addition to Gallagher, Baars ef al. [28] have reported the wave
steepening factor for various laboratory-scale jet noise waveforms. However, there has not been
a comprehensive analysis on the interpretation of the wave steepening factor to date. For
instance, Gallagher reported that a specific waveform had a wave steepening factor as low as
0.48, but what this means is unknown. The only comments Gallagher gives on the matter is that
this value of wave steepening factor is lower than others, suggesting greater distortion. One of
the goals of this thesis is to provide a foundation of analysis to interpret the wave steepening
factor.

In addition to the wave steepening factor, Gallagher also presented the number of zero-
crossings in a waveform per unit time as a nonlinearity measure. The idea behind this value was
that as noise with significant shock content propagates, there would be some shock coalescence,
which would decrease the number of zero crossings per unit time. However, this metric requires
significant shock content in the waveform to be useful. In addition, not all noise waveforms
have a zero crossing for every shock (such as rocket noise waveforms; see the waveforms in Ref.
[33]), and if they do, the significant shocks are likely to be fairly evenly balanced across the zero
pressure line, and will therefore not overtake each other. For these reasons, the number of zero
crossings in a waveform will not be considered in this thesis.

Another time-domain measure that may be used to quantify the importance of
nonlinearity in the propagation of a wave is the skewness, or the third central moment of a
probability density function. Skewness may be interpreted as a measure of the asymmetry in a
probability density function, and as such, is zero for a Gaussian process. In an attempt to
quantify a perceived phenomenon called “crackle”, Ffowcs Williams [34] suggested the
skewness of the pressure waveform would be a useful metric. However, Gee et al. [35] showed
that crackle is more likely associated with the shock content in a waveform, which is not
necessarily associated with the time-domain statistics of a waveform. Mclnerny and Olgmen

[33] suggested the statistics of the time derivative of a pressure waveform, rather than the
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pressure waveform itself, will yield more pertinent information concerning shock content in the
waveform. In addition, Gee et al. [25] [30] showed the skewness of the pressure waveform is
probably a source phenomenon, not a propagation phenomenon (though Crighton [36] did find
that propagation of a waveform with dispersion does generate non-zero skewness of the pressure
waveform), whereas skewness of the first time derivative of the pressure waveform is related to
propagation phenomena. Shepherd et al. [37] used numerical means to predict how various
statistical measures, including the skewness of the pressure waveform and its first time
derivative, evolve for an initially sinusoidal signal propagating without losses. Muhlestein and
Gee [38] used a plane wave tube to estimate how the skewness of propagated pressure
waveforms and their time derivatives evolve, but their analysis is incomplete. The skewness of a
pressure waveform and the skewness of its first time derivative will be analyzed more carefully

in this thesis.

1.6 Thesis Overview

The purpose of this thesis is to help establish an interpretation of various measures of the
importance of nonlinearity in high-amplitude noise propagation. In order to accomplish this
goal, analytical, numerical, and experimental analyses of these nonlinearity measures are
presented and compared with measured jet noise data.

High-amplitude broadband noise propagation, such as the propagation of high-amplitude
jet noise, can be extremely complicated, making it difficult to separate the propagation processes
into distinguishable components. One of the most complicating factors in jet noise propagation
is the geometry of the noise propagation. By using one-dimensional models and experiments
(such as plane wave tube experiments [8] [31] [39] [40]), the effects of nonlinearity in noise

propagation may be more easily discerned and then applied to more complicated systems like jet
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noise. The process of starting with simple models and working towards more complicated
systems is the pattern used to organize this thesis.

Various analytical models of one-dimensional sound propagation are presented in
Chapter 2. These propagation models are analyzed in terms of two measures of nonlinearity, the
wave steepening factor and the derivative skewness, in Chapter 3. In addition, an analysis of the
impact of finite sampling rates on the estimation of these measures of nonlinearity is presented.
Chapter 4 contains an analysis of these nonlinearity measures using a numerical one-dimensional
propagation model for various limiting and realistic cases.

The analytical and numerical analyses presented in Chapters 2 through 4 are used to
interpret waveforms measured in a plane wave tube experiment in Chapter 5. These
comparisons lead to insight into the interpretation of actual values of the nonlinearity measures
being considered. Finally, the understanding obtained by the comparisons of the analytical,
numerical, and experimental analyses are applied to interpreting measured full-scale jet noise

waveforms in Chapter 6.



14 Chapter 2 Benchmark Cases

Chapter 2

Benchmark Cases

2.1 Introduction

Many models have been developed to describe the nonlinear propagation of sound in
fluids. [41] The most notable model of one-dimensional propagation is the Burgers equation, [4]
which describes the propagation of sound with thermoviscous absorption in addition to nonlinear
effects, and may also be generalized to model arbitrary linear losses. Several important solutions
to the Burgers equation, namely the Earnshaw, Fubini, Fay, and Khokhlov solutions, shed
insights into the various limiting regimes of interest in nonlinear propagation, specifically of jet
noise propagation. A derivation of the Burgers equation and most of the solutions presented here
is found in Ref. [4] and Ref. [41], elements are repeated here for completeness. These solutions
are used in Chapter 3 to evaluate the applicability of nonlinearity metrics prior to their

application to numerical examples and experimental data.
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2.2 Model Equations

2.2.1 Burgers Equation
The simplest way to model the propagation of a planar wave including thermoviscous
losses and nonlinear effects is the Burgers equation. Following the notation of Ref. [4], the

Burgers equation is written as

dp & 9*p B Op -
Ox 2c§ 0t? _pocgpar' @D

where p is the acoustic pressure, x is the distance from the source, § is a constant associated with
acoustic absorption by the propagation medium, c, is small-signal sound speed, T =t — x /¢, is
the retarded time, [ is the coefficient of nonlinearity, and p, is the ambient propagation medium
density. The terms in Equation (2.1) represent, in order from left to right, lossless linear
propagation, thermoviscous absorption, and quadratic nonlinear phenomena due to cumulative,
oscillatory propagation.

Insights into the nature of the Burgers equation can be gained by examining the specific

case of a sinusoidal source signal

p(x = 0,t) = p, sin(wt), (2.2)

where p, is the source amplitude and w is the angular frequency. In addition, because of the
variety of scales that exhibit nonlinear phenomena, it is helpful to define a nondimensional
distance

Pocg
pwpg

X= (2.3)
(which we will identify in Section 2.2.2.1 as the shock formation distance of an initially

sinusoidal plane wave propagating without linear losses), a nondimensional pressure P = p/p,,

a nondimensional time 6 = wt, and a nondimensional distance ¢ = x/X. The term
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“nondimensional” will generally be neglected when describing these quantities. Using these

definitions, we may write the Burgers equation as

0P  [6w?\ 0%P 9P
902~ " 90’

(= =p—
do \2c? @4

and the nondimensional source function is written

P(o = 0,0) = sin(6). (2.5)

The term in Equation (2.4) inside the parentheses is the thermoviscous attenuation coefficient a.

If we further define I' = 1/ax, we may further simplify Equation (2.4) to

oP 19%P 9P
o _ 2o _pot 2.6
30 To02 | 99 2.6)

The parameter I' is known as the Gol’dberg number and can be qualitatively described as the
relative importance of nonlinearity for a given source strength and propagation. To illustrate this
aspect mathematically, we define the absorption length [, = 1/a so that the Gol’dberg number

may be written as

(2.7)

._]
Il
><|_|QN

Thus, large values of ' suggests that X < [,, and nonlinear effects happen on a shorter distance
scale than absorptive effects. Similarly, if [, < x then I' < 1 and the absorptive processes occur
much more rapidly than nonlinear processes. Thus, large values of the Gol’dberg number
suggest that nonlinearity dominate absorptive phenomena, and small values of the Gol’dberg
number suggest that linear absorption dominates nonlinearity in propagation.

In the limit that I' = oo, nonlinear effects dominate thermoviscous losses (for arbitrary

nondimensional source functions), and the inviscid Burgers equation is obtained:
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)

5-=P. (2.8)

The inciscid Burgers equation is useful in understanding nonlinear processes over distances
much less than [, and for very high-amplitude signals, and will be the primary propagation
model used in the Section 2.2.2. The Burgers equation as found in Equation (2.6) will be the

primary propagation model used in Section 2.2.3.

2.2.2 Propagation without Linear Losses

It is often difficult to separate the effects of nonlinearity in measured waveforms from
linear losses such as thermoviscous absorption, molecular relaxation, and boundary layer effects.
In order to gain a qualitative understanding of general nonlinear propagation effects and a
quantitative understanding of very high-amplitude propagation phenomena, we consider

phenomena of waves propagating without the effects of linear losses in this section.

2.2.2.1 Earnshaw Solution to the Inviscid Burgers Equation
The method of characteristics may be used to directly solve the inviscid Burgers equation

in an implicit form. This solution, called the Earnshaw solution, can be written

P=f(¢)

¢ =0+0P’ 2.9)

where ¢ has been called the Earnshaw phase variable. [4] The Earnshaw solution may be
interpreted as distorting the times of arrival of the initial waveform, represented by the Earnshaw
phase variable, but not modifying the pressure values, f(¢). This interpretation may also be
seen by writing the pressure waveform at a specific location parametrically. For instance, at the
source (o0 = 0), the pressure waveform may be described as (0, f (0)), where the first value is
the time of arrival and the second value is the pressure at the time of arrival. At a normalized
distance o from the source, the waveform may be described as (9 —of(0),f (0)). If we define

@' as the time of arrival of the pressure f(6), then we find that
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0’ =0 —af(0). (2.10)

Equation (2.10) describes the arrival times of the pressure initially at 8 propagated to o as
long as the times of arrival monotonically increase with increasing 8. When this is not the case,
a shock has formed in the waveform and the Earnshaw solution no longer independently
describes the propagation; in such situations more equations are needed to model the shock
propagation. [4] For the case of the initially sinusoidal signal, described in Equation (2.5), the
distance at which shocks first form is ¢ = 1, which corresponds to x = x. For this reason, x is
known as the shock formation distance.

Of particular use in Chapter 3 is the time-derivative of the pressure waveform at a given
location written parametrically. In order to determine the parametric form of the time-derivative,

consider two points of the pressure waveform,

(6, — £1(6), 1(0)) 2.11)
and

(8, — 0£2(6), £(8)) (2.12)

where 6; < 6,. We define A6 = 0, — 0, and Af(8) = £,(6) — f,(8). At different values of o

Af(0) does not vary, but A8 does vary. In particular,

A" = 05 — 0] = (6, — 0£,(6)) — (61 — 0£(0)) (2.13)
= A0 — oAf(6) = AP (1 — JAZ(:)) (2.14)

Then we may write the time-derivative that arrives at (6 + 65)/2 as
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Af(0) 1 Af(0)
AG’ _1 Af(8) A6 (2.15)
Y

In the limit that 8, — 6; = 6, the ratio of differences becomes a derivative:

d 1 d
- f(0) =————-f(0).
do L o%f(@) do (2.16)

Since 8, and 6, were arbitrary, Equation (2.16) is true for any 8. Thus, the parametric

description of the time-derivative of the pressure waveform is

1 d
0 — 0f(9),—dﬁf(9) . (2.17)
1-055f(0)

For the particular case f(6) = sin(8), we find that Equation (2.17) can be written as

(2.18)

(9—asin(6), cos(6) )

1 —o0cos(8)

The both terms of the parameterization of the time-derivative of the pressure waveform
given in Equation (2.18) are dependent on o, despite the fact that only the left-hand term of the
parameterization of the pressure waveform itself is dependent on . The range dependent time-
derivative amplitude is due to the fact that modifying times of arrival also modifies the

instantaneous pressure slope.

2.2.2.2 Fubini Solution

While the Earnshaw solution is useful in certain circumstances (such as computational
schemes and calculating WSF values, as in Section 3.2.1), it is sometimes desirable to have an
explicit function to describe the propagation of a waveform without linear losses. For example,

it is much easier to find the mean pressure of a portion of a waveform with an explicit expression
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of waveform than with a parametric expression. One way to find an explicit function is to
eliminate the Earnshaw phase variable from the Earnshaw solution. While this process may not
be possible in general, an explicit form of an initially sinusoidal signal propagating without
linear losses prior to the formation of shocks was found, and is called the Fubini solution. [4]

The Fubini solution is written as the infinite series
P—iz()'(e) 2.19
= 1na]" no) sin(nf). (2.19)
n=

Just as the Earnshaw solution is only valid up to the shock formation distance, the Fubini
solution is only valid for the pre-shock propagation regime, i.e. ¢ < 1. The time derivative of
the Fubini solution is given as

P 2
8= z E]n (no) cos(nh). (2.20)
n=1

2.2.2.3 Blackstock Bridging Function

Although the Earnshaw and Fubini solutions are limited to distances less than or equal to
a shock formation distance, it is beneficial to consider an analytic solution that is valid for all o.
For the case of an initially sinusoidal plane wave propagating without linear losses, a Fourier
series representation of the waveform evolution that is valid for all ¢ was introduced by

Blackstock. [42] The Blackstock bridging function is given as

p= z B, sin(n6), 2.21)
n=1
where
2 T
B, = — [cbsh + j cos(n[® — o sin ®]) dd|. (2.22)
nmo Dy,
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The variable @y, is associated with the presence of a shock, and is the solution to the

transcendental equation

cDSh = o sin CDSh’ 0< CDS}'L <T. (223)

As the name implies, the Blackstock bridging function connects two simpler analytical solutions.
For o < 1 the Blackstock bridging function reduces to the Fubini solution, and for o > 3 the

Blackstock bridging function may be approximated by a sawtooth wave, of the form

2 1
P=—"1>) Zsi .
2027 sin(nB) (2.24)
n=1
Equation (2.24) may also be written as
P (fl (9) 6’+1) 2.25
“1+o\ \2n) T2 T 2) (225)

The Blackstock bridging function is particularly useful when comparing harmonics, since
the Fourier series representation allows for the harmonic amplitudes to be obtained by

inspection.

2.2.2.4 Generalized Shock Formation Distance

While the regime over which each of the analytical solutions described above (Fubini,
Earnshaw, and Blackstock bridging function) is valid is based on the shock formation distance, it
is important to determine good representations of the shock formation distance for other types of
waves. As mentioned above, the shock formation distance defined in Equation (2.3) is only valid
for initially sinusoidal plane waves propagating without linear losses. For plane waves that
propagate without linear losses, the general shock formation distance is given as

3
PoCo

Bfmax

%= (2.26)
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where fp,4 is the greatest first time-derivative value in the source pressure waveform. [4] If we
assume the source waveform is sinusoidal, then we find that f,,, = wp,, and Equation (2.3) is
obtained.

The question of how to characterize nonlinear distortion in noise waveforms is a non-
trivial one. Due to the fact that each waveform is inherently unique, two noise waveforms with
similar statistics may have significantly different shock formation distances. One way to
accommodate this is to define a characteristic nonlinear distortion length to be used in place of
the shock formation distance. In this thesis, we will use

3
_ PoCo

N @) (V2pems)

(2.27)

as the characteristic nonlinear distortion length for noise, where f is a characteristic frequency
and p,ns 1S the root-mean-square pressure (or pressure standard deviation) of the waveform.
Equation (2.27) is very similar to the nonlinear distortion length defined by Gubatov and
Rudenko, [43] with the difference being the inclusion of the factor of V2. The inclusion of this
factor gives the characteristic nonlinear distortion length the property that it will reduce to the
shock formation distance of an initially sinusoidal plane wave in the limit that the noise
bandwidth goes to zero.

In general, the shock formation distance for waves propagating with arbitrary diffraction
is not known. However, the shock formation distances for spherically and cylindrically
spreading waves propagating without linear losses are known, in addition to planar waves. The
spherical and cylindrical shock formation distances have been found in terms of the planar shock

formation distance found in Equation (2.26). The spherical shock formation distance is given as

7 = ryet¥/m, (2.28)
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where 1y is a distance from the source where the waveform is known, the positive sign indicates
diverging waves, the negative sign indicates converging waves, and x is the shock formation
distance defined in Equation (2.26) (or, for noise, the nonlinear distortion length defined in
Equation (2.27)) of the pressure wave at r,. For reference in Chapter 4, we will define a

nondimensional radius from a spherical source

T
0 =<, (2.29)

where r is the distance from the source.

2.2.3 Propagation with Thermoviscous Losses
While much can be learned about very high-amplitude sound propagation by considering
the previous cases that exclude linear losses, the next step is to see what parallels can be formed

when linear losses are included.

2.2.3.1 Linear Dissipative Processes

Due to the availability of analytical solutions to propagation according to the Burgers
equation in Equation (2.1), such as the Mendousse, Fay, and Khokhlov solutions, the effects of
thermoviscous absorption on propagating waves are better known than the other absorptive
effects. However, realistic atmospheric absorption models include the effects of molecular
relaxation for both oxygen and nitrogen, and propagation in ducts also includes boundary layer
losses.

While the physical phenomena associated with the various linear absorptive processes are
unique, they may each be modeled fairly simply in the frequency domain. The absorption
coefficient associated with thermoviscous absorption is proportional to the square of the
frequency, and the absorption coefficient associated with boundary layer losses is proportional to
the square root of frequency. The absorption coefficients associated with molecular relaxation

are of the form
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Af?
Urelaxation = szsz, (2.30)

where A and f|, are constants associated with the specific molecule being modeled. Absorption
due to any combination of absorptive processes is modeled by an absorption coefficient which is
the sum of the constituent absorption coefficients. For example, the absorption coefficient
associated with plane wave tube propagation includes thermoviscous and boundary layer losses,
in addition to primarily oxygen and nitrogen related molecular relaxation. Thus, the plane wave

tube absorption coefficient would be

apwt = A1y + Ao rel + Ay rel T ABL. (2.31)

It should be noted that the atmospheric absorption coefficient is the same as the plane wave tube
absorption coefficient if the boundary layer losses are neglected.

In addition to absorptive effects, the boundary layer and relaxational losses include
dispersion, or a frequency dependent sound speed. Boundary layer dispersion scales with the
square root of frequency, the same as boundary layer absorption. The dispersion due to
molecular relaxation is directly proportional to the frequency. Dispersive phenomena are
accounted for by the imaginary part of the absorption coefficients.

A plot of the real part of the absorption coefficients for thermoviscous, boundary layer,
and oxygen and nitrogen molecular relaxation losses, as well as atmospheric and plane wave
tube absorption is shown in Figure 2.1. The atmospheric conditions used to generate the plot are
given in the title of the plot, and a is the radius of the plane wave tube of circular cross-section
(for the boundary layer losses). Notice that the absorption coefficients associated with boundary
layer losses are significantly larger than any of the other absorptive processes until near 10 kHz,
and is the largest contributor to plane wave tube absorption until 140 kHz, after which

thermoviscous absorption dominates.
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Figure 2.1. A plot of the real part of the absorption coefficients associated with
thermoviscous, molecular relaxational, and boundary layer losses, as well as the real part of
the absorption coefficients due to atmospheric propagation and propagation in a plane wave
tube.

The fact that realistic absorption coefficients increase with the square of frequency for
very large frequencies suggests that true discontinuities will never form in measured waveforms.
While a full discussion of dissipative and dispersive phenomena and how they relate to nonlinear
propagation is beyond the scope of this thesis, more information may be found in Ref. [10], Ref.

[44], and Ref. [45].

2.2.3.2 Generalized Shock Formation Distance

Since realistic linear losses preclude the existence of true discontinuities in a waveform,
determining a “lossy” shock formation distance is difficult. One method, used by Pernet and
Payne, [2] is to assume that an initially sinusoidal plane wave will decay exponentially with

propagation at a uniform rate determined by the fundamental frequency. This case is essentially



26 Chapter 2 Benchmark Cases

assuming that there is a uniform absorption coefficient for all frequencies. Since a waveform
that decays uniformly over all frequencies may still generate true discontinuities, the lossy shock
formation distance may still be precisely defined. The distance at which such a wave will

generate a shock is

Yo = M T T

(2.32)

where «a is the absorption coefficient of the fundamental frequency and x is the shock formation
distance of the waveform assuming no linear losses. In terms of 0 = x/X and the Gol’dberg

number I' = 1/ax, the “lossy” shock formation distance may be written

0ly=z, = TIn (2.33)

1-1/r

Note that the Gol’dberg number is usually defined for the thermoviscous absorption coefficient,
whereas Equation (2.33) makes use of a uniform absorption coefficient. According to Equation
(2.33), shocks do not form for I' < 1, and for I' = 1, a shock forms at infinity. Under the
assumption of a uniform absorption coefficient for all frequencies that is behind Equation (2.33)
the lowest starting amplitude of an initially 1500 Hz sinusoidal plane wave in air that will
generate shocks is about 109 dB re 20pPa at an ambient pressure of 1 atm. Since realistic
absorption processes, such as atmospheric or thermoviscous absorption, predict that absorption
will increase for higher frequencies, Equation (2.33) will underestimate the distance at which
shocks will form in realistic cases.

For large I, the “lossy” shock formation distance may be approximated as

1
Oly=g, ® 1+ T (2.34)

The amplitudes and characteristic frequencies associated with jet noise suggest I' values

between 10 and 100, [24] which would imply a “lossy” shock formation distance (assuming
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planar propagation) between 1.005 and 1.05 times the shock formation distance assuming
propagation with no linear losses. Since this correction factor is less than 5% of the lossless
shock formation distance, all of the analyses presented in this thesis will make reference to the
lossless shock formation distance or characteristic nonlinear distortion length. It should be
noted, however, that since this theory was based on an absorption coefficient that significantly
underestimates the high-frequency absorption, it is likely that these “lossy” shock formation

distances are also underestimated.

2.2.3.3 Mendousse Solution to the Burgers Equation

Returning to the Burgers equation as it appears in Equation (2.6), which includes
thermoviscous absorption, a general solution for an initially sinusoidal wave is the Mendousse
solution, written as

_ 4 IR (=DMl (T/2)e /M sin(nh)
- T1o(T/2) + 2 55, (— 1), (T/2)e /T cos(ng)’

(2.35)

where I, is the nt" modified Bessel function of the first kind. The Mendousse solution is only
limited to positive values of o, meaning that the entire propagation of a waveform undergoing
thermoviscous absorption may be described by the Mendousse solution. However, the
Mendousse solution will not be considered directly in this thesis, due to the difficulty of working
with a solution in terms of a ratio of infinite series. Because the Mendousse solution is
impractical for the present work, two approximations of it are instead considered that are not as

general but which shed light on important propagation regimes.

2.2.3.4 Fay Solution
For ' > 1 and 0 > 3 — that is, for waveforms with very large amplitudes undergoing
thermoviscous absorption in the sawtooth regime of propagation — the Mendousse solution may

be approximated by
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2w sin(nf)

= Fnzl - (n 5 _rl‘_ 1), (2.36)

P

which is called the Fay solution.
Due to its recurring appearance in the derivations in this chapter, we will define the

variable

c+1

: (2.37)

Since o /T = (x/x)/(1/ax) = ax, we will call ¢ a nondimensional absorption distance, or just
an absorption distance. In this thesis, the absorption distance will always be limited by the
constraint ¢ > 3, such that ¢ < 1 implies very strong shocks present in the waveform. Values
of the absorption distance much larger than one indicate the propagation regime known as “old-
age”, where shocks have unsteepened significantly.

The Fay solution in Equation (2.37) may be written in terms of the absorption distance as
P 2 i sin(nf) 538
T i sinh(ny)’ (2.38)
n=1
The time-derivative of the Fay solution is
P 2xn cos(no)
-5 == Z — (2.39)
06 T sinh(ny)
n=1
In the limit that 1) becomes large, the Fay solution may be approximated as

4 o0
P~ FZ e~ sin(né), (2.40)
n=1

With a time-derivative of
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LN ™ cos(nb) 2.41
50 T2, cos(n@). (2.41)
n=1

The Fay solution and its asymptotic form provide a way to consider the propagation of
initially sinusoidal plane waves through the sawtooth and old-age propagation regimes that is
easier than the Mendousse solution. However, the Fay solution is still written in terms of an

infinite series. It is difficult to analyze certain nonlinearity measures, such as the wave

steepening factor, of waveforms expressed as infinite series.

2.2.3.5 Khokhlov Solution
By approximating an integral early in the derivation of the Mendousse solution with the
saddle-point method, another solution to the Burgers equation may be found:

1 T
P_1+—O' —0+ntanhﬁ0], —nt<f<Tm (242)

which is called the Khokhlov solution. The Khokhlov solution is only valid for3 < ¢ < T

(Y < 1, forlarge I'; 0.4 < ¢ < 1.1 for I' = 10), and describes only one cycle of the waveform.
It is important to note that the range of applicable distances corresponds to only the sawtooth
propagation regime. However, the Khokhlov solution is not represented by an infinite series,
making it easier to manipulate analytically than the Fay solution. The time-derivative of the

Khokhlov solution is

0k L 4™ el 243
0 1+o 20 g | (2.43)

2.3 Summary

The Burgers equation describes the one-dimensional propagation of pressure waves

including thermoviscous absorption and quadratic nonlinear phenomena. When absorption is
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negligible, the evolution of an initially sinusoidal wave may be described by the Earnshaw and
Fubini solutions prior to shock formation, called the pre-shock propagation regime. Once shocks
form the Earnshaw and Fubini solutions cease to be complete, and other mathematical relations
must be incorporated. The Blackstock bridging function may be used to model the propagation
of an initially sinusoidal signal without linear losses (such as thermoviscous losses) to any
distance from the source, and is particularly helpful in the sawtooth propagation regime (starting
about three times the shock formation distance from the source).

