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ABSTRACT 
 

Analyses of Nonlinearity Measures in High-Amplitude Sound Propagation 
 

Michael Boone Muhlestein 
Department of Physics and Astronomy, BYU 

Master of Science 
 
Military aircraft generate high-amplitude noise which can cause injury to attending personnel.  
Efforts to mitigate the effects of this noise require a detailed understanding of the propagation of 
the noise, which was shown previously to be nonlinear.  This thesis presents an analysis of high-
amplitude noise propagation, emphasizing measures used to quantify the importance of 
considering nonlinearity. 

 
Two measures of the importance of nonlinearity are compared.  These measures are the wave 
steepening factor and a skewness estimate.  The wave steepening factor is a measure of how 
much nonlinear waveform steepening has occurred in a waveform.  The skewness estimate is the 
skewness of the first time-derivatives of the pressure amplitudes, and can be considered a 
measure of the shock content in a waveform.  These two measures are analyzed analytically in 
terms of the Earnshaw, Fubini, Fay, and Khokhlov solutions to the Burgers equation.  In 
addition, an analysis of how discrete sampling affects the estimation of these quantities is also 
presented.  It is determined that the wave steepening factor is robust with respect to low 
sampling rates, but the skewness of the first time-derivatives of the pressure amplitudes is not 
robust, and requires very large sampling rates to be adequately estimated. 
 
Using numerical and experimental techniques, the two nonlinearity measures are applied to more 
complicated waveforms, such as Gaussian noise and noise with jet noise-like statistics.  It is 
found that the evolution of the two nonlinearity measures discussed above for noise signals is 
distinctive in various ways.  In particular, the skewness of the first time derivative of the pressure 
amplitudes suggest that noise waveforms experience nonlinear phenomena faster than initially 
sinusoidal signals, while the wave steepening factor suggests that they occur at approximately 
the same rate.  The measures are then applied to full-scale military aircraft.  By comparing these 
nonlinearity metrics with the results of the analytical, numerical, and experimental results found 
in this thesis, it is determined that nonlinearity is likely to be significant in the near field of a 
military aircraft at military and afterburner engine conditions. 
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Chapter 1  

 Introduction 

1.1 Background 

High-amplitude jet noise propagation has been of interest since the early 1950’s, [1] and 

the effects of nonlinearity in the propagation of such noise have been studied since the early 

1970’s. [2]  Recently, an interest in high-amplitude noise propagation has been renewed because 

of a concern of the impact of such noise on the environment.  In particular, the issues associated 

with hearing loss of technicians working near military aircraft have resulted in funding for noise 

propagation research.  The majority of studies of jet noise propagation have assumed the 

propagation of the noise is linear (e. g. Wall et al. [3]).  However, due to the high-amplitude 

nature of some jet noise, the validity of the linear approximation is questionable.  Since it is 

difficult to quantify the impact of nonlinear terms in propagation models, or the importance of 

nonlinearity, in certain scenarios – such as near-field jet noise propagation, due to the large 

amount of energy at high frequencies and the complicated nature of an extended, directional 

source – various measures of the importance of nonlinearity in arbitrary waveforms have been 

proposed.  This thesis presents the results of the effort to understand the interpretation of 

nonlinear measures for high-amplitude noise propagation with applications to jet noise. 
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1.2 Physical Phenomena 

In order to help facilitate an understanding of high-amplitude sound propagation, a brief, 

qualitative introduction to the physical phenomena associated with nonlinear propagation is 

presented in this section.  A more detailed explanation of these phenomena can be found in Ref. 

[4] and as part of Chapter 2. 

Certain physical phenomena associated with one-dimensional wave propagation are only 

predicted by propagation models that include second-order corrections or higher.  The 

phenomenon most pertinent to this thesis which requires second-order corrections to model is 

waveform steepening due to amplitude-dependent processes.  The two physical processes which 

drive the steepening of waveforms are convection and thermal variations. [4]  The net effect of 

these two processes causes the wave speed of a waveform to be amplitude dependent; higher 

amplitudes will propagate faster than lower amplitudes, leading to shorter pressure rise times in a 

waveform, hence the name waveform steepening.  This deformation of waveforms is manifested 

in the corresponding spectra by the interactions of acoustic energy with various frequencies.  For 

example, given a sound wave consisting of two different frequencies with significant acoustic 

energy, nonlinear propagation will transfer energy from these two frequencies to the sum and 

difference of the two frequencies. [5]  Further propagation will cause additional transfer.  In 

short, from a frequency-domain perspective, second-order corrections to propagation models 

cause all frequencies to interact with all other frequencies. 

If a waveform distorts sufficiently, portions of the waveform become nearly 

discontinuous and are referred to as acoustic shocks.  Because acoustic shocks have different 

propagation behaviors than the rest of a waveform (discussed below), the propagation prior to 

shock formation is called the pre-shock propagation regime.  Any waveform that propagates 

without linear losses will eventually form shocks, given a large enough propagation distance.  

The distance at which a waveform propagating without linear losses will generate shocks is 

called the shock formation distance.  As might be expected, the shock formation distance is 
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dependent upon the waveform and propagation geometry.  In particular, the shock formation 

distance is inversely proportional to the greatest time derivative of the waveform and the 

characteristic frequency, and takes different forms for planar propagation and for cylindrical and 

spherical spreading. [4]  Thus, larger amplitudes and higher frequencies will decrease the shock 

formation distance of a waveform, and geometric spreading will increase it.  Since random noise 

does not have a fixed greatest time derivative, the shock formation distance for different noise 

waveforms will in general be different. 

For propagation without linear losses, once a shock forms at the shock formation 

distance, the shock will continue to grow stronger.  After three shock formation distances, an 

initially sinusoidal signal propagating without linear losses will approach a sawtooth wave-like 

form.  For this reason, the propagation of an initially sinusoidal signal without linear losses from 

one to three shock formation distances is called the shock formation regime, and from three 

shock formation distances on is called the sawtooth regime. 

The propagation of shocks may be fully modeled using the Rankine-Hugoniot shock 

relations, which are based on conservation of mass, momentum, and energy. [4]  By making the 

assumptions that the shocks in a waveform are weak, energy dissipation is concentrated at the 

shocks, and shocks are true discontinuities (these assumptions are often valid for high-amplitude 

noise propagation; see Ref. [4] for a discussion of these assumptions as they relate to acoustic 

propagation), the Rankine-Hugoniot shock relations may be approximated using what is called 

weak shock theory.  Using weak shock theory, it can be shown that shocks propagate at the 

average of the sound speeds of the pressure just before and after the shock wave.  This means 

that shock waves can propagate at, above, or below the small-signal speed of sound.  An 

example of the amplitude-dependent sound speed is shown in Figure 1.1.  The variable  is a 

normalized pressure and  is a normalized retarded time of arrival, which means signals 

propagating at the small-signal sound speed will not change temporal location.  The distance 

from the source is denoted as , and  is a critical distance that will be discussed below.  The 
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The example of shock propagation shown in Figure 1.1 also demonstrates another 

important phenomenon associated with shock propagation, called shock coalescence. [8] [9]  

Shock coalescence occurs when one shock overtakes another shock.  The two shocks merge and 

propagate as a single shock in a manner distinct from either of the original shocks, thus losing 

information about the original two shocks.  In the example shown in Figure 1.1, the two positive 

shocks coalesce at the critical distance .  Because of shock coalescence and extra attenuation at 

a shock, it is difficult to obtain source characteristics from measurements far from a high-

amplitude noise source. 

The success of linear models in most applications of acoustics suggests that nonlinear 

processes, which, strictly speaking, are always present in acoustic wave propagation, may be 

dominated by counteracting processes.  The most obvious process that opposes nonlinear 

processes is that of absorption.  While nonlinear effects generate energy at sum and difference 

frequencies as sound propagates, atmospheric absorption due to thermoviscous effects and 

molecular relaxation will attenuate the sound energy, particularly at high frequencies resulting 

from sum-frequency generation.  If a nonlinear process transfers energy to the sum and 

difference frequencies more slowly than linear absorptive processes attenuate the energy, then 

linear processes dominate and that nonlinear process is not important. 

Another way linear processes may decrease the importance of including nonlinear terms 

in propagation models is geometric spreading.  Geometric spreading causes the amplitude of a 

signal to decrease, causing the nonlinear generation of energy at sum and difference frequencies 

to slow.  Spherical spreading causes a signal to decrease in amplitude inversely with distance and 

cylindrical spreading causes the amplitude to decrease inversely with the square root of distance.  

In general, the geometric spreading of a signal may be both frequency and propagation distance 

dependent. 

The importance of nonlinearity in the propagation of a signal relative to linear processes 

may be quantified for an initially sinusoidal signal with the Gol’dberg number. [4]  The 
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Gol’dberg number Γ is defined as a characteristic absorption length divided by a characteristic 

nonlinear distortion length, and may be interpreted as the relative importance of nonlinearity in 

propagation relative to absorptive processes.  For an initially sinusoidal wave, the characteristic 

absorption length is the inverse of the absorption coefficient at the frequency of the initial 

sinusoid and the characteristic nonlinear distortion length is the shock formation distance of the 

initial sinusoid.  Since the shock formation distance of an initial sinusoid is well known for 

planar, cylindrical, and spherical waves, the Gol’dberg number accounts for both the absorptive 

and geometrical effects.  A small absorption length and large shock formation distance will yield 

a Gol’dberg number much less than one, which indicates that absorptive processes dominate the 

propagation, and nonlinear processes may be ignored.  On the other hand, a large absorption 

length and small shock formation distance will yield a Gol’dberg number much greater than one, 

and indicates that nonlinearity will be very important in the propagation.  In the large Gol’dberg 

number limit, the propagation of a signal may be well approximated by neglecting linear 

absorption over a short distance relative to the absorption length.  The Gol’dberg number will be 

used extensively throughout this thesis. 

It should be noted that the Gol’dberg number was defined in light of nonlinear 

propagation with thermoviscous losses.  Therefore, Gol’dberg number values obtained using 

absorption coefficients based on relaxational or boundary layer phenomena must be carefully 

interpreted.  In particular, the effects of dispersion [6] [10] must be taken into account when 

considering real measured data. 

Since linear absorption is always present in real acoustic processes, linear processes will 

dominate the propagation of a waveform if the wave propagates far enough, regardless of the 

initial amplitude.  If a waveform at some distance from the source develops shocks significant 

enough to be considered sawtooth wave-like (thus having a sawtooth regime), once linear 

processes dominate, it enters what is called the old-age regime of propagation.  In the old-age 

regime the propagation is characterized by unsteepening of the waveform rather than steepening, 
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caused by the high absorption coefficients that are common to high frequencies.  For specific 

absorption processes, such as thermoviscous losses, the old-age absorption coefficients of the 

nonlinearly generated harmonics of an initial sinusoid will never return to the linear predictions.  

For this reason, Pernet coined the phrase “once nonlinear, always nonlinear”. [11] 

1.3 Nonlinearity in High-Amplitude Noise Propagation 

Nonlinearity has been suspected to be important in high-amplitude noise propagation 

since before 1973.  Pestorius and Blackstock [8] [9] showed both experimentally and 

computationally that initially 160 dB re 20μPa broadband Gaussian noise in a plane wave tube 

will generate significant shocks.  Based on the spectra of the waveforms with significant shock 

content that they measured, Pestorius and Blackstock suggested propagation nonlinearity as a 

possible explanation to anomalously low high-frequency attenuation of measured jet noise.  

Pestorius et al. [12] further showed that shocks would form in plane-wave-tube propagation of 

broadband noise regardless of the initial phase distribution in the initial broadband signal.  More 

recently, Gee et al. [13] studied outdoor, far field measurements of a large sound source capable 

of producing overall sound pressure levels of 155 dB re 20μPa at a few hundred hertz.  They 

showed the measured harmonics of an initial sinusoid as far as 1 km from the source followed a 

nonlinear propagation prediction significantly more closely than a linear propagation prediction.  

This test showed nonlinear effects are important given spherical spreading and large propagation 

distances, as well as in plane wave tubes. 

In addition to computational and experimental efforts to understand the importance of 

nonlinearity in high-amplitude noise propagation, various analytical descriptions of the evolution 

of broadband spectra during nonlinear propagation were found from the mid 1970’s to the early 

1990’s.  Rudenko and Soluyan [14] showed that in the pre-shock propagation regime the high 

frequencies of broadband noise spectra would trend as the inverse cube of frequency.  Scott [15] 
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showed that broadband noise which has developed significant shocks despite thermoviscous 

absorption will have high-frequency amplitudes that trend as the inverse of the square of 

frequency.  Crighton and Scott [16] developed several asymptotic forms of the Burgers equation.  

In 1991, Gurbatov et al. [17] showed by using an asymptotic form of the Burgers equation that 

the low-frequency amplitudes of broadband noise with significant shock content follow a 

frequency squared trend. 

Most of the studies dealing with the importance of nonlinearity in broadband noise have 

been constrained to idealized cases.  For example, with the exception of Gee et al., the studies 

discussed above are limited to one-dimensional problems, such as plane-wave tube 

measurements or plane-wave assumptions.  Furthermore, the analytical treatments are 

constrained by either thermoviscous absorption or no linear absorption.  While these 

idealizations are not valid when considering more realistic and complex situations such as jet 

noise propagation, they allow important insights into the nature of nonlinearity in broadband 

noise propagation which may be applied to real world problems. 

1.4 Nonlinearity in High-Amplitude Jet Noise 

Interest in the importance of nonlinearity in jet noise arose due to anomalously low high-

frequency attenuation rates of measured jet noise in the 1960’s.  In 1971 Pernet and Payne [2] 

first showed that nonlinearity may be part of the cause of the low attenuation rates.  During the 

rest of the 1970’s and early 1980’s, several papers dealing with noise measurements of model 

scale jets, such as Gallagher [18], and of full-scale jets, such as Morfey and Howell [19] and 

Morfey [20], were published with the perspective of finite-amplitude propagation effects.  These 

papers generally found that nonlinearity in high-amplitude jet noise propagation is important.  

However, by the mid 1980’s, the interest of the aeroacoustics community in the effects of 

nonlinearity on jet noise propagation had significantly waned. 
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Recently, there has been renewed funding and interest in the importance of nonlinearity 

in jet noise due to concerns about the environmental impact of jet noise, in particular the hearing 

loss of technicians working near military aircraft.  Several studies of full-scale military aircraft – 

in particular, Gee et al. has studied noise measurements of the F/A-18E engine, [21] the F-22A 

Raptor, [22] [23] and the F-35A Joint Strike Fighter [24] [25] – have shown nonlinearity is 

important in far-field high-amplitude jet noise propagation, and is important to some degree in 

near-field propagation.  While Gee et al. studied noise radiating from stationary jets, McInerny et 

al. [26] studied military aircraft flyover measurements and found similar results. 

In addition to full-scale jet measurements, a significant number of studies have been 

based on laboratory-scale jets. [27] [28] [29] [30]  There has been some debate as to the 

importance of nonlinearity in the propagation of noise radiating from laboratory-scale jets.  On 

the one hand, Gee et al. have shown preliminary results that suggest that nonlinearity is 

important in the noise radiated from Mach 2.0 unheated jets, [29] and that there is significant 

shock formation in the near-field propagation of unheated supersonic jets. [30]  On the other 

hand, Baars et al. have shown evidence that any nonlinearity in waveforms measured near a fully 

expanded Mach 3 jet is due to source phenomena, and not due to nonlinearity in propagation.  

However, both Gee et al. [30] and Baars et al. [28] state that the sampling rates used in their 

investigations may not have been sufficiently high to adequately resolve characteristics of 

nonlinearity. 

While the importance of nonlinearity in far-field measurements of full-scale jets has been 

shown conclusively, the degree of importance of nonlinearity in near-field propagation has not 

yet been established.  In an attempt to aid in establishing the importance of nonlinearity in these 

cases, this thesis provides an extended analysis of some statistical measures of the effects of 

nonlinearity. 
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1.5 Measures of Nonlinearity 

Several measures of the importance of nonlinearity in noise propagation have been 

defined.  Some of these measures are based on spectral methods, such as an indicator derived by 

Morfey and Howell, and some are based on time-domain statistical methods, such as skewness 

estimates.  In this section, we will discuss some of the history behind a subset of these measures. 

Morfey and Howell [19] derived a cross-spectral form of the Burgers equation which 

explicitly separates the impact of nonlinearity in a measureable quantity.  This quantity, written 

as , is the quadspectral density between the pressure and the squared pressure, and is 

considered an indicator of nonlinearity.  The quadspectral density has been used in several 

studies of jet noise propagation. [19] [23] [26] [27] [31]  While potentially a useful way of 

characterizing near-field jet noise propagation nonlinearity, it is beyond the scope of this thesis 

to consider the quadspectral density.  Another way the effect of nonlinearity may be visualized 

using spectra is to compare the asymptotic spectral slopes of the measured jet noise waveforms 

with the analytically derived solutions described above.  However, there are two problems with 

this method: First, the analytically derived solutions rely on planar waves propagating with 

thermoviscous absorption.  Since jet noise propagates with a more complicated atmospheric 

absorption and has a complicated geometry, these assumptions are not valid.  Secondly, it has 

been shown that jet noise close to the source can also have similar slopes to those described in 

Section 1.2. [32]  Thus, whether the spectral slopes are due to source phenomena or propagation 

phenomena becomes difficult to discern. 

Time-domain statistics may be more useful than the spectral methods of determining the 

role of nonlinearity in near-field jet noise propagation.  In 1982 Gallagher [18] defined a metric 

called the wave steepening factor.  The wave steepening factor is the absolute value of the mean 

negative pressure slope in a waveform divided by the mean positive pressure slope in the 

waveform, and may be interpreted as a measure of how much distortion has occurred in the 

waveform due to nonlinear propagation.  More on the details of the wave steepening factor will 
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be given in Chapter 2.  In addition to Gallagher, Baars et al. [28] have reported the wave 

steepening factor for various laboratory-scale jet noise waveforms.  However, there has not been 

a comprehensive analysis on the interpretation of the wave steepening factor to date.  For 

instance, Gallagher reported that a specific waveform had a wave steepening factor as low as 

0.48, but what this means is unknown.  The only comments Gallagher gives on the matter is that 

this value of wave steepening factor is lower than others, suggesting greater distortion.  One of 

the goals of this thesis is to provide a foundation of analysis to interpret the wave steepening 

factor. 

In addition to the wave steepening factor, Gallagher also presented the number of zero-

crossings in a waveform per unit time as a nonlinearity measure.  The idea behind this value was 

that as noise with significant shock content propagates, there would be some shock coalescence, 

which would decrease the number of zero crossings per unit time.  However, this metric requires 

significant shock content in the waveform to be useful.  In addition, not all noise waveforms 

have a zero crossing for every shock (such as rocket noise waveforms; see the waveforms in Ref. 

[33]), and if they do, the significant shocks are likely to be fairly evenly balanced across the zero 

pressure line, and will therefore not overtake each other.  For these reasons, the number of zero 

crossings in a waveform will not be considered in this thesis. 

Another time-domain measure that may be used to quantify the importance of 

nonlinearity in the propagation of a wave is the skewness, or the third central moment of a 

probability density function.  Skewness may be interpreted as a measure of the asymmetry in a 

probability density function, and as such, is zero for a Gaussian process.  In an attempt to 

quantify a perceived phenomenon called “crackle”, Ffowcs Williams [34] suggested the 

skewness of the pressure waveform would be a useful metric.  However, Gee et al. [35] showed 

that crackle is more likely associated with the shock content in a waveform, which is not 

necessarily associated with the time-domain statistics of a waveform.  McInerny and Ölçmen 

[33] suggested the statistics of the time derivative of a pressure waveform, rather than the 
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pressure waveform itself, will yield more pertinent information concerning shock content in the 

waveform.  In addition, Gee et al. [25] [30] showed the skewness of the pressure waveform is 

probably a source phenomenon, not a propagation phenomenon (though Crighton [36] did find 

that propagation of a waveform with dispersion does generate non-zero skewness of the pressure 

waveform), whereas skewness of the first time derivative of the pressure waveform is related to 

propagation phenomena.  Shepherd et al. [37] used numerical means to predict how various 

statistical measures, including the skewness of the pressure waveform and its first time 

derivative, evolve for an initially sinusoidal signal propagating without losses.  Muhlestein and 

Gee [38] used a plane wave tube to estimate how the skewness of propagated pressure 

waveforms and their time derivatives evolve, but their analysis is incomplete.  The skewness of a 

pressure waveform and the skewness of its first time derivative will be analyzed more carefully 

in this thesis. 

1.6 Thesis Overview 

The purpose of this thesis is to help establish an interpretation of various measures of the 

importance of nonlinearity in high-amplitude noise propagation.  In order to accomplish this 

goal, analytical, numerical, and experimental analyses of these nonlinearity measures are 

presented and compared with measured jet noise data.  

High-amplitude broadband noise propagation, such as the propagation of high-amplitude 

jet noise, can be extremely complicated, making it difficult to separate the propagation processes 

into distinguishable components.  One of the most complicating factors in jet noise propagation 

is the geometry of the noise propagation.  By using one-dimensional models and experiments 

(such as plane wave tube experiments [8] [31] [39] [40]), the effects of nonlinearity in noise 

propagation may be more easily discerned and then applied to more complicated systems like jet 
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noise.  The process of starting with simple models and working towards more complicated 

systems is the pattern used to organize this thesis. 

Various analytical models of one-dimensional sound propagation are presented in 

Chapter 2.  These propagation models are analyzed in terms of two measures of nonlinearity, the 

wave steepening factor and the derivative skewness, in Chapter 3.  In addition, an analysis of the 

impact of finite sampling rates on the estimation of these measures of nonlinearity is presented.  

Chapter 4 contains an analysis of these nonlinearity measures using a numerical one-dimensional 

propagation model for various limiting and realistic cases. 

The analytical and numerical analyses presented in Chapters 2 through 4 are used to 

interpret waveforms measured in a plane wave tube experiment in Chapter 5.  These 

comparisons lead to insight into the interpretation of actual values of the nonlinearity measures 

being considered.  Finally, the understanding obtained by the comparisons of the analytical, 

numerical, and experimental analyses are applied to interpreting measured full-scale jet noise 

waveforms in Chapter 6. 
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Chapter 2  

Benchmark Cases 

2.1 Introduction 

Many models have been developed to describe the nonlinear propagation of sound in 

fluids. [41]  The most notable model of one-dimensional propagation is the Burgers equation, [4] 

which describes the propagation of sound with thermoviscous absorption in addition to nonlinear 

effects, and may also be generalized to model arbitrary linear losses.  Several important solutions 

to the Burgers equation, namely the Earnshaw, Fubini, Fay, and Khokhlov solutions, shed 

insights into the various limiting regimes of interest in nonlinear propagation, specifically of jet 

noise propagation.  A derivation of the Burgers equation and most of the solutions presented here 

is found in Ref. [4] and Ref. [41], elements are repeated here for completeness.  These solutions 

are used in Chapter 3 to evaluate the applicability of nonlinearity metrics prior to their 

application to numerical examples and experimental data. 



2.2  Model Equations 15 

 

2.2 Model Equations 

2.2.1 Burgers Equation 

The simplest way to model the propagation of a planar wave including thermoviscous 

losses and nonlinear effects is the Burgers equation.  Following the notation of Ref. [4], the 

Burgers equation is written as 
 

 
2

, (2.1) 

where  is the acoustic pressure,  is the distance from the source,  is a constant associated with 

acoustic absorption by the propagation medium,  is small-signal sound speed, /  is 

the retarded time,  is the coefficient of nonlinearity, and  is the ambient propagation medium 

density.  The terms in Equation (2.1) represent, in order from left to right, lossless linear 

propagation, thermoviscous absorption, and quadratic nonlinear phenomena due to cumulative, 

oscillatory propagation. 

Insights into the nature of the Burgers equation can be gained by examining the specific 

case of a sinusoidal source signal 
 

 0, sin , (2.2) 

where  is the source amplitude and  is the angular frequency.  In addition, because of the 

variety of scales that exhibit nonlinear phenomena, it is helpful to define a nondimensional 

distance 
 

 ̅  (2.3) 

(which we will identify in Section 2.2.2.1 as the shock formation distance of an initially 

sinusoidal plane wave propagating without linear losses), a nondimensional pressure / , 

a nondimensional time , and a nondimensional distance / ̅.  The term 
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“nondimensional” will generally be neglected when describing these quantities.  Using these 

definitions, we may write the Burgers equation as 
 

 
2

̅ , (2.4) 

and the nondimensional source function is written 
 

 0, sin . (2.5) 

The term in Equation (2.4) inside the parentheses is the thermoviscous attenuation coefficient .  

If we further define Γ 1/ ̅, we may further simplify Equation (2.4) to 
 

 
1
Γ

. (2.6) 

The parameter Γ is known as the Gol’dberg number and can be qualitatively described as the 

relative importance of nonlinearity for a given source strength and propagation.  To illustrate this 

aspect mathematically, we define the absorption length 1/  so that the Gol’dberg number 

may be written as 
 

 Γ
̅
. (2.7) 

Thus, large values of Γ suggests that ̅ , and nonlinear effects happen on a shorter distance 

scale than absorptive effects.  Similarly, if ̅ then Γ 1 and the absorptive processes occur 

much more rapidly than nonlinear processes.  Thus, large values of the Gol’dberg number 

suggest that nonlinearity dominate absorptive phenomena, and small values of the Gol’dberg 

number suggest that linear absorption dominates nonlinearity in propagation. 

In the limit that Γ → ∞, nonlinear effects dominate thermoviscous losses (for arbitrary 

nondimensional source functions), and the inviscid Burgers equation is obtained: 
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 . (2.8) 

The inciscid Burgers equation is useful in understanding nonlinear processes over distances 

much less than  and for very high-amplitude signals, and will be the primary propagation 

model used in the Section 2.2.2.  The Burgers equation as found in Equation (2.6) will be the 

primary propagation model used in Section 2.2.3. 

2.2.2 Propagation without Linear Losses 

It is often difficult to separate the effects of nonlinearity in measured waveforms from 

linear losses such as thermoviscous absorption, molecular relaxation, and boundary layer effects.  

In order to gain a qualitative understanding of general nonlinear propagation effects and a 

quantitative understanding of very high-amplitude propagation phenomena, we consider 

phenomena of waves propagating without the effects of linear losses in this section. 

2.2.2.1 Earnshaw Solution to the Inviscid Burgers Equation 

The method of characteristics may be used to directly solve the inviscid Burgers equation 

in an implicit form.  This solution, called the Earnshaw solution, can be written 
 

 , (2.9) 

where  has been called the Earnshaw phase variable. [4]  The Earnshaw solution may be 

interpreted as distorting the times of arrival of the initial waveform, represented by the Earnshaw 

phase variable, but not modifying the pressure values, .  This interpretation may also be 

seen by writing the pressure waveform at a specific location parametrically.  For instance, at the 

source ( 0), the pressure waveform may be described as , , where the first value is 

the time of arrival and the second value is the pressure at the time of arrival.  At a normalized 

distance  from the source, the waveform may be described as , .  If we define 

 as the time of arrival of the pressure , then we find that 
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 . (2.10) 

Equation (2.10) describes the arrival times of the pressure initially at  propagated to  as 

long as the times of arrival monotonically increase with increasing .  When this is not the case, 

a shock has formed in the waveform and the Earnshaw solution no longer independently 

describes the propagation; in such situations more equations are needed to model the shock 

propagation. [4]  For the case of the initially sinusoidal signal, described in Equation (2.5), the 

distance at which shocks first form is 1, which corresponds to ̅.  For this reason, ̅ is 

known as the shock formation distance. 

Of particular use in Chapter 3 is the time-derivative of the pressure waveform at a given 

location written parametrically.  In order to determine the parametric form of the time-derivative, 

consider two points of the pressure waveform, 
 

 ,  (2.11) 

and 
 

 ,  (2.12) 

where .  We define Δ  and Δ .  At different values of  

Δ  does not vary, but Δ  does vary.  In particular, 
 

 Δ  (2.13) 

 Δ Δ Δ 1
Δ
Δ

. (2.14) 

Then we may write the time-derivative that arrives at /2 as 
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Δ
Δ

1

1
Δ
Δ

Δ
Δ

. (2.15) 

In the limit that → , the ratio of differences becomes a derivative: 
 

 
1

1
. (2.16) 

Since  and  were arbitrary, Equation (2.16) is true for any .  Thus, the parametric 

description of the time-derivative of the pressure waveform is 
 

 ,
1

1
. (2.17) 

For the particular case sin , we find that Equation (2.17) can be written as 
 

 sin ,
cos

1 cos
. (2.18) 

The both terms of the parameterization of the time-derivative of the pressure waveform 

given in Equation (2.18) are dependent on , despite the fact that only the left-hand term of the 

parameterization of the pressure waveform itself is dependent on .  The range dependent time-

derivative amplitude is due to the fact that modifying times of arrival also modifies the 

instantaneous pressure slope. 

2.2.2.2 Fubini Solution 

While the Earnshaw solution is useful in certain circumstances (such as computational 

schemes and calculating WSF values, as in Section 3.2.1), it is sometimes desirable to have an 

explicit function to describe the propagation of a waveform without linear losses.  For example, 

it is much easier to find the mean pressure of a portion of a waveform with an explicit expression 
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of waveform than with a parametric expression.  One way to find an explicit function is to 

eliminate the Earnshaw phase variable from the Earnshaw solution.  While this process may not 

be possible in general, an explicit form of an initially sinusoidal signal propagating without 

linear losses prior to the formation of shocks was found, and is called the Fubini solution. [4]  

The Fubini solution is written as the infinite series 
 

 
2

sin . (2.19) 

Just as the Earnshaw solution is only valid up to the shock formation distance, the Fubini 

solution is only valid for the pre-shock propagation regime, i.e. 1.  The time derivative of 

the Fubini solution is given as 
 

 
2

cos . (2.20) 

2.2.2.3 Blackstock Bridging Function 

Although the Earnshaw and Fubini solutions are limited to distances less than or equal to 

a shock formation distance, it is beneficial to consider an analytic solution that is valid for all .  

For the case of an initially sinusoidal plane wave propagating without linear losses, a Fourier 

series representation of the waveform evolution that is valid for all  was introduced by 

Blackstock. [42]    The Blackstock bridging function is given as 
 

 sin , (2.21) 

where 
 

 
2

Φ cos Φ sinΦ Φ . (2.22) 
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The variable Φ  is associated with the presence of a shock, and is the solution to the 

transcendental equation 
 

 Φ sinΦ , 0 Φ . (2.23) 

As the name implies, the Blackstock bridging function connects two simpler analytical solutions.  

For 1 the Blackstock bridging function reduces to the Fubini solution, and for 3 the 

Blackstock bridging function may be approximated by a sawtooth wave, of the form 
 

 
2

1
1
sin . (2.24) 

Equation (2.24) may also be written as 
 

 
2
1

floor
2 2

1
2
. (2.25) 

The Blackstock bridging function is particularly useful when comparing harmonics, since 

the Fourier series representation allows for the harmonic amplitudes to be obtained by 

inspection. 

2.2.2.4 Generalized Shock Formation Distance 

While the regime over which each of the analytical solutions described above (Fubini, 

Earnshaw, and Blackstock bridging function) is valid is based on the shock formation distance, it 

is important to determine good representations of the shock formation distance for other types of 

waves.  As mentioned above, the shock formation distance defined in Equation (2.3) is only valid 

for initially sinusoidal plane waves propagating without linear losses.  For plane waves that 

propagate without linear losses, the general shock formation distance is given as 
 

 ̅ , (2.26) 
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where  is the greatest first time-derivative value in the source pressure waveform. [4]  If we 

assume the source waveform is sinusoidal, then we find that , and Equation (2.3) is 

obtained. 

The question of how to characterize nonlinear distortion in noise waveforms is a non-

trivial one.  Due to the fact that each waveform is inherently unique, two noise waveforms with 

similar statistics may have significantly different shock formation distances.  One way to 

accommodate this is to define a characteristic nonlinear distortion length to be used in place of 

the shock formation distance.  In this thesis, we will use 
 

 ̅
2 √2

 (2.27) 

as the characteristic nonlinear distortion length for noise, where  is a characteristic frequency 

and  is the root-mean-square pressure (or pressure standard deviation) of the waveform.  

Equation (2.27) is very similar to the nonlinear distortion length defined by Gubatov and 

Rudenko, [43] with the difference being the inclusion of the factor of √2.  The inclusion of this 

factor gives the characteristic nonlinear distortion length the property that it will reduce to the 

shock formation distance of an initially sinusoidal plane wave in the limit that the noise 

bandwidth goes to zero. 

In general, the shock formation distance for waves propagating with arbitrary diffraction 

is not known.  However, the shock formation distances for spherically and cylindrically 

spreading waves propagating without linear losses are known, in addition to planar waves.  The 

spherical and cylindrical shock formation distances have been found in terms of the planar shock 

formation distance found in Equation (2.26).  The spherical shock formation distance is given as 
 

 ̅ ̅/ , (2.28) 
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where  is a distance from the source where the waveform is known, the positive sign indicates 

diverging waves, the negative sign indicates converging waves, and ̅ is the shock formation 

distance defined in Equation (2.26) (or, for noise, the nonlinear distortion length defined in 

Equation (2.27)) of the pressure wave at .  For reference in Chapter 4, we will define a 

nondimensional radius from a spherical source 
 

 
̅
, (2.29) 

where  is the distance from the source. 

2.2.3 Propagation with Thermoviscous Losses 

While much can be learned about very high-amplitude sound propagation by considering 

the previous cases that exclude linear losses, the next step is to see what parallels can be formed 

when linear losses are included.   

2.2.3.1 Linear Dissipative Processes 

Due to the availability of analytical solutions to propagation according to the Burgers 

equation in Equation (2.1), such as the Mendousse, Fay, and Khokhlov solutions, the effects of 

thermoviscous absorption on propagating waves are better known than the other absorptive 

effects.  However, realistic atmospheric absorption models include the effects of molecular 

relaxation for both oxygen and nitrogen, and propagation in ducts also includes boundary layer 

losses. 

While the physical phenomena associated with the various linear absorptive processes are 

unique, they may each be modeled fairly simply in the frequency domain.  The absorption 

coefficient associated with thermoviscous absorption is proportional to the square of the 

frequency, and the absorption coefficient associated with boundary layer losses is proportional to 

the square root of frequency.  The absorption coefficients associated with molecular relaxation 

are of the form 
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 , (2.30) 

where  and  are constants associated with the specific molecule being modeled.  Absorption 

due to any combination of absorptive processes is modeled by an absorption coefficient which is 

the sum of the constituent absorption coefficients.  For example, the absorption coefficient 

associated with plane wave tube propagation includes thermoviscous and boundary layer losses, 

in addition to primarily oxygen and nitrogen related molecular relaxation.  Thus, the plane wave 

tube absorption coefficient would be 
 

 , , . (2.31) 

It should be noted that the atmospheric absorption coefficient is the same as the plane wave tube 

absorption coefficient if the boundary layer losses are neglected. 

In addition to absorptive effects, the boundary layer and relaxational losses include 

dispersion, or a frequency dependent sound speed.  Boundary layer dispersion scales with the 

square root of frequency, the same as boundary layer absorption.  The dispersion due to 

molecular relaxation is directly proportional to the frequency.  Dispersive phenomena are 

accounted for by the imaginary part of the absorption coefficients. 