For initially sinusoidal signals propagating with thermoviscous absorption, the
Mendousse solution may be used to describe the evolution of the wave to any distance from the
source. However, due to the complicated nature of the Mendousse solution, approximations are
useful. For propagation from the sawtooth regime (starting about three times the shock
formation distance from the source), the Fay solution is a good approximation. Another
approximation that is sometimes useful is the Khokhlov solution, which is only valid between
the distances that the sawtooth regime starts and that absorption begins to dominate again. The
region where linear absorption dominates is called the old-age propagation regime. Thus, the
Khokhlov solution is not valid in the old-age propagation regime, and either the Fay or

Mendousse solution must be used to model the evolution of the waveform.
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Chapter 3

Time-Domain Measures of Nonlinearity

3.1 Introduction

Many techniques for studying propagating noise fields must assume that the noise
propagates in a linear fashion. This linear assumption is not strictly true, and is not likely to be a
good approximation for high-amplitude noise propagation. In this chapter, two metrics for
characterizing the importance of nonlinearity in jet noise are defined and their uses and
limitations are discussed. Specifically, the wave steepening factor and skewness estimates are
explored. Then several analytical forms of these measures, derived from the limiting cases
described in Chapter 2, are presented. Finally, a discussion of the effects of discrete sampling of

continuous waveforms on each of the measures of nonlinearity is presented.

3.1.1 Wave Steepening Factor
In 1982, Gallagher [18] defined the wave steepening factor (WSF) as the ratio of the
magnitude of the average negative pressure time-derivative to the average positive pressure time-

derivative, or in mathematical form,

3.1)
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where E|[-] is the expectation value (mean) of the argument, p~ represents the negative pressure
time-derivatives, and p™ represents the positive pressure time-derivatives. The WSF is a single-
number characterization of a waveform, but also benefits from the fact that classification of and
knowledge of the location of shocks in the waveform is not necessary. However, as with all
single-number characterizations, the WSF does not include details concerning individual shocks
or other pressure rises. In particular, the WSF is not sensitive to whether waveforms contain
infrequent shocks (as is often the case for skewed waveforms such as the measured waveforms
of jet noise; skewness will be discussed in Section 3.1.2) or if a waveform has no shocks, but
does have significant waveform distortion due to nonlinear effects (such as a nonlinearly
propagated sine wave before the shock formation distance). The WSF was discussed in the study
of noise radiating from model-scale jets with low to moderate Reynolds number by Gallagher
[18] and, more recently, reported by Baars et al. [28] in a study of noise radiating from model-
scale jets. Both Gallagher and Baars et al. considered the WSF of a given waveform in a
qualitative manner and did not give a physical interpretation of specific values, except to note
that a sawtooth function has a WSF value of zero and that both sine waves and Gaussian noise

have WSF values of unity.

3.1.2 Derivative Skewness
The skewness of a random variable x with mean value of zero, denoted in this report as
Sk{x}, is a measure of the asymmetry of the statistical distribution of x. The skewness is defined

as

E
Sk{x} = 3 (3.2)

It should be noted that the skewness of a sine wave and of noise with Gaussian statistics have

skewness values of identically zero, as do the derivatives of these waveforms.
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Mclnerny et al. [33] [46] [47] and Gee et al. [13] have suggested that the skewness of the
first time-derivative of the pressure amplitudes (hereafter referred to as the derivative skewness)
may be a more appropriate measure than the skewness of the pressure waveform (which was
suggested by Ffowcs Williams et al. [34]) to characterize crackle, since crackle has been
associated with acoustic shocks which likely develop via nonlinear propagation distortion of
waveforms. [35] Shepherd ef al. [37] used numerical means to predict the evolution of the
derivative skewness for an initially sinusoidal wave propagating without linear losses.
Muhlestein and Gee [38] estimated the derivative skewness for waveforms measured in a plane
wave tube, and found similar evolution to that found by Shepherd et al. [37] These studies will
be considered in more depth later. However, no analysis of the effects of finite sampling rates on

the estimation of the pressure or derivative skewness (or the WSF) has been published to date.

3.2 Analytical Treatment of Benchmark Cases

Notwithstanding the fact that some limiting cases have been calculated, the interpretation
of the two measures defined in Section 3.1 is not well understood. For example, Gallagher [18]
stated that the WSF is “approximately unity for a pure sinusoidal wave, and ... [is] close to zero
for a pure N-type waveform”, but no mention is made of the WSF evolution for an initially
sinusoidal wave as it distorts and generates shocks. (It should be noted that Baars et al. stated
that the WSF of a sinusoid is identically one, and is identically zero for a sawtooth wave, which
is a pure N-type waveform.) The lack of interpretation is similar for skewness estimates of
waveforms after shocks form.

In this section, measures of nonlinearity for several benchmark cases are studied
analytically and discussed with an emphasis on how the measures evolve over propagation. The

WSF and skewness estimates of the planar, initially sinusoidal signal with and without
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thermoviscous losses are calculated using the solutions discussed in Chapter 2. Then the effects

of finite sampling rates on the estimation of these nonlinearity metrics are discussed.
3.2.1 Wave Steepening Factor

3.2.1.1 Earnshaw Solution

In order to calculate the wave steepening factor (WSF) of a waveform the times of arrival
of the pressure extrema must be known. For the Earnshaw solution assuming a sinusoidal source
signal, the exact times of arrival of these extrema at ¢ = 0 are 8 = nm + 7 /2, for all n € Z, and
the pressure maxima arrive at 8 = 2nm + /2 and the pressure minima arrive at 8 = 2nmw — m/
2. Due to normalization, the pressure maxima have a value of one and the pressure minima have
a value of negative one. Then, based on Equation (2.10), we find that the time of arrival of the

nt® pressure maximum at a distance of ¢ is

T
Omaxn = 207+ =0, (3.3)

and the time of arrival of the n*" pressure minimum at a distance of o is

I
Ominn = 2N — 5 + 0. (3.4)

Due to the periodicity of the initial sine wave, calculating the WSF of a single period will
accurately represent the entire waveform. Therefore, we consider the waveform between 0,4 ¢
and ©p,,x 1, which includes Oy,;, ;. The expectation value of the positive slopes is then the mean
slope between O, ; and O,y 1, and the expectation value of the negative slopes is the mean
slope between O 44 o and Opyip 1.

The average slope of a function f(x) between two points, say, a and b, can be written as

d 1 (bd b) —
E[d—]; = —fdx=M, (3.5)

" b—al, dx b—a
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where the final equality is a result of the fundamental theorem of calculus. Therefore, we find

that
. PO — P(Op; 2
E[P+] — ( max,l) ( mm,l) — ' (3.6)
Gmax,l - Gmin,l T —20
and
. PO —P(O -2
E[P_] — ( mln,l) ( maX,O) — . (37)
G)min,l - G)max,O T+ 20
Thus, we find that the WSF based on the Earnshaw solution is
-2 ,
m+20 _T—40 n
= — < —.
WSF > . o< > (3.8)
mT—20

For values of 0 > /2, we note that the extrema occur almost simultaneously. In fact, we could

write

E[P*] = lim P(A6/2) —P(—AH/Z),

3.9
AB>0 AO (3.9)

which diverges. However, E [P‘] can be shown to be finite, which indicates that the WSF for

o > m/2 is zero. Thus we may write

m—20

Q
N
ST

WSF ={T +20 (3.10)

Note the importance of the value m/2 in Equation (3.10). Since the maxima and minima in the
initial waveform always have a time difference of m, we may interpret the distance 0 = /2 as

the distance at which the maxima and minima collocate.
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It is interesting to note that the amplitudes of the maxima and minima cancelled in the
calculation of the WSF for the Earnshaw solution. In general, for periodic, zero-mean functions

with a single peak and trough per period, this will always happen, since

P(Gmax,n) = P(®max,n+1)

(3.11)

P(emin,n) = P(®min,n+1)

for all n. Thus, the WSF of a periodic, zero-mean function is
WSF = E')max,l - G)min,l (3.12)

min,1 — GmaX,O

Which is just the time it takes for the pressure to go from a minimum to the next maximum (or
the rise time) over the time it takes for the pressure to go from a maximum to the next minimum
(or the fall time).

In order to benchmark Equation (3.8), we will compare it with the Blackstock bridging
function, defined in Section 2.2.2.3. Since the Blackstock bridging function is expressed as an
infinite Fourier series which diverges for o > 1, the theory and analytical formulation are not
expected to match for values of ¢ close to or above unity.

The calculations of the analytic WSF based on the Earnshaw solution and the WSF based
on the Blackstock bridging function are shown in Figure 3.1, below. The Blackstock bridging
function was calculated with Equation (2.21), using 10,000 terms, and a single period was

calculated using 10,000 samples.
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Figure 3.1. Calculations of the wave steepening factor (WSF) using the Blackstock bridging
function and the Earnshaw solution.

As can be seen in Figure 3.1, the analytical formulation of the WSF from the Earnshaw
solution (red line) follows the estimate of the WSF from the Blackstock bridging function
(dashed, black line) very closely up to ¢ = 1.5. For o0 > 1.5, the estimates based on the
Blackstock bridging function do not quite reach as low values as the estimates based on the
Earnshaw. Since the Blackstock bridging function was truncated and the Earnshaw solution is
exact, it is likely that the WSF values based on the Earnshaw solution are more accurate.

A qualitative description of a waveform based on the WSF is facilitated by examining
Figure 3.1. Notice that the WSF values of both the Earnshaw solution and the Blackstock
bridging function are about 0.75 at 0 = 0.2. Then, if we assume that the waveform has not been
significantly deformed for o < 0.2, then we conclude that in the case of no linear losses that a
WSF value above about 0.75 may be considered to be a high WSF value (corresponding to
low/no shock content). Similarly, if we assume that the waveform has been significantly
deformed for o > 0.9, then we conclude that a WSF value below about 0.25 may be considered
to be a low WSF value, which indicates significant nonlinear distortion. One may be tempted to

say that, since the slope of a shock is infinite, the mean positive slope for ¢ > 1 (propagation
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past the shock formation distance) would also be infinite. However, since the shock also has
zero temporal extent (it starts and ends at the same time), the effect of the shock on the mean
positive slope is somewhat reduced. All positive slopes other than the shock are gone for

o > /2, and so the WSF becomes zero in this region. It should be noted that finite sampling
rates will force the estimate of the rise time of the shock to be positive. Therefore, the estimate

of the WSF of a discretely sampled waveform will never be zero.

3.2.1.2 Khokhlov Solution

The Khokhlov solution is a solution to the Burgers equation given in Equation (2.6),
which includes the effects of thermoviscous absorption, given a sinusoidal source signal, and is
valid for 3 < g < T, or, in physical distances, 3x < x < l,. The reason that the Khokhlov
solution is used in this section rather than the Fay solution, which is valid for all ¢ > 3 is that, as
will be seen below, the calculation of the WSF requires knowledge of the pressure extrema in a
waveform. Since the Fay solution is written in terms of a Fourier series, it is not as conducive to
finding the pressure extrema as the Khokhlov solution.

As shown in Section 3.2.1.1 the WSF of a periodic, zero-mean function can be
determined by knowing the rise and fall times of the function. Since the Khokhlov solution,
presented in Section 2.2.3.5, describes a periodic, zero-mean waveform, the WSF may be
obtained once the rise and fall times are found. Note that the difference between the time of
arrival of the pressure extrema in Equation (2.42) is the rise time. These extrema may be found
by setting the time-derivative of the pressure waveform (Equation (2.43)) to zero and solving for

6. In particular,

—1+7T<1—tanh2—— ——|=0 (3.13)

6
=>tanh25$= 1——2111 (314)
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2 ) / 2 2 ) 2
:>9=;l/)tanh 14 1—F¢:i;¢tanh ! == (3.15)

Thus, we obtain the times of arrival of the two extrema:
2 1 2
G)min = —gl/)tal’lh 1—?7’[} (316)
2 1 2
0O max =;1/)tanh 1—;1/). (3.17)

4 2
Omax — Omin = El[) tanh™?! ’1 - Flp' (3.18)

By using hyperbolic trigonometric identities, it can be shown that Equation (3.18) may be written

and

Thus, the rise time is

4 _, |T?

Omax = Omin = Elp cosh ﬁ: (3.19)
which was the form presented by Blackstock. [48] Since the waveform is 2w periodic, the fall
time is

T2

29 _
2 — (Opax — Omin) = 21 1 — Fcosh 1 2w (3.20)

The WSF can then be written (see Section 3.2.1.1) as
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2y _q |m?
Rise Time 7z ¢osh 2y
WSF = — = (3.21)
Fall Time 2 72
1——le) cosh™1 m
T
I =S
I Y R e G 3 VI (3.22)
oot [ | [eosn [T |
OS2y 200+ 1)

We compare the analytical form of the WSF from the Khokhlov solution with that
calculated for the Fay solution. For this comparison, 10,000 terms of the Fourier series were
included, and a single period was used, with 10,000 samples. A plot of the calculated values of

the WSF as a function of ¢ for three values of the Gol’dberg number is shown in Figure 3.2.
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Figure 3.2. Plot of the wave steepening factor found using the Khokhlov solution (Khok.)
and using the Fay solution, both plotted as a function of o for three different values of
Gol’dberg number.

In looking at Figure 3.2 recall that the Khokhlov solution is valid for 3 < o < I'. Despite
being invalid for o > T, there is no discernible difference between the WSF values for the two
solutions for ¢ < 2I'. For ¢ > 2T the analytic form predicts a lower WSF than the Fay solution

does. Since the validity of the analytical form is limited to o < I, the values predicted by the
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Fay solution are more likely to be correct for ¢ > 2I'. However, the fact that the WSF of the
Khokhlov solution is analytical and does not rely on a finite sampling rate suggests that it is

important.

3.2.2 Derivative Skewness

An analytical representation of the WSF of the Fay solution cannot be given because
there is not an exact form of the WSF for an arbitrary Fourier series. On the other hand
derivative skewness, which may give details about the shock content of a waveform, have an
exact form for a waveform described in terms of a Fourier series. Since there are several Fourier
series of interest in nonlinear acoustics — for example, the Fubini solution, Mendousse solution,
and Fay solution — the derivation of the skewness for an arbitrary Fourier series will be presented
first. The derivative skewness of the Fubini and Earnshaw solutions, which assume no linear
losses, are then derived, followed by a derivation of the derivative skewness of the Fay solution,
which assumes propagation with thermoviscous losses past the beginning of the sawtooth

propagation regime.

3.2.2.1 Skewness of a Fourier Series

We seek the skewness of a 2m-periodic function f(t) that may be written as
f) = Z A, cos(nt) + Z B, sin(nt) = a + B, (3.23)
n=1 n=1

where a is the cosine summation and f is the sine summation. By Equation (3.2) we know that
the skewness may be written in terms of the expectation values of f3(t) and f2(t). Due to

periodicity, the expectation value of the cube of Equation (3.23) may be written

1

FIPO) =5 | @+ prde (3.2
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=%[f_na3dt+BLﬂazﬁdt+3fnaﬁ2dt+jﬂﬁ3dtl. (3.25)

—TT —TT

Since £ is an odd function, the second and fourth integrals are identically zero. The first integral

1S

fna3dt = J-Zﬂ {i A, cos(nt)l3 dt (3.26)
o 0 =1

2T [ee] (0] oo
= f z Z Z A, A A, cos(nt) cos(mt) cos(lt) dt (3.27)
0 n=im=11=1
©o co oo 27T
= Z Z z AnAmAlf cos(nt) cos(mt) cos(lt) dt. (3.28)
n=1m=11=1 0

By repeated use of the trigonometric identity

cos(u+v) cos(u—v)

cos(u) cos(v) = 5 3 \ (3.29)
we find that the integrand in Equation (3.28) becomes
cos(nt) cos(mt) cos(It) 130
_ 17 cos([m + L + n]t) + cos([m + | — n]t) (3.30)

41+ cos(fm—1+n]t) + cos(fm -1 —n]t)I
Each term in Equation (3.30) will integrate to zero unless their individual triple indices (m, n, [)

combine to zero, in which case, it will integrate to 2rt. These conditions include

m+l+n=0
m+l—n=0
m—Il+n=0 (33D

m—-Il—n=20

Since n,m,l > 0, the first condition in Equation (3.31) will never occur. Notice that the

remaining three conditions may be written
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m+l=n
n+m=1. (3.32)
l+n=m

These three conditions may be written in the triple summation in terms of a Kronecker delta,

(1 n=m
5n,m—{0 o (3.33)

as
z AnAmA16n+m,l (3-34)
=1

By rearranging the arbitrary indices n, m, and [, it can be shown that each of the triple
summations in Equation (3.34) are equal to each other. Therefore, the first integral of Equation

(3.25) may be written

371- o0 [o¢] [ee]
f addt = 72 Z ZAnAmAISMmJ. (3.35)

n=1m=11=1

The third integral of Equation (3.25) may be found using similar logic. This integral is

written

fna’gzdt = fﬂ {i A, cos(nt)}{i B, sin(nt)}2 dt (3.36)
- T in=1 m=1
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Z z Z A, BB, fncos(nt) sin(mt) sin(lt) dt. (3.37)
n=1m=1I=1 T
Noting that
sin(a) sin(b) = %[cos(a —b) — cos(a + b)], (3.38)

we find that the integrand of Equation (3.37) may be written

1 [ cos([n —m +1]t) + cos([n + m — []t)

4| cos([n — m — 1]t) — cos([n +m + ]t)] (3.39)

Applying the same reasoning used in obtaining Equation (3.34), we find that

[Z Z ZAnB Bl‘sl+nm

1m

N|=|

f af?dt =

AanBl(Sn+m,l (3-40)

i
s

Y !
s

1

2

n=1

l

XAnB Bl m+ln]
11=1

By rearranging the arbitrary indices, it can be shown that the first and second triple summations

S
1l
1l

=

3
I

are identical. Then, the third integral in Equation (3.40) may be written

2 Z Z Z AanB16n+m,l
n=1m=1I1=1

n=1m=11

f af3dt = =

(3.41)

NgE

AanBl5m+l,n]-

Il
-

Thus the expectation value of f3(t) is
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3 [ee] (o] [ee]
(t) Z [z z Z AnAmA16n+m,l
n=1m=11=1
+2 Z Z Z AanBl6n+m,l (3-42)

1m=11=1

S
1]

ZZAnB Bl m+ln]
1=

1m=1

MS

S
1l

In the special case that B,, = 0 for all n, the Equation (3.42) reduces to

Z z ZAnA A 6n+ml (3-43)

n=1m=11l=1

E[f*(O] =

—Mw

The expectation value of f2(t) may be found as well. Again, due to periodicity, we may

write

E[f3(0)] = %fn(a + B)%dt = %fn(az + B2 + 2ap)dt. (3.44)

Since af is an odd function, this term integrates to zero. The remaining terms yield

o) 2 0 2
E[f2(0)] = % f {Z A, cos(nt)] + {Z B, sin(nt)} dt (3.45)
-n n=1

n=1

1 T oo ©o
= [A, A, cos(nt) cos(mt)
m)_ Z Z (3.46)

Thn=1m=1

+ B,,B,, sin(nt) sin(mt)] dt
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=)

n=1m=1

{AnAm fﬂ cos(nt) cos(mt) dt
- (3.47)

T
+ B, B, f sin(nt) sin(mt) dt}
—TT

1 [ee] (o]
= Z_Z z (A, Ay, + BBy Spm . (3.48)

n=1m=1

The expectation value may take the form of Equation (3.48) due to the orthogonality of the

integrand of Equation (3.47). The expectation value of f2(t) may then be simplified to
E[f*()] = Z(A2 + BY). (3.49)

Again, in the special case that B,, = 0 for all n, Equation (3.49) reduces to

i (3.50)

Using Equations (3.42) and (3.49) with Equation (3.2), we find that the skewness of f(t)

E[f*(0)] =

l\.)lb—\

1S

Sk{f ()}
_ iAnAmA15n+m'l + ZAanBl6l+n,m - AanBl6m+l,n (3.51)
V2 (X% + BDIP |

In Equation (3.51) the combinations of three Fourier coefficients and the delta function is

shorthand for a triple summation:

ynml6n+m,l = Z Z 2 Vnm15n+m,l' (3.52)

n=1m=11=1
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where V,,,,; 1S an arbitrary three-dimensional scalar array, is used. In the special case that

B, = 0 for all n, the skewness reduces to

3 AnAmAiBnim
V2 (2. A2

Sk{f (6)} = (3.53)

and in the special case that A,, = 0 for all n, the skewness is identically zero. If4,, = B,, =0
for all n, the skewness is not defined in this method; however, this is just a flat line with a
skewness of zero.

It may also be useful in calculating skewness values to note that, for arbitrary scalar

arrays E,,, F,, and G,,,

e © co -1
EnFmGl(Sn+m,l = Z Z ZEnFmGl n+ml — Z lz EnFi_p. (3.54)
n=1m=11l=1 n=1

3.2.2.2 Fubini Solution
The Fubini solution is described in Section 2.2.2.2. The time-derivative of the Fubini
solution is written as Fourier cosine series (see Equation (2.20)). Thus, according to Equation

(3.53), the derivative skewness of the Fubini solution is

i]n (TlO')]m (mo-)]l (la)6n+m,l
V2 L (o)

Sk{oP/00} = (3.55)

which is plotted as a function of ¢ in Figure 3.3. In the limit that o — 1, the triple series in the
numerator diverges, and the derivative skewness goes to infinity. This is because a shock has
formed at 0 = 1. Since the Fubini solution assumes the propagation is lossless (other than
nonlinear losses at shock fronts), after a shock has formed, there will always be shocks in the
waveform. Therefore, the analytical derivative skewness will remain infinite for all o > 1. It

should be noted that the values shown in Figure 3.3 appear to agree with the results by Shepherd
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et al. [37] up to about 0 = 0.9. The difference is discussed in the context of finite-sampling
effects subsequently.

Based on the results for the Fubini solution in Figure 3.3, general trends of the derivative
skewness for a waveform propagating without linear losses may be suggested. If a waveform is
assumed to have very little nonlinear distortion for o < 0.2, then a derivative skewness of 0.5
may be considered to be low. If a waveform is assumed to have very significant nonlinear
distortion for o > 0.9, then a derivative skewness of 5 may be considered high. The effects of
discrete sampling will be considered subsequently.
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Figure 3.3. The skewness of the time-derivative of the pressure (derivative skewness, or
Sk{dp/a0}) of the Fubini solution. The dimensionless variable o is the distance from the
source divided by the shock formation distance.

3.2.2.3 Earnshaw Solution

The derivative skewness may be exactly calculated. The expectation value of the nt®
power of the time-derivative of the waveform described by the Earnshaw solution assuming an

initially sinusoidal signal at a distance ¢ can be written, using Equation (2.14) and Equation

(2.18), as
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1 (27 9P\
E[(@P/BH)"]zEj (69,) do’ (3.56)
1 cos(8) \"
=5 i <Teos(@) (dO[1 — o cos(6)]) (3.57)

1 (%"  cos™(0)d6

~on o (I—oacos(O)n 1 (3.58)
Evaluating the integral in Equation (3.58) for n = 3 yields
2(1—0%)%2 + 302 -2

31 —
E[(0P/00)°] = 53 (1 = 002 , (3.59)

and evaluating the integral for n = 2 yields

1—(1— 0.2 1/2

E[(0P/00)?] = ( ) (3.60)

o2(1—og2)1/2"

These integrations were found using Maple . [49] Combining Eq. (3.59) and Eq. (3.60) with
Eq. (3.1) produces the derivative skewness of the Earnshaw solution assuming an initially

sinusoidal signal, which is

2(1—02%)3/2 + 302 -2
o3(1 — g2)3/2
Sk{oP/06} = ( ) 3 (3.61)
1—-(1-02)/2]2
02(1 _ 0.2)1/2 ]

_ 2(1-0%)%? 4302 -2
(1-02)3/4(1-VI=02)""

The derivative skewness from the Earnshaw solution for o << 1 can be approximated as

(3.62)

Sk{aP/36} ~ %a. (3.63)

The derivative skewness derived from the Earnshaw solution for ¢ — 1 can be approximated as
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Sk{dP/30} ~ (3.64)

(1 —g2)3/%

Equation (3.62) is equivalent to Equation (3.55), but is not in terms of an infinite series.
Comparing the Fubini result in Equation (3.55) and the Earnshaw result in Equation (3.62)
allows for an analysis of the error associated with using a truncated series to estimate the
skewness of a waveform. The analytical derivative skewness of a waveform modeled by the
Earnshaw solution and estimates of the derivative skewness based on the Fubini solution using
different numbers of terms are plotted in Figure 3.4 on (a) a linear abscissa and (b) a logarithmic
abscissa. The values of N indicate the number of terms included in the approximation of each of
the infinite series in Equation (3.55). As o approaches 1, the approximations all level off at
some N-dependent value, while the analytical form continues to increase. The effect of
increasing the number of terms is a more accurate estimate of the skewness is obtained for a
large range of 0. For o < 0.7 even the estimate only using 10 terms well approximates the
analytical form. The estimate using 1000 terms is a reasonable approximation almost to
o = 0.99, and 10,000 terms is a reasonable estimate as high as 0 = 0.997. In general, it appears
that derivative skewness estimates obtained by using a truncation of the infinite series in
Equation (3.55) are accurate up to about two-thirds of the largest derivative skewness value that
the estimates predict. As an example, the largest derivative skewness that one may estimate
using 100 terms is about 10. Therefore, any derivative skewness value greater than about 6.6

estimated using only 100 terms is not likely to be accurate.
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Figure 3.4. The analytical derivative skewness of an initially sinusoidal waveform modeled
by the Earnshaw solution and estimates of the derivative skewness of the Fubini solution
using N terms of each of the infinite series in Equation (3.55). The derivative skewness
values are plotted on (a) a linear abscissa and (b) a logarithmic abscissa. The derivative
skewness values found by Shepherd ef al. [37] are plotted (black circles) in (a), for

comparison.

3.2.2.4 Fay Solution

The Fay solution for the Burgers equation, which includes thermoviscous absorption, is
described in Section 2.2.3.4. The time-derivative of the Fay solution is written as Fourier cosine

series (see Equation (2.39)). Then, according to Equation (3.53), the derivative skewness of the
Fay solution is
n m [

3 sinh(ny) sinh(my) sinh(ly) Onm,
V2 3/2 ) (3.65)

Sk{oP/80} = ;
n

[Z;.‘o:l sinh?(ny)

where 1 = (1 + ¢)/T'. Equation (3.65) makes use of the triple-summation shorthand described

in Equation (3.52). The derivative skewness of the Fay solution is plotted in Figure 3.5.
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Figure 3.5. The skewness of the time-derivative of the pressure (derivative skewness, or
Sk{dp/a6}) of the Fay solution as a function of o for three values of Gol’dberg number.

In the limit that I' = oo (1 — 0), that is, the limit that the propagation is lossless, the
derivative skewness approaches infinity for small ¢ values. (It can be shown, using an

asymptotic form of the Khokhlov solution, that for very small 1, Sk{dP/90},,_,, =
(2m/5)+/3/¢¥ = (2m/5),/3T /(0 + 1) .) This is expected, since the derivative skewness of the

Fubini solution for o > 3 is always infinite. In the limit that 1) — oo, that is, many absorption
lengths from the source with finite losses, the Fay solution may be approximated as

4 [ee]
P~ %Z e sin(nf), (3.66)

n=1

(see Ref. [4]) which has a derivative skewness of

3 neT™Wme ™ le W§,, m,

Sk{0P/06}y 0 ~ —= 3.67
\/E [Z?Lozl e—ZnI[)]% ( )
3 ¥, Nh nl(l — n)e 2 Y
_ 3 XiZp Xnmanl( nge N 3\/56_3¢ (5.68)
V2 [Y_, e—2m¥]z e '
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= 3v2e ¥ = 3v2e /T, (3.69)

Thus, as 0 — oo (or Y = oo, which is the old-age propagation regime; wavefronts unsteepen as
high-frequency content is absorbed) the derivative skewness of the Fay solution approaches zero

exponentially.

3.3 Effects of Finite Sampling Rates

The measures described in Section 2.1 depend upon accurate (i.e., analytical) estimation
of the first time-derivative of the pressure waveform. However, since in measurements the
waveforms must be sampled discretely at finite time intervals, there is a limit to the maximum
slopes that can be adequately resolved. These limits on the temporal resolution of the waveform
derivatives are often significant in the study of acoustic shocks, and thus, a discussion of the

sampling rate-related limitations of each of the measures defined in Section 2.1 is provided.

3.3.1 Finite-Difference of a Fourier Sine Series

Let f(t) be a Fourier sine series, written
f) = Z B,, sin(nt). (3.70)
n=1

An estimation of the first time-derivative of f(t) can be obtained using a finite-difference

technique. Using the uniform time step At, this is given by

Af _ ft+At) - f(©)
At At

(3.71)

1w v
=7 Zl B, sin(nt + nAt) — A7 Z B,, sin(nt) (3.72)
n= n=



54 Chapter 3 Measures of Nonlinearity

= A_t; ., (sin(nt + nAt) — sin(nt)). (3.73)

Using the trigonometric identity sin(a + b) = sin(a) cos(b) + cos(a) sin(b), Equation (3.73)

becomes

A
A]; AT Z B, [sin(nt) cos(ndt) + cos(nt) sin(ndt) — sin(nt)] (3.74)
n=1
= sin(nAt cos(ndt) — 1
Z B,—— ( ) cos(nt) + Z B, %sm(nt) (3.75)
n=1 n=1
If we define
sin(nAt
Ay, = B, ¥ = nB, sinc(n4t)
At (3.76)
. cos(nat) — 1 ’ '
Bn =By
then we may write Equation (3.75) as
— = z A, cos(nt) + Z B), sin(nt). (3.77)
n=1 n=1

In the limit that At — 0, we find that A;, = nB,, and B,, = 0, which is the result obtained by
assuming continuous sampling from the beginning. Thus, we find that the first time derivative a
discretely sampled waveform expressed as a Fourier sine series may be expressed as a full

Fourier series.

3.3.2 Wave Steepening Factor
The effect of discrete sampling on WSF estimates is evaluated by finding relationships
between the WSF and the sampling rate for some of the analytical solutions described in Chapter

2. Specifically, the Fubini solution, a sawtooth function, and the Khokhlov solution will be
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considered. Understanding the effect of finite sampling rates on these solutions will lend insight

into meaning of values of the WSF of measured waveforms.

3.3.2.1 Fubini-Earnshaw Solution

The Fubini solution describes the nonlinear evolution of an initially sinusoidal plane
wave propagating without losses, and is written in terms of a Fourier series. Since the WSF of
an arbitrary Fourier series is not known, this analysis will be supplemented by the Earnshaw
solution.

In order to calculate a WSF estimate of a waveform, then we must first find the regions of
the waveform that have positive time-derivative estimates and the regions that have negative
time-derivative estimates. The boundaries between the positive and negative slopes will have a

slope estimate of zero. For a sine wave, the time at which this occurs, 0, is found by solving

f(O+A6) - f(0O) B sin(® + Af8) — sin(O) _ 0

3.78
A6 A6 (3-78)
Using the trigonometric identity mentioned in Section 3.3.1, we find that
2 (@ + AQ) i <A9) =0 3.79
N: cos > sin > ) = (3.79)
50 =mr+ 2 (3.80)
=mm+o-— .

where m = 0,11, 12, ..., and even values of m represent the transition from positive slope to
negative slope estimates, and odd values of m represent the transition from negative slope to
positive slope estimates. Therefore, due to the periodicity of the waveform, averaging the slopes
between 8 = —rr/2 — AG/2 (0 withm = —1)and 8 = /2 — A8 /2 (O with m = 0) yields the
average positive slope that would be estimated assuming a very long measurement time and that
the value of v = 27 f;/w, where f; is the sampling rate, is an irrational number. (The variable v

is a nondimensional number that indicates the sample-density of a waveform. The choice of an
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irrational number and long measurement time guarantees that every possible discretely sampled
slope will be equally represented.) Similarly, averaging the slopes between 8 = /2 — A8 /2 (O
withm = 0)and 8 = 3n/2 — A8 /2 (0 with m = 1) will be the average negative slope that
would be estimated assuming a very long measurement time and that the value of v is an
irrational number. Note that v = 1/At = 2m/Af. This means that Equation (3.80) may also be

written

T[ 1 1
G)=mn+———=n<m+———>. (3.81)
v v

The method described for a sinusoidal wave may be simply extended to the entire Fubni
solution. The distortion due to nonlinear propagation without linear losses of a plane wave is
strictly amplitude dependent (until shocks form), so the time delay between two points with the
same amplitude will remain the same. This means that the time at which the slope estimate will
be zero, ©, will follow the distortion described by the Earnshaw solution in Section 2.2.2.1,

which is

9(0):”<m+%—%>—asin<n(m+%—%)>

=mm+ % — % —o(—1)™cos (%)

(3.82)

In addition, the long-time average positive slope estimate requires the mean slope between 0 (o)

form = —1 and form = 0:
AP\T 1 O(@lm=0 AP
E (—) l = f —de, 3.83
[ 86) | T 0 lmmo — 0@ memr Joio)..._, A0 (3-83)

and the long-time average negative slope is found to be
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AP . 0(@)lm=1 AP
))- [
AB 0(0)|m=1 — 0(0)m=0 Jo A8

(@)lm=0

The integrals in Equation (3.83) and Equation (3.84) may be evaluated using the

derivative estimate presented in Equation (3.77):

AP b _
f 1540 = f Z[A;cos(n9)+3;lsm(n9)] do
n=1

o b
Al B)
= Z [—n sin(nf) — —ncos(ne)]
n n u

n=1

= Z %{A;l[sin(nb) — sin(na)] — By[cos(nb) — cos(na)]}
n=1
Z%{A’ [2 Cos< b+ > ]) sin <n Lb ; a])]
+ By, [2 sin ( ) (
= Z rzllzg i (n Lb ; ‘ >{sm(nA9) cos<

+ (cos(nd6) — 1) sin (n [b : a])}

)
")

= Z 4B, sin (n b ; a]) cos (n% +n Lb -; a]) sinc (n%)
= Z 4B, sin (n Lb ; a]) cos (n% +n Lb —; a]) sinc (n%)

Then, noting that,

=ZngSln(n[b;a]>{Sln<nA9+n[b;a]>_51n<n[b;a]

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)
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0(0)|m=0 — 0(0)|p=—1 =T — 20 cos (g) (3.93)
2
O(0)lmmo + (@ lmery = =~ (3.94)
0(0)|m=1 — 0(0)|m=0 = ™ + 20 cos (g) (3.95)
2
O(0) ey + O@)lmo = 27— =, (3.96)
we find that

L(::::i % do = ; 4B, sin (g [T[ — 20 cos (%)D cos (n% - ng) sinc (n g) (3.97)
= ; 4B, sin (g [n — 20 cos (%)D sinc (n %), (3.98)

and that

[ 0= s G2 (s (- one(cT) 399

0(0)lm=0
= Z 4B, sin (g [71 + 20 cos (g)]) (—=1)™sinc (n 2771) (3.100)
= i 4B, {(—1)" sin (n g) cos (na cos (g))
n=1 (3.101)

+ (—1)" cos (n g) sin (na cos (%))} sinc (n 2771)

Since sin(nm/2) = 0 when n is even, and cos(nm/2) = 0 when n is odd, the (—1)" term in
front of the sin(nm/2) term in the curly brackets in Equation (3.101) may be replaced by a
minus sign, and the (—1)™ term in front of the cos(nm/2) term may be neglected. Thus,

Equation (3.101) may be written
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[ee]

J_G)(U)Im 1A_Pd6 Z Sll’l COS (TlO' cos (g))

8(0)lm=o0 p

- (3.102)
— cos (n g) sin (na cos (g))} sinc (n 2771)
N 0(0)|m=
— ; 4B, sin (g [n — 20 cos (g)]) sinc (n g) = - j@(gnm__j i—gd& (3.103)

Thus, the integrals in Equation (3.83) and Equation (3.84) have equal magnitude an opposite
sign. Using Equation (3.1), we find that the WSF estimate for the discretely sampled Fubini

solution is

T — 20 COS (%)

WSF = (3.104)

T+ 20 cos (%)

These WSF estimates for the discretely sampled Fubini solution are plotted as a function
of o in Figure 3.6(a) for several values of v (or sample-densities). The number of terms used in
the infinite summation was five times the value of v. For comparison, the exact WSF values
assuming continuous sampling are also plotted. The relative errors between the exact WSF and
the WSF estimates (|1 — WSF, JWSF .,,¢|) are plotted in Figure 3.6(b). The error plot shows
that, at least in the pre-shock region, greater values of ¢ generate greater errors for a given
sampling frequency. However, the errors are quite small. As seen by the blue line in Figure
3.6(b), even v = 10 only has about 10% error at the shock formation distance. If we assume that
less than 1% error is sufficient precision, then it appears that v > 100 is sufficient to estimate the
WSF for initially sinusoidal plane waves propagating without linear losses prior to shock
formation. Based on the trends of the WSF estimate errors, it seems likely that v > 1000 would

be sufficient to estimate the WSF value for all .
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WSF

Relative Error

Figure 3.6. (a) Estimates of the WSF for v = 10,102,103, and 10*. The exact WSF

0 0.2 04 5 06 0.8 1

derived from using continuous sampling is plotted for comparison. (b) The relative error of
the estimates in (a). The relative error is defined as |1 — WSF, /WSF_,,..|, where WSF, is the

estimate of the WSF for a given value of v, and WSF_,,,, is the exact WSF value using
continuous sampling.

An interesting feature of the error plot in Figure 3.6 is that there appears to be a 1/v?

dependence for large values of v. This observation may be made analytical by assuming that the

arguments of the cosine terms in Equation (3.104) are small:

T — 20 CoS (%)
T+ 20 cos (%)

(F+22)

WSF,

— VvV |=|1-
WSFcont

Relative Error = ‘1 -

(3.105)



3.3 Effects of Finite Sampling Rates 61

7.[2
n—20(1 v_z)
2
T[+20'(1—n—2) m= 27520 T+ 20
~ |1 . —|1- L (n_ZG) (3.106)
(n+20) m+20-—05
14 2 2 (n—20)7! 27“’(n+2)1 2”“ 20)1
_|i- 2n _ - 2 (3.107)
1- (m+ 20)71 1- (n+20)1
430 1
. (3.108)

3.3.2.2 Sawtooth Wave

For initially sinusoidal waves with very large Gol’dberg numbers, starting at 0 = 3 the
waveform may be modeled as a sawtooth wave. Although the WSF of a discretely sampled
sawtooth may be modeled with the Khokhlov solution, a simpler expression of the WSF estimate
of the sawtooth limit may be found using the mathematical description in Equation (2.25).

Suppose that S(t) is sampled discretely with uniform normalized intervals of A8 =
2nfAt, where f is the sawtooth frequency and At is the actual sample interval. Then the
sampling rate is f, = At~ = 27f /A0, and the analytic function in Equation (2.25) will be
partitioned into the array

P(t) > P, = —2" (ﬂ [nw nad . 1) 3.109
- P, = —|—=+3) :
nT 1t 2| T 2 T2 (3.109)

Using a finite-difference scheme, the estimate of the time-derivative of the sawtooth function is

0P ARy Puyi— Py (3.110)
90 A6 a6

e [{ﬂoor [(n al DAQ] _(n+1DA6 + 1} — {ﬂoor [@ _nad + 1}] (3.111)

T~ +0)06 21 21 2 2r | 2m 2
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_ e (o [+ 1A
(14 0)A0 oor 21

_ nAgy A0 (3.112)
ﬂoor[ o 27r>'

Since the discontinuity associated with the floor function denotes an acoustic shock, then
floor[(n + 1)A8/2m] — floor[nAB /2m] = M,, is the number of shocks that have occurred
between n46 and (n + 1)46. If we assume f; > f, we find that M,, can only take on values of

zero or one, and so the derivative estimate will be

AR, 1 (3.113)
A 1+o0
if there is no shock, or
AP, 21 (1 AQ) _ 2m—Af (3.114)
A6 (1+0)A6 2n/) (1 + 0)A0

if there is a shock.
The average number of measurement points between two shocks, which we will call N, is
the period of the sawtooth divided by the spacing between samples, or, noting that the period is

the inverse of the frequency,

N== (3.115)

Since there is one shock per period, the average number of data points that lie within a single
period of a sawtooth wave (or, the number of data points in a row that are not separated by
shocks) is N — 1. Therefore the long-time WSF for a sawtooth wave can be analytically written

as

1
" 1+ol _ _
-1 1
[2n—A0 2n/A6—1 v—1
(1+0)A0

WSF = (3.116)
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Since the WSF of a continuously sampled sawtooth wave is actually zero, the relative error of
the estimated WSF undefined, and Equation (3.116) defines the absolute error.

If f; 15 96 000 Hz and f is 1000 Hz, then the absolute error of the WSF would be about
1/100 = 1%. In the limit that f; — oo, or the sampling becomes continuous, the WSF
approaches zero, but in general, the WSF of a discretely sampled sawtooth wave will never be

identically zero due to the lack of temporal resolution of the waveforms near shocks.

3.3.2.3 Khokhlov Solution

Estimates of the WSF for waves propagating according to the Burgers equation (which
includes thermoviscous losses) are also influenced by finite sampling rates. The effect of
discrete sampling on the WSF for an initially sinusoidal signal propagating according to
Equation (2.42) may be described by analyzing the Khokhlov solution. Recall that the Khokhlov
solution is valid for 3 < ¢ < T. We choose to study the Khokhlov solution rather than the Fay
solution because the WSF of an arbitrary Fourier series is not known.

Suppose that a wave that is described by the Khokhlov solution (see Section 2.2.3.5) is
sampled at a rate of f;. The discrete sampling indicates that the slope must be estimated to
determine the WSF estimate for the discretely sampled Khokhlov solution. Using a finite-

difference scheme and the notation from previous sections yields a slope estimate of

AP|  AP| _ P(0+A6)—P(6) .
atly, ~ “aal, ¢ X, (3.117)

_o 1 [ . (2(6+46) (28
—E(l_l_o_) _— +7T<tan <ET>—tan (Ei))l (3118)

Since the ratio v is irrational and the sampling time is very long, we find that the slope estimate

at every possible value of —m < 8 < m will be equally likely. This means that

E[P*] = f —df = —=—,
P*]=6.6; o. 30% T8, -0, (3.119)
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where 0; is the 8 location of the i*" zero crossing of AP /A8, and

b AP
Iy = A—Hde (3.120)

Similarly,

c1 91AP
E[P] = — 2)+(®1_(n))U —de + fAG l (3.121)

= 1 [[ -1 ] — _191’@2
2m— (0, —0,) ™ 08l T o (0, -0,)

(3.122)

since I_p, = 0, because the net pressure difference over a period is zero. The limits of
integration, ®; and ©,, are the solutions to the equation found by setting Equation (3.118) equal

to zero and choosing 6 as the variable being solved for. This yields

0, = %m (%) .y (3.123)
and
0, = %1 (A1 ;A‘g_> A0, (3.124)
where
Ay = ™V (2m — AG) — (2 + A), (3.125)
and

2mAl
Ay=e ¥ (2m —A0)? — 2™V ((2m)? + A02) + (2m + A9)2.  (3.126)

The Taylor series expansion of A; and A, in terms of A@ are
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Ay = (2 ) — 2)At + 0(062) (3.127)

and

A, = 42(* /42 — w2 /21))A62% + 0(A63). (3.128)

We find that letting A6 — 0 (or f; — ),

011950 = %m (2w — 1 - 2% /ap7 = n2/2p) (3.129)

v T2y +n2/29 — 1 2 _ 2
= -7 =_Z ht /1__ 3.130
- n<\/n2/21/)—\/7r2/21,b—1> 7Tt/)tan 7_[21/) ( )

and

Oy larn0 = %m (2w — 1+ 2 /497 = n2/2) (3.131)

V. [(Jr2/2¢ +n2/2p -1\ 2 9 2
=1 == h /1__ , 3.132
T n(\/n'z/Zl/) —Jn?/2¢ — 1) nwtan nzlp ( )

which are the values of ©; and ©, found assuming a continuous sampling.

Taking the above equations into account, we find that the WSF for the discretely sampled

Khokhlov solution is

] e
E[P~ 2m — (0, — 0,) 0, -6,
WSF = ————4 = — = 3.133
E[P+] lo, e, 2m — (0, — 0,) (:133)
2 G)1
-t [27[0, — 0,]7t — 1]~!
_2m 2 (3.134)
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- 1
_ [ (At V4 ¥, -y

[w(_g)] [ ] o136

We now replace A; and A, with their definitions:

=1 -1
W[ PR 2 = 08)? = 2¢™OM (2m)? + A67) + (2m + 40|
WSF = F[tanh ST (2~ B6) — (2 ¥ 20) 1 . (3.137)
Recalling that A6 = 2m /v, the WSF may be written as
\/ 1)2 1 T
et/ (1 —2) —2e2/VV (14 =)+ (1+=
WSF = %tanh‘l ( "2) - ( ‘f) (+9) ) _ 1| . (3.138)
e/ (1-3) = (1+3)

Another way to write Equation (3.138) is

[

-1

1 EE— J(l + viz) sinh? (17;—12/) — 1smh ( 1,[)1/2) )
T2

1
| |
Il sinh (17;12/) L =cosh (l,bv) - 1JI . (3.139)

For reference, the exact WSF, found by assuming continuous sampling, was found to be

-1 -1
2 -1 2 3.140
WSF = Fl[)tanh 1-;1/) -1] . (3. )

The estimates of the WSF for the Khokhlov solution are plotted as a function of o
assuming I' = 103 in Figure 3.7, below. Due to the ratios of large numbers associated with
Equation (3.139), the estimates plotted in Figure 3.7 are not complete. Since the estimates are

not well known near the sawtooth propagation regime (o near 3) and the WSF values are
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expected to approach the WSF value for a sawtooth wave, the WSF of a sawtooth wave is plotted
in place of the portions of the WSF estimates that were not easily calculable.

100 : T 3 sizi:iq : T 3 sit:d

10'1 :-----.---"-4.- S Pl

g == = Continuous
1
10" : s 2 T . : P —v=10
; —v=10"
_V=103
S 2 3 sl _V=104
10-3 2 2 2 2 2 2 2 2 ) 2 2 2 2 2 2 2 21 e X x  ———

Relative Error

10 10’ 10° 10
o (T = 1000)

Figure 3.7. (a) Estimates of the wave steepening factor (WSF) of the Khokhlov solution for
v =101, 102,103, and 10%. The dashed lines denote the WSF of a sawtooth wave. The

exact WSF derived from using continuous sampling is plotted as the black dashed line, for
comparison. (b) The relative error of the estimates in (a). The relative error is defined as

|1 - WSFV/WSFcontl-

For o near I (the upper limit of applicability of the Khokhlov solution), the estimates of
the WSF shown in Figure 3.7 are all very close to the actual value. However, for waveforms
with significant shock content, namely o < T, the estimates based on lower sampling rates
overestimate the true WSF quite significantly. In this limit, which is often called the sawtooth
limit, the estimate of the WSF of a sawtooth wave (shown as colored dotted lines in Figure 3.7)

is approached. Note that if the estimated WSF value approaches the sawtooth wave limit, it is a
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poor representation of the actual WSF. However, WSF estimates that are about four times the
sawtooth limit are fairly close to the actual WSF value (relative error < 10~1) for each value of
v considered in Figure 3.7. Thus, a simple rule of thumb is if a WSF estimate is at least four
times larger than the sawtooth limit, it is likely to represent the true WSF value well.

The lack of temporal resolution near shocks is not the only concern with the WSF as a
metric for shock content in noise. The calculation of the values of the WSF for ideal cases, such
as sinusoids and sawtooth waves, is fairly straight-forward, but the behavior of the WSF for
cases which are not ideal is likely to be more complicated. For example, it is currently unknown
whether an absolute error of about 1%, which was calculated above, is a significant error for
noise or not. In addition, there is no documentation of the evolution of the WSF for initially
Gaussian noise propagation to the authors’ knowledge. The uncertainty of the actual value of the
WSF due to potentially insufficient temporal resolution and the lack of understanding of how to
interpret a given value of the WSF of a waveform suggest that more study of the WSF is needed

before it can be effectively used as a metric to study jet noise.

3.3.3 Derivative Skewness

Now we turn our attention to the effects of finite sampling rates on the estimation of the
derivative skewness. The Fubini solution, a sawtooth wave, and the Fay solution will be
considered. The effects of discrete sampling on the estimate of the derivative skewness of a
waveform are particularly of interest, since the cubic nature of the skewness may greatly

emphasize any low-resolution pressure rises.

3.3.3.1 Fubini Solution
Begin by looking at the Fubini solution described in Section 2.2.2.2, which is used to
describe the propagation of an initially sinusoidal signal before shocks form. The estimate of the

derivative skewness of the Fubini solution sampled with a normalized uniform time step
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AB = 2m /v may be written as Equation (3.51) where A,, = A;, and B,, = B,, from Equation

(3.76), and

B, = i]n(ncr)- (3.141)
no

The derivative skewness estimates of the Fubini solution with various values of v is plotted in
Figure 3.8(a), and the errors of the estimates relative to the exact derivative skewness obtained
with continuous sampling are plotted in Figure 3.8(b). The number of terms used in each infinite
summations is five times the value of v. The abscissas used in Figure 3.8 are logarithmic,

approaching one from negative infinity.

= =Exact——y = 10" =y =102 —v = 103 —v = 10°|

Sk{Ap/Af

(b)

10 $is s : ¢ s : I : i 2 ¢ ¢ :
0 0.9 0.99 0.999

c
Figure 3.8. (a) Estimates of the derivative skewness of the Fubini solution for v = 101,
102,103, and 10%. The exact derivative skewness derived from using continuous sampling is
plotted for comparison. (b) The relative error of the estimates in (a). The relative error is
defined as |1 — SK{AP/AO}/Sk{dP/30}|, where the A’s indicate discrete sampling and the
0’s indicate continuous sampling.
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The derivative skewness estimates in Figure 3.8 all level off before reaching the
maximum values, which are the values of the estimates at ¢ = 1. The exact value of the
derivative skewness, based on continuous sampling, continues to increase as predicted in
Equation (3.64). The divergent nature of the exact derivative skewness suggests that for o
sufficiently close to one, a derivative skewness estimate with any finite sampling rate will cease
to be a good approximation of the actual derivative skewness value. This can be seen in the error
plot in Figure 3.8(b). We see that the reliability of the derivative skewness estimates depends on
the relationship between v and . For example, for v = 10 the derivative skewness is never
more accurate than 1% relative error, but for v = 1000 is more accurate than 1% relative error
until about o = 0.93. The physical interpretation of this phenomenon is that no reasonable finite
sampling rate can adequately estimate the derivative skewness of a waveform that contains true

discontinuities.