A plot of the real part of the absorption coefficients for thermoviscous, boundary layer, 

and oxygen and nitrogen molecular relaxation losses, as well as atmospheric and plane wave 

tube absorption is shown in Figure 2.1.  The atmospheric conditions used to generate the plot are 

given in the title of the plot, and  is the radius of the plane wave tube of circular cross-section 

(for the boundary layer losses).  Notice that the absorption coefficients associated with boundary 

layer losses are significantly larger than any of the other absorptive processes until near 10 kHz, 

and is the largest contributor to plane wave tube absorption until 140 kHz, after which 

thermoviscous absorption dominates. 
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assuming that there is a uniform absorption coefficient for all frequencies.  Since a waveform 

that decays uniformly over all frequencies may still generate true discontinuities, the lossy shock 

formation distance may still be precisely defined.  The distance at which such a wave will 

generate a shock is 
 

 ̅
1
ln

1
1 ̅

, (2.32) 

where  is the absorption coefficient of the fundamental frequency and ̅ is the shock formation 

distance of the waveform assuming no linear losses.  In terms of / ̅ and the Gol’dberg 

number Γ 1/ ̅, the “lossy” shock formation distance may be written 
 

 | ̅ Γ ln
1

1 1/Γ
. (2.33) 

Note that the Gol’dberg number is usually defined for the thermoviscous absorption coefficient, 

whereas Equation (2.33) makes use of a uniform absorption coefficient.  According to Equation 

(2.33), shocks do not form for Γ 1, and for Γ 1, a shock forms at infinity.  Under the 

assumption of a uniform absorption coefficient for all frequencies that is behind Equation (2.33) 

the lowest starting amplitude of an initially 1500 Hz sinusoidal plane wave in air that will 

generate shocks is about 109 dB re 20μPa at an ambient pressure of 1 atm.  Since realistic 

absorption processes, such as atmospheric or thermoviscous absorption, predict that absorption 

will increase for higher frequencies, Equation (2.33) will underestimate the distance at which 

shocks will form in realistic cases. 

For large Γ, the “lossy” shock formation distance may be approximated as 
 

 | ̅ 1
1
2Γ
. (2.34) 

The amplitudes and characteristic frequencies associated with jet noise suggest Γ values 

between 10 and 100, [24] which would imply a “lossy” shock formation distance (assuming 
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planar propagation) between 1.005 and 1.05 times the shock formation distance assuming 

propagation with no linear losses.  Since this correction factor is less than 5% of the lossless 

shock formation distance, all of the analyses presented in this thesis will make reference to the 

lossless shock formation distance or characteristic nonlinear distortion length.  It should be 

noted, however, that since this theory was based on an absorption coefficient that significantly 

underestimates the high-frequency absorption, it is likely that these “lossy” shock formation 

distances are also underestimated. 

2.2.3.3 Mendousse Solution to the Burgers Equation 

Returning to the Burgers equation as it appears in Equation (2.6), which includes 

thermoviscous absorption, a general solution for an initially sinusoidal wave is the Mendousse 

solution, written as 
 

 
4
Γ

∑ 1 Γ/2 / sin

Γ/2 2∑ 1 Γ/2 / cos
, (2.35) 

where  is the  modified Bessel function of the first kind.  The Mendousse solution is only 

limited to positive values of , meaning that the entire propagation of a waveform undergoing 

thermoviscous absorption may be described by the Mendousse solution.  However, the 

Mendousse solution will not be considered directly in this thesis, due to the difficulty of working 

with a solution in terms of a ratio of infinite series.  Because the Mendousse solution is 

impractical for the present work, two approximations of it are instead considered that are not as 

general but which shed light on important propagation regimes. 

2.2.3.4 Fay Solution 

For Γ ≫ 1 and 3 – that is, for waveforms with very large amplitudes undergoing 

thermoviscous absorption in the sawtooth regime of propagation – the Mendousse solution may 

be approximated by 
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2
Γ

sin

sinh 1
Γ

, (2.36) 

which is called the Fay solution.   

Due to its recurring appearance in the derivations in this chapter, we will define the 

variable 
 

 
1

Γ
. (2.37) 

Since /Γ / ̅ / 1/ ̅ , we will call  a nondimensional absorption distance, or just 

an absorption distance.  In this thesis, the absorption distance will always be limited by the 

constraint 3, such that ≪ 1 implies very strong shocks present in the waveform.  Values 

of the absorption distance much larger than one indicate the propagation regime known as “old-

age”, where shocks have unsteepened significantly. 

The Fay solution in Equation (2.37) may be written in terms of the absorption distance as 
 

 
2
Γ

sin
sinh

, (2.38) 

The time-derivative of the Fay solution is 
 

 
2
Γ

cos
sinh

. (2.39) 

In the limit that  becomes large, the Fay solution may be approximated as 
 

 
4
Γ

sin , (2.40) 

With a time-derivative of 
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4
Γ

cos . (2.41) 

The Fay solution and its asymptotic form provide a way to consider the propagation of 

initially sinusoidal plane waves through the sawtooth and old-age propagation regimes that is 

easier than the Mendousse solution.  However, the Fay solution is still written in terms of an 

infinite series.   It is difficult to analyze certain nonlinearity measures, such as the wave 

steepening factor, of waveforms expressed as infinite series. 

2.2.3.5 Khokhlov Solution 

By approximating an integral early in the derivation of the Mendousse solution with the 

saddle-point method, another solution to the Burgers equation may be found: 
 

 
1

1
tanh

2
,  (2.42) 

which is called the Khokhlov solution.  The Khokhlov solution is only valid for 3 Γ 

( 1, for large Γ; 0.4 1.1 for Γ 10), and describes only one cycle of the waveform.  

It is important to note that the range of applicable distances corresponds to only the sawtooth 

propagation regime.  However, the Khokhlov solution is not represented by an infinite series, 

making it easier to manipulate analytically than the Fay solution.  The time-derivative of the 

Khokhlov solution is 
 

 
1

1
1

2
tanh

2
. (2.43) 

2.3 Summary 

The Burgers equation describes the one-dimensional propagation of pressure waves 

including thermoviscous absorption and quadratic nonlinear phenomena.  When absorption is 
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negligible, the evolution of an initially sinusoidal wave may be described by the Earnshaw and 

Fubini solutions prior to shock formation, called the pre-shock propagation regime.  Once shocks 

form the Earnshaw and Fubini solutions cease to be complete, and other mathematical relations 

must be incorporated.  The Blackstock bridging function may be used to model the propagation 

of an initially sinusoidal signal without linear losses (such as thermoviscous losses) to any 

distance from the source, and is particularly helpful in the sawtooth propagation regime (starting 

about three times the shock formation distance from the source). 

For initially sinusoidal signals propagating with thermoviscous absorption, the 

Mendousse solution may be used to describe the evolution of the wave to any distance from the 

source.  However, due to the complicated nature of the Mendousse solution, approximations are 

useful.  For propagation from the sawtooth regime (starting about three times the shock 

formation distance from the source), the Fay solution is a good approximation.  Another 

approximation that is sometimes useful is the Khokhlov solution, which is only valid between 

the distances that the sawtooth regime starts and that absorption begins to dominate again.  The 

region where linear absorption dominates is called the old-age propagation regime.  Thus, the 

Khokhlov solution is not valid in the old-age propagation regime, and either the Fay or 

Mendousse solution must be used to model the evolution of the waveform.
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Chapter 3  

Time-Domain Measures of Nonlinearity 

3.1 Introduction 

Many techniques for studying propagating noise fields must assume that the noise 

propagates in a linear fashion.  This linear assumption is not strictly true, and is not likely to be a 

good approximation for high-amplitude noise propagation.  In this chapter, two metrics for 

characterizing the importance of nonlinearity in jet noise are defined and their uses and 

limitations are discussed.  Specifically, the wave steepening factor and skewness estimates are 

explored.  Then several analytical forms of these measures, derived from the limiting cases 

described in Chapter 2, are presented.  Finally, a discussion of the effects of discrete sampling of 

continuous waveforms on each of the measures of nonlinearity is presented. 

3.1.1 Wave Steepening Factor 

In 1982, Gallagher [18] defined the wave steepening factor (WSF) as the ratio of the 

magnitude of the average negative pressure time-derivative to the average positive pressure time-

derivative, or in mathematical form,  
 

 
| |

 (3.1) 
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where ∙  is the expectation value (mean) of the argument,  represents the negative pressure 

time-derivatives, and  represents the positive pressure time-derivatives.  The WSF is a single-

number characterization of a waveform, but also benefits from the fact that classification of and 

knowledge of the location of shocks in the waveform is not necessary.  However, as with all 

single-number characterizations, the WSF does not include details concerning individual shocks 

or other pressure rises.  In particular, the WSF is not sensitive to whether waveforms contain 

infrequent shocks (as is often the case for skewed waveforms such as the measured waveforms 

of jet noise; skewness will be discussed in Section 3.1.2) or if a waveform has no shocks, but 

does have significant waveform distortion due to nonlinear effects (such as a nonlinearly 

propagated sine wave before the shock formation distance).  The WSF was discussed in the study 

of noise radiating from model-scale jets with low to moderate Reynolds number by Gallagher 

[18] and, more recently, reported by Baars et al. [28] in a study of noise radiating from model-

scale jets.  Both Gallagher and Baars et al. considered the WSF of a given waveform in a 

qualitative manner and did not give a physical interpretation of specific values, except to note 

that a sawtooth function has a WSF value of zero and that both sine waves and Gaussian noise 

have WSF values of unity. 

3.1.2 Derivative Skewness 

The skewness of a random variable  with mean value of zero, denoted in this report as 

Sk , is a measure of the asymmetry of the statistical distribution of .  The skewness is defined 

as  
 

 Sk . (3.2) 

It should be noted that the skewness of a sine wave and of noise with Gaussian statistics have 

skewness values of identically zero, as do the derivatives of these waveforms. 
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McInerny et al. [33] [46] [47] and Gee et al. [13] have suggested that the skewness of the 

first time-derivative of the pressure amplitudes (hereafter referred to as the derivative skewness) 

may be a more appropriate measure than the skewness of the pressure waveform (which was 

suggested by Ffowcs Williams et al. [34]) to characterize crackle, since crackle has been 

associated with acoustic shocks which likely develop via nonlinear propagation distortion of 

waveforms. [35]  Shepherd et al. [37] used numerical means to predict the evolution of the 

derivative skewness for an initially sinusoidal wave propagating without linear losses.  

Muhlestein and Gee [38] estimated the derivative skewness for waveforms measured in a plane 

wave tube, and found similar evolution to that found by Shepherd et al. [37]  These studies will 

be considered in more depth later.  However, no analysis of the effects of finite sampling rates on 

the estimation of the pressure or derivative skewness (or the WSF) has been published to date. 

3.2 Analytical Treatment of Benchmark Cases 

Notwithstanding the fact that some limiting cases have been calculated, the interpretation 

of the two measures defined in Section 3.1 is not well understood.  For example, Gallagher [18] 

stated that the WSF is “approximately unity for a pure sinusoidal wave, and … [is] close to zero 

for a pure N-type waveform”, but no mention is made of the WSF evolution for an initially 

sinusoidal wave as it distorts and generates shocks.  (It should be noted that Baars et al. stated 

that the WSF of a sinusoid is identically one, and is identically zero for a sawtooth wave, which 

is a pure N-type waveform.)  The lack of interpretation is similar for skewness estimates of 

waveforms after shocks form. 

In this section, measures of nonlinearity for several benchmark cases are studied 

analytically and discussed with an emphasis on how the measures evolve over propagation.  The 

WSF and skewness estimates of the planar, initially sinusoidal signal with and without 
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thermoviscous losses are calculated using the solutions discussed in Chapter 2.  Then the effects 

of finite sampling rates on the estimation of these nonlinearity metrics are discussed. 

3.2.1 Wave Steepening Factor 

3.2.1.1 Earnshaw Solution 

In order to calculate the wave steepening factor (WSF) of a waveform the times of arrival 

of the pressure extrema must be known.  For the Earnshaw solution assuming a sinusoidal source 

signal, the exact times of arrival of these extrema at 0 are /2, for all ∈ , and 

the pressure maxima arrive at 2 /2	and the pressure minima arrive at 2 /

2.  Due to normalization, the pressure maxima have a value of one and the pressure minima have 

a value of negative one.  Then, based on Equation (2.10), we find that the time of arrival of the 

 pressure maximum at a distance of  is 
 

 Θ , 2
2

, (3.3) 

and the time of arrival of the  pressure minimum at a distance of  is 
 

 Θ , 2
2

. (3.4) 

Due to the periodicity of the initial sine wave, calculating the WSF of a single period will 

accurately represent the entire waveform.  Therefore, we consider the waveform between Θ ,  

and Θ , , which includes Θ , .  The expectation value of the positive slopes is then the mean 

slope between Θ ,  and Θ , , and the expectation value of the negative slopes is the mean 

slope between Θ ,  and Θ , . 

The average slope of a function  between two points, say,  and , can be written as 
 

 
1

, (3.5) 
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where the final equality is a result of the fundamental theorem of calculus.  Therefore, we find 

that 
 

 
Θ , Θ ,

Θ , Θ ,

2
2
, (3.6) 

and 
 

 
Θ , Θ ,

Θ , Θ ,

2
2
. (3.7) 

Thus, we find that the WSF based on the Earnshaw solution is  
 

 WSF

2
2
2
2

2
2

,
2
. (3.8) 

For values of /2, we note that the extrema occur almost simultaneously.  In fact, we could 

write 
 

 lim
→

Δ /2 Δ /2
Δ

, (3.9) 

which diverges.  However,  can be shown to be finite, which indicates that the WSF for 

/2 is zero.  Thus we may write 
 

 WSF

2
2 2

0
2

 (3.10) 

Note the importance of the value /2 in Equation (3.10).  Since the maxima and minima in the 

initial waveform always have a time difference of , we may interpret the distance /2 as 

the distance at which the maxima and minima collocate. 
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It is interesting to note that the amplitudes of the maxima and minima cancelled in the 

calculation of the WSF for the Earnshaw solution.  In general, for periodic, zero-mean functions 

with a single peak and trough per period, this will always happen, since 
 

 
Θ , Θ ,

Θ , Θ ,
 (3.11) 

for all .  Thus, the WSF of a periodic, zero-mean function is 
 

 WSF
Θ , Θ ,

Θ , Θ ,
 (3.12) 

Which is just the time it takes for the pressure to go from a minimum to the next maximum (or 

the rise time) over the time it takes for the pressure to go from a maximum to the next minimum 

(or the fall time). 

In order to benchmark Equation (3.8), we will compare it with the Blackstock bridging 

function, defined in Section 2.2.2.3. Since the Blackstock bridging function is expressed as an 

infinite Fourier series which diverges for 1, the theory and analytical formulation are not 

expected to match for values of  close to or above unity. 

The calculations of the analytic WSF based on the Earnshaw solution and the WSF based 

on the Blackstock bridging function are shown in Figure 3.1, below.  The Blackstock bridging 

function was calculated with Equation (2.21), using 10,000 terms, and a single period was 

calculated using 10,000 samples. 
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past the shock formation distance) would also be infinite.  However, since the shock also has 

zero temporal extent (it starts and ends at the same time), the effect of the shock on the mean 

positive slope is somewhat reduced.  All positive slopes other than the shock are gone for 

/2, and so the WSF becomes zero in this region.  It should be noted that finite sampling 

rates will force the estimate of the rise time of the shock to be positive.  Therefore, the estimate 

of the WSF of a discretely sampled waveform will never be zero. 

3.2.1.2 Khokhlov Solution 

The Khokhlov solution is a solution to the Burgers equation given in Equation (2.6), 

which includes the effects of thermoviscous absorption, given a sinusoidal source signal, and is 

valid for 3 Γ, or, in physical distances, 3 ̅ .  The reason that the Khokhlov 

solution is used in this section rather than the Fay solution, which is valid for all 3 is that, as 

will be seen below, the calculation of the WSF requires knowledge of the pressure extrema in a 

waveform.  Since the Fay solution is written in terms of a Fourier series, it is not as conducive to 

finding the pressure extrema as the Khokhlov solution. 

As shown in Section 3.2.1.1 the WSF of a periodic, zero-mean function can be 

determined by knowing the rise and fall times of the function.  Since the Khokhlov solution, 

presented in Section 2.2.3.5, describes a periodic, zero-mean waveform, the WSF may be 

obtained once the rise and fall times are found.  Note that the difference between the time of 

arrival of the pressure extrema in Equation (2.42) is the rise time.  These extrema may be found 

by setting the time-derivative of the pressure waveform (Equation (2.43)) to zero and solving for 

.  In particular, 
 

 
1

1
1 1 tanh

2 2
1

0 (3.13) 

 ⇒ tanh
2

1
2

 (3.14) 
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 ⇒
2

tanh 1
2 2

tanh 1
2

. (3.15) 

Thus, we obtain the times of arrival of the two extrema: 
 

 Θ
2

tanh 1
2

 (3.16) 

and  
 

 Θ
2

tanh 1
2

. (3.17) 

Thus, the rise time is 
 

 Θ Θ
4

tanh 1
2

. (3.18) 

By using hyperbolic trigonometric identities, it can be shown that Equation (3.18) may be written 
 

 Θ Θ
4

cosh
2

, (3.19) 

which was the form presented by Blackstock. [48]  Since the waveform is 2  periodic, the fall 

time is 
 

 2 Θ Θ 2 1
2

cosh
2

. (3.20) 

The WSF can then be written (see Section 3.2.1.1) as 
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Fay solution are more likely to be correct for 2Γ.  However, the fact that the WSF of the 

Khokhlov solution is analytical and does not rely on a finite sampling rate suggests that it is 

important. 