3.3.3.2 Sawtooth Wave
For ¢ > 3, an initially sinusoidal plane wave propagating without linear losses may be
approximately modeled as a sawtooth wave, which has been defined in Equation (2.25). In order

to estimate the derivative skewness, Equation (3.2) can be further expanded to the form

1
_ZNx3

Sk{x} = lim NY=""" (3.142)
N-oo 1 3
2
e

To understand the error in the derivative skewness estimate, consider again the sawtooth
wave defined in Equation (2.25). In Section 3.3.2.2 we found that, on average, the number of
data points per period is N = f;/f, with N — 1 of those data points being associated with the
ramp of the wave with a slope of —2fp,, and one data point associated with the shock with a

slope of 2fpo(f; — f). Then, by replacing the random variable x in Equation (3.142) with the
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time-derivative of pressure estimates of the discretely sampled sawtooth wave, we may calculate

a derivative skewness estimate:

8Syy LN = D(=2fS9)* + @fS*(f; — 7]
Sk{At } = B (3.143)
2
[% [(N = 1)(=2fS50)2 + (2f $0)*(fy — )?]
Simplifying Eqaution (19), the skewness becomes
AS, fs —2f v—2
Kk — — (3.144)
3 {At} JFh—f) Vv—-1

As expected, in the limit that f; — oo, the derivative skewness of the sawtooth wave also
diverges. Since the actual derivative skewness is indefinite, defining a relative error does not
make sense. However, the estimated derivative skewness can be calculated for a characteristic
case, which would give some intuition as to the expected values. Given v = 100, the derivative
skewness of a sawtooth wave would be expected to be about 10.

A last comment: recall that the sawtooth wave and the Fubini solution have been based
on the assumption of no linear losses in propagation. Since any real system will include linear
losses, no true discontinuities can form in a waveform, regardless of the initial amplitude or
propagation distance. This implies that the waveform described by the Earnshaw or Fubini
solutions for ¢ = 1 is pathological. While propagation without linear losses is a useful analysis
tool, it does not occur in realistic waveforms. Other models, such as the Mendousse or Fay
solutions, must be used to understand some of the effects of linear losses on the estimation of the

derivative skewness of a waveform containing shocks.

3.3.3.3 Fay Solution
The estimate of the derivative skewness of the Fay solution sampled with a normalized

uniform time step A@ = 2w /v may be written as Equation (3.51) with Equation (3.76), where
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2T

B, = oG (3.145)

and Y = (1 + o) /I'. The derivative skewness estimates of the Fay solution with various values
of v is plotted in Figure 3.9(a), and the errors of the estimates relative to the exact derivative
skewness obtained with continuous sampling are plotted in Figure 3.9(b). The number of terms

used in the infinite summations is five times the value of v.
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Figure 3.9. (a) Estimates of the derivative skewness of the Fay solution plotted as a function
of o for v = 101, 102, 103, and 10%, with a Gol’dberg number of 1000. The exact
derivative skewness derived from using continuous sampling is plotted for comparison. (b)
The relative error of the estimates in (a). The relative error is defined as |1 — SK{AP/A6}/
Sk{dP/d06}|, where the A’s indicate discrete sampling and the d’s indicate continuous
sampling.

The derivative skewness estimates shown in Figure 3.9(a) show similar results to the

derivative skewness estimates based on the Fubini solution, shown in Figure 3.8(a). Foro <T
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(the sawtooth regime), the derivative skewness estimates at larger values of o will be more
accurately described. This is most likely due to the significant shocks that are present in
waveforms during this regime. For o > I’ (transition from the sawtooth and the old-age
propagation regime), the accuracy of the derivative skewness estimate for a given value of v
appears to be constant. This may be due to the very small derivative skewness values associated

with the Fay solution for large values of o.

3.4 Summary and Conclusions

The analytic discussions of the measures of nonlinearity given in this chapter provide a
better framework to interpret these measures for more complicated waveforms. The idealized
cases introduced in Chapter 2 have been used to explore the evolution of measures as a
waveform propagates, giving a general estimate of the rate of evolution that one would expect
for measured data. Also, an analysis of the effects of under-sampling a waveform on the
measures of nonlinearity suggests ways to verify that a given sampling rate is sufficient to
adequately represent a measure of nonlinearity.

The first metric considered was the wave steepening factor (WSF), which may be
considered a measure of the waveform distortion characteristic of nonlinear propagation. The
analysis of the WSF has shown that periodic waveforms with a WSF value above about 0.75 are
not likely to have been distorted by nonlinear effects very much. Waveforms that have WSF
values below about 0.25 are likely to have experienced nonlinear distortion. In addition, the
importance of nonlinear distortion in a waveform increases dramatically as the WSF value
approaches zero. When considering the sampling rate, if the value of the WSF of a waveform is
less than four times the lower limit of the WSF based on assuming a sawtooth wave, the

sampling rate is probably too low to accurately gauge the WSF.
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In addition to the WSF, calculations of the pressure and derivative skewness, measures of
the asymmetry of the probability density function of the pressure amplitudes and time derivatives
of the pressure amplitudes, respectively, of idealized cases were analyzed. The derivative
skewness was shown to vary significantly. At about 0.85 times the shock formation distance the
derivative skewness of a lossless initially sinusoidal plane wave began to dramatically rise. A
derivative skewness value of 0.5 may be considered low and indicate that nonlinear distortion
has not affected the waveform significantly, while a derivative skewness value of 5 may be
considered high, and that nonlinear distortion has affected the waveform significantly. It should
be noted that insufficient temporal resolution will cause the derivative skewness estimate to be
significantly less than the actual derivative skewness value for a waveform.

Both the WSF and derivative skewness can be used to analyze the importance of
nonlinearity in propagating waveforms. The WSF is useful due to the fact that it is relatively
robust with respect to limited sampling rates, while the cubic nature of the derivative skewness
causes it to be relatively sensitive to insufficient temporal resolution. On the other hand, the
relatively dramatic variation in the derivative skewness near the shock formation distance and as
a waveform transitions to the old-age region suggest that the derivative skewness may give more

information about the nonlinearity in a propagating waveform.
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Chapter 4

Numerical Analysis of Nonlinearity
Measures

4.1 Introduction

The model equations described in Chapter 2 and the analyses of the nonlinearity metrics
presented in Chapter 3 are important, limiting cases. However, actual noise propagation is much
more complicated, as will be shown in Chapter 5 and Chapter 6, with waveforms measured from
plane wave tube experiments and jet noise measurements, respectively. In addition to the
propagation phenomena that are expected, such as boundary layer absorption and dispersion
plane wave tube propagation, and frequency-dependent geometrical spreading for full scale jet
noise, measured results often include unexpected phenomena, such as digital noise and source
distortion. One way to isolate these unknown phenomena in measured data is to first model the
physical waveforms using numerical methods, and then compare the predictions with the
measurements.

The purpose of this chapter is to use a numerical model of noise propagation to connect
the analytical results from Chapter 2 and Chapter 3 to the measured data presented in Chapter 5

and Chapter 6. To this end, three different numerical experiments are presented in this chapter.
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First, predicted waveforms based on an initially sinusoidal plane wave propagating with
thermoviscous losses will be considered. Then, predicted waveforms based on an initially
sinusoidal wave and initially broadband noise propagating with linear losses similar to
propagation in a plane wave tube will be discussed. These last two cases are similar to the
physical experiments discussed in Chapter 5. For each of the cases discussed, the effects of
nonlinearity in the waveforms, spectra, and the nonlinearity metrics described in Chapter 3 are

discussed.

4.2 Numerical Model of Propagation

Modeling of nonlinearity in broadband noise propagation dates back to work by Pernet
and Payne [2] who examined anomalously low absorption of high-frequency energy in the
spectrum for noise of sufficient intensity. Pestorius and Blackstock [9] developed a time-
waveform propagation model based on the generalized Burgers equation (GBE) [4] and
successfully modeled noise propagation, including shock formation and coalescence, in a long
pipe. Additional arbitrary waveform modeling developments took place in the context of
nonlinear sonic boom propagation, [50] [51] [52] but much of the recent interest has been the
noise propagation from modern high-performance tactical aircraft. Nonlinear F/A-18E noise
propagation was calculated by Gee et al., [21] Brouwer, [53] and Saxena ef al. [54] using
different GBE-based algorithms. A more comprehensive treatment of the noise radiated by the
F-22 A Raptor was carried out by Gee ef al. [23] [22] and algorithm refinements were
incorporated in a study of the noise propagation from the F-35AA Joint Strike Fighter. [24] In
these latter studies of F-22A and F-35AA noise, excellent agreement between nonlinear models
and measurements were achieved at a maximum comparison distance of 305 m (1000 ft).

The GBE algorithm used previously by Gee et al. [24] has been employed to model the

nonlinear propagation of various signals in this chapter. This algorithm is a combined time-
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frequency domain propagation scheme. First, a waveform is propagated forward a spatial step in
the time domain according to the Earnshaw solution and weak shock theory. The size of the
spatial step varies, depending on the amplitude of the sound signal at the present location. After
the waveform has been propagated in the time domain, the linear absorption and dispersion
associated with the nonlinear step is applied in the frequency domain. The waveform thus
propagates, alternating between the time and frequency domains and nonlinear and linear

processes, until the desired propagation distance is reached.

4.3 Numerical Experiments

A good place to begin with modeling nonlinear propagation is with initially sinusoidal
waveforms. First, we will consider propagation with thermoviscous losses, and then propagation
in a plane-wave-tube environment. For both of these conditions, comparisons are made with the

analytical and limiting solutions discussed in Chapter 2.

4.3.1 Thermoviscous Propagation of an Initially Sinusoidal Signal

The first case that is considered numerically is also a problem that has an analytical
solution. In particular, this is the initially sinusoidal plane wave propagating with thermoviscous
losses. As stated in Chapter 2, the exact solution is the Mendousse solution. The input
waveform consists of a sine wave sampled at 204 800 samples/s (to mimic the plane wave tube
tests described in Chapter 5) for 1.28 s. This sampling rate and waveform time duration are the
same for all of the numerical experiments described in this chapter. In order to understand how
different values of Gol’dberg number affect the evolution of the nonlinearity metrics described in
Chapter 3, the numerical experiment is carried out for I' = 10 and for ' = 1000.

Since many of the results in Chapter 3 rely on the ratio of the sampling frequency to the
characteristic frequency v = f;/f. being an irrational number, the frequency of the sine wave

was chosen to be 500t Hz (about 1570 Hz). Therefore, the value of v is approximately 130.4.
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The atmospheric conditions, sampling rates, and absorption coefficients used for the

numerical experiments described in this chapter are summarized in Table 4.1, below.

Table 4.1. Summary of conditions used in numerical experiments described in Chapter 4.

Atmospheric Propagation Plane Wave Tube Propagation

Temperature 293.15K 293.15K

Atm. Pressure 0.85 atm. 0.85 atm.
Relative Humidity 20% 20%

Tube Radius 2.54 cm
Sample Length 0.78 s 0.78 s

Sampling Frequency 204 800 Samples/s 204 800 Samples/s
Characteristic Frequency 500 Hz (= 1571 Hz) 500 Hz (= 1571 Hz)
Absorption (Real Part) 13.3 x 1073 dB/m (at 5007 Hz) 0.415 dB/m (at 500 Hz)

Portions of the numerically predicted waveforms are plotted in Figure 4.1. The portions
of the waveforms associated with I' = 10 steepen less quickly and to a lesser extent than the
portions associated with I' = 1000. In addition, the portions of the waveforms associated with
I' = 10 have significantly unsteepened by o = 2%, whereas the portions associated with I’ =
1000 do not appear to have unsteepened at all. Since the Gol’dberg number quantifies the
importance of nonlinear effects relative to absorptive effects, the more significant and longer

lasting shocks associated with the greater Gol’dberg number is expected.
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Figure 4.1. Portions of the waveforms predicted by numerically propagating an initially
sinusoidal plane wave to various values of o with thermoviscous losses and a Gol’dberg
number of 10 (black lines) and 1000 (red lines).

The amplitudes of the harmonics of the predicted waveforms for a Gol’dberg number of
10 relative to the initial amplitude are plotted in Figure 4.2. The fact that there is energy at any
of the higher harmonics for ¢ > 0 is indicative of the importance of nonlinearity in the wave
propagation. Also, the fact that the rate of decrease of the relative amplitudes increases overall

as o becomes large indicates that the thermoviscous losses also play an important role.
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Figure 4.2. The first six harmonic amplitudes of waveforms predicted by numerically
propagating an initially sinusoidal plane wave to various values of o with thermoviscous
losses. The amplitudes are plotted in dB relative to the amplitude of the initial signal. The
Gol’dberg number of the source signal is 10.

The first nonlinearity metric that is considered for the numerical propagation of an
initially sinusoidal plane wave with thermoviscous losses is the wave steepening factor. The
WSF of the numerically propagated wave is plotted in Figure 4.3 as a function of o, as well as
the WSF derived from the Earnshaw solution and the WSF of the discretely-sampled Khokhlov
solution given the value of v used in this experiment for both I' = 10 and I' = 1000. Recall that
the Khokhlov solution is used for WSF comparisons because there is an analytical form of the
WSF for the Khokhlov solution, while no analytical form for the Fay solution (which is more
generally applicable than the Khokhlov solution).

The numerically predicted values of the WSF follow the trends predicted by the
analytical results of Chapter 3. For small values of o the numerically predicted values of the
WSEF follow the trend predicted by the Earnshaw solution very closely for both Gol’dberg
numbers. This is due to the fact that the waveforms have high amplitudes, and the nonlinearity
dominates the absorptive effects. However, as the waveform associated with ' = 10 approaches
o = 1 (the shock formation distance) the numerically predicted WSF values become higher than

the predictions of the Earnshaw solution. This is due to the fact that the higher harmonics in the
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waveform, which have been nonlinearly generated, have much greater absorption than the
fundamental frequency. These higher harmonics are attenuated, and the waveform slows its
nonlinear steepening trend. The WSF values associated with the waveform with I' = 1000, on
the other hand, do not increase at all for the range shown, and stay close to the Earnshaw solution
all the way to 0 = 16, which is the end of the range shown. While the higher harmonics are
being attenuated for this case as well, the higher amplitudes transfer energy to the higher

harmonics fast enough to counter the effects of absorption.
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Figure 4.3. Estimates of the wave steepening factor (WSF) of waveforms predicted by
numerically propagating an initially sinusoidal plane wave to various values of o with
thermoviscous losses.

Near 0 = 2 the numerically predicted values of the WSF of the waveform with I' = 10
reach a minimum, and begin to increase. This increase is because the absorptive effects have
started to dominate the nonlinear effects, and the waveform is beginning to unsteepen. For
o > 3, the Khokhlov solution is a better representation of the physical waveforms, and
correspondingly the numerically predicted values of the WSF begin to follow the trend predicted
by the Khokhlov solution. The waveforms were predicted as far as 0 = 16. For these large
values of g, the ' = 10 waveform has unsteepened so that it is out of the sawtooth regime and is

beginning to enter the old-age regime. Since the Khokhlov solution is not valid in the old-age
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regime, if the waveform were propagated further, it is expected that the WSF values predicted by
the numerical model would diverge from the Khokhlov solution beyond o = 16. The WSF
values of the I' = 1000 waveform, on the other hand, are likely to be well approximated by the
trend predicted by the Khokhlov solution as far out as ¢ = 1700.

In addition to the WSF, the derivative skewness was estimated for the I' = 10 and
[' = 1000 initially sinusoidal waveforms. The derivative skewness estimates are plotted in
Figure 4.4 as a function of o, along with the derivative skewness values predicted by the
“lossless” Earnshaw solution and the discretely-sampled “lossy” Fay solution, both with I' = 10
and with I' = 1000. The number of terms used in the Fay solution is five times v, or 650 terms.
Similar to the estimated WSF values, the derivative skewness estimates of both waveforms
follow the trend of the Earnshaw solution for very small o. For the waveform with a Gol’dberg
number of 10, as the waveform approaches the shock formation distance, the high harmonics
begin to be more significantly attenuated due to the thermoviscous effects, and the waveform
slows its steepening process, thus slowing the increase of the derivative skewness. Shortly after
the shock formation distance, the lower amplitude waveform has completely stopped steepening,
and is beginning to unsteepen, causing the derivative skewness to begin to decrease. As the
propagation continues, the derivative skewness of the numerical case begins to follow the trend
predicted by the Fay solution. Unlike the Khokhlov solution, the Fay solution is valid even in
the old-age regime, and so it is expected that if the waveform were propagated further, the
predicted values of the derivative skewness would continue to follow the trend predicted by the

Fay solution.
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Figure 4.4. Estimates of the derivative skewness of waveforms predicted by numerically
propagating an initially sinusoidal plane wave to various values of ¢ with thermoviscous
losses.

The waveform with a Gol’dberg number of 1000, on the other hand, somewhat abruptly
reaches a maximum value of about 11.2 at about ¢ = 1.4. This is the limit that the Fay solution
predicts for I' = 1000, assuming a value of v = 130. In addition, the upper limit of the
derivative skewness estimate for a discretely sampled sawtooth wave with a v value of 130 is
about 11.3, suggesting that this upper limit is most likely due to finite sampling effects, rather
than physical phenomena. About o = 7, the derivative skewness of the higher amplitude
waveform departs from the trend predicted by the Fay solution. This means that the waveform
predicted by numerical model has begun to unsteepen a little by this distance, such that the finite

sampling rate used is more likely to be sufficient to estimate the derivative skewness.

4.3.2 Plane Wave Tube Propagation of an Initially Sinusoidal Signal

The initially sinusoidal plane wave propagating with losses similar to that of a plane
wave tube is of interest for three main reasons. First, plane wave tubes are easily realized
physically, and which provides a suitable way to experimentally verify the analytical and
numerical theory that has is described in this thesis. The comparison of physical and numerical

plane wave tube measurements, especially of nonlinearity measures, is given in Chapter 5. The
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second reason is that the absorption due to the boundary-layer effects associated with sound
propagation in a duct increases with the square root of frequency, rather than the square of the
frequency as in the case of thermoviscous and high-frequency atmospheric absorption. As low-
frequency absorption coefficients are dominated by boundary-layer effects, and high-frequency
absorption coefficients will be dominated by atmospheric propagation effects (the cross-over
frequency is about 156 kHz; see Section 2.2.3.1), the plane-wave-tube environment is a
fascinating case study in terms of absorption. Finally, losses due to both boundary-layer effects
and atmospheric propagation include dispersive phenomena. This is a phenomenon that is very
difficult to understand analytically, [6] [55] and so numerical and physical experiments are the
primary method for understanding dispersion. The choice of the sinusoidal plane wave as the
input waveform allows for a ready comparison of the predicted waveforms with the previous
case of an initially sinusoidal signal propagating with thermoviscous absorption.

A Gol’dberg number of 10 is chosen for the numerical plane wave tube propagation
experiment. The absorption coefficient of the initial sine wave frequency (500t Hz) is about
0.048 m™1, and so the initial amplitude is about 166 Pa. Portions of the input waveform and the
waveforms predicted at different distances assuming plane-wave-tube-like propagation are
plotted in Figure 4.5, along with the Mendousse solution (the exact solution given only
thermoviscous absorption), for comparison.

The first thing to notice about the waveforms presented in Figure 4.5 is that the steep
portions of the waveform (the shocks at 8 = 0, 1, 2, and 3) are sharper for the plane wave tube
predictions than for the Mendousse solution, especially for ¢ > 1. This is likely due to the fact
that the absorption coefficients of the higher harmonics are relatively smaller for the plane wave
tube absorption than for thermoviscous absorption. Also notice that tops of the shocks are more
rounded than the bottoms. This phenomenon has been observed by Webster and Blackstock [6]

and Blackstock, [10] and has been attributed to the dispersive nature of the propagation. The
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dispersion is also likely the reason that the predicted shock fronts have a slight delay relative to

the Mendousse solution.
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Figure 4.5. Portions of the waveforms predicted by numerically propagating an initially
sinusoidal plane wave to various values of o with linear losses similar to those of propagation
in a plane wave tube (red), with the Mendousse solution (only thermoviscous absorption)
plotted (dashed black), for comparison. The Gol’dberg number used for this plot is 10.

The harmonic amplitudes of the predicted waveforms relative to the input waveform
amplitude are presented in Figure 4.6. The main difference between the harmonic amplitudes
predicted using thermoviscous absorption shown in Figure 4.2 and the harmonic amplitudes
predicted using plane-wave-tube-like absorption is that the amplitudes of the higher harmonics
are much closer to the lower harmonic amplitudes than in the thermoviscous case. The relatively
large high-harmonic amplitudes associated with the plane-wave-tube propagation prediction is
likely due to the fact that the high-frequency absorption is not as large relative to the absorption
of the fundamental frequency, making nonlinear processes more important in the propagation

prediction than the thermoviscous predictions. As mentioned in Chapter 2, the boundary layer
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absorption (for low to moderate frequencies) increases as \/7 rather than the rate of f2

associated with thermoviscous absorption.
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Figure 4.6. The first six harmonic amplitudes of waveforms predicted by numerically
propagating an initially sinusoidal plane wave to various values of o with linear losses
similar to those of propagation in a plane wave tube. The Gol’dberg number used for this
plot is 10.

The WSF values predicted by the plane wave tube model show similar trends as the WSF
values predicted by the thermoviscous propagation model, but differ in the details. The WSF
values predicted by the plane wave tube model are plotted in Figure 4.7 as a function of the
absorption distance, and the WSF values of the Earnshaw solution and the discretely-sampled
Khokhlov solution are plotted for reference. Similar to the WSF values predicted by the
thermoviscous propagation model for the I' = 10 initial waveform, the predicted WSF values for
the tube follow the Earnshaw solution fairly closely for distances much less than the shock
formation distance. However, the WSF values predicted by the plane wave tube model follow
the Earnshaw solution much longer than the WSF values predicted by the thermoviscous model
given I' = 10, shown in Figure 4.3. In fact, the WSF values predicted by the plane wave tube
model do not differ much from the Earnshaw solution until about 0 = 1, and then continue to

much lower values than predicted by either the Khokhlov solution, which is based on the
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thermoviscous model. The lower values of the WSF indicate that, for the same Gol’dberg
number, nonlinearity is more important for the plane-wave-tube-like propagation model than for

the thermoviscous propagation model, likely due to the relatively lower absorption of the higher

harmonics.
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Figure 4.7. Estimates of the wave steepening factor (WSF) of waveforms predicted by
numerically propagating an initially sinusoidal plane wave to various values of o with linear
losses similar to those of propagation in a plane wave tube.

The WSF values continue to decrease until about o = 2, where they reach a minimum
value of about 0.07. After the minimum value, the predicted WSF values begin to increase. The
shape of the increasing trend is somewhat similar to the shape of the trend predicted by the
Khokhlov solution, but the actual values are significantly lower. Thus, the plane wave tube
model predicts that the waveform will behave somewhat similarly to the waveform predicted by
the thermoviscous propagation model, but due to either lower high-frequency absorption or due
dispersion nonlinearity appears to be more important for plane-wave-tube propagation than
thermoviscous propagation, assuming similar values of I'. Based on the findings of Blackstock,
[10] the effects of boundary-layer dispersion are more likely to oppose nonlinear phenomena, so

it is likely that the dominant effect is the lower high-frequency absorption.
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The derivative skewness values predicted by the plane-wave-tube model show a similar
trend as the trend of the predicted values of the WSF. The derivative skewness values predicted
by the plane-wave-tube model are plotted as a function of the absorption distance in Figure 4.8,
along with the derivative skewness values of the Earnshaw solution and the discretely-sampled
Fay solution, for comparison. For values of ¢ < 0.6, the derivative skewness estimates follow
the Earnshaw solution fairly closely. However, the derivative skewness values diverge from the
trend predicted by the Earnshaw solution past the shock formation distance, and do not approach
the derivative skewness of the Fay solution. Once again, at about ¢ = 1.6 the derivative
skewness estimates appear to abruptly reach a maximum value, and is due to a sampling rate that
is insufficient to adequately estimate the derivative skewness. The derivative skewness remains
at the maximum value until about ¢ = 9. For o > 9 the derivative skewness values predicted by
the plane-wave-tube model begin to decrease again, somewhat similar to the trend suggested by

the Fay solution. Thus, by o = 9 the numerical model predicts that the waveform will begin to

unsteepen.
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Figure 4.8. Estimates of the derivative skewness of waveforms predicted by numerically
propagating an initially sinusoidal plane wave to various values of o with linear losses
similar to those of propagation in a plane wave tube. The dotted blue line represents the
upper limit based on a discretely sampled sawtooth wave.
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The largest difference between the trends of the predicted WSF and derivative skewness
values for the plane wave tube case (given I' = 10) occurs between ¢ = 1.5 and 0 = 9. The
predicted values of the WSF follow a plausible trend based on the lower high-frequency
absorption coefficients associated with plane-wave-tube propagation, but the predicted values of
the derivative skewness reach some upper limit (about 11), and stay there until about 0 = 9,
where the values decrease again. Based on the curved nature of the derivative skewness values
predicted by the thermoviscous propagation model for the waveform with the Gol’dberg number
equal to 10 in the transition from the Earnshaw to the Fay solutions, we would expect that the
derivative skewness predicted by the plane-wave-tube model would also be rounded. As
mentioned above, a likely reason is that the discretely sampled nature the numerical model will

put an upper bound on the derivative skewness estimates.

4.3.3 Plane Wave Tube Propagation of an Initially Broadband Gaussian Noise Signal

The plane-wave-tube model used for the case of the initially sinusoidal wave may also be
used to study the effects of nonlinearity on broadband noise. Since the numerical experiment is
identical to the initially sinusoidal case except for the input waveform, any differences between
the nonlinearity measures predicted in Section 4.3.2 and those predicted in this section will be
due to the difference in the input signals. In order to compare the two, the nonlinear distortion
distance defined and discussed in Section 2.2.2.4 will take the place of the shock formation
distance used in the previous two sections.

The broadband noise used in this numerical experiment consists of bandpass-filtered
spectrally white Gaussian noise. The pass-band was chosen to be between 700 Hz and 2300 Hz.
This yields a geometric mean frequency of about 1269 Hz and an arithmetic mean frequency of
1500 Hz. If we assume that nonlinearity affects noise propagation over shorter distances than for
a tonal wave, as suggested by Muhlestein, et al. [38] and in Gurbatov and Rudenko, [43] then the

higher arithmetic mean frequency is more likely to be a reasonable characterization of the noise
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signal. The root-mean-square of the pressure amplitudes of the noise is about 1.17 kPa (about
155 dB re 20pPa). These conditions, along with the propagation conditions described in the
previous sections, lead toI' = 1/axy = 10.

Portions of the waveforms predicted by the plane-wave-tube model and the input noise
described above are shown in Figure 4.9. Similar to the initially sinusoidal case, the pressure
rises steepen, and the peaks become more rounded than the troughs due to dispersion. However,
not all of the pressure rises become shocks, since the pressure rises vary in amplitude. The large
pressure rises experience significant nonlinear distortion (as seen by the initially large pressure
rise near 6 = 1.6), and the small pressure rises experience much less distortion (as seen by the
slight pressure rise near 8 = 0.3). As the waveform propagates, the distribution of the pressure
rises appears to become more uniform. This is due to the fact that shocks with higher amplitudes
will experience more nonlinear attenuation than shocks with lower amplitudes. Thus, pressure

outliers will be attenuated, and the pressure rise distribution becomes more uniform.
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Figure 4.9. Portions of the waveforms predicted by numerically propagating an initially
broadband Hz plane wave to various values of o with linear losses similar to those of
propagation in a plane wave tube.

The spectra of the predicted waveforms also provide information of the waveforms on the
whole. Gurbatov et al. [17] found that broadband noise with well-developed shocks due to
nonlinear propagation will have a spectrum that decays as f ~2 at high frequencies, and grows as
f? at low frequencies, assuming an initially Gaussian noise signal with a spectrum that goes as
f™ wheren > 2, as f - 0. (As mentioned in Chapter 1, in the pre-shock propagation regime,
the higher frequencies decay as f~3.) However, the theory used to find this spectral relationship
assumed propagation with only thermoviscous absorption (where the pressure amplitude decays
as e~ 2") and no dispersion. This assumption suggests that broadband noise that develops
shocks due to propagation in a tube that includes absorption of the form e~0/F* and significant
dispersion could have spectral characteristics that deviate significantly from spectral shape

reported by Gurbatov and Rudenko.
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Figure 4.10. One-third octave power spectra predicted by numerically propagating an
initially broadband Hz plane wave to various values of o with linear losses similar to those of
propagation in a plane wave tube.

The one-third octave power spectra of the waveforms predicted using the plane-wave-
tube numerical model are presented in Figure 4.10, with dashed lines representing the f*2 and
f~3 dependencies predicted by Gurbatov and Rudenko plotted for reference. The spectrum of
the input waveform is quite band-limited, with the edges of the pass-band being noted by an
amplitude drop of 10-20 dB. As the waveform propagates, the high and low frequencies begin to
increase in amplitude, due to nonlinear transfer of energy from the pass-band to the extreme
frequencies. At o = 271 the original pass-band maintains some of its shape, the high
frequencies decay nearly as f 3, indicating the pre-shock regime, and the low frequencies
increase nearly as f2. By o = 2 the original pass-band region has lost much of its shape, and the
extreme frequencies have reached an asymptotic rise and decay rate. Interestingly, the high-
frequency asymptotic rates go as f " where n < 2, rather than the f ~2 rate predicted by
Gurbatov and Rudenko. This may be due to the fact that the absorption due to boundary-layer
effects are less significant (relative to the absorption at the characteristic frequency) than the

absorption due to thermoviscous effects. By o = 24, the high frequencies have begun to decay
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faster than the high frequencies of spectra at lower values of ¢, indicating that the waveform is
leaving the sawtooth regime and is entering the old-age regime.

The WSF values of the noise waveforms predicted by the plane-wave-tube model show
many similarities with the values of initially sinusoidal waveforms predicted by the same model.
The predicted values of the WSF are plotted in Figure 4.11 as a function of the absorption
distance, with the WSF values of the Earnshaw solution of the initially sinusoidal plane wave
and the discretely sampled Khokhlov solution are plotted for comparison. For small values of o,
the predicted WSF values follow the trend predicted by the Earnshaw solution until about
o = 0.3, after which the predicted WSF values become larger than the Earnshaw solution
suggests. After the departure, the predicted values of the WSF decrease until they reach a
minimum near o = 4, after which the values increase slightly. While the trend of the WSF
values predicted by the noise case is similar to the initially sinusoidal case in character, there are
significant differences in the details. For example, the noise case departs from the Earnshaw
solution much earlier than the initially sinusoidal case. Also, the minimum WSF value of the
noise case is about 0.13, compared to the minimum value of about 0.07 for the initially
sinusoidal case. Since portions of the noise waveform shows significant nonlinear distortion, it

appears that the less distorted regions of the waveforms significantly raise the WSF estimates.
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Figure 4.11. Estimates of the wave steepening factor (WSF) of waveforms predicted by
numerically propagating an initially broadband plane wave to various values of o with
linear losses similar to those of propagation in a plane wave tube.

The derivative skewness values of the noise waveforms predicted by the plane-wave-tube
model (shown in Figure 4.12) show a significantly different behavior than the trends predicted
by either of the initially sinusoidal cases considered above. The derivative values of the noise
waveforms deviate from the Earnshaw solution from o = 0 (which is at the source), and become
large very rapidly. The derivative skewness values reach a maximum value (about 27.3) well
before o = 1, and then decay slightly down to a stable value (about 13.8) until near the end of
the sawtooth region. One possible reason for the dramatic rise in derivative skewness values is
because the pressure outliers (such as the pressure rise near 8 = 1.6, shown in Figure 4.9)
rapidly become shocks while most of the waveform takes longer, and then decay until they are
no longer pressure outliers. The stable region is reminiscent of the region 1.5 < ¢ < 9 in the
plot of the derivative skewness estimates for the initially sinusoidal case in Figure 4.8. It is
therefore likely that the stable region is due to a sampling rate that is too low to properly resolve
the shocks. Since it is a noise waveform, rather than an initially sinusoidal signal, the low-
amplitude pressure rises are more likely to be well resolved and the derivative skewness

estimates may go above the limit for a discretely sampled sawtooth wave.
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Figure 4.12. Estimates of the derivative skewness of waveforms predicted by numerically
propagating an initially broadband plane wave to various values of o with linear losses
similar to those of propagation in a plane wave tube.

Notice that early in the pre-shock region of Figure 4.12 the trend of the derivative
skewness estimates of the numerically propagated noise signal appears to be identical to the
trend of the derivative skewness associated with the Earnshaw solution, but is slightly offset.
The multiplicative factor that would shift the trend for the noise to the trend of the Earnshaw
solution was suggested by Muhlestein and Gee [38] as a way to define a characteristic shock

formation distance for noise signals.

4.4 Conclusions

A propagation model based on a generalized Burgers equation has been used to
numerically analyze the propagation of initially sinusoidal and broadband Gaussian noise
signals. Comparisons of the WSF and derivative skewness of initially sinusoidal signals that
propagate with thermoviscous absorption compared favorably with analytical solutions,
confirming the validity of the propagation model. This experiment was also useful in that it gave

examples of what can be expected in measurements during the transition of the wave steepening
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factor (WSF) and derivative skewness values from the pre-shock propagation regime to the
sawtooth propagation regime.

The thermoviscous numerical propagation results were compared with the numerical
propagation of an initially sinusoidal signal with linear losses similar to that of a plane wave
tube. It was found that, for a given Gol’dberg number, nonlinearity is more important for
propagation with losses similar to propagation in a plane wave tube than for propagation with
only thermoviscous absorption. It was also shown that the evolution of the two nonlinearity
measures, WSF and derivative skewness, is similar in shape but not in details for both
thermoviscous and plane-wave-tube like absorption.

Comparing initially sinusoidal wave propagation with initially broadband Gaussian noise
propagation shows that both the WSF and the derivative skewness have generally higher values
for noise signals than for initially sinusoidal signals. It was hypothesized that, for the sampling
frequency and fundamental frequency used for these experiments, the derivative skewness was
unable to be properly resolved for the sawtooth regime of propagation, for both initially
sinusoidal and Gaussian noise signals. On the other hand, the derivative skewness estimates
appeared to show greater sensitivity to the presence of shocks in initially noise waveforms than
the WSF estimates.

It is interesting to note that the two nonlinearity measures suggest opposite conclusions
about the nature of nonlinear noise distortion. The WSF predicts that noise waveforms will
distort at a slower rate than an initially sinusoidal signal for a given Gol’dberg number, whereas
the derivative skewness predicts that the noise waveforms distort much more rapidly than an
initially sinusoidal signal for the same Gol’dberg number. This apparent contradiction is
resolved by realizing that the WSF emphasizes the average slopes and the derivative skewness
emphasizes the greatest slopes. Thus, the small numbers of significant shocks that form rapidly
in a noise waveform do not affect the WSF values significantly, whereas the derivative skewness

is dramatically affected.
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Chapter 5

Applications of Nonlinearity Measures to
One-Dimensional Measured Waveforms

5.1 Introduction

The main benefit of analyzing the noise measured in a plane wave tube is the small
number of unknown parameters in the acoustic propagation. For example, in an air-filled plane
wave tube there is no geometrical spreading, the linear absorptive and dispersive effects of
propagation are calculable, and a well-understood source may be used. This means the effects of
nonlinearity in the noise propagation can be extracted from the data relatively simply. In
addition, the lack of geometrical spreading means that nonlinear effects are more likely to be
important than if significant spreading occurred. These effects may be verified by comparing the
wave steepening factor and skewness estimates of the measured waveforms with the analytically
and numerically discussed results from Chapter 3 and Chapter 4. By using this understanding of
the nonlinearity characteristics in one-dimensional noise propagation, it will be easier to

understand the role of nonlinearity in the more complicated and important problem of jet noise.
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5.2 Experimental Setup

A plane wave tube was constructed for the purpose of studying the evolution of measures
of nonlinearity as plane waves propagate. The tube consists of several 3.05 m (10 ft) portions of
PVC pipe with a radius of 2.54 cm (1 inch), connected by either rigid, plastic couplers or more
flexible, rubber couplers. Both the plastic and rubber couplers have an inner rim that acts as a
partition between the two lengths of pipe being coupled, but the partitions of the plastic couplers
have a thickness much less than the thickness of the PVC pipe walls and the partitions of the
rubber couplers have a thickness on the order of the thickness of the PVC pipe walls. The cutoff
frequency of the first axial mode of the tube is 4.0 kHz. A plot of the total number of modes
with cutoff frequencies below a given threshold is shown in Figure 5.1. The tube is terminated
by an anechoic wedge inside a portion of PVC pipe. The absorption coefficients of the
termination, shown in Figure 5.2, were obtained using band-limited (500-3500 Hz) white noise,
and a two-microphone technique, valid for the frequency range of 450-3601 Hz. These
coefficients suggest that the termination is anechoic for the full range of the input noise. The
tube was driven by a single BMS coaxial compression driver (model 4590), mounted directly
onto one end of the tube. The pressure data were measured using five G.R.A.S 40DD 3.18 mm
(eighth-inch) microphones at various distances from the driver, inserted into the tube such that
the microphone diaphragms were flush with the inside wall of the tube. No protection grids were
used on the microphones so they would fit more closely into the tube walls, and to avoid
resonances between the grid and the diaphragm. The microphones were located 0.3 m, 2.5 m,
5.6 m, 8.6 m, and 11.6 m from the driver. The compression driver was controlled with a
National Instruments PXI-based system using 24-bit PXI-4461 card. The time-waveform data
were acquired with the same PXI-based system used to drive the tube, using PXI-4462 cards.
The system was controlled with a LabVIEW®-based software. The data were acquired at a rate
of 204 800 samples/s (4.9 us/sample). Post-processing of the data was performed using

MATLAB®.
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Figure 5.1. Total number of modes in the plane wave tube with cutoff frequencies less than
the frequency of interest.
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Figure 5.2. Absorption coefficients of the plane wave tube termination. The signal used to
estimate the absorption coefficients was band-limited (500-3500 Hz) white noise. The dashed
red line represents the cutoff frequency of the first axial mode of the tube.

Several experiments were conducted in the plane wave tube described above. The tube
was driven with sine waves, narrowband Gaussian noise, broadband Gaussian noise, narrowband
noise with jet noise-like statistics, and broadband noise with jet noise-like statistics. A

description of the statistics associated with jet noise is presented in Ref. [35]. The most
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important aspect of jet noise for the purposes of this thesis is the skewness of the pressure
waveform is noticeably greater than zero, as high as 0.6 for an F/A-18E at afterburner engine
condition. This can be seen in Figure 5.3, where a Gaussian and jet noise-like probability
density functions (PDFs) are plotted. The skewness of the jet noise-like probability density
function shown in Figure 5.3 is 0.56. It should be noted that only the pressure statistics were jet

noise like; the time-derivative statistics were not accounted for. [25]
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Figure 5.3. Probability density functions of Gaussian and jet like noise.

The bandwidths of the noise signals were arbitrarily chosen to be about one-fifteenth of
the characteristic frequency for narrowband noise and is approximately equal to the characteristic
frequency for broadband noise. The noise was obtained by filtering spectrally white noise with
the proper time-domain statistics with a bandpass filter. For all noise types, the characteristic
frequency f. is considered to be the arithmetic mean of the frequency bounds of the pass-band.
For each of the above cases, waveforms with a given characteristic frequency were generated for
various amplitudes. The variation of the amplitude varies the nonlinear distortion length of the
noise (see Equation (2.27)), and therefore changes the value of ¢ for a different waveforms at a

single microphone location.
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Recall from Chapter 2 that we may define a nondimensional distance o = x/x, where X
is the shock formation distance for initially sinusoidal signals (Equation (2.3)), or 0 = x /Xy
where Xy is the characteristic nonlinear distortion length for noise (Equation (2.27)).
Throughout this and other chapters, if noise is being considered then the characteristic nonlinear
distortion length defined in Equation (2.27) is the assumed normalization of o, and if an initially
sinusoidal signal is being considered the shock formation distance defined in Equation (2.3) is

the assumed normalization.

5.3 Waveforms

Examining the waveforms of a given test at multiple distances from the driver can let one
directly observe the nonlinear distortion. As a wave propagates, pressure rises will begin to
steepen and eventually form shocks, given an initial amplitude such that nonlinear effects will
dominate absorptive effects. The waveforms shown in Figure 5.4 and Figure 5.5 have been
chosen because they clearly exhibit this nonlinear distortion. Waveforms with lower initial
amplitudes do not experience nonlinear distortion as significantly over a given distance. This is
due to the decreased relative importance of nonlinearity associated with longer nonlinear
distortion lengths at low amplitudes. While waveforms with initial amplitudes higher than those
presented here exhibit more nonlinear distortion, they are more difficult to clearly measure due
to source distortion, which will be discussed further below.

The waveforms in Figure 5.4 are time-aligned portions of an initially sinusoidal wave
with a frequency of 1500 Hz. The amplitude of the wave at 0.3 m from the driver was 515 Pa.
Assuming the wave was truly sinusoidal at the 0.3 m measurement location (which, due to
propagation and source nonlinearities, is not necessarily a good assumption), then the shock
formation distance of this wave is 8.4 m. Since propagation in a tube includes linear losses such

as atmospheric and boundary layer absorption and dispersion, the waveforms are expected to
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have no true discontinuities at 8.6 m or 11.6 m. This expectation is verified by the purple and
yellow lines in Figure 5.4. Since the propagation is approximately planar, the decaying
amplitude of the waveforms as the measurement distance increases is evidence of the importance
of the atmospheric and boundary layer losses mentioned above. The effects of dispersion are
also evident, especially in the 11.6 m waveform (represented by the yellow line in Figure 5.4).
As shown by Webster and Blackstock, [6] the peaks of shocks that propagate in tubes become
more rounded, while the low-pressure portions of the shocks are less rounded. This asymmetry
is evident in the waveform measured at 11.6 m. Another feature of the waveform measured at
11.6 m is an oscillation of the waveform near shocks. This oscillation is unexpected, and may be
due to physical inhomogeneities in the plane wave tube, such as the impedance change from the
PVC tube to the diaphragm of a microphone or a coupler, despite efforts to make the transitions
smooth. The fact that the wavelength of these oscillations is about the diameter of a microphone
diaphragm supports the idea that these oscillations are due to inhomogeneities in the plane wave
tube. Since the nonlinear distortion generates higher harmonics of the initial frequency, and
most of the harmonics have frequencies greater than the cutoff frequency of the first axial mode
of the tube, this type of inhomogeneity may move energy from the plane-wave mode to cross

modes.
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Figure 5.4. Waveforms measured at locations (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and
(e) 11.6 m from a driver in an anechoically terminated plane wave tube. The input
waveform was a 1500 Hz sine wave, and the amplitude at the 0.3 m microphone was 515 Pa.
The sine wave at the 0.3 m microphone has a shock formation distance 8.3 m, and the values
of o are stated on the right of the plots.

The waveforms plotted in Figure 5.5 are time-aligned portions of the waveforms
measured of initially broadband Gaussian noise. The characteristic (arithmetic mean) frequency
of the noise is 1500 Hz (the geometric mean is about 1270 Hz) and the root-mean-square
pressure amplitude of the noise measured at the 0.3 m microphone is 375 Pa. This wave has a
characteristic nonlinear distortion length of 8.0 m, based on the measurement at the 0.3 m

microphone. Just as was seen in Figure 5.4, the overall amplitude of the wave can be seen to
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decrease for increasing distance in the tube, indicating the importance of linear losses in the
noise propagation. The same kind of unexpected oscillations near the shocks seen in Figure 5.4
are also present in several of the waveforms in Figure 5.5. Unlike the initially sinusoidal case,
broadband noise does not generate shocks uniformly throughout the waveform. Notice that near
1.2 ms and 2.4 ms, significant shocks have formed in the waveform measured at 11.6 m from the
source (represented by the yellow line in Figure 5.5), that shocks are forming at 0.4 ms and 3.2
ms of the same waveform, and that the pressure rise near 4 ms of the same waveform has not
even steepened significantly. This variation in the waveform distortion is explained by the fact
that nonlinear effects are dependent upon the local amplitude of a waveform. Since the
amplitude of noise varies over time, so do the effects of nonlinear distortion, as discussed in
Chapter 1. This variation in the effects of nonlinear distortion is the reason why the shock
formation distance — the distance at which the first shock in a waveform propagating without

losses will appear — of noise depends significantly upon the specifics of the waveform.



5.4 Spectra 105

Pressure (Pa) Pressure (Pa)

Pressure (Pa) Pressure (Pa) Pressure (Pa)

0 0.5 1 15 2 25 3
Time (ms)

Figure 5.5. Waveforms measured at locations (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and
(e) 11.6 m from a driver in an anechoically terminated plane wave tube. The input
waveform was broadband Gaussian noise with a characteristic (arithmetic mean) frequency
of 1500 Hz, and root-mean-square amplitude of 375 Pa at the 0.3 m microphone. The
nonlinear distortion length of the noise at the 0.3 m microphone is 8.0 m, and the values of o
are stated on the right.

5.4 Spectra

The nonlinear distortion of the waveforms is also manifest in the frequency domain, as
discussed in Section 1.2. This section will focus on demonstrating the importance of
nonlinearity in the propagation of high-amplitude signals, both initially sinusoidal and broadband

noise, in a plane wave tube. The initially sinusoidal signals will be compared with the
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Blackstock bridging function, and the spectral slopes of the broadband signals will be compared

to the Gurbatov and Rudenko asymptotes. [43]

5.4.1 Initially Sinusoidal Waves

The harmonic amplitudes of the periodic waveforms shown in Figure 5.4 are shown in
Figure 5.6, along with the amplitudes predicted by the Blackstock bridging function, assuming
that the amplitude of the waveform measured 0.3 m from the source is the source amplitude.
The fundamental frequency dominates the signal for all five measurement locations, but most
especially for the measurement 0.3 m from the source. As the distance from the source
increases, the strength of the higher harmonics increases, as expected. Since all of the harmonics
are integer multiples of the fundamental frequency — 1500 Hz in this case — all sum and

difference frequencies will also be either the fundamental frequency or a higher harmonic.
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Figure 5.6. Harmonic amplitudes of an initially sinusoidal signal with a characteristic
frequency of 1500 Hz. The circles represent the harmonic amplitudes of the signal measured
in a plane wave tube 0.3 m, 2.5 m, 5.6 m, 8.6 m, and 11.6 m from the driver. The dashed
lines are the amplitudes predicted by the Blackstock bridging function. The shock
formation distance of the waveform measured at the 0.3 m microphone is 8.3 m.

Comparing the harmonic amplitudes predicted by the Blackstock bridging function with

the measured amplitudes can give insight into the physical phenomena of the propagation. Since
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the bridging function assumes no linear absorption, we expect the measured amplitudes will be
lower than the predicted amplitudes. However, the harmonic amplitudes of the waveform
measured 0.3 m from the source and the 3™ through 5™ harmonics of the waveform measured 2.5
m from the source are greater than the predicted amplitudes. The most likely cause of this
discrepancy is source distortion rather than propagation distortion. The fact that the harmonic
amplitudes measured farther from the source (8.6 m and 11.6 m) are all significantly less than the
predicted levels further suggests source distortion is the cause of the large harmonic amplitudes
of the waveform measured 0.3 m from the source.

The comparison of harmonics with the Blackstock bridging function is easily extended to
comparing large numbers of waveforms simultaneously. In Figure 5.7, the amplitudes of
harmonics 2 through 6 of several waveforms, all initially sinusoidal plane waves with a
fundamental frequency of 1500 Hz but with different initial amplitudes, are plotted as a function
of o. These harmonics are all normalized by the amplitude of the first harmonic measured 0.3 m
from the source. In addition, the amplitudes of each harmonic predicted by the Blackstock

bridging function are plotted as a function of g, for comparison.
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Figure 5.7. Amplitudes of harmonics 2 through 6 ((a) through (e), respectively) relative to
the source amplitude of several initially sinusoidal plane waves with a fundamental
frequency of 1500 Hz measured at various distances from a source in a plane wave tube.
The harmonic amplitudes are normalized by the amplitude of the amplitude of the
fundamental frequency measured 0.3 m from the source, and are plotted as a function of o.
The theoretical normalized harmonic amplitudes predicted by the Blackstock bridging
function are also plotted (dashed black lines, labeled Theory in the legend), for comparison.

While the normalized amplitudes plotted in Figure 5.7 follow the trends predicted by the
Blackstock bridging function, they do not lie perfectly on top of each other. This is most likely
due to two important points. First, the propagation in the pipe is not lossless, while the
Blackstock bridging function is based on the assumption of no linear losses. Second, the
compression driver used was not able to produce a perfect sinusoidal signal at the amplitudes
associated with the experiment. This source distortion is most likely the reason why the

normalized second and third harmonics are greater than the bridging function predicts for the 0.3
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m and 2.5 m measurements. On the other hand, the bridging function does predict the general
trend of the amplitudes fairly well. This indicates the importance of nonlinear propagation
effects in the data here.

The normalized amplitudes of the harmonics of initially sinusoidal plane waves with a
fundamental frequency of 1000 Hz or 2000 Hz measured in the plane wave tube (not shown
here) show many of the same trends shown in Figure 5.7. The amplitudes follow a similar trend
as the Blackstock bridging function, but show deviations likely due to the linear losses associated
with propagation in a tube and to source distortion. To further support the hypothesis that linear
losses are a significant factor in the deviation of these trends from the bridging function, the
amplitudes of 1000 Hz signals which has a lower absorption coefficient than the 1500 Hz
signals, align much more closely to the bridging function, and the amplitudes of the 2000 Hz
signals — which has a higher absorption coefficient than the 1500 Hz signals — deviate more

significantly than the amplitudes of the 1500 Hz signals.