3.2.2 Derivative Skewness 

An analytical representation of the WSF of the Fay solution cannot be given because 

there is not an exact form of the WSF for an arbitrary Fourier series.  On the other hand 

derivative skewness, which may give details about the shock content of a waveform, have an 

exact form for a waveform described in terms of a Fourier series.  Since there are several Fourier 

series of interest in nonlinear acoustics – for example, the Fubini solution, Mendousse solution, 

and Fay solution – the derivation of the skewness for an arbitrary Fourier series will be presented 

first.  The derivative skewness of the Fubini and Earnshaw solutions, which assume no linear 

losses, are then derived, followed by a derivation of the derivative skewness of the Fay solution, 

which assumes propagation with thermoviscous losses past the beginning of the sawtooth 

propagation regime. 

3.2.2.1 Skewness of a Fourier Series 

We seek the skewness of a 2 -periodic function  that may be written as 
 

 cos sin , (3.23) 

where  is the cosine summation and  is the sine summation.  By Equation (3.2) we know that 

the skewness may be written in terms of the expectation values of  and .  Due to 

periodicity, the expectation value of the cube of Equation (3.23) may be written 
 

 
1
2

 (3.24) 
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1
2

3 3 . (3.25) 

Since  is an odd function, the second and fourth integrals are identically zero.  The first integral 

is 
 

 cos  (3.26) 

 cos cos cos  (3.27) 

 cos cos cos . (3.28) 

By repeated use of the trigonometric identity 
 

 cos cos
cos

2
cos

2
, (3.29) 

we find that the integrand in Equation (3.28) becomes 
 

 
cos cos cos

1
4

cos cos
cos cos

. 
(3.30) 

Each term in Equation (3.30) will integrate to zero unless their individual triple indices , ,  

combine to zero, in which case, it will integrate to 2 .  These conditions include 
 

 

0
0
0
0

. (3.31) 

Since , , 0, the first condition in Equation (3.31) will never occur.  Notice that the 

remaining three conditions may be written 
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 . (3.32) 

These three conditions may be written in the triple summation in terms of a Kronecker delta, 
 

 ,
1
0

, (3.33) 

as 
 

 

2 ,

,

, . 

(3.34) 

By rearranging the arbitrary indices , , and , it can be shown that each of the triple 

summations in Equation (3.34) are equal to each other.  Therefore, the first integral of Equation 

(3.25) may be written 
 

 
3
2 , . (3.35) 

The third integral of Equation (3.25) may be found using similar logic.  This integral is 

written 
 

 cos sin  (3.36) 
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 cos sin sin . (3.37) 

Noting that  
 

 sin sin
1
2
cos cos , (3.38) 

we find that the integrand of Equation (3.37) may be written 
 

 
1
4

cos cos
cos cos

. (3.39) 

Applying the same reasoning used in obtaining Equation (3.34), we find that  
 

 

2 ,

,

, . 

(3.40) 

By rearranging the arbitrary indices, it can be shown that the first and second triple summations 

are identical. Then, the third integral in Equation (3.40) may be written 
 

 

2
2 ,

∞

1

∞

1

∞

1

,

∞

1

∞

1

∞

1

. 

(3.41) 

Thus the expectation value of  is 
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3
4 ,

2 ,

, . 

(3.42) 

In the special case that 0 for all , the Equation (3.42) reduces to 
 

 
3
4 , . (3.43) 

 The expectation value of  may be found as well.  Again, due to periodicity, we may 

write 
 

 
1
2

1
2

2 . (3.44) 

Since  is an odd function, this term integrates to zero.  The remaining terms yield 
 

 
1
2

cos sin  (3.45) 

 

1
2

cos cos

sin sin  

(3.46) 
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1
2

cos cos

sin sin  

(3.47) 

 
1
2

. (3.48) 

The expectation value may take the form of Equation (3.48) due to the orthogonality of the 

integrand of Equation (3.47).  The expectation value of  may then be simplified to  
 

 
1
2

. (3.49) 

Again, in the special case that 0 for all , Equation (3.49) reduces to 
 

 
1
2

. (3.50) 

Using Equations (3.42) and (3.49) with Equation (3.2), we find that the skewness of  

is 
 

 

Sk

3

√2
, 2 , ,

∑ / . 
(3.51) 

In Equation (3.51) the combinations of three Fourier coefficients and the delta function is 

shorthand for a triple summation: 
 

 , , , (3.52) 
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where  is an arbitrary three-dimensional scalar array, is used.  In the special case that 

0 for all , the skewness reduces to 
 

 Sk
3

√2
,

∑ / , (3.53) 

and in the special case that 0 for all , the skewness is identically zero.  If 0 

for all , the skewness is not defined in this method; however, this is just a flat line with a 

skewness of zero. 

It may also be useful in calculating skewness values to note that, for arbitrary scalar 

arrays , , and , 
 

 , , . (3.54) 

3.2.2.2 Fubini Solution 

The Fubini solution is described in Section 2.2.2.2.  The time-derivative of the Fubini 

solution is written as Fourier cosine series (see Equation (2.20)).  Thus, according to Equation 

(3.53), the derivative skewness of the Fubini solution is 
 

 Sk /
3

√2
,

∑ / , (3.55) 

which is plotted as a function of  in Figure 3.3.  In the limit that → 1, the triple series in the 

numerator diverges, and the derivative skewness goes to infinity.  This is because a shock has 

formed at 1.  Since the Fubini solution assumes the propagation is lossless (other than 

nonlinear losses at shock fronts), after a shock has formed, there will always be shocks in the 

waveform.  Therefore, the analytical derivative skewness will remain infinite for all 1.  It 

should be noted that the values shown in Figure 3.3 appear to agree with the results by Shepherd 
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 /
1
2

 (3.56) 

 
1
2

cos
1 cos

1 cos  (3.57) 

 
1
2

cos
1 cos

. (3.58) 

Evaluating the integral in Equation (3.58) for 3 yields 
 

 /
2 1 / 3 2

1 / , (3.59) 

and evaluating the integral for 2 yields 
 

 /
1 1 /

1 / . (3.60) 

These integrations were found using Maple™. [49]  Combining Eq. (3.59) and Eq. (3.60) with 

Eq. (3.1) produces the derivative skewness of the Earnshaw solution assuming an initially 

sinusoidal signal, which is 
 

 Sk /

2 1 / 3 2
1 /

1 1 /

1 /

 (3.61) 

 2 1 / 3 2

1 / 1 √1
/ . 

(3.62) 

The derivative skewness from the Earnshaw solution for ≪ 1 can be approximated as 
 

 Sk /
3

√2
. (3.63) 

The derivative skewness derived from the Earnshaw solution for → 1 can be approximated as 
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 Sk /
1

1 / . (3.64) 

Equation (3.62) is equivalent to Equation (3.55), but is not in terms of an infinite series.  

Comparing the Fubini result in Equation (3.55) and the Earnshaw result in Equation (3.62) 

allows for an analysis of the error associated with using a truncated series to estimate the 

skewness of a waveform.  The analytical derivative skewness of a waveform modeled by the 

Earnshaw solution and estimates of the derivative skewness based on the Fubini solution using 

different numbers of terms are plotted in Figure 3.4 on (a) a linear abscissa and (b) a logarithmic 

abscissa.  The values of  indicate the number of terms included in the approximation of each of 

the infinite series in Equation (3.55).  As  approaches 1, the approximations all level off at 

some -dependent value, while the analytical form continues to increase.  The effect of 

increasing the number of terms is a more accurate estimate of the skewness is obtained for a 

large range of .  For 0.7 even the estimate only using 10 terms well approximates the 

analytical form.  The estimate using 1000 terms is a reasonable approximation almost to 

0.99, and 10,000 terms is a reasonable estimate as high as 0.997.  In general, it appears 

that derivative skewness estimates obtained by using a truncation of the infinite series in 

Equation (3.55) are accurate up to about two-thirds of the largest derivative skewness value that 

the estimates predict.  As an example, the largest derivative skewness that one may estimate 

using 100 terms is about 10.  Therefore, any derivative skewness value greater than about 6.6 

estimated using only 100 terms is not likely to be accurate. 
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 3√2 3√2 / . (3.69) 

Thus, as → ∞ (or → ∞, which is the old-age propagation regime; wavefronts unsteepen as 

high-frequency content is absorbed) the derivative skewness of the Fay solution approaches zero 

exponentially. 

3.3 Effects of Finite Sampling Rates 

The measures described in Section 2.1 depend upon accurate (i.e., analytical) estimation 

of the first time-derivative of the pressure waveform.  However, since in measurements the 

waveforms must be sampled discretely at finite time intervals, there is a limit to the maximum 

slopes that can be adequately resolved.  These limits on the temporal resolution of the waveform 

derivatives are often significant in the study of acoustic shocks, and thus, a discussion of the 

sampling rate-related limitations of each of the measures defined in Section 2.1 is provided. 

3.3.1 Finite-Difference of a Fourier Sine Series 

Let  be a Fourier sine series, written 
 

 sin . (3.70) 

An estimation of the first time-derivative of  can be obtained using a finite-difference 

technique.  Using the uniform time step Δ , this is given by 
 

 
Δ
Δ

Δ
Δ

 (3.71) 

 
1
Δ

sin Δ
1
Δ

sin  (3.72) 
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1
Δ

sin Δ sin . (3.73) 

Using the trigonometric identity sin sin cos cos sin , Equation (3.73) 

becomes 
 

 
Δ
Δ

1
Δ

sin cos cos sin sin  (3.74) 

 
sin

Δ
cos

cos 1
Δ

sin . (3.75) 

If we define 
 

 

sin
Δ

sinc

cos 1
Δ

, (3.76) 

then we may write Equation (3.75) as 
 

 
Δ
Δ

cos sin . (3.77) 

In the limit that Δ → 0, we find that →  and → 0, which is the result obtained by 

assuming continuous sampling from the beginning.  Thus, we find that the first time derivative a 

discretely sampled waveform expressed as a Fourier sine series may be expressed as a full 

Fourier series. 

3.3.2 Wave Steepening Factor 

The effect of discrete sampling on WSF estimates is evaluated by finding relationships 

between the WSF and the sampling rate for some of the analytical solutions described in Chapter 

2.  Specifically, the Fubini solution, a sawtooth function, and the Khokhlov solution will be 
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considered.  Understanding the effect of finite sampling rates on these solutions will lend insight 

into meaning of values of the WSF of measured waveforms. 

3.3.2.1 Fubini-Earnshaw Solution 

The Fubini solution describes the nonlinear evolution of an initially sinusoidal plane 

wave propagating without losses, and is written in terms of a Fourier series.  Since the WSF of 

an arbitrary Fourier series is not known, this analysis will be supplemented by the Earnshaw 

solution. 

In order to calculate a WSF estimate of a waveform, then we must first find the regions of 

the waveform that have positive time-derivative estimates and the regions that have negative 

time-derivative estimates.  The boundaries between the positive and negative slopes will have a 

slope estimate of zero.  For a sine wave, the time at which this occurs, Θ, is found by solving 
 

 
Θ Δ Θ

Δ
sin Θ Δ sin

Δ
0. (3.78) 

Using the trigonometric identity mentioned in Section 3.3.1, we find that 
 

 
2
Δ

cos
2

sin
2

0 (3.79) 

 ⇒ Θ
2

Δ
2
, (3.80) 

where 0, 1, 2, …, and even values of  represent the transition from positive slope to 

negative slope estimates, and odd values of  represent the transition from negative slope to 

positive slope estimates.  Therefore, due to the periodicity of the waveform, averaging the slopes 

between /2 Δ /2 (Θ with 1) and /2 Δ /2 (Θ with 0) yields the 

average positive slope that would be estimated assuming a very long measurement time and that 

the value of 2 / , where  is the sampling rate, is an irrational number.  (The variable  

is a nondimensional number that indicates the sample-density of a waveform.  The choice of an 
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irrational number and long measurement time guarantees that every possible discretely sampled 

slope will be equally represented.)  Similarly, averaging the slopes between /2 Δ /2 (Θ 

with 0) and 3 /2	 Δ /2 (Θ with 1) will be the average negative slope that 

would be estimated assuming a very long measurement time and that the value of  is an 

irrational number.  Note that 1/Δ 2 /Δ .  This means that Equation (3.80) may also be 

written 
 

 Θ
2

1
2

1
. (3.81) 

The method described for a sinusoidal wave may be simply extended to the entire Fubni 

solution.  The distortion due to nonlinear propagation without linear losses of a plane wave is 

strictly amplitude dependent (until shocks form), so the time delay between two points with the 

same amplitude will remain the same.  This means that the time at which the slope estimate will 

be zero, Θ, will follow the distortion described by the Earnshaw solution in Section 2.2.2.1, 

which is 
 

 

Θ
1
2

1
sin

1
2

1

2
1 cos . 

(3.82) 

In addition, the long-time average positive slope estimate requires the mean slope between Θ  

for 1 and for 0: 
 

 
Δ
Δ

1
Θ | Θ |

Δ
Δ

|

|
, (3.83) 

and the long-time average negative slope is found to be 
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Δ
Δ

1
Θ | Θ |

Δ
Δ

|

|
. (3.84) 

The integrals in Equation (3.83) and Equation (3.84) may be evaluated using the 

derivative estimate presented in Equation (3.77): 
 

 
Δ
Δ

cos sin  (3.85) 

 sin cos  (3.86) 

 
1

sin sin cos cos  (3.87) 

 

1
2 cos

2
sin

2

2 sin
2

sin
2

 

(3.88) 
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Δ

sin
2

sin cos
2

cos 1 sin
2

 

(3.89) 

 
2
Δ

sin
2

sin
2

sin
2

 (3.90) 

 4 sin
2

cos
2 2

sinc
Δ
2

 (3.91) 

 4 sin
2

cos
2

sinc . (3.92) 

Then, noting that, 
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 Θ | Θ | 2 cos  (3.93) 

 Θ | Θ |
2

 (3.94) 

 Θ | Θ | 2 cos  (3.95) 

 Θ | Θ | 2
2
, (3.96) 

we find that 
 

 
Δ
Δ

|

|
4 sin

2
2 cos cos sinc  (3.97) 

 4 sin
2

2 cos sinc , (3.98) 

and that 
 

 
Δ
Δ

|

|
4 sin

2
2 cos cos sinc  (3.99) 

 4 sin
2

2 cos 1 sinc
2

 (3.100)

 

4 1 sin
2
cos

1 cos
2
sin sinc

2
. 

(3.101)

Since sin	 /2 0 when  is even, and cos /2 0 when  is odd, the 1  term in 

front of the sin /2  term in the curly brackets in Equation (3.101) may be replaced by a 

minus sign, and the 1  term in front of the cos /2  term may be neglected.  Thus, 

Equation (3.101) may be written 
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Δ
Δ

|

|
4 sin

2
cos

∞

1

cos
2
sin sinc

2
 

(3.102) 

 4 sin
2

2 cos sinc

∞

1

Δ

Δ

Θ | 0

Θ | 1

. (3.103) 

Thus, the integrals in Equation (3.83) and Equation (3.84) have equal magnitude an opposite 

sign.  Using Equation (3.1), we find that the WSF estimate for the discretely sampled Fubini 

solution is 
 

 WSF
2 cos

2 cos
. (3.104) 

These WSF estimates for the discretely sampled Fubini solution are plotted as a function 

of  in Figure 3.6(a) for several values of  (or sample-densities).  The number of terms used in 

the infinite summation was five times the value of .  For comparison, the exact WSF values 

assuming continuous sampling are also plotted.  The relative errors between the exact WSF and 

the WSF estimates (|1 WSF /WSF |) are plotted in Figure 3.6(b).  The error plot shows 

that, at least in the pre-shock region, greater values of  generate greater errors for a given 

sampling frequency.  However, the errors are quite small.  As seen by the blue line in Figure 

3.6(b), even 10 only has about 10% error at the shock formation distance.  If we assume that 

less than 1% error is sufficient precision, then it appears that 100 is sufficient to estimate the 

WSF for initially sinusoidal plane waves propagating without linear losses prior to shock 

formation.  Based on the trends of the WSF estimate errors, it seems likely that 1000 would 

be sufficient to estimate the WSF value for all . 
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2 1

2 1

2
2

1
2

2

2
2

2
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 (3.106) 

 1
1

2
2

1
2

2

2
2

2
2

1
2

2
 (3.107) 

 
4

4
∙
1
. (3.108) 

3.3.2.2 Sawtooth Wave 

For initially sinusoidal waves with very large Gol’dberg numbers, starting at 3 the 

waveform may be modeled as a sawtooth wave.  Although the WSF of a discretely sampled 

sawtooth may be modeled with the Khokhlov solution, a simpler expression of the WSF estimate 

of the sawtooth limit may be found using the mathematical description in Equation (2.25). 

Suppose that  is sampled discretely with uniform normalized intervals of Δ

2 Δ , where  is the sawtooth frequency and Δ  is the actual sample interval.  Then the 

sampling rate is Δ 2 /Δ , and the analytic function in Equation (2.25) will be 

partitioned into the array 
 

 →
2
1

floor
Δ
2

Δ
2

1
2
. (3.109) 

Using a finite-difference scheme, the estimate of the time-derivative of the sawtooth function is 
 

 →
Δ
Δ Δ

 
(3.110) 

 
2

1 Δ
floor

1 Δ
2

1 Δ
2

1
2

floor
Δ
2

Δ
2

1
2

 (3.111) 
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2

1 Δ
floor

1 Δ
2

floor
Δ
2

Δ
2

. (3.112) 

Since the discontinuity associated with the floor function denotes an acoustic shock, then 

floor 1 Δ /2 floor Δ /2  is the number of shocks that have occurred 

between  and 1 .  If we assume , we find that  can only take on values of 

zero or one, and so the derivative estimate will be  
 

 Δ
Δ

1
1

 
(3.113) 

if there is no shock, or 
 

 Δ
Δ

2
1 Δ

1
Δ
2

2 Δ
1 Δ

 (3.114) 

if there is a shock. 

The average number of measurement points between two shocks, which we will call , is 

the period of the sawtooth divided by the spacing between samples, or, noting that the period is 

the inverse of the frequency,  
 

 . (3.115) 

Since there is one shock per period, the average number of data points that lie within a single 

period of a sawtooth wave (or, the number of data points in a row that are not separated by 

shocks) is 1.  Therefore the long-time WSF for a sawtooth wave can be analytically written 

as 
 

 WSF

1
1

2 Δ
1 Δ

1
2 /Δ 1

1
1
. (3.116) 
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Since the WSF of a continuously sampled sawtooth wave is actually zero, the relative error of 

the estimated WSF undefined, and Equation (3.116) defines the absolute error. 

If  is 96 000 Hz and  is 1000 Hz, then the absolute error of the WSF would be about 

1/100 1%.  In the limit that → ∞, or the sampling becomes continuous, the WSF 

approaches zero, but in general, the WSF of a discretely sampled sawtooth wave will never be 

identically zero due to the lack of temporal resolution of the waveforms near shocks. 

3.3.2.3 Khokhlov Solution 

Estimates of the WSF for waves propagating according to the Burgers equation (which 

includes thermoviscous losses) are also influenced by finite sampling rates.  The effect of 

discrete sampling on the WSF for an initially sinusoidal signal propagating according to 

Equation (2.42) may be described by analyzing the Khokhlov solution.  Recall that the Khokhlov 

solution is valid for 3 Γ.  We choose to study the Khokhlov solution rather than the Fay 

solution because the WSF of an arbitrary Fourier series is not known. 

Suppose that a wave that is described by the Khokhlov solution (see Section 2.2.3.5) is 

sampled at a rate of .  The discrete sampling indicates that the slope must be estimated to 

determine the WSF estimate for the discretely sampled Khokhlov solution.  Using a finite-

difference scheme and the notation from previous sections yields a slope estimate of 
 

 
Δ
Δ

Δ
Δ

Δ
Δ

 (3.117) 

 
Δ

1
1

Δ tanh
2 Δ

tanh
2

. (3.118) 

Since the ratio  is irrational and the sampling time is very long, we find that the slope estimate 

at every possible value of  will be equally likely.  This means that 
 

 
1

Θ Θ
Δ
Δ

,

Θ Θ
, (3.119) 
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where Θ  is the  location of the  zero crossing of Δ /Δ , and 
 

 ,
Δ
Δ

. (3.120) 

Similarly, 
 

 
1

Θ Θ

Δ
Δ

Δ
Δ

 (3.121) 

 
1

2 Θ Θ , ,
,

2 Θ Θ
, (3.122) 

since , 0, because the net pressure difference over a period is zero.  The limits of 

integration, Θ  and Θ , are the solutions to the equation found by setting Equation (3.118) equal 

to zero and choosing  as the variable being solved for.  This yields 
 

 Θ ln
2Δ

Δ  (3.123) 

and 
 

 Θ ln
2Δ

Δ , (3.124) 

where  
 

 / 2 Δ 2 Δ , (3.125) 

and  
 

 2 Δ 2 / 2 Δ 2 Δ . (3.126) 

The Taylor series expansion of  and  in terms of Δ  are 
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 / 2 Δ Δ  (3.127) 

and 
 

 4 /4 /2 Δ Δ . (3.128) 

We find that letting Δ → 0 (or → ∞), 
 

 Θ | → ln / 1 2 /4 /2  (3.129) 

 ln
/2 /2 1

/2 /2 1

2
tanh 1

2
 (3.130) 

and 
 

 Θ | → ln / 1 2 /4 /2  (3.131) 

 ln
/2 /2 1

/2 /2 1

2
tanh 1

2
, (3.132) 

which are the values of Θ  and Θ  found assuming a continuous sampling. 

Taking the above equations into account, we find that the WSF for the discretely sampled 

Khokhlov solution is 
 

 WSF

,

2 Θ Θ
,

Θ Θ

Θ Θ
2 Θ Θ

 (3.133) 

 
1

2
Θ Θ 1

2 Θ Θ 1  
(3.134) 
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 2 ln
2Δ

ln
2Δ

1  (3.135) 

 2 ln 1 tanh 1 . (3.136) 

We now replace  and  with their definitions: 
 

 WSF tanh
/ 2 Δ 2 / 2 Δ 2 Δ

/ 2 Δ 2 Δ
1 . (3.137)

Recalling that Δ 2 / , the WSF may be written as 
 

 WSF tanh
/ 1

1
2 / 1

1
1

1

/ 1
1

1
1 1 . (3.138)

Another way to write Equation (3.138) is 
 

 WSF
1

tanh
1

1
sinh

1
sinh

2

sinh
1
cosh

1 . (3.139) 

For reference, the exact WSF, found by assuming continuous sampling, was found to be 
 

 WSF
2

tanh 1
2

1 . (3.140) 

The estimates of the WSF for the Khokhlov solution are plotted as a function of  

assuming Γ 10  in Figure 3.7, below.  Due to the ratios of large numbers associated with 

Equation (3.139), the estimates plotted in Figure 3.7 are not complete.  Since the estimates are 

not well known near the sawtooth propagation regime (  near 3) and the WSF values are 
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poor representation of the actual WSF.  However, WSF estimates that are about four times the 

sawtooth limit are fairly close to the actual WSF value (relative error 10 ) for each value of 

 considered in Figure 3.7.  Thus, a simple rule of thumb is if a WSF estimate is at least four 

times larger than the sawtooth limit, it is likely to represent the true WSF value well. 

The lack of temporal resolution near shocks is not the only concern with the WSF as a 

metric for shock content in noise.  The calculation of the values of the WSF for ideal cases, such 

as sinusoids and sawtooth waves, is fairly straight-forward, but the behavior of the WSF for 

cases which are not ideal is likely to be more complicated.  For example, it is currently unknown 

whether an absolute error of about 1%, which was calculated above, is a significant error for 

noise or not.  In addition, there is no documentation of the evolution of the WSF for initially 

Gaussian noise propagation to the authors’ knowledge.  The uncertainty of the actual value of the 

WSF due to potentially insufficient temporal resolution and the lack of understanding of how to 

interpret a given value of the WSF of a waveform suggest that more study of the WSF is needed 

before it can be effectively used as a metric to study jet noise. 

3.3.3 Derivative Skewness 

Now we turn our attention to the effects of finite sampling rates on the estimation of the 

derivative skewness.  The Fubini solution, a sawtooth wave, and the Fay solution will be 

considered.  The effects of discrete sampling on the estimate of the derivative skewness of a 

waveform are particularly of interest, since the cubic nature of the skewness may greatly 

emphasize any low-resolution pressure rises. 

3.3.3.1 Fubini Solution 

Begin by looking at the Fubini solution described in Section 2.2.2.2, which is used to 

describe the propagation of an initially sinusoidal signal before shocks form.  The estimate of the 

derivative skewness of the Fubini solution sampled with a normalized uniform time step 
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The derivative skewness estimates in Figure 3.8 all level off before reaching the 

maximum values, which are the values of the estimates at 1.  The exact value of the 

derivative skewness, based on continuous sampling, continues to increase as predicted in 

Equation (3.64).  The divergent nature of the exact derivative skewness suggests that for  

sufficiently close to one, a derivative skewness estimate with any finite sampling rate will cease 

to be a good approximation of the actual derivative skewness value.  This can be seen in the error 

plot in Figure 3.8(b).  We see that the reliability of the derivative skewness estimates depends on 

the relationship between  and .  For example, for 10 the derivative skewness is never 

more accurate than 1% relative error, but for 1000 is more accurate than 1% relative error 

until about 0.93.  The physical interpretation of this phenomenon is that no reasonable finite 

sampling rate can adequately estimate the derivative skewness of a waveform that contains true 

discontinuities. 

3.3.3.2 Sawtooth Wave 

For 3, an initially sinusoidal plane wave propagating without linear losses may be 

approximately modeled as a sawtooth wave, which has been defined in Equation (2.25).  In order 

to estimate the derivative skewness, Equation (3.2) can be further expanded to the form  
 

 Sk lim
→

1 ∑

1 ∑

. (3.142) 

To understand the error in the derivative skewness estimate, consider again the sawtooth 

wave defined in Equation (2.25).  In Section 3.3.2.2 we found that, on average, the number of 

data points per period is / , with 1 of those data points being associated with the 

ramp of the wave with a slope of 2 , and one data point associated with the shock with a 

slope of 2 .  Then, by replacing the random variable  in Equation (3.142) with the 
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time-derivative of pressure estimates of the discretely sampled sawtooth wave, we may calculate 

a derivative skewness estimate: 
 

 
Sk

Δ
Δ

1 1 2 2

1 1 2 2

. (3.143) 

Simplifying Eqaution (19), the skewness becomes 
 

 Sk
Δ
Δ

2 2

√ 1
. (3.144) 

As expected, in the limit that → ∞, the derivative skewness of the sawtooth wave also 

diverges.  Since the actual derivative skewness is indefinite, defining a relative error does not 

make sense.  However, the estimated derivative skewness can be calculated for a characteristic 

case, which would give some intuition as to the expected values.  Given 100, the derivative 

skewness of a sawtooth wave would be expected to be about 10. 

A last comment: recall that the sawtooth wave and the Fubini solution have been based 

on the assumption of no linear losses in propagation.  Since any real system will include linear 

losses, no true discontinuities can form in a waveform, regardless of the initial amplitude or 

propagation distance.  This implies that the waveform described by the Earnshaw or Fubini 

solutions for 1 is pathological.  While propagation without linear losses is a useful analysis 

tool, it does not occur in realistic waveforms.  Other models, such as the Mendousse or Fay 

solutions, must be used to understand some of the effects of linear losses on the estimation of the 

derivative skewness of a waveform containing shocks. 

3.3.3.3 Fay Solution 

The estimate of the derivative skewness of the Fay solution sampled with a normalized 

uniform time step Δ 2 /  may be written as Equation (3.51) with Equation (3.76), where 
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(the sawtooth regime), the derivative skewness estimates at larger values of  will be more 

accurately described.  This is most likely due to the significant shocks that are present in 

waveforms during this regime.  For Γ (transition from the sawtooth and the old-age 

propagation regime), the accuracy of the derivative skewness estimate for a given value of  

appears to be constant.  This may be due to the very small derivative skewness values associated 

with the Fay solution for large values of . 

3.4 Summary and Conclusions 

The analytic discussions of the measures of nonlinearity given in this chapter provide a 

better framework to interpret these measures for more complicated waveforms.  The idealized 

cases introduced in Chapter 2 have been used to explore the evolution of measures as a 

waveform propagates, giving a general estimate of the rate of evolution that one would expect 

for measured data.  Also, an analysis of the effects of under-sampling a waveform on the 

measures of nonlinearity suggests ways to verify that a given sampling rate is sufficient to 

adequately represent a measure of nonlinearity. 

The first metric considered was the wave steepening factor (WSF), which may be 

considered a measure of the waveform distortion characteristic of nonlinear propagation.  The 

analysis of the WSF has shown that periodic waveforms with a WSF value above about 0.75 are 

not likely to have been distorted by nonlinear effects very much.  Waveforms that have WSF 

values below about 0.25 are likely to have experienced nonlinear distortion.  In addition, the 

importance of nonlinear distortion in a waveform increases dramatically as the WSF value 

approaches zero.  When considering the sampling rate, if the value of the WSF of a waveform is 

less than four times the lower limit of the WSF based on assuming a sawtooth wave, the 

sampling rate is probably too low to accurately gauge the WSF. 
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In addition to the WSF, calculations of the pressure and derivative skewness, measures of 

the asymmetry of the probability density function of the pressure amplitudes and time derivatives 

of the pressure amplitudes, respectively, of idealized cases were analyzed.  The derivative 

skewness was shown to vary significantly.  At about 0.85 times the shock formation distance the 

derivative skewness of a lossless initially sinusoidal plane wave began to dramatically rise.  A 

derivative skewness value of 0.5 may be considered low and indicate that nonlinear distortion 

has not affected the waveform significantly, while a derivative skewness value of 5 may be 

considered high, and that nonlinear distortion has affected the waveform significantly.  It should 

be noted that insufficient temporal resolution will cause the derivative skewness estimate to be 

significantly less than the actual derivative skewness value for a waveform. 

Both the WSF and derivative skewness can be used to analyze the importance of 

nonlinearity in propagating waveforms.  The WSF is useful due to the fact that it is relatively 

robust with respect to limited sampling rates, while the cubic nature of the derivative skewness 

causes it to be relatively sensitive to insufficient temporal resolution.  On the other hand, the 

relatively dramatic variation in the derivative skewness near the shock formation distance and as 

a waveform transitions to the old-age region suggest that the derivative skewness may give more 

information about the nonlinearity in a propagating waveform.
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Chapter 4  

Numerical Analysis of Nonlinearity 
Measures 

4.1 Introduction 

The model equations described in Chapter 2 and the analyses of the nonlinearity metrics 

presented in Chapter 3 are important, limiting cases.  However, actual noise propagation is much 

more complicated, as will be shown in Chapter 5 and Chapter 6, with waveforms measured from 

plane wave tube experiments and jet noise measurements, respectively.  In addition to the 

propagation phenomena that are expected, such as boundary layer absorption and dispersion 

plane wave tube propagation, and frequency-dependent geometrical spreading for full scale jet 

noise, measured results often include unexpected phenomena, such as digital noise and source 

distortion.  One way to isolate these unknown phenomena in measured data is to first model the 

physical waveforms using numerical methods, and then compare the predictions with the 

measurements. 

The purpose of this chapter is to use a numerical model of noise propagation to connect 

the analytical results from Chapter 2 and Chapter 3 to the measured data presented in Chapter 5 

and Chapter 6.  To this end, three different numerical experiments are presented in this chapter.  
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First, predicted waveforms based on an initially sinusoidal plane wave propagating with 

thermoviscous losses will be considered.  Then, predicted waveforms based on an initially 

sinusoidal wave and initially broadband noise propagating with linear losses similar to 

propagation in a plane wave tube will be discussed.  These last two cases are similar to the 

physical experiments discussed in Chapter 5.  For each of the cases discussed, the effects of 

nonlinearity in the waveforms, spectra, and the nonlinearity metrics described in Chapter 3 are 

discussed. 

4.2 Numerical Model of Propagation 

Modeling of nonlinearity in broadband noise propagation dates back to work by Pernet 

and Payne [2] who examined anomalously low absorption of high-frequency energy in the 

spectrum for noise of sufficient intensity.  Pestorius and Blackstock [9] developed a time-

waveform propagation model based on the generalized Burgers equation (GBE) [4] and 

successfully modeled noise propagation, including shock formation and coalescence, in a long 

pipe.  Additional arbitrary waveform modeling developments took place in the context of 

nonlinear sonic boom propagation, [50] [51] [52] but much of the recent interest has been the 

noise propagation from modern high-performance tactical aircraft.  Nonlinear F/A-18E noise 

propagation was calculated by Gee et al., [21] Brouwer, [53] and Saxena et al. [54] using 

different GBE-based algorithms.  A more comprehensive treatment of the noise radiated by the 

F-22A Raptor was carried out by Gee et al. [23] [22] and algorithm refinements were 

incorporated in a study of the noise propagation from the F-35AA Joint Strike Fighter. [24]  In 

these latter studies of F-22A and F-35AA noise, excellent agreement between nonlinear models 

and measurements were achieved at a maximum comparison distance of 305 m (1000 ft). 

The GBE algorithm used previously by Gee et al. [24] has been employed to model the 

nonlinear propagation of various signals in this chapter.  This algorithm is a combined time-
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frequency domain propagation scheme.  First, a waveform is propagated forward a spatial step in 

the time domain according to the Earnshaw solution and weak shock theory.  The size of the 

spatial step varies, depending on the amplitude of the sound signal at the present location.  After 

the waveform has been propagated in the time domain, the linear absorption and dispersion 

associated with the nonlinear step is applied in the frequency domain.  The waveform thus 

propagates, alternating between the time and frequency domains and nonlinear and linear 

processes, until the desired propagation distance is reached. 

4.3 Numerical Experiments 

A good place to begin with modeling nonlinear propagation is with initially sinusoidal 

waveforms.  First, we will consider propagation with thermoviscous losses, and then propagation 

in a plane-wave-tube environment.  For both of these conditions, comparisons are made with the 

analytical and limiting solutions discussed in Chapter 2. 

4.3.1 Thermoviscous Propagation of an Initially Sinusoidal Signal 

The first case that is considered numerically is also a problem that has an analytical 

solution.  In particular, this is the initially sinusoidal plane wave propagating with thermoviscous 

losses.  As stated in Chapter 2, the exact solution is the Mendousse solution.  The input 

waveform consists of a sine wave sampled at 204 800 samples/s (to mimic the plane wave tube 

tests described in Chapter 5) for 1.28 s.  This sampling rate and waveform time duration are the 

same for all of the numerical experiments described in this chapter.  In order to understand how 

different values of Gol’dberg number affect the evolution of the nonlinearity metrics described in 

Chapter 3, the numerical experiment is carried out for Γ 10 and for Γ 1000. 

Since many of the results in Chapter 3 rely on the ratio of the sampling frequency to the 

characteristic frequency /  being an irrational number, the frequency of the sine wave 

was chosen to be 500  Hz (about 1570 Hz).  Therefore, the value of  is approximately 130.4.   
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The atmospheric conditions, sampling rates, and absorption coefficients used for the 

numerical experiments described in this chapter are summarized in Table 4.1, below. 
 

Table 4.1.  Summary of conditions used in numerical experiments described in Chapter 4. 

 Atmospheric Propagation Plane Wave Tube Propagation 

Temperature 293.15 K 293.15 K 

Atm. Pressure 0.85 atm. 0.85 atm. 