5.4.2 Broadband Noise

The spectra of the noise waveforms shown in Figure 5.5 are shown in Figure 5.8. Since
the input noise was generated by filtering spectrally white noise with a bandpass filter, the top of
the spectrum near the source (at the 0.3 m measurement location) is nominally flat, and beyond
the bandpass region the spectrum decays at least 20 dB. The energy at the high and low
frequency limits of the spectra comes from the pass-band region of the spectra, which is
noticeably losing energy. By 8.6 m from the driver, the sharp drop in energy at the upper
frequency edge of the bandpass region has disappeared, and the lower frequency edge of the
pass-band region is becoming less pronounced. There is some energy near 4000 Hz in all of the
spectra. This is likely due to a resonance of the first cross mode of the pipe, since the cutoff

frequency of this mode is 4000 Hz. There is also a significant amount of energy around 10.5
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kHz. Since a significant number of axial modes have a cutoff frequency within this range, (see

Figure 5.1), this distortion is may be due to axial modes.
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Figure 5.8. Power spectral density (spectrum) of an initially Gaussian broadband signal
with a characteristic frequency of 1500 Hz, measured in a plane wave tube 0.3 m, 2.5 m, 5.6
m, 8.6 m, and 11.6 m from the driver. The dashed lines show a f*? dependence (red dashed
lines) and a f~3 dependence (blue dashed line), for comparison.

As close as 5.6 m from the driver the growth and decay of energy at low frequencies and
high frequencies, respectively, have approached what appears to be asymptotic rates, but the
high-frequency rates are somewhat different from those described by Gurbatov and Rudenko.
[43] In the low-frequency limit the spectral slope goes as nearly f2 for the spectra of all
measurements past the 0.3 m location. The levels of this low-frequency region increase as the
wave propagates down the tube indicates the nonlinear processes in the propagation are
transferring energy from higher frequency regions to the low-frequency region. This transfer
also seems to slow significantly as the wave propagates; the level increase at 400 Hz between the

2.5 m and 5.6 m measurement locations is 6 dB, but the level increase from the 5.6 m and 8.6 m
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measurement locations is 1 dB, and the level increase from the 8.6 m and 11.6 m measurement

locations is only 0.9 dB.

5.5 Wave Steepening Factor

As discussed in Chapter 3, the wave steepening factor (WSF) is one way to characterize
the nonlinear distortion in a waveform. In general, large values of the WSF of a waveform
indicate the effects of nonlinear propagation are insignificant in the waveform, while small
values of the WSF indicate the effects of nonlinear propagation are significant. The WSF for the
Fubini and Khokhlov solutions were discussed in Chapter 3, both in the context of continuous
sampling and for finite sampling rates. However, the Fubini solution did not include any linear
losses and the Khokhlov solution only included thermoviscous losses in addition to nonlinear
losses. The propagation of sound in a tube involves both absorptive and dispersive effects due to
molecular relaxation and boundary layers, in addition to thermoviscous losses. Also, the source
used for the plane wave tube experiments examined in this section likely produced signals with
some distortion prior to propagation, as discussed in Section 5.3. With the exception of the
source distortion, all of these effects were included in the numerical experiment described in
Section 4.3.2.

The estimates of the WSF for a subset of the experiments performed in the plane wave
tube, described above, are shown in Figure 5.9 and Figure 5.10 as a function of o. In Figure 5.9
all of the waveforms used to estimate the WSF values were initially sinusoidal with a frequency
of 1000 Hz, 1500 Hz, or 2000 Hz. In addition to the WSF values estimated from measured
waveforms, the WSF values estimated from numerically propagated waveforms are also shown.
The numerical data simulates the experimental setup: an initially sinusoidal signal is propagated
a certain distance given a range of amplitudes. The variation in amplitude allows the WSF

values for a range of ¢ values to be estimated. The numerical predictions for 5.6 m, 8.6 m, and
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11.6 m (green, purple, and yellow dashed lines, respectively) are shown in Figure 5.9, for
comparison. In Figure 5.10 the WSF estimates for initially narrowband Gaussian noise, initially
broadband Gaussian noise, and initially broadband noise with jet noise-like statistics are shown.
All of these noise signals have a characteristic (arithmetic mean) frequency of 1500 Hz. In
addition, the numerically predicted WSF values for an initially sinusoidal signal with a frequency
of 1500 Hz, propagated to a distance of 11.6 m from the source.
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Figure 5.9. Estimates of the WSF of waveforms measured at various distances from the
source in a plane wave tube experiment. The initial waveforms were sinusoidal with a
frequency of either 1000 Hz, 1500 Hz, or 2000 Hz. By measuring waveforms of varying
amplitude, a range of o values were obtained for each of the distances. The dashed lines are
predicted values using a numerical scheme to propagate an initially sinusoidal signal the
stated distance.

The WSF estimates of the initially sinusoidal signals with different frequencies are quite
similar. In all three plots in Figure 5.9 the WSF estimates from the 0.3 m microphone are
significantly lower than the other estimates (likely due to source distortion), and the estimates
from all of the other locations seem to follow the trend predicted by the numerical experiments.
This uniformity suggests the WSF is not very sensitive to variations in propagation distance or
characteristic frequency for initially planar sine waves propagating in a plane wave tube. Near
o = 1.2 the WSF estimates of the waveforms measured at 8.6 m and 11.6 m from the source

become significantly larger than the numerical experiments predict. In particular, the lowest
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WSF estimate for the 1500 Hz case is 0.27, whereas the numerical experiments predict a value of
about 0.2 at the same location. Since the numerical experiments used the same sampling
frequency as the physical experiments, and the minimum WSF value allowed by a discretely
sampled sawtooth wave is less than 1072, this deviation is not likely to be due to insufficient
temporal resolution. Comparison with the waveforms in Figure 5.4 suggests, however, the
deviation is more likely due to unexpected jitter in the waveform. If this is the case, the WSF
seems to be noticeably sensitive to small-scale jitter in a waveform. For example, trend of the
WSF estimates based on the 11.6 m, initially 1500 Hz sinusoidal waveforms shown in Figure 5.9

actually begins to increase for o > 1.2, whereas the numerically obtained values continue to

decrease.
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Figure 5.10. Estimates of the WSF of waveforms measured at various distances from the
source in a plane wave tube experiment. The initial waveforms were either narrowband
Gaussian noise, broadband Gaussian noise, or broadband noise with jet noise-like statistics.
All waveforms considered have a characteristic (arithmetic mean) frequency of 1500 Hz. By
measuring waveforms of varying amplitude, a range of o values were obtained for each of
the distances. The dashed lines are predicted values using a numerical scheme to propagate
an initially sinusoidal signal to 11.6 m from the source.

The estimates of the WSF of the noise waveforms shown in Figure 5.10 are very similar
to those of the initially sinusoidal waveforms shown in Figure 5.9. Again, the WSF estimates at
the 0.3 m microphone are significantly lower than the other estimates for the same range of o.

The remaining estimates of the WSF all follow the numerically predicted values quite closely
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until about 0 = 1. Since waveforms at 0 > 1 are prone to unexpected jitter, it is again likely
that this jitter caused the WSF estimates to be larger than they would be without the jitter. The
similarity between the WSF estimates of the measured waveforms is somewhat unexpected,
since the measured waveforms are noise signals while the numerically predicted waveforms are
initially sinusoidal. The agreement of the numerically predicted WSF values and the
experimentally obtained WSF values suggests the WSF is insensitive to source conditions, such

as characteristic frequency, bandwidth, or statistics.

5.6 Derivative Skewness Estimates

As described in Chapter 3, the skewness of the first time-derivatives of the pressure
amplitudes (derivative skewness) has been used to characterize jet noise fields. The derivative
skewness has been associated with nonlinear propagation and shock content in a waveform. In
particular, as a waveform steepens, the derivative skewness generally increases. As was shown
in Section 3.2.2.2, given a continuous sampling of a waveform propagating without linear losses
(such as the Fubini solution), the derivative skewness can diverge when shocks are present.
However, the presence of linear losses or a finite sampling rate can cause the estimation of the
derivative skewness to remain finite for all distances from a source.

The estimates of the derivative skewness for a subset of the experiments performed in the
plane wave tube, described above, are shown in Figure 5.11 and Figure 5.12 as a function of o.
In Figure 5.11 all of the waveforms used to estimate the derivative skewness values were initially
sinusoidal with a frequency of 1000 Hz, 1500 Hz, or 2000 Hz. In addition to the derivative
skewness values estimated from measured waveforms, the derivative skewness values estimated
from numerically propagated waveforms are also shown. The numerical data was obtained in
the same manner as described in 5.5. The numerical predictions for 5.6 m, 8.6 m, and 11.6 m

(green, purple, and yellow dashed lines, respectively) are shown in Figure 5.11, for comparison.
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In Figure 5.12 the derivative skewness estimates for initially narrowband Gaussian noise,
initially broadband Gaussian noise, and initially broadband noise with jet noise-like statistics are
shown. All of these noise signals have a characteristic (arithmetic mean) frequency of 1500 Hz.
In addition, the numerically predicted derivative skewness values for an initially sinusoidal

signal with a frequency of 1500 Hz, propagated to a distance of 11.6 m from the source.
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Figure 5.11. Estimates of the derivative skewness of waveforms measured at various
distances from the source in a plane wave tube experiment. The initial waveforms were
sinusoidal with a frequency of either 1000 Hz, 1500 Hz, or 2000 Hz. By measuring
waveforms of varying amplitude, a range of ¢ values were obtained for each of the distances.
The dashed lines are predicted values using a numerical scheme to propagate an initially
sinusoidal signal the stated distance.

Similar to the WSF values discussed above, the derivative skewness values of the
measured waveforms of initially sinusoidal signals follow the numerically predicted derivative
skewness values quite well, with the notable exception of the 0.3 m microphone data. Both the
numerical and measured data suggest the derivative skewness values start near zero for o near
zero, and then increase. Near o = 1 the derivative skewness values increase significantly. For
the 1500 Hz and the 2000 Hz cases, the derivative skewness estimates for the 11.6 m microphone
appear to somewhat level out. Since the value the estimates seem to be approaching is near 10, it

is likely that they are reaching the sawtooth limit derived in Chapter 3, which for a value of
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v = 130 (which would be the 1500 Hz case) is about 11.3. Thus, it is likely that this leveling off
effect is due to insufficient temporal resolution of shocks.

It is notable the derivative skewness estimates of the measured waveforms do not depart
significantly from the numerically predicted values. Recall the measured waveforms for large
values of ¢ at the 8.6 m and 11.6 m microphone locations contained significant unexpected jitter.
Despite the presence of jitter, the derivative skewness values do not appear to be significantly
affected. This is likely due to the skewness is the mean of the cubes of the probability density
function, which emphasizing outliers and suppressing small features; thus, a single large shock is
much more important in the estimation of the derivative skewness than a very large number of
small amplitude oscillations in a waveform.
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Figure 5.12. Estimates of the derivative skewness of waveforms measured at various
distances from the source in a plane wave tube experiment. The initial waveforms were
either narrowband Gaussian noise, broadband Gaussian noise, or broadband noise with jet
noise-like statistics. All waveforms considered have a characteristic (arithmetic mean)
frequency of 1500 Hz. By measuring waveforms of varying amplitude, a range of ¢ values
were obtained for each of the distances. The dashed lines are predicted values using a
numerical scheme to propagate an initially sinusoidal signal to 11.6 m from the source.

The derivative skewness estimates from the measured noise signals show similar trends
as the initially sinusoidal cases, but also some significant differences. All of the derivative
skewness estimates of the noise cases, shown in Figure 5.12, start near zero for very small g, and

increase at a rate similar to that predicted by the numerical experiments, and then at some point
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the derivative skewness values rise dramatically. However, the derivative skewness estimates of
the measured noise signals appear to be offset from the numerically predicted values, and rise
more steeply. Since the numerical experiment used here was an initially sinusoidal 1500 Hz
signal, it is not necessarily expected the measured values would align with the numerical values.
However, if it is desired the two should align, it is likely that the definition of o for noise

(o = x /Xy, where Xy is the nonlinear distortion length defined in Equation (2.27)) is a poor
choice.

Another significant difference between the derivative skewness trends for the initially
sinusoidal cases and the noise cases is the values at the top of the dramatic rise (near o = 1 for
initially sinusoidal signals and near o = 0.6 for noise signals) level off for the initially sinusoidal
cases, but first overshoot, and then decay again for the noise signals. As discussed in Chapter 4,
this is likely due to the fact that nonlinearity emphasizes pressure outliers. The high pressures
quickly become shocks, and then are attenuated until they are no longer outliers. [43] In this
manner, the derivative skewness is especially sensitive to the presence of a small number of
shocks in a waveform. Another explanation for the decay of the derivative skewness values after
the initial rise is that, as the shock content in the waveform becomes more uniform, the effects of
finite sampling frequencies will become more apparent, and the estimated derivative skewness

will come closer to the limit found for a sawtooth wave.

5.7 Conclusions

High-amplitude propagation of sound in a plane wave tube, both initially sinusoidal and
noise signals, has been shown to exhibit significant evidence of nonlinear propagation distortion
in both the time and frequency domains. This nonlinear distortion has been studied in terms of

the wave steepening factor (WSF) and the derivative skewness.
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The WSF estimates of the measured waveforms follow the trends predicted by numerical
experiments. The presence of unexpected jitter in the waveforms appears to significantly affect
the estimation of the WSF. In particular, a waveform that contains noticeable shock content and
unexpected jitter appears to have significantly higher WSF values than the same waveform
without the jitter. The WSF has also been shown to be quite insensitive to characteristic
frequency, bandwidth, initial statistics, and low sampling rates.

The derivative skewness estimates also follow the trends predicted by numerical
experiments. Unlike the WSF, the derivative skewness appears to be rather insensitive to the
presence of unexpected jitter, due to the nature of skewness estimates to emphasize outliers. In
addition, the derivative skewness appears to be quite sensitive to the presence of shocks in a
waveform. However, the derivative skewness also appears to be relatively sensitive to the
effects of low sampling rates.

In order to mitigate the weaknesses of the WSF and the derivative skewness, it would be
useful to have a very high sampling rate (greater than 204 800 samples/s). When estimating the
WSEF, it may be wise to low-pass filter the data if there is unexpected high-frequency content.
Filtering should be done judiciously, however, as the filter will also smooth the shocks in a
waveform. Since the derivative skewness is not as affected by small-scale unexpected noise, it is

not as important to filter the waveforms when considering the derivative skewness.
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Chapter 6

Application of Nonlinearity Measures to
Full-Scale Jet Noise

6.1 Introduction

The nonlinearity measures described in Chapter 3 are applied to full-scale jet noise
measurements. These measures will be interpreted using the results found analytically in
Chapter 3, numerically in Chapter 4, and experimentally in Chapter 5. Since the previous
chapters consisted of idealized cases (such as using plane waves or spherical waves), the
comparison of previous results to the results reported in this chapter is not expected to be perfect.
However, some insight into the role of nonlinearity in jet noise propagation is obtained from the

comparisons.

6.2 Measurement Setup

A large near-field measurement of a Lockheed Martin/Boeing F-22A Raptor was made
during 27-30 July 2009 at Holloman Air Force Base, New Mexico. A full overview of the
measurement is presented in Reference [56], and a pertinent summary will be given here.

The aircraft was tied down in the center of a 24.4 m (80 ft.) wide concrete pad, with rain-

packed dirt on either side of the pad. An upward curving blast deflector was located
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approximately 30 m (100 ft.) directly behind the aircraft. On the measurement side of the
aircraft, there was a small building approximately 25 m to the side a slightly forward of the
nozzle and a short wall was located about 30 m from the jet centerline, running parallel to the jet

centerline.
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Figure 6.1. Schematic of the measurement locations, relative to the aircraft, used during the
July 2009 measurement of noise radiating from an F-22A Raptor. The blue dots represent a
fixed array of reference microphones set on the ground. The three circled microphone
locations are microphones that are specifically referenced in the text,

Figure 6.1 describes the location of the microphones used during the test. The blue dots
represent an array of 50 microphones that were laid on the ground as a fixed array. Several types
of microphone were used in the fixed array, including GRAS 6.35 mm (0.25 in) 40BD, 40BE
and 40BH prepolarized microphones, and GRAS 3.18 mm (0.125 in) 40DD prepolarized
microphones. All of the measurements were recorded using a National Instruments (NI) PXI-
1045 Chassis system with NI PX1-4498 and NI PX1-4462 cards as the A/D converters, which
streamed data to an NI 8353 rackmount controller with a high-power Intel Core 2 Quad
processor and four 250-GB hard drives in a RAID-0 configuration. The entire data acquisition
system was monitored using a laptop with a Windows Remote Desktop. The software was a
custom designed LabVIEW data acquisition program, which provided setup, microphone
calibration, real-time level and spectral monitoring and channel overload alerts. BNC cables ran
from the microphones to several NI BNC-2144 InfiniBand-to-BNC breakout boxes. Then

bundled InfiniBand cables ran from the breakout boxes to the NI PXI cards.
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The distance from the nozzle to the farthest measurement location was less than 23 m, so
temperature and wind fluctuations were considered minor. In order to minimize the effects of
strong temperature lapses and moderate winds common in the daytime, most measurements were
taken in the morning. The average wind speeds did not exceed 2.4 m/s, except for a single row
of scans in plane 2 (see Figure 6.1), during which the average wind speed was 5.0 m/s.
Temperatures averaged 30°C, with a standard deviation of 4°C.

For every measurement location, the aircraft was fired to operate on condition at idle
power and was measured for 30 s at a sampling rate of 96 kHz, then went to an intermediate
engine condition and was measured, then went to military engine condition and was measured,
and then went to afterburner engine condition and was measured. During the afterburner engine

condition the sampling rate was decreased to 48 kHz.

6.3 Waveforms and Spectra

The analyses of measured jet noise presented in this thesis are focused on the
measurements at three microphones on the ground array described above. These microphones
are labeled in Figure 6.1 by their downstream locations, 0 m, 10.4 m, and 20.7 m. Portions of the
waveforms measured at each of these three locations for the intermediate and military engine
conditions are shown in Figure 6.2 and Figure 6.3, below.

The portions of the waveforms measured at intermediate engine condition shown in
Figure 6.2 suggest the effects of nonlinearity have been relatively unimportant in the noise
propagation. The waveforms in plots (a), (c), and (e) do not appear to have experienced very
much nonlinear distortion. The expanded waveform portions shown in plots (b), (d), and (f)
suggest similar results. In addition, the overall sound pressure levels (OASPLs) of these
waveforms (reported in the caption of Figure 6.2) are low with respect to nonlinear processes,

noted by the fact that an initially sinusoidal waves with a similar OASPL and characteristic
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frequency would have a shock formation distance on the order of kilometers. These low levels
further suggest that the propagation of the jet noise at intermediate engine condition is dominated

by linear phenomena.
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Figure 6.2. Portions of waveforms measured at (a)-(b) 0 m, (c)-(d) 10.4 m, and (e)-(f) 20.7 m
downstream of an F22-A Raptor at intermediate engine condition, with overall sound
pressure levels of 117 dB (re 20pPa), 120 dB, and 119 dB, respectively. The green region of
plots (a), (¢), and (e) are shown, expanded and in terms of individual data points, in plots (b),
(d), and (f), respectively.

The portions of the waveforms measured at military engine condition shown in Figure
6.3, on the other hand, suggest the effects of nonlinearity have been important in the noise
propagation. The waveforms in plots (a), (c), and (e) indicate that nonlinear distortion has
decreased rise times and increased fall times of the pressure. In addition, the data points shown

in plots (b), (d), and (f) all show what appears to be near discontinuities of the measured
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pressure, indicating an acoustic shock. Other regions of the waveforms in plots (a), (c), and (e)
also suggest shock waves, such as the large pressure rise near 1 ms in plot (c). Finally, the
OASPLs of the measured waveforms (reported in the caption of Figure 6.3) are significant for
nonlinear processes, noted by the fact that an initially sinusoidal waves with a similar OASPL
and characteristic frequency would have a shock formation distance on the order of a hundred

meters.
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Figure 6.3. Portions of waveforms measured at (a)-(b) 0 m, (c)-(d) 10.4 m, and (e)-(f) 20.7 m
downstream of an F22-A Raptor at military engine condition, with overall sound pressure
levels of 136 dB (re 20puPa), 146 dB, and 142 dB, respectively. The green region of plots (a),
(¢), and (e) are shown, expanded and in terms of individual data points, in plots (b), (d), and
(f), respectively.

Notice that the waveforms shown in Figure 6.2 and Figure 6.3 appear to have significant
high-frequency content, and recall the high-frequency jitter found in the waveforms in the plane

wave tube experiments caused the WSF values estimated from the propagated waveforms to be
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larger than numerical models predict. Regardless of the source of the high-frequency content in
the jet noise, it is possible the WSF values estimated from these waveforms would be lower if the
high-frequency content were suppressed.

As mentioned in Section 5.4, the effects of nonlinear distortion are also present in the
spectra of propagating waveforms. The one-third octave band power spectra of the waveforms
being considered here are shown in Figure 6.4, for the waveforms during intermediate engine
condition, and in Figure 6.5 for the waveforms during military engine condition. The peak
frequencies of the spectra during intermediate engine condition are between 125 Hz and 630 Hz,
with peak values ranging from 105 dB (re 20pPa) and 113 dB. The peak frequencies of the
spectra during military engine condition are between 125 Hz and 1000 Hz, with peak values
ranging from 126 dB to 137 dB. From the very different peak frequencies and values of the
spectra from both the intermediate and military engine conditions, it is apparent noise radiating

from jets is spatially dependent.
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Figure 6.4. One-third octave band power spectra of waveforms measured 0 m, 10.4 m, and
20.7 m downstream of an F22-A Raptor at intermediate engine condition. The dashed lines
represent f32 and f~3 dependencies.
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As can be seen in Figure 6.4, the high-frequency spectral shape of the jet noise during the
intermediate engine condition is closer to an f~3 dependency than f =2 dependency. As shown
by Rudenko and Soluyan, [14] this spectral shape is characteristic of broadband noise in the pre-
shock regime. From this perspective, it is possible that, given a large enough propagation
distance, significant shocks could form in the noise. However, since the amplitudes are quite

low, as discussed above, it is more likely that the spectral shape is due to source phenomena. [32]
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Figure 6.5. One-third octave band power spectra of waveforms measured 0 m, 10.4 m, and
20.7 m downstream of an F22-A Raptor at military engine condition. The dashed lines
represent f32 and f~3 dependencies.

As is evident in the spectra presented in Figure 6.5, the high-frequency spectral shape of
jet noise radiated during military engine condition follows closer to an f =2 dependency than to
an f~3 dependency. Gurbatov and Rudenko reported that an f =2 dependency is to be expected
in the spectra of waveforms with significant shock content. The spectral shape of the jet noise
during military engine condition further supports the claim that nonlinearity is important in the

propagation of the noise radiating from an F22-A Raptor at military engine condition. On the
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other hand, since similar shapes were found for the much lower amplitude intermediate engine

condition, it is possible that these spectra are a result of source phenomena.

6.4 A Simple Model of High-Amplitude Noise Propagation

Since jet noise is not planar, it does not make sense to compare the nonlinearity metrics
discussed below to the results obtained analytically in Chapter 3 or experimentally in Chapter 5.
Given the success of the numerical models in Chapter 4 and Chapter 5 in predicting the
propagation of waveforms in a plane wave tube, and in an effort to understand the importance of
nonlinearity in a jet noise-like geometry, a numerical model of noise propagating with a
geometry similar to jet noise propagation is used to compare the measured waveforms and their
associated nonlinearity metrics.

The model consists of initially Gaussian noise with a jet noise-like spectrum that
propagates spherically from a source about 5 m downstream of the nozzle. At this distance, the
shear layer is approximately 1.2 m is radius (see Figure 6.1). We assume the waveform is known
at the edge of the shear layer. In order to estimate the amplitude of the waveform at the shear
layer, recall a wave propagating spherically without linear losses decays in amplitude as r 1,
where 7 is the radius from the source region. The overall sound pressure level about 12 m from
the source region and on the ground is about 146 dB re 20xPa for the military engine condition.
Then, neglecting the ground reflection and absorptive and nonlinear effects, we estimate the
overall sound pressure level at the shear layer to be about 166 dB re 20uPa. Given a sampling
rate of 96 000 Hz, a characteristic frequency of 750 Hz, and an absorption coefficient of about
4.7 X 10~* Np/m, we obtain a “spherical Gol’dberg number,” Iy, = 1/af, of about 590. (Note
that the “spherical Gol’dberg number” is the same as the effective Gol’dberg number defined by
Baars et al. except for a factor of v/2. [28]) By numerically propagating an initially Gaussian

noise signal with a jet noise-like spectrum including atmospheric absorption, spherical spreading,
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and nonlinear propagation phenomena, waveforms are predicted for arbitrary distances from the
shear layer. From these waveforms, estimates of the WSF and the derivative skewness are
calculated as function of r. The WSF estimates are plotted as a function of g, (the distance from
the source over the spherical shock formation distance (or, for noise, the nonlinear distortion
length); see Equation (2.29)) in Figure 6.6, and the derivative skewness estimates are plotted as a

function of o; in Figure 6.7.
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Figure 6.6. Estimates of the WSF of a spherically propagating source as a function of
o, = r/r. The reference distance is 7y = 1.2 m.
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Figure 6.7. Estimates of the derivative skewness of a spherically propagating source as a
function of o, = /7. The reference distance is ro = 1.2 m.

The WSF and derivative skewness estimates shown in Figure 6.6 and Figure 6.7 are
somewhat similar to the planar examples shown in Chapter 4, but are more curved. One reason
for this is the initial waveform was not defined at o, = 0, but at g, = 1, /7 = 0.33 in this case.
Thus, an estimate that decays according to a power law for small o, will not follow a simple line,
such as the metrics shown in Chapter 4 do.

By comparing the nonlinearity metrics of this simple jet noise model with estimates of
the metrics of measured jet noise waveforms, one may estimate how much nonlinearity has

affected measured jet noise waveform.

6.5 Wave Steepening Factor

The WSF estimates of the waveforms measured on the stationary array 0 m, 10.4 m, and
20.7 m downstream (see Figure 6.1) are stated in Table 6.1, below, for intermediate and military
engine conditions. In addition, assuming the numerical model proposed in Section 6.4 may be

used to model the propagation, an estimate of the g, value of the jet noise at the measurement
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location may be found by comparing the WSF estimates with Figure 6.6. These o, values are

also presented in Table 6.1.

Table 6.1. Table of calculated WSF for F22-A Raptor noise waveforms measured at three
downstream measurement locations and for two engine conditions. Estimates of the
associated value of o, = /7 based on the model in Section 6.4 are also included.

Measurement Intermediate Engine Condition Military Engine Condition
Location WSF o WSF o

0m 0.985 0.33 0.792 0.38

10.4 m 0.974 0.33 0.621 0.46

20.7 m 0.989 0.33 0.776 0.38

The WSF estimates based on the intermediate engine condition waveforms are all quite
high, implying that the characteristic nonlinear distortion length associated with the intermediate
engine condition is very large, and that nonlinearity is not very important for this condition. This
conclusion is substantiated by the fact that the g values for each of the three measurement
locations are 0.33, which is the reference distance. Thus, nonlinearity is not likely to be
important for the intermediate engine condition. The WSF estimates based on the military
engine condition waveforms are lower than those based on the intermediate engine condition
which implies the characteristic nonlinear distortion length associated with the military engine
condition is shorter than that for the intermediate engine condition. This claim is also
substantiated by the fact that the o values are significantly larger than 0.33, the reference
distance.

In order to estimate whether these WSF estimates are an accurate representation of the
true noise field, numerical down-sampling may be used to determine the consistency of the WSF
values. This analysis consists of decimating a measured waveform to a lower sampling rate than
was used for the measurement and then calculating the WSF (or any measure of interest). This

process is repeated until the sampling rate is so low the estimates of the WSF become random.
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Plots of the WSF estimates as a function of v = f;/fpeak, Where fpeak is the peak frequency of

the noise analyzed, are shown in Figure 6.8 for both intermediate and military engine conditions.
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Figure 6.8. Estimates of the wave steepening factor (WSF) of waveforms measured at three
downstream locations, 0 m, 10.4 m, and 20.7 m, during (a) intermediate and (b) military
engine conditions, plotted as a function of v = f/f cax-

For low enough values of v, the behavior of all WSF estimates in Figure 6.8 becomes
erratic. This is likely due to the sampling rate being so low the true waveform is being sampled
nearly at random. As the value of v increases, the behavior of the WSF becomes more uniform.
For the intermediate engine condition, the WSF of the resampled waveforms approach an
asymptotic value as the sampling rate increases, which is near unity. The resampled waveforms
for the military engine condition, on the other hand, shows a trend of decreasing values of WSF
for increasing values of v. The rate at which the values of WSF decrease for the military engine
condition is about v=%1. It is interesting to note this rate of WSF value decay is much slower
than the rate predicted in Section 3.3.3.2 for a discretely sampled sawtooth wave, which for large
v goes as v 1.

Since all real waveforms are continuous, given a sufficiently high sampling rate, the

actual WSF would be well estimated, and increasing the sampling rate further would provide

negligible improvements to the estimate, which is an asymptotic behavior. In addition, the
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smoothness of real waveforms suggests that no true WSF would ever reach zero. Therefore, the
asymptotic behavior of the WSF estimates for the intermediate engine condition suggests the
sampling rate used for the measurement was sufficiently high to estimate the actual WSF value
(or the WSF value obtained by continuous sampling) of the noise at intermediate engine
condition. However, the fact that the WSF estimates for the military engine condition do not
level out to some positive value suggests the sampling rate used was insufficient to estimate the
actual WSF of the noise at military engine condition, and the actual WSF value is lower than the
reported value. Since the rate at which the WSF values decrease with respect to v for the
military engine condition is significantly less than the sawtooth limit of v™1 or the Fubini-

Earnshaw formula of v—2

, it may be some aspect of the waveform with a very short time scale
(such as the high-frequency content) may have a strong influence on the estimation of the WSF.
If the actual WSF value of the noise during military engine condition is lower than the reported

value, then the values of o for the noise estimated above are low.

6.6 Derivative Skewness

The derivative skewness estimates of the waveforms measured on the stationary array 0
m, 10.4 m, and 20.7 m downstream (see Figure 6.1) are stated in Table 6.2, below, for the
intermediate and military engine conditions. In addition, assuming the numerical model
proposed in Section 6.4 may be used to model the propagation, an estimate of the o value of the
jet noise at the measurement location may be found by comparing the WSF estimates with

Figure 6.7. These g values are also presented in Table 6.2.



132 Chapter 6 Jet Noise Analysis

Table 6.2. Table of calculated derivative skewness values for F22-A Raptor noise waveforms
measured at three downstream measurement locations and for two engine conditions.
Estimates of the associated value of o, = r/7 based on the model in Section 6.4 are also

included.
Measurement Intermediate Engine Condition Military Engine Condition
Location Derivative Skewness [ Derivative Skewness [
0m 0.0593 0.33 1.33 0.39
10.4 m 0.0879 0.34 5.54 0.54
20.7 m 0.0463 0.33 2.79 0.45

The results found in the analysis of the WSF estimates based on the ground array of
microphones given in Section 6.5 are corroborated by the derivative skewness estimates. The
derivative skewness values for the intermediate engine condition are small, and suggest that
nonlinearity is not important in the propagation of the noise radiating at intermediate engine
condition. The derivative skewness values at military engine condition are significantly higher,
and the estimated o values are of the same range that the g values estimated using the WSF are,
and so nonlinearity is likely to be important in the propagation of jet noise at military engine
condition. The consistency of the estimated values of g, using the WSF and using the derivative
skewness suggests that the model used is valid for the waveforms considered.

It should be noted the interpretation of the WSF and the derivative skewness values in
terms of o, relies upon the validity of the model presented in Section 6.4. However, this simple
model is far from an accurate representation of jet noise propagation. Jets are complicated,
extended sources, and the results found in this and the previous section should be interpreted in
light of this limitation. For example, the geometry of jet noise propagation is neither spherical
nor cylindrical, but somewhere in between, is directional, and is frequency dependent. Since the
model used here assumed purely spherical propagation, this would suggest that the source
amplitude is somewhat lower than the signal used for these analyses, and decay more slowly.
The non-spherical geometry would likely change the overall shape of the evolution of the
nonlinearity metrics, and therefore change the estimated g, values (or some generalization of g

for non-spherical, non-cylindrical geometries). While it is unknown how these differences will
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affect the quantitative interpretation of the WSF and derivative skewness, the author does not
think that the qualitative interpretation will change significantly.

In order to estimate whether the derivative skewness estimates tabulated in Table 6.2 are
an accurate representation of the true noise field, numerical down-sampling may be used to
determine whether the skewness behavior for lower sampling rates. This analysis is very similar
to that presented for the WSF in the prior section. The down-sampling analyses of the derivative
skewness for the measured waveforms during both intermediate and military engine conditions
are shown in Figure 6.9. The analytical derivative skewness of a sawtooth waveform derived in

Section 3.3.3.2 is also shown in Figure 6.9, for comparison.

e
o
©

Sk{op/of

1
-

-
o

10° 10’ 10° 10°10° 10’ 10° 10°
A% vV

10

Figure 6.9. Plots of the estimates of the skewness of the first time-derivative of the pressure
amplitudes (derivative skewness) of waveforms measured at three downstream locations, 0
m, 10.4 m, and 20.7 m, during (a) intermediate and (b) military engine conditions, plotted as
a function of v = f;/fpcak. The analytical derivative skewness obtained by assuming a

discretely sampled sawtooth wave is also plotted, for comparison.

The characteristics of the down-sampled derivative skewness estimates are similar to
those of the down-sampled WSF estimates. For very low values of v all of the derivative
skewness estimates become somewhat erratic, and for high values of v all of the estimates follow

a consistent trend. The derivative skewness estimates for the intermediate engine condition
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appear to reach an asymptotic value, though only for sampling rates close to the measurement
sampling rate. This suggests the sampling rate of 96 000 samples/s is capable of resolving the
derivative skewness for the radiate noise of the intermediate engine condition. Notice the
behavior of the derivative skewness of the waveforms measured during the intermediate engine
condition do not follow the predicted derivative skewness of a sawtooth wave. This is indicative
of the lack of significant shock content in the waveforms measured during the intermediate
engine condition.

The derivative skewness estimates for the military engine condition do not appear to
approach any asymptotic value, but continue to increase for increasing v. Also notice that the
derivative skewness estimates for all three measurement locations increase approximately at the
same rate that is predicted for the sawtooth wave. This implies that the radiated noise for the
military engine condition is significantly more similar to a sawtooth wave than the radiated noise
for the intermediate engine condition is. As mentioned above, since physical waveforms are
continuous, we may assume there is an asymptotic estimate of the derivative skewness, even for
jet noise radiated during the military engine condition. Therefore, it is likely if the waveforms
had been sampled at a much higher sampling rate the derivative skewness estimates would level
out and depart from the sawtooth wave trend, which inherently diverges. From this we conclude
a sampling rate of 96 000 samples/s, which was used during the measurement, is insufficient for
the purposes of estimating the true derivative skewness of the noise radiating from an F22-A
Raptor at military engine condition. However, comparisons of the derivative skewness values
for the military engine conditions with derivative skewness values based on other waveforms
which have also reached a sawtooth wave-like behavior will still yield information about the

relative importance of nonlinearity.
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6.7 Nonlinearity Metric Evolution with Propagation

In addition to the ground-based measurements, large aperture scans of the acoustic field
near the aircraft were taken. See Wall et al. [56] for a summary of the measurement. Maps of
the overall sound pressure levels measured during the military and afterburner engine conditions
are shown below in Figure 6.10. Since the waveforms measured at military engine condition
were sampled at a rate of 96 000 Hz while the waveforms measured at afterburner engine
condition were sampled at a rate of 48 000 Hz, a direct comparison of the nonlinearity metrics
would not be meaningful. In order to make a meaningful comparison, the waveforms measured

at military engine condition were down-sampled (by decimation) to 48 000 Hz.
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Figure 6.10. Maps of the overall sound pressure level of waveforms measured of an F22-A
Raptor at (a) military and (b) afterburner engine condition.

By analyzing the nonlinearity metrics of the waveforms from these scans, information
about the how nonlinearity affects jet noise propagation can be obtained. Maps of the WSF of
the scans for military and afterburner engine conditions are shown in Figure 6.11, and maps of
the derivative skewness of the scans are shown in Figure 6.12. The intermediate engine
condition is not shown, due to the fact there is not a set “intermediate” thrust position in the F-
22 A Raptor, leading to some subjectivity and variation in the source characteristics from run to
run. Since the military engine condition was measured with a sampling rate of 96 kHz and the

afterburner engine condition was measured with a sampling rate of 48 kHz, a direct comparison
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of the metrics would not be appropriate, since using different sampling rates would yield
different values for the same waveform, as discussed in Chapter 3. For this reason, the
waveforms measured for the military engine condition were first resampled (via decimation) to a

sampling rate of 48 kHz before the metrics were estimated.

Military (48 kHz) Afterburner 1
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Figure 6.11. Maps of the wave steepening factor (WSF) of jet noise radiating from an F-22A
Raptor at (a) military engine condition and at (b) afterburner engine condition.

The maps in Figure 6.11 show that the WSF of jet noise evolves with some directivity.
The lowest WSF value estimated from the military and afterburner engine conditions are 0.71
and 0.70, respectively. Based on the analytical forms of the WSF derived in Chapter 3, these
WSF values appear to be large, indicating that nonlinearity is not significant for jet noise
propagation. However, high-frequency content in the measured waveforms may increase the
estimated WSF values. A region of especially low WSF (recall low WSF implies significant
nonlinearity) seems to exist for the military engine condition about a ray originating about 5 m
downstream of the nozzle and about 113° relative to the aircraft. A similar ray exists for the
afterburner engine condition. In both cases, the region about the ray with significantly lower
values of WSF becomes larger as the distance from the source region about 5 m downstream of
the nozzle increases. The growth of the region of low WSF suggests that the WSF may be
noticeably decreasing with propagation, indicating nonlinearity is important for jet noise

propagation for both military and afterburner engine conditions.
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Figure 6.12. Maps of the derivative skewness of jet noise radiating from an F-22A Raptor at
(a) military engine condition (waveforms down-sampled to a sampling rate of 48 kHz from a
rate of 96 kHz) and at (b) afterburner engine condition (initially sampled at 48 kHz).

The maps of the derivative skewness shown in Figure 6.12 also show the directional
behavior the maps of the WSF estimates do. However, the derivative skewness values show a
more significant difference between the military and afterburner engine conditions than the WSF
maps do. The maximum estimate of the derivative skewness for the down-sampled military
engine condition is 2.7, which is significantly less than the 3.4 for the afterburner condition. It
should be noted the maximum derivative skewness value for a sawtooth wave with a frequency
of 960 Hz, discretely sampled at a rate of 48 000 Hz, is about 7.

Using the down-sampled waveforms for the military engine condition also shows how the
derivative skewness estimates in the measurement planes close to the jet are larger in the
afterburner engine condition than for the military engine condition, and shows the derivative
skewness estimates continue to increase as distance from the nozzle increases for both
conditions. These findings emphasize the range and amplitude dependent evolution of the

skewness of the time-derivative of the pressure waveforms of high-amplitude jet noise.
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6.8 Conclusions

Estimated values of the WSF and derivative skewness of the noise suggest nonlinearity is
more important in the propagation of jet noise at military engine condition in the near field than
for intermediate engine condition. In particular, the noise radiating from an F-22A Raptor at
intermediate engine condition does not appear to be significantly distorted due to nonlinear
propagation, nor does it appear to have formed shocks. On the other hand, noise measured
within 20 m of an F-22A Raptor at military engine condition does appear to be significantly
distorted, and shocks have either formed or are forming in the waveforms.

In addition, maps of the spatial evolution of the WSF and the derivative skewness for an
F-22 A Raptor at military and afterburner engine conditions were presented. For both engine
conditions and for both metrics, significant evidence of nonlinear distortion was found. In order
to compare the two engine conditions, the waveforms measured at military engine condition
were downsampled to the sampling rate used for the afterburner engine condition. The
comparison of the WSF does not show significant differences, but the comparison of the
derivative skewness indicates that nonlinearity plays a more significant role in the propagation of

noise at afterburner engine condition than at military engine condition.
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Chapter 7

Concluding Discussion

7.1 Conclusions

This thesis has presented analytical, numerical, and experimental descriptions of how two
nonlinearity metrics, the wave steepening factor (WSF) and the skewness of the time-derivative
of a time waveform (derivative skewness). Qualitatively, the WSF quantifies the distortion of a
waveform due to nonlinear propagation, and the derivative skewness quantifies the shock content
of a waveform.

The evolution of the WSF and the derivative skewness have been analytically described
for several important ideal propagation models, the Earnshaw, the Fubini, the Fay, and the
Khokhlov solutions to the case of an initially sinusoidal plane wave propagating with and

without thermoviscous absorption. In particular, the WSF of the Earnshaw solution is given by

WSF = ——, 7.1
. 7.1

where o is the distance from the source over the shock formation distance of an initially

sinusoidal signal, and the WSF of the Khokhlov solution is given by
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where I is the Gol’dberg number of the initially sinusoidal signal. The derivative skewness of

the Fubini solution is
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where 6, ., is the Kronecher delta function and J,, is the n™ order Bessel function of the first
kind, the derivative skewness of the Earnshaw solution (which is equivalent to the Fubini

solution for o < 1) is

Sk(ap/or) = 2 L= 0+ 30"~ 2
’ (1 - 02341 —vT=07)"" (7.4)

and the derivative skewness of the Fay solution is
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By assuming that nonlinear distortion of a waveform due to propagation is relatively minor for
o < 0.2 for an initially sinusoidal plane wave propagating without linear losses, it has been
further found that a WSF value of about 0.75 is high, indicating low waveform distortion, and
that a derivative skewness values of 0.5 may be considered low, indicating that shocks have not
started to form significantly. Furthermore, by assuming that cumulative nonlinear effects are

quite substantial for ¢ > 0.9 for an initially sinusoidal plane wave propagating without linear
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losses, it has been found that a WSF value of 0.25 may be considered low, indicating significant
waveform distortion due to nonlinear propagation, and that a derivative skewness value of 5 may
be considered high, indicating that shocks are (or soon will be) present in the waveform.

In addition to the exact forms of the WSF and derivative skewness given above, a
discussion of the effects of finite sampling rates on the estimation of the WSF and derivative
skewness values of these ideal models has been presented. It was shown that the estimate of the
WSF of a sawtooth wave is approximately f/fs, where f; is the sampling rate and f is the
sawtooth frequency, and that the derivative skewness of a sawtooth wave is approximately
\/m . In general, it appears that the WSF is less sensitive to low sampling rates than the
derivative skewness.

Due to the difficulty of considering arbitrary source signals or realistic absorption and
dispersion in analytical propagation models including nonlinear phenomena, a numerical
propagation model was used to study the effects of noise and realistic absorption and dispersion
on the evolution of the WSF and the derivative skewness. By numerically propagating an
initially sinusoidal plane wave with thermoviscous absorption, a transition region between the
Earnshaw and Fay/Khokhlov solutions was described for the WSF and derivative skewness for
two values of the Gol’dberg number. By considering an initially sinusoidal plane wave
propagating with plane wave tube-absorption and -dispersion, it was found that the slower
growth of absorption with frequency associated with boundary layer absorption caused
nonlinearity to become more important with propagation relative to propagation with
thermoviscous absorption, as noted by lower values of the WSF and higher values of the
derivative skewness. Finally, the importance of nonlinearity in an initially broadband, planar
Gaussian noise signal propagating with plane wave tube-absorption and -dispersion was found to
be greater than for the initially sinusoidal case, as suggested by Gurbatov and Rudenko. [43]

In order to validate the numerically obtained data, the evolution of nonlinearity metrics of

waveforms measured inside a plane wave tube was analyzed. Significant agreement was found
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between the numerically and experimentally obtained WSF values and derivative skewness
values for 0 < 1.2. The difference between the trends for o > 1.2 may be attributed to
unexpected jitter in the measured waveforms. This small-amplitude, high-frequency
phenomenon was found to significantly increase the WSF value of the waveform, indicating that
small disturbances in a waveform will mean that the WSF will predict that nonlinearity is less
important than it would if the disturbances were not present. On the other hand, the derivative
skewness did not appear to be as dramatically affected by the unexpected oscillations in the
measured waveforms. The reason for this is that the cubic nature of the skewness will emphasize
the largest slopes and suppress the smallest slopes.

These conclusions, based on analytical, numerical, and experimental evidence, were
applied to jet noise. The WSF and derivative skewness of a spherically propagating Gaussian
waveform with a jet noise-like spectrum were numerically evaluated, and then compared with
the WSF and derivative skewness values of measured waveforms of an F-22A Raptor at
intermediate and military engine conditions. Nonlinearity in the radiated noise at intermediate
engine condition was found to be not very significant, while nonlinearity in the radiated noise at
military engine condition was found to be quite significant. In particular, the noise measured
about 12 m from the source region in the direction of greatest intensity during military engine
condition had WSF values and derivative skewness values similar to the simple spherical wave
model at g, = 0.5, where oy is the distance from the source region relative to the spherical shock
formation distance (or nonlinear distortion length for noise). As further evidence, maps of the
WSF and derivative skewness near the F-22A Raptor, based on scans designed to be used for
near-field acoustical holography, were shown for military and afterburner engine conditions.
Both metrics suggest that nonlinearity becomes more important with greater distance from the
source in the direction of greatest amplitude for both engine conditions, providing further insight

into the nature of jet noise near fields.
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7.2 Future Work

While this thesis has described how two measures of the importance of nonlinearity in jet
noise evolve using analytical and experimental means, there is still much that should be done to
improve understanding of these measures. The theoretical work shown in Chapter 2 has been
focused entirely on understanding the evolution of measures of nonlinearity for the case of an
initially sinusoidal signal. While this is an important benchmark case, most real-world problems
will deal with more complicated signals. Extending the theoretical work presented in this thesis
to include initially Gaussian noise and noise with jet noise-like statistics would help our
understanding of how measures of nonlinearity in measured jet noise should be interpreted.

Another limitation of the theoretical work presented in this thesis is that all derivations
assumed planar propagation and either no losses or only thermoviscous losses. Analytical or
numerical analysis of how geometrical spreading, such as cylindrical or spherical spreading, and
more general propagation losses affect the evolution of measures of nonlinearity can also be
useful in interpreting jet noise data.

The measurements of noise propagating in a plane wave tube presented in Chapter 3 have
shown how different characteristic frequencies, bandwidths and initial statistics can affect the
evolution nonlinearity measures. However, oscillations in the measured waveforms that are not
due to the planar propagation of the source signal somewhat diminish the utility of the metrics
estimated from these waveforms. The experimental setup may be improved by ensuring that the
couplings between segments of the plane wave tube are smooth, such as by custom-designing
couplers, or by using a single, long tube instead of segments. Since nonlinear processes transfer
energy to higher frequencies, cross modes in the plane wave tube may corrupt the measured data.
Using lower characteristic frequencies than those used here or using a narrower tube may help in
the reduction of energy transferred to cross modes, although this would increase boundary-layer

absorption as well.
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Comparing the theoretical and experimental evolution of measures of nonlinearity of
noise with measured jet noise has given insight into the nature of nonlinear processes in jet noise
propagation. However, the measurements used for this thesis is a small subset of a very large set
of jet noise measurements. Analyzing all of these data will take time, but this analysis will likely
give insight into the spatial dependence and the physical processes associated with the

importance of nonlinearity in jet noise.
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Appendix A

MclInerny Plots

This appendix defines and discusses another way to analyze the effects of nonlinear terms
in propagation models that has been used to study jet aircraft and rocket noise. Since our
understanding of this technique is still immature, and the results are preliminary, this analysis has
been placed in an appendix, rather than a chapter.

Measures such as the WSF or the derivative skewness provide a convenient way to study
an entire waveform, but specifics about the shock content can also provide useful information.
Mclnerny and Olcmen [33] developed a scatter plot (hereafter called a McInerny plot) in the
study of rocket noise which provides information on some of the specifics of the shock content in
a waveform. For every pressure rise, a point is placed on a plot where the horizontal axis is the
difference of the maximum and minimum pressure for a given rise in pressure (Ap) and the
vertical axis is the maximum rate of pressure increase between the times of the maximum and
minimum pressure (0p/0t|max). They were able to show that Gaussian noise and noise with
significant shock content followed different trends on this scatter plot.

In the form presented by Mcinerny and Olgmen [33] the locations of the points on these
Mclnerny plots depends greatly upon the overall sound pressure level and characteristic
frequency of the waveform. Proper normalization of the axes of the scatter plots can aid the

comparison of different waveforms with different general characteristics. Different
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normalization schemes can accentuate different aspects of a waveform. This appendix will make
use of two normalization schemes of the McInerny plots, one emphasizing the importance of
sufficient temporal resolution of shocks, which will be called the sampling rate normalization,
and one emphasizing the waveform distortion due to nonlinear processes, which will be called
the inverse local WSF (ILWSF) normalization.

The sampling rate normalization scheme consists of normalizing the vertical axis of the
Mclnerny plot by the sampling frequency multiplied by the difference between the maximum
and minimum pressure of a pressure rise ([0p/0t|max]/fsAp), and normalizing the horizontal
axis by the standard deviation of the pressure amplitudes (which is the same as the root-mean-
square of the pressure for zero-mean processes) of the entire waveform (Ap/pyms). The reason
for this particular scheme is explained in Section A.2. The ILWSF normalization scheme
consists of normalizing the vertical axis of the Mclnerny plot by the negative of the minimum
slope of the pressure fall just after the pressure rise of interest (—[0p/0t|max]/[00/0t| min]) and
the horizontal axis by the standard deviation of the pressure amplitudes of the entire waveform
(Ap/prms)- Since the WSF is the magnitude of the mean negative slope over the mean positive
slope, the normalization of the vertical axis makes it what may be considered the inverse of a
WSF for the region just around the pressure rise of interest, and is referred to as the inverse local
WSF, and hence the name of the normalization scheme. The sampling rate normalization is used
primarily in Section A.2 to elucidate some subtleties of using the McInerny plots with
waveforms that have been sampled with a finite sampling rate. The ILWSF normalization will

be the primary normalization scheme used to study measured waveforms in this appendix.