Relative Humidity 20% 20% 

Tube Radius  2.54 cm 

Sample Length 0.78 s 0.78 s 

Sampling Frequency 204 800 Samples/s 204 800 Samples/s 

Characteristic Frequency 500  Hz (≈ 1571 Hz) 500  Hz (≈ 1571 Hz) 

Absorption (Real Part) 13.3 10  dB/m (at 500  Hz) 0.415 dB/m (at 500  Hz) 

 

Portions of the numerically predicted waveforms are plotted in Figure 4.1.  The portions 

of the waveforms associated with Γ 10 steepen less quickly and to a lesser extent than the 

portions associated with Γ 1000.  In addition, the portions of the waveforms associated with 

Γ 10 have significantly unsteepened by 2 , whereas the portions associated with Γ

1000 do not appear to have unsteepened at all.  Since the Gol’dberg number quantifies the 

importance of nonlinear effects relative to absorptive effects, the more significant and longer 

lasting shocks associated with the greater Gol’dberg number is expected. 
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regime, if the waveform were propagated further, it is expected that the WSF values predicted by 

the numerical model would diverge from the Khokhlov solution beyond 16.  The WSF 

values of the Γ 1000 waveform, on the other hand, are likely to be well approximated by the 

trend predicted by the Khokhlov solution as far out as 1700. 

In addition to the WSF, the derivative skewness was estimated for the Γ 10 and 

Γ 1000 initially sinusoidal waveforms.  The derivative skewness estimates are plotted in 

Figure 4.4 as a function of , along with the derivative skewness values predicted by the 

“lossless” Earnshaw solution and the discretely-sampled “lossy” Fay solution, both with Γ 10 

and with Γ 1000.  The number of terms used in the Fay solution is five times , or 650 terms.  

Similar to the estimated WSF values, the derivative skewness estimates of both waveforms 

follow the trend of the Earnshaw solution for very small .  For the waveform with a Gol’dberg 

number of 10, as the waveform approaches the shock formation distance, the high harmonics 

begin to be more significantly attenuated due to the thermoviscous effects, and the waveform 

slows its steepening process, thus slowing the increase of the derivative skewness.  Shortly after 

the shock formation distance, the lower amplitude waveform has completely stopped steepening, 

and is beginning to unsteepen, causing the derivative skewness to begin to decrease.  As the 

propagation continues, the derivative skewness of the numerical case begins to follow the trend 

predicted by the Fay solution.  Unlike the Khokhlov solution, the Fay solution is valid even in 

the old-age regime, and so it is expected that if the waveform were propagated further, the 

predicted values of the derivative skewness would continue to follow the trend predicted by the 

Fay solution.   
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second reason is that the absorption due to the boundary-layer effects associated with sound 

propagation in a duct increases with the square root of frequency, rather than the square of the 

frequency as in the case of thermoviscous and high-frequency atmospheric absorption.  As low-

frequency absorption coefficients are dominated by boundary-layer effects, and high-frequency 

absorption coefficients will be dominated by atmospheric propagation effects (the cross-over 

frequency is about 156 kHz; see Section 2.2.3.1), the plane-wave-tube environment is a 

fascinating case study in terms of absorption.  Finally, losses due to both boundary-layer effects 

and atmospheric propagation include dispersive phenomena.  This is a phenomenon that is very 

difficult to understand analytically, [6] [55] and so numerical and physical experiments are the 

primary method for understanding dispersion.  The choice of the sinusoidal plane wave as the 

input waveform allows for a ready comparison of the predicted waveforms with the previous 

case of an initially sinusoidal signal propagating with thermoviscous absorption. 

A Gol’dberg number of 10 is chosen for the numerical plane wave tube propagation 

experiment.  The absorption coefficient of the initial sine wave frequency (500  Hz) is about 

0.048 m , and so the initial amplitude is about 166 Pa.  Portions of the input waveform and the 

waveforms predicted at different distances assuming plane-wave-tube-like propagation are 

plotted in Figure 4.5, along with the Mendousse solution (the exact solution given only 

thermoviscous absorption), for comparison. 

The first thing to notice about the waveforms presented in Figure 4.5 is that the steep 

portions of the waveform (the shocks at 0, 1, 2,	and	3) are sharper for the plane wave tube 

predictions than for the Mendousse solution, especially for 1.  This is likely due to the fact 

that the absorption coefficients of the higher harmonics are relatively smaller for the plane wave 

tube absorption than for thermoviscous absorption.  Also notice that tops of the shocks are more 

rounded than the bottoms.  This phenomenon has been observed by Webster and Blackstock [6] 

and Blackstock, [10] and has been attributed to the dispersive nature of the propagation.  The 
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The largest difference between the trends of the predicted WSF and derivative skewness 

values for the plane wave tube case (given Γ 10) occurs between 1.5 and 9.  The 

predicted values of the WSF follow a plausible trend based on the lower high-frequency 

absorption coefficients associated with plane-wave-tube propagation, but the predicted values of 

the derivative skewness reach some upper limit (about 11), and stay there until about 9, 

where the values decrease again.  Based on the curved nature of the derivative skewness values 

predicted by the thermoviscous propagation model for the waveform with the Gol’dberg number 

equal to 10 in the transition from the Earnshaw to the Fay solutions, we would expect that the 

derivative skewness predicted by the plane-wave-tube model would also be rounded.  As 

mentioned above, a likely reason is that the discretely sampled nature the numerical model will 

put an upper bound on the derivative skewness estimates.   

4.3.3 Plane Wave Tube Propagation of an Initially Broadband Gaussian Noise Signal 

The plane-wave-tube model used for the case of the initially sinusoidal wave may also be 

used to study the effects of nonlinearity on broadband noise.  Since the numerical experiment is 

identical to the initially sinusoidal case except for the input waveform, any differences between 

the nonlinearity measures predicted in Section 4.3.2 and those predicted in this section will be 

due to the difference in the input signals.  In order to compare the two, the nonlinear distortion 

distance defined and discussed in Section 2.2.2.4 will take the place of the shock formation 

distance used in the previous two sections. 

The broadband noise used in this numerical experiment consists of bandpass-filtered 

spectrally white Gaussian noise.  The pass-band was chosen to be between 700 Hz and 2300 Hz.  

This yields a geometric mean frequency of about 1269 Hz and an arithmetic mean frequency of 

1500 Hz.  If we assume that nonlinearity affects noise propagation over shorter distances than for 

a tonal wave, as suggested by Muhlestein, et al. [38] and in Gurbatov and Rudenko, [43] then the 

higher arithmetic mean frequency is more likely to be a reasonable characterization of the noise 
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signal.  The root-mean-square of the pressure amplitudes of the noise is about 1.17 kPa (about 

155 dB re 20μPa).  These conditions, along with the propagation conditions described in the 

previous sections, lead to Γ 1/ ̅ 10. 

Portions of the waveforms predicted by the plane-wave-tube model and the input noise 

described above are shown in Figure 4.9.  Similar to the initially sinusoidal case, the pressure 

rises steepen, and the peaks become more rounded than the troughs due to dispersion.  However, 

not all of the pressure rises become shocks, since the pressure rises vary in amplitude.  The large 

pressure rises experience significant nonlinear distortion (as seen by the initially large pressure 

rise near 1.6), and the small pressure rises experience much less distortion (as seen by the 

slight pressure rise near 0.3).  As the waveform propagates, the distribution of the pressure 

rises appears to become more uniform.  This is due to the fact that shocks with higher amplitudes 

will experience more nonlinear attenuation than shocks with lower amplitudes.  Thus, pressure 

outliers will be attenuated, and the pressure rise distribution becomes more uniform. 
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faster than the high frequencies of spectra at lower values of , indicating that the waveform is 

leaving the sawtooth regime and is entering the old-age regime. 

The WSF values of the noise waveforms predicted by the plane-wave-tube model show 

many similarities with the values of initially sinusoidal waveforms predicted by the same model. 

The predicted values of the WSF are plotted in Figure 4.11 as a function of the absorption 

distance, with the WSF values of the Earnshaw solution of the initially sinusoidal plane wave 

and the discretely sampled Khokhlov solution are plotted for comparison.  For small values of , 

the predicted WSF values follow the trend predicted by the Earnshaw solution until about 

0.3, after which the predicted WSF values become larger than the Earnshaw solution 

suggests.  After the departure, the predicted values of the WSF decrease until they reach a 

minimum near 4, after which the values increase slightly.  While the trend of the WSF 

values predicted by the noise case is similar to the initially sinusoidal case in character, there are 

significant differences in the details.  For example, the noise case departs from the Earnshaw 

solution much earlier than the initially sinusoidal case.  Also, the minimum WSF value of the 

noise case is about 0.13, compared to the minimum value of about 0.07 for the initially 

sinusoidal case.  Since portions of the noise waveform shows significant nonlinear distortion, it 

appears that the less distorted regions of the waveforms significantly raise the WSF estimates. 
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factor (WSF) and derivative skewness values from the pre-shock propagation regime to the 

sawtooth propagation regime. 

The thermoviscous numerical propagation results were compared with the numerical 

propagation of an initially sinusoidal signal with linear losses similar to that of a plane wave 

tube.  It was found that, for a given Gol’dberg number, nonlinearity is more important for 

propagation with losses similar to propagation in a plane wave tube than for propagation with 

only thermoviscous absorption.  It was also shown that the evolution of the two nonlinearity 

measures, WSF and derivative skewness, is similar in shape but not in details for both 

thermoviscous and plane-wave-tube like absorption.  

Comparing initially sinusoidal wave propagation with initially broadband Gaussian noise 

propagation shows that both the WSF and the derivative skewness have generally higher values 

for noise signals than for initially sinusoidal signals.  It was hypothesized that, for the sampling 

frequency and fundamental frequency used for these experiments, the derivative skewness was 

unable to be properly resolved for the sawtooth regime of propagation, for both initially 

sinusoidal and Gaussian noise signals.  On the other hand, the derivative skewness estimates 

appeared to show greater sensitivity to the presence of shocks in initially noise waveforms than 

the WSF estimates. 

It is interesting to note that the two nonlinearity measures suggest opposite conclusions 

about the nature of nonlinear noise distortion.  The WSF predicts that noise waveforms will 

distort at a slower rate than an initially sinusoidal signal for a given Gol’dberg number, whereas 

the derivative skewness predicts that the noise waveforms distort much more rapidly than an 

initially sinusoidal signal for the same Gol’dberg number.  This apparent contradiction is 

resolved by realizing that the WSF emphasizes the average slopes and the derivative skewness 

emphasizes the greatest slopes.  Thus, the small numbers of significant shocks that form rapidly 

in a noise waveform do not affect the WSF values significantly, whereas the derivative skewness 

is dramatically affected. 
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Chapter 5  

Applications of Nonlinearity Measures to 
One-Dimensional Measured Waveforms 

5.1 Introduction 

The main benefit of analyzing the noise measured in a plane wave tube is the small 

number of unknown parameters in the acoustic propagation.  For example, in an air-filled plane 

wave tube there is no geometrical spreading, the linear absorptive and dispersive effects of 

propagation are calculable, and a well-understood source may be used.  This means the effects of 

nonlinearity in the noise propagation can be extracted from the data relatively simply.  In 

addition, the lack of geometrical spreading means that nonlinear effects are more likely to be 

important than if significant spreading occurred.  These effects may be verified by comparing the 

wave steepening factor and skewness estimates of the measured waveforms with the analytically 

and numerically discussed results from Chapter 3 and Chapter 4.  By using this understanding of 

the nonlinearity characteristics in one-dimensional noise propagation, it will be easier to 

understand the role of nonlinearity in the more complicated and important problem of jet noise. 
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5.2 Experimental Setup 

A plane wave tube was constructed for the purpose of studying the evolution of measures 

of nonlinearity as plane waves propagate.  The tube consists of several 3.05 m (10 ft) portions of 

PVC pipe with a radius of 2.54 cm (1 inch), connected by either rigid, plastic couplers or more 

flexible, rubber couplers.  Both the plastic and rubber couplers have an inner rim that acts as a 

partition between the two lengths of pipe being coupled, but the partitions of the plastic couplers 

have a thickness much less than the thickness of the PVC pipe walls and the partitions of the 

rubber couplers have a thickness on the order of the thickness of the PVC pipe walls.  The cutoff 

frequency of the first axial mode of the tube is 4.0 kHz.  A plot of the total number of modes 

with cutoff frequencies below a given threshold is shown in Figure 5.1.  The tube is terminated 

by an anechoic wedge inside a portion of PVC pipe.  The absorption coefficients of the 

termination, shown in Figure 5.2, were obtained using band-limited (500-3500 Hz) white noise, 

and a two-microphone technique, valid for the frequency range of 450-3601 Hz.  These 

coefficients suggest that the termination is anechoic for the full range of the input noise.  The 

tube was driven by a single BMS coaxial compression driver (model 4590), mounted directly 

onto one end of the tube.  The pressure data were measured using five G.R.A.S 40DD 3.18 mm 

(eighth-inch) microphones at various distances from the driver, inserted into the tube such that 

the microphone diaphragms were flush with the inside wall of the tube.  No protection grids were 

used on the microphones so they would fit more closely into the tube walls, and to avoid 

resonances between the grid and the diaphragm.  The microphones were located 0.3 m, 2.5 m, 

5.6 m, 8.6 m, and 11.6 m from the driver.  The compression driver was controlled with a 

National Instruments PXI-based system using 24-bit PXI-4461 card.  The time-waveform data 

were acquired with the same PXI-based system used to drive the tube, using PXI-4462 cards.  

The system was controlled with a LabVIEW®-based software.  The data were acquired at a rate 

of 204 800 samples/s (4.9 μs/sample).  Post-processing of the data was performed using 

MATLAB
®. 
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Recall from Chapter 2 that we may define a nondimensional distance / ̅, where ̅ 

is the shock formation distance for initially sinusoidal signals (Equation (2.3)), or / ̅  

where ̅  is the characteristic nonlinear distortion length for noise (Equation (2.27)).  

Throughout this and other chapters, if noise is being considered then the characteristic nonlinear 

distortion length defined in Equation (2.27) is the assumed normalization of , and if an initially 

sinusoidal signal is being considered the shock formation distance defined in Equation (2.3) is 

the assumed normalization. 

5.3 Waveforms 

Examining the waveforms of a given test at multiple distances from the driver can let one 

directly observe the nonlinear distortion.  As a wave propagates, pressure rises will begin to 

steepen and eventually form shocks, given an initial amplitude such that nonlinear effects will 

dominate absorptive effects.  The waveforms shown in Figure 5.4 and Figure 5.5 have been 

chosen because they clearly exhibit this nonlinear distortion.  Waveforms with lower initial 

amplitudes do not experience nonlinear distortion as significantly over a given distance.  This is 

due to the decreased relative importance of nonlinearity associated with longer nonlinear 

distortion lengths at low amplitudes.  While waveforms with initial amplitudes higher than those 

presented here exhibit more nonlinear distortion, they are more difficult to clearly measure due 

to source distortion, which will be discussed further below.   

The waveforms in Figure 5.4 are time-aligned portions of an initially sinusoidal wave 

with a frequency of 1500 Hz.  The amplitude of the wave at 0.3 m from the driver was 515 Pa.  

Assuming the wave was truly sinusoidal at the 0.3 m measurement location (which, due to 

propagation and source nonlinearities, is not necessarily a good assumption), then the shock 

formation distance of this wave is 8.4 m.  Since propagation in a tube includes linear losses such 

as atmospheric and boundary layer absorption and dispersion, the waveforms are expected to 
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have no true discontinuities at 8.6 m or 11.6 m.  This expectation is verified by the purple and 

yellow lines in Figure 5.4.  Since the propagation is approximately planar, the decaying 

amplitude of the waveforms as the measurement distance increases is evidence of the importance 

of the atmospheric and boundary layer losses mentioned above.  The effects of dispersion are 

also evident, especially in the 11.6 m waveform (represented by the yellow line in Figure 5.4).  

As shown by Webster and Blackstock, [6] the peaks of shocks that propagate in tubes become 

more rounded, while the low-pressure portions of the shocks are less rounded.  This asymmetry 

is evident in the waveform measured at 11.6 m.  Another feature of the waveform measured at 

11.6 m is an oscillation of the waveform near shocks.  This oscillation is unexpected, and may be 

due to physical inhomogeneities in the plane wave tube, such as the impedance change from the 

PVC tube to the diaphragm of a microphone or a coupler, despite efforts to make the transitions 

smooth.  The fact that the wavelength of these oscillations is about the diameter of a microphone 

diaphragm supports the idea that these oscillations are due to inhomogeneities in the plane wave 

tube.   Since the nonlinear distortion generates higher harmonics of the initial frequency, and 

most of the harmonics have frequencies greater than the cutoff frequency of the first axial mode 

of the tube, this type of inhomogeneity may move energy from the plane-wave mode to cross 

modes. 
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decrease for increasing distance in the tube, indicating the importance of linear losses in the 

noise propagation.  The same kind of unexpected oscillations near the shocks seen in Figure 5.4 

are also present in several of the waveforms in Figure 5.5.  Unlike the initially sinusoidal case, 

broadband noise does not generate shocks uniformly throughout the waveform.  Notice that near 

1.2 ms and 2.4 ms, significant shocks have formed in the waveform measured at 11.6 m from the 

source (represented by the yellow line in Figure 5.5), that shocks are forming at 0.4 ms and 3.2 

ms of the same waveform, and that the pressure rise near 4 ms of the same waveform has not 

even steepened significantly.  This variation in the waveform distortion is explained by the fact 

that nonlinear effects are dependent upon the local amplitude of a waveform.  Since the 

amplitude of noise varies over time, so do the effects of nonlinear distortion, as discussed in 

Chapter 1.  This variation in the effects of nonlinear distortion is the reason why the shock 

formation distance – the distance at which the first shock in a waveform propagating without 

losses will appear – of noise depends significantly upon the specifics of the waveform. 
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the bridging function assumes no linear absorption, we expect the measured amplitudes will be 

lower than the predicted amplitudes.  However, the harmonic amplitudes of the waveform 

measured 0.3 m from the source and the 3rd through 5th harmonics of the waveform measured 2.5 

m from the source are greater than the predicted amplitudes.  The most likely cause of this 

discrepancy is source distortion rather than propagation distortion.  The fact that the harmonic 

amplitudes measured farther from the source (8.6 m and 11.6 m) are all significantly less than the 

predicted levels further suggests source distortion is the cause of the large harmonic amplitudes 

of the waveform measured 0.3 m from the source. 