A.1 Analytical Treatment of the Khokhlov Solution

Since every pressure rise in a Mclnerny plot is accounted for, it is useful to know how

idealized pressure rises will be placed on the plots. In order to do this, we will analyze the
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Khokhlov solution in terms of the ILWSF normalization. We choose the Khokhlov solution
because it is not written in the form of a Fourier series.
The Khokhlov solution is described in Section 2.2.3.5. The second time-derivative of the

Khokhlov solution is given as

o°p_ 1 7T—2(5(1 —tanhzie)tanhle). (A1)
00?2 1+4+o2¢y \¢ 2y 2y

Then the maxima and minima of the pressure slope may be found at the zeros of Equation (A.1),

which occur at & = 0 and t+oo. Since the solution is only valid from || < 7, we conclude that

the waveform extrema are at @ = 0 and £m. By observation, 8 = 0 is the location of the

maximum slope, and 8 = +m is the location of the minimum slope. Using Equation (2.43) we

calculate the maximum slope to be

oP 1 [n? . A2
00| max 1+ 0|2y (A-2)
and the minimum slope to be
oP 1 [r? | — tanh? 2 " A3
20l . " 1+0o|2y anow ' (A-3)
The maximum pressure difference for the waveform is found to be
AP = (P(G)max) - P(Omin)); (A4)

which yields

AP = ! 2 |1 2 * tanh™! |1 2 A.S
"1+ nzl/) nlp an ﬂzlp' (A-3)
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Since the standard deviation of P does not have a closed form in terms of elementary

functions, we use the standard deviation of the Fay solution, which is given as

2 1
2 1 A.6
Pray,rms T Z sinh?(ny) o

n=1

Since the Khokhlov solution is for a periodic function with only a single pressure rise and
a single pressure fall for each period, its representation on a Mclnerny scatter plot will be a
single point. However, the location of that point will vary as the wave propagates. In particular,

the location of the point on the Mclnerny scatter plot (without any normalization) will be

(or3e].) = (e )
p' aT max B po ’ pow 69 max

(A7)
_ P [on 12 * ptanht |1 -2 i 1
“1+o\ " 7T2¢ nlp an m2 Y PAV) '

Equation (A.7) is plotted in Figure A.1 assuming o0 = 9, for w = 5, 10w, and 20m, and for

Po = 2 and 4.
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Figure A.1. McInerny plot locations for the Khokhlov solution for two initial amplitudes (2
and 4 Pa), and for three different initial angular frequencies (10w, 207, and 407 rad/s). The
locations are parametrically dependent upon ¥ = (1 + 0)/I’, where o is the distance from
the source over the shock formation distance (assumed to be 9 for this plot) and I is the
Gol’dberg number. The circles denote the locations for ¥ = 10~3, and the squares denote

the locations for 1 = 4/3, and the lines between the two symbols of the same color are the
locations for the values of 103 > 1 > 4/3.

Notice that the locations on the McInerny plot shown in Figure A.1 for each combination
of w and p, follow a similar trend — approaching (2p,/(1 + ), ) as Y — 0 and falling to the
lower left of that point as 1 increases. Even though all of the cases follow a similar trend, the
specific locations are highly dependent upon the initial amplitude and frequency.

The ILWSF normalization leads to a point which has a location of

op
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where ¥ = 21 /m?, which is plotted in Figure A.2, below. The locations in Figure A.2 follow a
very similar trend as the locations in un-normalized scatter plot, but now all initial amplitudes
and frequencies fall upon the same curve. For very small values of 1, which indicates
significant shocks, the vertical position diverges upwards (suggesting that an ILWSF value
above 10’ is large), and for values of 1 near 4/3 the vertical position approaches unity. The fact
that all frequencies and initial amplitudes follow the same trend allows for more ready
comparison of the nonlinear distortion of waveforms with different initial conditions. For
example, if an initially sinusoidal signal propagating with thermoviscous losses was found to
have a vertical position on the McInerny scatter plot with ILWSF normalization of about 1000,
then it is likely to have significant shocks. On the Mclnerny plot without normalizations, a

vertical position of about 1000 means nothing without the initial frequency and amplitude.

10*

Local WSF

Ap/csp

Figure A.2. MclInerny plot with ILWSF normalization locations for the Khokhlov solution.
The locations are parametrically dependent upon ¥ = (1 + 0)/T, where o is the distance
from the source over the shock formation distance and T is the Gol’dberg number. The
circle denotes the location for 1 = 103, and the square denotes the location for 1 = 4/3,
and the line between the two are the locations for the values of 1073 > y > 4/3.

While the derivation here assumed that the waveform was sinusoidal, the conclusions can

be readily interpreted for narrowband noise as well. Narrowband noise can be described as an
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amplitude-modulated sine wave. Thus, each pressure rise is like one oscillation of a sine wave
with a given amplitude, which is only loosely related to the amplitude of the next pressure rise.
Since each pressure rise has its own amplitude, it is implied that it will have its own value of o.
Thus, given a narrowband plane wave that propagates according to the Burgers equation, the
curve in Figure A.2 describes the distribution of points on a normalized McInerny plot of said
waveform. However, this interpretation must be made carefully, because the standard deviation
is of the entire narrowband noise waveform, and not just for the waveform locally around a
pressure rise. Thus, the positions of the points on a McInerny plot of narrowband noise are

likely to be spread about horizontally somewhat.

A.2 Effects of Finite Sampling Rate on McInerny Plots

The plots used by McInerny and Olcmen [33] compared the maximum time-derivative of
pressure between adjacent pressure minima and maxima with the pressure difference between the
respective pressure maxima and minima. These quantities depend only upon a single shock, so
this analysis will focus on different types of individual shocks. For each of these shocks, we will
assume that the sampling rate is f; = 1/At, and that the difference between the maximum and
minimum pressures is Ap.

A.2.1 Two-Data-Point Shock

The minimum number of data points that could possibly constitute a shock is two, where
the first data point has a pressure of p,,;,, and the second data point has a pressure of p.x.
Therefore, the time derivative of this shock is found to be simply Ap/At = Apf;. This means
that the location of this shock on a McInerny plot will be (Ap, Apf;). Using the sampling
frequency normalization defined just before Section A.1, the vertical position of the shock on a
scatter plot would become one, regardless of the pressure increase.

A.2.2 Three-Data-Point Shock
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Suppose that a shock consists of three data points, with pressures pin, P2, and Pmax-
Define the pressure differences Ay = py — Dmin and Ay = prax — P2 Without loss of generality,
we may assume that A, > A;. There are two limiting cases for the three-data-point shock, which
isthat A, = A; = A, or that A, > A;. If we examine the first limiting case, we find that

Ap = 2A, and the maximum time-derivative estimate is

A (A.9)

Therefore the vertical position of this shock on the normalized scatter plots would be

fib/2f,A = 1/2. (A.10)

Examining the second limiting case, we find that Ap = A; + A, = A,, and that the
maximum time-derivative estimate is A, f;. Then the vertical position of this shock on the
normalized scatter plots would be A, f;/A,f; = 1. Since all three-point-shocks must fall between
these two limiting cases, we conclude that the vertical position of any three-point-shock is
constrained to be between one half and one.

A.2.3 i-Data-Point Shock

Using similar arguments as those in the three-data-point shock discussion, it can be
shown that all shocks with i data points will be constrained to stay between 1/(i — 1) and one.
A.2.4 ILWSF Normalization

The limitations discussed above also apply to the ILWSF normalization scheme, except
that the ILWSF normalization uses both the positive and negative slope extrema, not just the
positive. Constraints on the estimate of the negative slope apply much as they do for the positive
slopes discussed above. However, for most waveforms with significant shock content, the

pressure increase usually happens much faster than the succeeding pressure decrease. This
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means that the estimate of the true location of a pressure rise and fall on the McInerny plot with
ILWSF normalization is likely to be more accurate than an estimate of the true location on a
Mclnerny plot with no normalization. However, if there are any small scale oscillations,
physical or digital, around a pressure rise, then the calculated location on a Mclnerny plot with

ILWSF normalization may be misleading.

A.3 MclInerny Plots of Plane Wave Tube Measurements

The waveforms measured in the plane wave tube experiments described in Chapter 5
were analyzed in terms of Mclnerny plots, in addition to the WSF and derivative skewness.
Once again, the purpose of using a plane wave tube measurement is that it allows for a relatively
well understood system. The known geometrical propagation and absorption in a plane wave
tube give the necessary information to be able to discern what phenomena are due to
nonlinearity.

Mclnerny plots allow one to study each pressure rise in a given waveform as a part of a
set. This approach seems to be especially useful in studying nonlinear noise propagation because
not every pressure rise in a distorted noise waveform is going to be a shock, or even have
significant nonlinear distortion. As discussed above, the McInerny plots presented here will be
normalized using the ILWSF normalization scheme. This means that every pressure rise and

succeeding pressure fall will create a single point on the scatter plot, located at

< Ap ap/atlmax> (A1D)

Prms & ap/atlmin

where Ap is the pressure difference between the greatest and smallest pressure measured for the
pressure rise of interest, pyns 1S the standard deviation of the pressure of the entire waveform,

0p/0t| may 1s the time-derivative estimate during the pressure rise of interest with the greatest
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value, and 0p/0t| iy, is the time-derivative estimate during the succeeding pressure fall with the
lowest value. The vertical position is also referred to as the ILWSF. Higher values of the
ILWSF indicate that the waveform shows more nonlinear waveform distortion, higher values of
Ap/prms indicate large pressure rises. The region of a Mclnerny plot most likely to describe
shocks in a waveform then is near the upper right corner.

In order to facilitate an understanding of the Mclnerny plots of the waveforms measured
in the plane wave tube, McInerny plots of numerically generated, specrally (a) white, (b)
broadband, and (c¢) narrowband Gaussian noise are shown in Figure A.3, along with two-
dimensional histograms of the plots. Both the broadband and narrowband Gaussian noise signals
were given a characteristic frequency of 1500 Hz, and have a bandwidth of 1600 Hz and 100 Hz,
respectively. The varying bandwidths were obtained by bandpass filtering the white Gaussian

218 and an artificial sampling

noise signal. The number of samples in each waveform is
frequency of 204800 Hz was chosen.

The Mclnerny plots in Figure A.3 themselves do not yield much information. It is noted
that the points on a McInerny plot due to Gaussian noise lie within a triangular shaped region.
This triangular region is significantly reduced in size for narrower bandwidths. In particular the
triangular region of the plot of the narrowband waveform (plot (¢)), is very narrow, to the point
that it may be considered to be a line. The narrowband noise positions appear to be consistent
with the interpretation of the results in Section A.1. Notice that the majority of points in plot (a)

and all of the points in plots (b) and (c) have values of ILWSF less than 1000, which is also

consistent with the guidelines found in Section A.1.



APPENDIX A 161

Narrow

ILWSF

=
107 5

('S P
%) [}
= 2
— Q
= » .g
107 E

=

107 10° 107 10° 107 10°
Ap/prms Ap/prms Ap/prms

Figure A.3. MclInerny plots of numerically generated spectrally (a) white, (b) broadband,
and (c) narrowband Gaussian noise waveforms. The corresponding two-dimensional
histograms are shown in plots (d), (e), and (f).

The histograms present more information on the densities of the Mclnerny plots, in
addition to the same information as the original plots. In addition to the triangular shape found
in the Mclnerny plots, the associated histograms also show that the densest region of the plots is
just above Ap/prms = 1 and at about ILWSF = 1. The value of the ILWSF of the peak region of
the Mclnerny plots can be understood by recalling that the WSF of Gaussian noise is one. Since
the two-dimensional histograms of the McInerny plots provide the same and more information as
the McInerny plots of a waveform, only the two-dimensional histograms will be presented for
the remainder of this appendix.

The two-dimensional histograms of the McInerny plots of measured noise waveforms are
quite complicated compared to numerically generated Gaussian noise waveforms. The
histograms of the Mclnerny plots of initially broadband Gaussian noise measured in the plane
wave tube (a) 0.3 m and (b) 11.6 m from the source are shown in Figure A.4. The histogram in
plot (a) rather resembles the histogram in Figure A.3(e). Since the initial waveform was

Gaussian, the fact that the histogram of the waveform measured 0.3 m from the source resembles
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the histogram of a Gaussian waveform is expected. The histogram in plot (b), on the other hand,
is very different from any of the histograms in Figure A.3. The general features in the histogram
of the waveform measured 11.6 m from the source are the large mass of points centered about
(Ap /Prms, ILWSF) = (1072, 1) and the smaller and more complicated mass of points centered

about (2,10). Both of these groups of points will be discussed below.
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Figure A.4. Two-dimensional histograms of MclInerny plots initially broadband Gaussian
noise measured 0.3 (a) and 11.6 m (b) from the source in a plane wave tube. The red dashed
lines represent the lower bound used by MclInerny and Ol¢gmen. [33]

As mentioned in Section A.1, any small scale oscillations near significant pressure rises
in a waveform can greatly reduce the significance of the data in a McInerny plot. As with any
acoustical measurement, some unexpected, random vibration in the waveform is inevitable.
Since unexpected noise is generally very small in amplitude relative to the main waveform, we
may assume that points on a scatter plot with very small values of Ap/p,,s are not likely to be

meaningful. McInerny and Olgmen accounted for this by only considering pressure rises that are
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larger than 0.3% of the amplitude of the largest pressure rise in the waveform. [33] This lower
threshold is plotted as the red dashed lines in Figure A.4. If this limit is considered to be
meaningful, then the large group of points centered about (1072, 1) is likely to be associated
with unexpected vibrations.

Another way to identify data that are meaningful is to compare a waveform at different
stages of its propagation. Notice that the histogram in Figure A.4(a) only has one region with a
high point-density, centered about (2, 1). Since the waveforms being considered are much
longer than their characteristic periods, it may be assumed that only the trends of high-density
regions can be interpreted in terms of propagation effects. Thus, much of the histogram in plot
(a) is not likely to be meaningful. Since the area around (2, 1) seems to characterize the
waveform measured 0.3 m from the source, it is likely that propagation would cause a
continuous modulation of this region. Thus, the cluster of points about (2,10) in plot (b) is the
most likely cluster in the histogram to have meaning with respect to propagation.

A simple numerical test can be used to test the hypothesis that the points in Figure A.4(b)
near (2,10) are the important ones. A prediction of the waveform that was measured 11.6 m
from the source was obtained using the propagation model discussed in Chapter 4. The
waveform analyzed in Figure A.4(a), which was measured 0.3 m from the source, was used as
the input waveform. The measured and predicted waveforms are shown in Figure A.5(a), the
two-dimensional histogram of the McInerny plot of the measured waveform is shown in Figure
A.5(b), and the histogram of the predicted waveform is shown in Figure A.5(c). The predicted
waveform is nearly identical to the measured waveform with the notable exception of some small
oscillations. Note that the histogram of the predicted waveform has significantly less data
beyond the cluster near (2, 10) than the histogram of the measured waveform. The lack of
oscillations in the waveform and compactness of the points in the histogram of the predicted
waveform suggests that the large cluster of points in plot (c) are due to some kind of systematic

error in the measurement.
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Figure A.5. (a) Portions of an initially broadband Gaussian noise waveform measured at
11.6 m from the source in an anechoically terminated plane wave tube and a numerical
prediction. (b) Two-dimensional histograms of the McInerny plot of the predicted
waveform. (c) Two-dimensional histograms of the McInerny plot of the measured
waveform. The noise at the measurement location has a o value of 1.14. The data inside the
red circles are not likely to be meaningful, while the data in green squares are.

As noted by the presence of significant shocks in the waveforms in Figure A.5(a), it is
very likely that nonlinear distortion is important in the propagation of this particular signal.
Based on the findings in Section A.2, we expect to find a significant number of points with
ILWSF values near or above 1000. This is the case for both histograms in Figure A.5. While the
regions with the greatest densities do not quite make it to 1000, they are within an order of
magnitude.

The histograms of the Mclnerny plots of noise waveforms at various locations in the

plane wave tube may be compared in order to better understand how Mclnerny plots evolve with
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nonlinear propagation. In order to simplify the explanations, all of the histograms of waveforms
measured in the plane wave tube presented below will be compared with the histograms of an
initially broadband Gaussian noise waveform with a characteristic frequency of 1500 Hz. The
waveforms analyzed were chosen to have ¢ values similar to those of the reference waveforms.
Following McInerny and Olgmen, only those points on the McInerny plot with values of Ap
greater than 0.3% of the maximum value of the waveform are included in the plots.

First, the reference set of histograms (initially 1500 Hz, broadband Gaussian noise) will
be discussed. Then, the effects of different characteristic frequencies will be discussed by
comparing histogram sets from initially 1000 Hz and from 2000 Hz broadband Gaussian noise
waveforms with the reference set. The effects of bandwidths are then analyzed by comparing
initially 1500 Hz narrowband Gaussian noise with reference set. Finally, initially 1500 Hz
broadband jet noise-like noise will be compared with the reference set to understand the effects

of different initial statistics.

Initially 1500 Hz, Broadband Gaussian Noise

Portions of the histograms of the McInerny plots of initially 1500 Hz broadband Gaussian
noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and (¢) 11.6 m
from the source are shown in Figure A.6. (It should be noted that the portions shown in plot (a)

and plot (e) are portions of the histograms shown in Figure A.4 and Figure A.5.)
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Figure A.6. Portions of the histograms of the MclInerny plots of initially 1500 Hz broadband
Gaussian noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and
(e) 11.6 m from the source.

The histograms shown in Figure A.6 illustrate much of the evolution of initially
broadband noise. Plot (a) shows that most of the pressure rises are located in one region centered
around (1, 2). The points surrounding this region appear to be in a somewhat triangular shape.
This triangular shape was found in the analysis of a numerical Gaussian signal. In plot (b) this
main region appears to be evolving. The portion of this region with larger values of Ap/prms
have obtained larger values of ILWSF, while the portion of the region with lower values of
Ap /prms have not changed their values of ILWSF very significantly. The points surrounding the
dense region in plot (b) still form a kind of triangular shape. The increase in ILWSF of the
points with larger values of Ap/p,,s may be explained by nonlinear distortion. The portions of
the initial waveform with larger pressure excursions will distort more rapidly than the portions
with small pressure excursions.

The transition from plot (b) to plot (c) is similar to the transition from plot (a) to plot (b).
The large dense region in plot (c) has continued to evolve, elongating as the points with larger

values of Ap/p,ms continue to gain even higher values of ILWSF, suggesting that these portions
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of the noise waveform are becoming significantly distorted. It appears that the main dense
region has bifurcated into two portions, one centered about (2, 3) and the other centered about (3,
27). In addition to the main dense region on the right hand side of the plot, another dense region
has started to form on the left hand side of the plot. It appears to be truncated by the threshold
introduced by McInerny and Olgmen, suggesting that this region is similar to the region centered
about (1072,1) in Figure A.4(b). The dense region developing on the left of plot (c) is likely
noise generated by some systematic error in the measurement.

By plot (d) the dense region on the left of the histogram has become the main dense
region in the histogram. However, the dense region on the right, which is more likely to
represent the evolution of the initial waveform, is still easily distinguishable. The dense region
on the right side of the histogram still looks like there are two portions of it, creating an inverted
“v” shape. The peak of the “v” shape is located near (3, 80). It is interesting that largest values
of ILWSF for the dense region on the right of plot (d) is approximately the same as the largest
values of the ILWSF for the dense region on the right of plot (c), as well as the largest ILWSF
values for the dense region on the right of plot (¢). While there is some interesting structure to
these right-hand dense regions, the overall shape does not vary much between plots (c), (d), and
(e), suggesting that the waveform has reached a more stable part of the propagation by 0 = 0.55.
The most likely case would be that the waveform has already passed some threshold similar to
the shock formation distance for sine waves. This conclusion is strengthened by the derivative
skewness estimates presented in Section 5.6. The derivative skewness estimates of noise follow

a similar trend of the initially sinusoidal signals, but progress at much faster in terms of o.

Characteristic Frequency Comparison
Comparing the histograms of Mclnerny plots of initially broadband Gaussian noise with
different characteristic frequencies can help us understand the importance of absorption on the

nonlinear propagation of noise.
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Figure A.7. Portions of the histograms of the McInerny plots of initially 1000 Hz broadband
Gaussian noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and
(e) 11.6 m from the source.

All of the trends that were seen in Figure A.6 are seen in the histograms in Figure A.7.
Although the dense region on the right of plot (c¢) of Figure A.7 does not seem to have bifurcated

yet, evidence of the region splitting is seen in plot (d) and plot (e).
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Figure A.8. Portions of the histograms of the MclInerny plots of initially 2000 Hz broadband
Gaussian noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (¢) 5.6 m, (d) 8.6 m, and
(e) 11.6 m from the source.

The general trends seen in Figure A.6 are present in the histograms of the higher
frequency waveforms shown in Figure A.8, but there are some interesting differences. For
example, the evolution of the dense region on the right seems to be progressing, but at a slower
rate (in terms of o) than the 1500 Hz case. Itisn’tuntil 0 = 1.21 (plot (e)) that the dense region
on the right begins to bifurcate, unless the dense region on the left in plots (¢), (d), and (e) is
actually a bifurcation of the dense region on the right. The fact that the dense region on the left
grows in a similar manner as the dense region on the left of Figure A.6 suggests that the dense
region on the left in Figure A.8 is noise associated with some systematic error in the

measurement.

Bandwidth Comparison
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Figure A.9. Portions of the histograms of the McInerny plots of initially 1500 Hz
narrowband Gaussian noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (c) 5.6 m, (d)
8.6 m, and (e) 11.6 m from the source.

Portions of the histograms of initially 1500 Hz narrowband Gaussian noise measured at
various locations in a plane wave tube are shown in Figure A.9. The first and most obvious
difference between the histograms in Figure A.6 and in Figure A.9 is that the dense region on the
right in the plots of Figure A.9 is much narrower than the dense regions on the right in the plots
of Figure A.6. In spite of the much narrower dense region, the dense regions on the right of the
plots in Figure A.9 undergo a similar evolution to the dense region on the right of the plots in
Figure A.6: The portions with larger values of Ap/p,ms tend to shift to larger values of ILWSF.
The dense region on the right also apparently bifurcates at or near ¢ = 0.54, as seen in plot (¢).
It seems that the stable part of the waveform propagation still has not started by o = 0.54, but

has started by ¢ = 0.84, as seen in plot (d) and plot (e).

Initial Statistics Comparison
Since jet noise has different statistical characteristics than Gaussian noise, we now see if
this has a noticeable effect on the histograms of the McInerny plots of noise with jet noise-like

statistics. Portions of these histograms are shown in Figure A.10. The histogram portions shown
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in Figure A.10 are remarkably similar to the histogram portions shown in Figure A.6. The dense
region in plot (a) shows the triangular shape associated with Gaussian noise, and is centered
about (2, 1). By 2.5 m (shown in plot (b)), the dense region has begun to evolve, with large
values of Ap /prms going to higher values of ILWSF. Note that the dense region on the right in
plot (c) appears to have bifurcated, that the same region in plot (d) has formed a sort of inverted
“v” shape, and that characteristics of the histogram portions shown in plots (c), (d), and (e) do
not vary much. All of these observations were also made of the histogram portions in Figure
A.6. These similarities suggest that the initial statistics do not have a significant effect on the

nonlinear propagation of broadband noise.
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Figure A.10. Portions of the histograms of the McInerny plots of initially 1500 Hz
broadband noise with jet noise-like statistics measured in a plane wave tube (a) 0.3 m, (b) 2.5
m, (c) 5.6 m, (d) 8.6 m, and (e) 11.6 m from the source.

The analyses presented above have shown that the evolution of Mclnerny plots are
similar for all noise waveforms in a plane wave tube. It does appear that the absorption and
dispersion associated with propagation in a plane wave tube affects the plots significantly, and
different phenomena may be manifested in Mclnerny plots for measure jet noise, which is not

planar, and does not propagate with boundary layer effects.
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A.4 Analysis of Jet Noise

The two-dimensional histograms of the McInerny plots of waveforms measured during
the intermediate and military engine conditions, measured on the ground array at 0 m, 10.4 m,

and 20.7 m downstream of the nozzle, are shown in Figure A.11 and Figure A.12.
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Figure A.11. Two-dimensional histograms of McInerny plots with IILWSF normalization of
noise waveforms measured on the ground array (a) 0 m, (b) 10.4 m, and (c) 20.7 m
downstream of the nozzle of an F22-A Raptor at intermediate engine condition. The red
dashed line represents the threshold suggested by McInerny and Ol¢men.

The histograms shown in Figure A.11 show the characteristic triangular shape that is
expected for broadband Gaussian noise. Compared to the scatter plots calculated when
discussing the tube data, the peaks of the histograms in Figure A.11 have low values of Ap/prms,
and there is only one peak per histogram. This suggests that there is a low frequency wave that

carries high frequency energy, which is the case, as seen in Figure 6.2.
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Figure A.12. Two-dimensional histograms of McInerny plots with ILWSF normalization of
noise waveforms measured on the ground array (a) 0 m, (b) 10.4 m, and (c) 20.7 m
downstream of the nozzle of an F22-A Raptor at military engine condition. The red dashed
line represents the threshold suggested by McInerny and Ol¢men.

The histograms for the military engine condition shown in Figure A.12 are very similar to
the histograms for the intermediate engine condition shown in Figure A.11. The dense regions
still retain the triangular shape, though they do seem to be a little more extended than the dense
regions of the histograms for the intermediate engine condition, especially the histogram in
Figure A.12(b).

As seen in the histograms analyzed for the plane wave tube experiments, the slight
extension of the dense region in the histograms in Figure A.12 likely implies nonlinear
propagation. One can estimate a value of o for the noise used to generate the histograms.
Comparing the histograms with the histograms from Section A.3, the noise measured during the
intermediate engine condition likely has a o value near zero, and the noise measured during the
military engine condition likely has a ¢ value near 0.1. This choice is quite subjective, and
therefore quite imprecise. It may be that histograms of Mclnerny plots will be more useful when
comparing waveforms with greater shock content than the waveforms considered in this

appendix.
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