The comparison of harmonics with the Blackstock bridging function is easily extended to 

comparing large numbers of waveforms simultaneously.  In Figure 5.7, the amplitudes of 

harmonics 2 through 6 of several waveforms, all initially sinusoidal plane waves with a 

fundamental frequency of 1500 Hz but with different initial amplitudes, are plotted as a function 

of .  These harmonics are all normalized by the amplitude of the first harmonic measured 0.3 m 

from the source.  In addition, the amplitudes of each harmonic predicted by the Blackstock 

bridging function are plotted as a function of , for comparison. 
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m and 2.5 m measurements.  On the other hand, the bridging function does predict the general 

trend of the amplitudes fairly well.  This indicates the importance of nonlinear propagation 

effects in the data here. 

The normalized amplitudes of the harmonics of initially sinusoidal plane waves with a 

fundamental frequency of 1000 Hz or 2000 Hz measured in the plane wave tube (not shown 

here) show many of the same trends shown in Figure 5.7.  The amplitudes follow a similar trend 

as the Blackstock bridging function, but show deviations likely due to the linear losses associated 

with propagation in a tube and to source distortion.  To further support the hypothesis that linear 

losses are a significant factor in the deviation of these trends from the bridging function, the 

amplitudes of 1000 Hz signals which has a lower absorption coefficient than the 1500 Hz 

signals, align much more closely to the bridging function, and the amplitudes of the 2000 Hz 

signals – which has a higher absorption coefficient than the 1500 Hz signals – deviate more 

significantly than the amplitudes of the 1500 Hz signals. 

5.4.2 Broadband Noise 

The spectra of the noise waveforms shown in Figure 5.5 are shown in Figure 5.8.  Since 

the input noise was generated by filtering spectrally white noise with a bandpass filter, the top of 

the spectrum near the source (at the 0.3 m measurement location) is nominally flat, and beyond 

the bandpass region the spectrum decays at least 20 dB.  The energy at the high and low 

frequency limits of the spectra comes from the pass-band region of the spectra, which is 

noticeably losing energy.  By 8.6 m from the driver, the sharp drop in energy at the upper 

frequency edge of the bandpass region has disappeared, and the lower frequency edge of the 

pass-band region is becoming less pronounced.  There is some energy near 4000 Hz in all of the 

spectra.  This is likely due to a resonance of the first cross mode of the pipe, since the cutoff 

frequency of this mode is 4000 Hz.  There is also a significant amount of energy around 10.5 
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measurement locations is 1 dB, and the level increase from the 8.6 m and 11.6 m measurement 

locations is only 0.9 dB. 

5.5 Wave Steepening Factor 

As discussed in Chapter 3, the wave steepening factor (WSF) is one way to characterize 

the nonlinear distortion in a waveform.  In general, large values of the WSF of a waveform 

indicate the effects of nonlinear propagation are insignificant in the waveform, while small 

values of the WSF indicate the effects of nonlinear propagation are significant.  The WSF for the 

Fubini and Khokhlov solutions were discussed in Chapter 3, both in the context of continuous 

sampling and for finite sampling rates.  However, the Fubini solution did not include any linear 

losses and the Khokhlov solution only included thermoviscous losses in addition to nonlinear 

losses.  The propagation of sound in a tube involves both absorptive and dispersive effects due to 

molecular relaxation and boundary layers, in addition to thermoviscous losses.  Also, the source 

used for the plane wave tube experiments examined in this section likely produced signals with 

some distortion prior to propagation, as discussed in Section 5.3.  With the exception of the 

source distortion, all of these effects were included in the numerical experiment described in 

Section 4.3.2. 

The estimates of the WSF for a subset of the experiments performed in the plane wave 

tube, described above, are shown in Figure 5.9 and Figure 5.10 as a function of .  In Figure 5.9 

all of the waveforms used to estimate the WSF values were initially sinusoidal with a frequency 

of 1000 Hz, 1500 Hz, or 2000 Hz.  In addition to the WSF values estimated from measured 

waveforms, the WSF values estimated from numerically propagated waveforms are also shown.  

The numerical data simulates the experimental setup: an initially sinusoidal signal is propagated 

a certain distance given a range of amplitudes.  The variation in amplitude allows the WSF 

values for a range of  values to be estimated.  The numerical predictions for 5.6 m, 8.6 m, and 
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until about 1.  Since waveforms at 1 are prone to unexpected jitter, it is again likely 

that this jitter caused the WSF estimates to be larger than they would be without the jitter.  The 

similarity between the WSF estimates of the measured waveforms is somewhat unexpected, 

since the measured waveforms are noise signals while the numerically predicted waveforms are 

initially sinusoidal.  The agreement of the numerically predicted WSF values and the 

experimentally obtained WSF values suggests the WSF is insensitive to source conditions, such 

as characteristic frequency, bandwidth, or statistics. 

5.6 Derivative Skewness Estimates 

As described in Chapter 3, the skewness of the first time-derivatives of the pressure 

amplitudes (derivative skewness) has been used to characterize jet noise fields.  The derivative 

skewness has been associated with nonlinear propagation and shock content in a waveform.  In 

particular, as a waveform steepens, the derivative skewness generally increases.  As was shown 

in Section 3.2.2.2, given a continuous sampling of a waveform propagating without linear losses 

(such as the Fubini solution), the derivative skewness can diverge when shocks are present.  

However, the presence of linear losses or a finite sampling rate can cause the estimation of the 

derivative skewness to remain finite for all distances from a source. 

The estimates of the derivative skewness for a subset of the experiments performed in the 

plane wave tube, described above, are shown in Figure 5.11 and Figure 5.12 as a function of .  

In Figure 5.11 all of the waveforms used to estimate the derivative skewness values were initially 

sinusoidal with a frequency of 1000 Hz, 1500 Hz, or 2000 Hz.  In addition to the derivative 

skewness values estimated from measured waveforms, the derivative skewness values estimated 

from numerically propagated waveforms are also shown.  The numerical data was obtained in 

the same manner as described in 5.5.  The numerical predictions for 5.6 m, 8.6 m, and 11.6 m 

(green, purple, and yellow dashed lines, respectively) are shown in Figure 5.11, for comparison.  
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the derivative skewness values rise dramatically.  However, the derivative skewness estimates of 

the measured noise signals appear to be offset from the numerically predicted values, and rise 

more steeply.  Since the numerical experiment used here was an initially sinusoidal 1500 Hz 

signal, it is not necessarily expected the measured values would align with the numerical values.  

However, if it is desired the two should align, it is likely that the definition of  for noise 

( / ̅ , where ̅  is the nonlinear distortion length defined in Equation (2.27)) is a poor 

choice. 

Another significant difference between the derivative skewness trends for the initially 

sinusoidal cases and the noise cases is the values at the top of the dramatic rise (near 1 for 

initially sinusoidal signals and near 0.6 for noise signals) level off for the initially sinusoidal 

cases, but first overshoot, and then decay again for the noise signals.  As discussed in Chapter 4, 

this is likely due to the fact that nonlinearity emphasizes pressure outliers.  The high pressures 

quickly become shocks, and then are attenuated until they are no longer outliers. [43]  In this 

manner, the derivative skewness is especially sensitive to the presence of a small number of 

shocks in a waveform.  Another explanation for the decay of the derivative skewness values after 

the initial rise is that, as the shock content in the waveform becomes more uniform, the effects of 

finite sampling frequencies will become more apparent, and the estimated derivative skewness 

will come closer to the limit found for a sawtooth wave.  

5.7 Conclusions 

High-amplitude propagation of sound in a plane wave tube, both initially sinusoidal and 

noise signals, has been shown to exhibit significant evidence of nonlinear propagation distortion 

in both the time and frequency domains.  This nonlinear distortion has been studied in terms of 

the wave steepening factor (WSF) and the derivative skewness. 
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The WSF estimates of the measured waveforms follow the trends predicted by numerical 

experiments.  The presence of unexpected jitter in the waveforms appears to significantly affect 

the estimation of the WSF.  In particular, a waveform that contains noticeable shock content and 

unexpected jitter appears to have significantly higher WSF values than the same waveform 

without the jitter.  The WSF has also been shown to be quite insensitive to characteristic 

frequency, bandwidth, initial statistics, and low sampling rates. 

The derivative skewness estimates also follow the trends predicted by numerical 

experiments.  Unlike the WSF, the derivative skewness appears to be rather insensitive to the 

presence of unexpected jitter, due to the nature of skewness estimates to emphasize outliers.  In 

addition, the derivative skewness appears to be quite sensitive to the presence of shocks in a 

waveform.  However, the derivative skewness also appears to be relatively sensitive to the 

effects of low sampling rates. 

In order to mitigate the weaknesses of the WSF and the derivative skewness, it would be 

useful to have a very high sampling rate (greater than 204 800 samples/s).  When estimating the 

WSF, it may be wise to low-pass filter the data if there is unexpected high-frequency content.  

Filtering should be done judiciously, however, as the filter will also smooth the shocks in a 

waveform.  Since the derivative skewness is not as affected by small-scale unexpected noise, it is 

not as important to filter the waveforms when considering the derivative skewness.
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Chapter 6  

Application of Nonlinearity Measures to 
Full-Scale Jet Noise 

6.1 Introduction 

The nonlinearity measures described in Chapter 3 are applied to full-scale jet noise 

measurements.  These measures will be interpreted using the results found analytically in 

Chapter 3, numerically in Chapter 4, and experimentally in Chapter 5.  Since the previous 

chapters consisted of idealized cases (such as using plane waves or spherical waves), the 

comparison of previous results to the results reported in this chapter is not expected to be perfect.  

However, some insight into the role of nonlinearity in jet noise propagation is obtained from the 

comparisons. 

6.2 Measurement Setup 

A large near-field measurement of a Lockheed Martin/Boeing F-22A Raptor was made 

during 27-30 July 2009 at Holloman Air Force Base, New Mexico.  A full overview of the 

measurement is presented in Reference [56], and a pertinent summary will be given here. 

The aircraft was tied down in the center of a 24.4 m (80 ft.) wide concrete pad, with rain-

packed dirt on either side of the pad.  An upward curving blast deflector was located 
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The distance from the nozzle to the farthest measurement location was less than 23 m, so 

temperature and wind fluctuations were considered minor.  In order to minimize the effects of 

strong temperature lapses and moderate winds common in the daytime, most measurements were 

taken in the morning.  The average wind speeds did not exceed 2.4 m/s, except for a single row 

of scans in plane 2 (see Figure 6.1), during which the average wind speed was 5.0 m/s.  

Temperatures averaged 30°C, with a standard deviation of 4°C. 

For every measurement location, the aircraft was fired to operate on condition at idle 

power and was measured for 30 s at a sampling rate of 96 kHz, then went to an intermediate 

engine condition and was measured, then went to military engine condition and was measured, 

and then went to afterburner engine condition and was measured.  During the afterburner engine 

condition the sampling rate was decreased to 48 kHz. 

6.3 Waveforms and Spectra 

The analyses of measured jet noise presented in this thesis are focused on the 

measurements at three microphones on the ground array described above.  These microphones 

are labeled in Figure 6.1 by their downstream locations, 0 m, 10.4 m, and 20.7 m.  Portions of the 

waveforms measured at each of these three locations for the intermediate and military engine 

conditions are shown in Figure 6.2 and Figure 6.3, below. 

The portions of the waveforms measured at intermediate engine condition shown in 

Figure 6.2 suggest the effects of nonlinearity have been relatively unimportant in the noise 

propagation.  The waveforms in plots (a), (c), and (e) do not appear to have experienced very 

much nonlinear distortion.  The expanded waveform portions shown in plots (b), (d), and (f) 

suggest similar results.  In addition, the overall sound pressure levels (OASPLs) of these 

waveforms (reported in the caption of Figure 6.2) are low with respect to nonlinear processes, 

noted by the fact that an initially sinusoidal waves with a similar OASPL and characteristic 
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other hand, since similar shapes were found for the much lower amplitude intermediate engine 

condition, it is possible that these spectra are a result of source phenomena. 

6.4 A Simple Model of High-Amplitude Noise Propagation 

Since jet noise is not planar, it does not make sense to compare the nonlinearity metrics 

discussed below to the results obtained analytically in Chapter 3 or experimentally in Chapter 5.  

Given the success of the numerical models in Chapter 4 and Chapter 5 in predicting the 

propagation of waveforms in a plane wave tube, and in an effort to understand the importance of 

nonlinearity in a jet noise-like geometry, a numerical model of noise propagating with a 

geometry similar to jet noise propagation is used to compare the measured waveforms and their 

associated nonlinearity metrics. 

The model consists of initially Gaussian noise with a jet noise-like spectrum that 

propagates spherically from a source about 5 m downstream of the nozzle.  At this distance, the 

shear layer is approximately 1.2 m is radius (see Figure 6.1).  We assume the waveform is known 

at the edge of the shear layer.  In order to estimate the amplitude of the waveform at the shear 

layer, recall a wave propagating spherically without linear losses decays in amplitude as , 

where  is the radius from the source region.  The overall sound pressure level about 12 m from 

the source region and on the ground is about 146 dB re 20μPa for the military engine condition.  

Then, neglecting the ground reflection and absorptive and nonlinear effects, we estimate the 

overall sound pressure level at the shear layer to be about 166 dB re 20μPa.  Given a sampling 

rate of 96 000 Hz, a characteristic frequency of 750 Hz, and an absorption coefficient of about 

4.7 10  Np/m, we obtain a “spherical Gol’dberg number,” Γ 1/ ̅, of about 590.  (Note 

that the “spherical Gol’dberg number” is the same as the effective Gol’dberg number defined by 

Baars et al. except for a factor of √2. [28])  By numerically propagating an initially Gaussian 

noise signal with a jet noise-like spectrum including atmospheric absorption, spherical spreading, 
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location may be found by comparing the WSF estimates with Figure 6.6.  These  values are 

also presented in Table 6.1. 
 

Table 6.1.  Table of calculated WSF for F22-A Raptor noise waveforms measured at three 
downstream measurement locations and for two engine conditions.  Estimates of the 
associated value of /  based on the model in Section 6.4 are also included. 

Measurement 
Location 

Intermediate Engine Condition Military Engine Condition 

WSF  WSF  

0 m 0.985 0.33 0.792 0.38 
10.4 m 0.974 0.33 0.621 0.46 
20.7 m 0.989 0.33 0.776 0.38 

 

The WSF estimates based on the intermediate engine condition waveforms are all quite 

high, implying that the characteristic nonlinear distortion length associated with the intermediate 

engine condition is very large, and that nonlinearity is not very important for this condition.  This 

conclusion is substantiated by the fact that the  values for each of the three measurement 

locations are 0.33, which is the reference distance.  Thus, nonlinearity is not likely to be 

important for the intermediate engine condition.  The WSF estimates based on the military 

engine condition waveforms are lower than those based on the intermediate engine condition 

which implies the characteristic nonlinear distortion length associated with the military engine 

condition is shorter than that for the intermediate engine condition.  This claim is also 

substantiated by the fact that the  values are significantly larger than 0.33, the reference 

distance. 

 In order to estimate whether these WSF estimates are an accurate representation of the 

true noise field, numerical down-sampling may be used to determine the consistency of the WSF 

values.  This analysis consists of decimating a measured waveform to a lower sampling rate than 

was used for the measurement and then calculating the WSF (or any measure of interest).  This 

process is repeated until the sampling rate is so low the estimates of the WSF become random.  
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smoothness of real waveforms suggests that no true WSF would ever reach zero.  Therefore, the 

asymptotic behavior of the WSF estimates for the intermediate engine condition suggests the 

sampling rate used for the measurement was sufficiently high to estimate the actual WSF value 

(or the WSF value obtained by continuous sampling) of the noise at intermediate engine 

condition.  However, the fact that the WSF estimates for the military engine condition do not 

level out to some positive value suggests the sampling rate used was insufficient to estimate the 

actual WSF of the noise at military engine condition, and the actual WSF value is lower than the 

reported value.  Since the rate at which the WSF values decrease with respect to  for the 

military engine condition is significantly less than the sawtooth limit of  or the Fubini-

Earnshaw formula of , it may be some aspect of the waveform with a very short time scale 

(such as the high-frequency content) may have a strong influence on the estimation of the WSF.  

If the actual WSF value of the noise during military engine condition is lower than the reported 

value, then the values of  for the noise estimated above are low. 

6.6 Derivative Skewness 

The derivative skewness estimates of the waveforms measured on the stationary array 0 

m, 10.4 m, and 20.7 m downstream (see Figure 6.1) are stated in Table 6.2, below, for the 

intermediate and military engine conditions.  In addition, assuming the numerical model 

proposed in Section 6.4 may be used to model the propagation, an estimate of the  value of the 

jet noise at the measurement location may be found by comparing the WSF estimates with 

Figure 6.7.  These  values are also presented in Table 6.2. 
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Table 6.2.  Table of calculated derivative skewness values for F22-A Raptor noise waveforms 
measured at three downstream measurement locations and for two engine conditions.  
Estimates of the associated value of /  based on the model in Section 6.4 are also 
included.   

Measurement 
Location 

Intermediate Engine Condition Military Engine Condition 
Derivative Skewness  Derivative Skewness  

0 m 0.0593 0.33 1.33 0.39 
10.4 m 0.0879 0.34 5.54 0.54 
20.7 m 0.0463 0.33 2.79 0.45 

 

The results found in the analysis of the WSF estimates based on the ground array of 

microphones given in Section 6.5 are corroborated by the derivative skewness estimates.  The 

derivative skewness values for the intermediate engine condition are small, and suggest that 

nonlinearity is not important in the propagation of the noise radiating at intermediate engine 

condition.  The derivative skewness values at military engine condition are significantly higher, 

and the estimated  values are of the same range that the  values estimated using the WSF are, 

and so nonlinearity is likely to be important in the propagation of jet noise at military engine 

condition.  The consistency of the estimated values of  using the WSF and using the derivative 

skewness suggests that the model used is valid for the waveforms considered. 

It should be noted the interpretation of the WSF and the derivative skewness values in 

terms of  relies upon the validity of the model presented in Section 6.4.  However, this simple 

model is far from an accurate representation of jet noise propagation.  Jets are complicated, 

extended sources, and the results found in this and the previous section should be interpreted in 

light of this limitation.  For example, the geometry of jet noise propagation is neither spherical 

nor cylindrical, but somewhere in between, is directional, and is frequency dependent.  Since the 

model used here assumed purely spherical propagation, this would suggest that the source 

amplitude is somewhat lower than the signal used for these analyses, and decay more slowly.  

The non-spherical geometry would likely change the overall shape of the evolution of the 

nonlinearity metrics, and therefore change the estimated  values (or some generalization of  

for non-spherical, non-cylindrical geometries).  While it is unknown how these differences will 
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appear to reach an asymptotic value, though only for sampling rates close to the measurement 

sampling rate.  This suggests the sampling rate of 96 000 samples/s is capable of resolving the 

derivative skewness for the radiate noise of the intermediate engine condition.  Notice the 

behavior of the derivative skewness of the waveforms measured during the intermediate engine 

condition do not follow the predicted derivative skewness of a sawtooth wave.  This is indicative 

of the lack of significant shock content in the waveforms measured during the intermediate 

engine condition. 

The derivative skewness estimates for the military engine condition do not appear to 

approach any asymptotic value, but continue to increase for increasing .  Also notice that the 

derivative skewness estimates for all three measurement locations increase approximately at the 

same rate that is predicted for the sawtooth wave.  This implies that the radiated noise for the 

military engine condition is significantly more similar to a sawtooth wave than the radiated noise 

for the intermediate engine condition is.  As mentioned above, since physical waveforms are 

continuous, we may assume there is an asymptotic estimate of the derivative skewness, even for 

jet noise radiated during the military engine condition.  Therefore, it is likely if the waveforms 

had been sampled at a much higher sampling rate the derivative skewness estimates would level 

out and depart from the sawtooth wave trend, which inherently diverges.  From this we conclude 

a sampling rate of 96 000 samples/s, which was used during the measurement, is insufficient for 

the purposes of estimating the true derivative skewness of the noise radiating from an F22-A 

Raptor at military engine condition.  However, comparisons of the derivative skewness values 

for the military engine conditions with derivative skewness values based on other waveforms 

which have also reached a sawtooth wave-like behavior will still yield information about the 

relative importance of nonlinearity. 
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6.8 Conclusions 

Estimated values of the WSF and derivative skewness of the noise suggest nonlinearity is 

more important in the propagation of jet noise at military engine condition in the near field than 

for intermediate engine condition.  In particular, the noise radiating from an F-22A Raptor at 

intermediate engine condition does not appear to be significantly distorted due to nonlinear 

propagation, nor does it appear to have formed shocks.  On the other hand, noise measured 

within 20 m of an F-22A Raptor at military engine condition does appear to be significantly 

distorted, and shocks have either formed or are forming in the waveforms. 

In addition, maps of the spatial evolution of the WSF and the derivative skewness for an 

F-22A Raptor at military and afterburner engine conditions were presented.  For both engine 

conditions and for both metrics, significant evidence of nonlinear distortion was found.  In order 

to compare the two engine conditions, the waveforms measured at military engine condition 

were downsampled to the sampling rate used for the afterburner engine condition.  The 

comparison of the WSF does not show significant differences, but the comparison of the 

derivative skewness indicates that nonlinearity plays a more significant role in the propagation of 

noise at afterburner engine condition than at military engine condition.
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Chapter 7  

Concluding Discussion 

7.1 Conclusions 

This thesis has presented analytical, numerical, and experimental descriptions of how two 

nonlinearity metrics, the wave steepening factor (WSF) and the skewness of the time-derivative 

of a time waveform (derivative skewness).  Qualitatively, the WSF quantifies the distortion of a 

waveform due to nonlinear propagation, and the derivative skewness quantifies the shock content 

of a waveform. 

The evolution of the WSF and the derivative skewness have been analytically described 

for several important ideal propagation models, the Earnshaw, the Fubini, the Fay, and the 

Khokhlov solutions to the case of an initially sinusoidal plane wave propagating with and 

without thermoviscous absorption.  In particular, the WSF of the Earnshaw solution is given by 
 

 WSF
2
2
, (7.1) 

where  is the distance from the source over the shock formation distance of an initially 

sinusoidal signal, and the WSF of the Khokhlov solution is given by 
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 WSF

Γ
2 1

cosh Γ
2 1

1 , (7.2) 

where Γ is the Gol’dberg number of the initially sinusoidal signal.  The derivative skewness of 

the Fubini solution is 
 

 Sk /
3

√2

∑ ∑ ∑ ,

∑ / , (7.3) 

where ,  is the Kronecher delta function and  is the  order Bessel function of the first 

kind, the derivative skewness of the Earnshaw solution (which is equivalent to the Fubini 

solution for 1) is 
 

 Sk /
2 1 / 3 2

1 / 1 √1
/ , (7.4) 

and the derivative skewness of the Fay solution is 
 

 

Sk /

3

√2

∑ ∑ ∑
sinh 1

Γ sinh 1
Γ sinh 1

Γ
,

∑
sinh 1

Γ

/ . (7.5) 

By assuming that nonlinear distortion of a waveform due to propagation is relatively minor for 

0.2 for an initially sinusoidal plane wave propagating without linear losses, it has been 

further found that a WSF value of about 0.75 is high, indicating low waveform distortion, and 

that a derivative skewness values of 0.5 may be considered low, indicating that shocks have not 

started to form significantly.  Furthermore, by assuming that cumulative nonlinear effects are 

quite substantial for 0.9 for an initially sinusoidal plane wave propagating without linear 
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losses, it has been found that a WSF value of 0.25 may be considered low, indicating significant 

waveform distortion due to nonlinear propagation, and that a derivative skewness value of 5 may 

be considered high, indicating that shocks are (or soon will be) present in the waveform. 

In addition to the exact forms of the WSF and derivative skewness given above, a 

discussion of the effects of finite sampling rates on the estimation of the WSF and derivative 

skewness values of these ideal models has been presented.  It was shown that the estimate of the 

WSF of a sawtooth wave is approximately / , where  is the sampling rate and  is the 

sawtooth frequency, and that the derivative skewness of a sawtooth wave is approximately 

/ .  In general, it appears that the WSF is less sensitive to low sampling rates than the 

derivative skewness. 

Due to the difficulty of considering arbitrary source signals or realistic absorption and 

dispersion in analytical propagation models including nonlinear phenomena, a numerical 

propagation model was used to study the effects of noise and realistic absorption and dispersion 

on the evolution of the WSF and the derivative skewness.  By numerically propagating an 

initially sinusoidal plane wave with thermoviscous absorption, a transition region between the 

Earnshaw and Fay/Khokhlov solutions was described for the WSF and derivative skewness for 

two values of the Gol’dberg number.  By considering an initially sinusoidal plane wave 

propagating with plane wave tube-absorption and -dispersion, it was found that the slower 

growth of absorption with frequency associated with boundary layer absorption caused 

nonlinearity to become more important with propagation relative to propagation with 

thermoviscous absorption, as noted by lower values of the WSF and higher values of the 

derivative skewness.  Finally, the importance of nonlinearity in an initially broadband, planar 

Gaussian noise signal propagating with plane wave tube-absorption and -dispersion was found to 

be greater than for the initially sinusoidal case, as suggested by Gurbatov and Rudenko. [43] 

In order to validate the numerically obtained data, the evolution of nonlinearity metrics of 

waveforms measured inside a plane wave tube was analyzed.  Significant agreement was found 
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between the numerically and experimentally obtained WSF values and derivative skewness 

values for 1.2.  The difference between the trends for 1.2 may be attributed to 

unexpected jitter in the measured waveforms.  This small-amplitude, high-frequency 

phenomenon was found to significantly increase the WSF value of the waveform, indicating that 

small disturbances in a waveform will mean that the WSF will predict that nonlinearity is less 

important than it would if the disturbances were not present.  On the other hand, the derivative 

skewness did not appear to be as dramatically affected by the unexpected oscillations in the 

measured waveforms.  The reason for this is that the cubic nature of the skewness will emphasize 

the largest slopes and suppress the smallest slopes. 

These conclusions, based on analytical, numerical, and experimental evidence, were 

applied to jet noise.  The WSF and derivative skewness of a spherically propagating Gaussian 

waveform with a jet noise-like spectrum were numerically evaluated, and then compared with 

the WSF and derivative skewness values of measured waveforms of an F-22A Raptor at 

intermediate and military engine conditions.  Nonlinearity in the radiated noise at intermediate 

engine condition was found to be not very significant, while nonlinearity in the radiated noise at 

military engine condition was found to be quite significant.  In particular, the noise measured 

about 12 m from the source region in the direction of greatest intensity during military engine 

condition had WSF values and derivative skewness values similar to the simple spherical wave 

model at 0.5, where  is the distance from the source region relative to the spherical shock 

formation distance (or nonlinear distortion length for noise).  As further evidence, maps of the 

WSF and derivative skewness near the F-22A Raptor, based on scans designed to be used for 

near-field acoustical holography, were shown for military and afterburner engine conditions.  

Both metrics suggest that nonlinearity becomes more important with greater distance from the 

source in the direction of greatest amplitude for both engine conditions, providing further insight 

into the nature of jet noise near fields. 
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7.2 Future Work 

While this thesis has described how two measures of the importance of nonlinearity in jet 

noise evolve using analytical and experimental means, there is still much that should be done to 

improve understanding of these measures.  The theoretical work shown in Chapter 2 has been 

focused entirely on understanding the evolution of measures of nonlinearity for the case of an 

initially sinusoidal signal.  While this is an important benchmark case, most real-world problems 

will deal with more complicated signals.  Extending the theoretical work presented in this thesis 

to include initially Gaussian noise and noise with jet noise-like statistics would help our 

understanding of how measures of nonlinearity in measured jet noise should be interpreted. 

Another limitation of the theoretical work presented in this thesis is that all derivations 

assumed planar propagation and either no losses or only thermoviscous losses.  Analytical or 

numerical analysis of how geometrical spreading, such as cylindrical or spherical spreading, and 

more general propagation losses affect the evolution of measures of nonlinearity can also be 

useful in interpreting jet noise data. 

The measurements of noise propagating in a plane wave tube presented in Chapter 3 have 

shown how different characteristic frequencies, bandwidths and initial statistics can affect the 

evolution nonlinearity measures.  However, oscillations in the measured waveforms that are not 

due to the planar propagation of the source signal somewhat diminish the utility of the metrics 

estimated from these waveforms.  The experimental setup may be improved by ensuring that the 

couplings between segments of the plane wave tube are smooth, such as by custom-designing 

couplers, or by using a single, long tube instead of segments.  Since nonlinear processes transfer 

energy to higher frequencies, cross modes in the plane wave tube may corrupt the measured data.  

Using lower characteristic frequencies than those used here or using a narrower tube may help in 

the reduction of energy transferred to cross modes, although this would increase boundary-layer 

absorption as well. 
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Comparing the theoretical and experimental evolution of measures of nonlinearity of 

noise with measured jet noise has given insight into the nature of nonlinear processes in jet noise 

propagation.  However, the measurements used for this thesis is a small subset of a very large set 

of jet noise measurements.  Analyzing all of these data will take time, but this analysis will likely 

give insight into the spatial dependence and the physical processes associated with the 

importance of nonlinearity in jet noise. 
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Appendix A 

McInerny Plots 

This appendix defines and discusses another way to analyze the effects of nonlinear terms 

in propagation models that has been used to study jet aircraft and rocket noise.  Since our 

understanding of this technique is still immature, and the results are preliminary, this analysis has 

been placed in an appendix, rather than a chapter. 

Measures such as the WSF or the derivative skewness provide a convenient way to study 

an entire waveform, but specifics about the shock content can also provide useful information.  

McInerny and Ölcmen [33] developed a scatter plot (hereafter called a McInerny plot) in the 

study of rocket noise which provides information on some of the specifics of the shock content in 

a waveform.  For every pressure rise, a point is placed on a plot where the horizontal axis is the 

difference of the maximum and minimum pressure for a given rise in pressure (Δ ) and the 

vertical axis is the maximum rate of pressure increase between the times of the maximum and 

minimum pressure ( / | ).  They were able to show that Gaussian noise and noise with 

significant shock content followed different trends on this scatter plot. 

In the form presented by Mcinerny and Ölçmen [33] the locations of the points on these 

McInerny plots depends greatly upon the overall sound pressure level and characteristic 

frequency of the waveform.  Proper normalization of the axes of the scatter plots can aid the 

comparison of different waveforms with different general characteristics.  Different 
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normalization schemes can accentuate different aspects of a waveform.  This appendix will make 

use of two normalization schemes of the McInerny plots, one emphasizing the importance of 

sufficient temporal resolution of shocks, which will be called the sampling rate normalization, 

and one emphasizing the waveform distortion due to nonlinear processes, which will be called 

the inverse local WSF (ILWSF) normalization. 

The sampling rate normalization scheme consists of normalizing the vertical axis of the 

McInerny plot by the sampling frequency multiplied by the difference between the maximum 

and minimum pressure of a pressure rise ( / | / Δ ), and normalizing the horizontal 

axis by the standard deviation of the pressure amplitudes (which is the same as the root-mean-

square of the pressure for zero-mean processes) of the entire waveform (Δ / ).  The reason 

for this particular scheme is explained in Section A.2.  The ILWSF normalization scheme 

consists of normalizing the vertical axis of the McInerny plot by the negative of the minimum 

slope of the pressure fall just after the pressure rise of interest ( / | / / | ) and 

the horizontal axis  by the standard deviation of the pressure amplitudes of the entire waveform 

(Δ / ).  Since the WSF is the magnitude of the mean negative slope over the mean positive 

slope, the normalization of the vertical axis makes it what may be considered the inverse of a 

WSF for the region just around the pressure rise of interest, and is referred to as the inverse local 

WSF, and hence the name of the normalization scheme.  The sampling rate normalization is used 

primarily in Section A.2 to elucidate some subtleties of using the McInerny plots with 

waveforms that have been sampled with a finite sampling rate.  The ILWSF normalization will 

be the primary normalization scheme used to study measured waveforms in this appendix. 

 

A.1 Analytical Treatment of the Khokhlov Solution 

 

Since every pressure rise in a McInerny plot is accounted for, it is useful to know how 

idealized pressure rises will be placed on the plots.  In order to do this, we will analyze the 
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Khokhlov solution in terms of the ILWSF normalization.  We choose the Khokhlov solution 

because it is not written in the form of a Fourier series. 

The Khokhlov solution is described in Section 2.2.3.5.  The second time-derivative of the 

Khokhlov solution is given as 
 

 
1

1 2
1 tanh

2
tanh

2
. (A.1) 

Then the maxima and minima of the pressure slope may be found at the zeros of Equation (A.1), 

which occur at 0 and ∞.  Since the solution is only valid from | | , we conclude that 

the waveform extrema are at 0 and .  By observation, 0 is the location of the 

maximum slope, and  is the location of the minimum slope.  Using Equation (2.43) we 

calculate the maximum slope to be 
 

 
1

1 2
1  (A.2) 

and the minimum slope to be 
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The maximum pressure difference for the waveform is found to be 
 

 Δ Θ Θ , (A.4) 

which yields 
 

 Δ
1

1
2 1
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Since the standard deviation of  does not have a closed form in terms of elementary 

functions, we use the standard deviation of the Fay solution, which is given as 
 

 ,
2
Γ

1
sinh

. (A.6) 

Since the Khokhlov solution is for a periodic function with only a single pressure rise and 

a single pressure fall for each period, its representation on a McInerny scatter plot will be a 

single point.  However, the location of that point will vary as the wave propagates.  In particular, 

the location of the point on the McInerny scatter plot (without any normalization) will be 
 

 

Δ , Δ ,

1
2 1

2 4
tanh 1

2
,

2
1 . 

(A.7) 

Equation (A.7) is plotted in Figure A.1 assuming 9, for 5 , 10 , and 20 , and for 

  2 and 4. 
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amplitude-modulated sine wave.  Thus, each pressure rise is like one oscillation of a sine wave 

with a given amplitude, which is only loosely related to the amplitude of the next pressure rise.  

Since each pressure rise has its own amplitude, it is implied that it will have its own value of .  

Thus, given a narrowband plane wave that propagates according to the Burgers equation, the 

curve in Figure A.2 describes the distribution of points on a normalized McInerny plot of said 

waveform.  However, this interpretation must be made carefully, because the standard deviation 

is of the entire narrowband noise waveform, and not just for the waveform locally around a 

pressure rise.  Thus, the positions of the points on a McInerny plot of narrowband noise are 

likely to be spread about horizontally somewhat. 

 

A.2 Effects of Finite Sampling Rate on McInerny Plots 

 

The plots used by McInerny and Ölcmen [33] compared the maximum time-derivative of 

pressure between adjacent pressure minima and maxima with the pressure difference between the 

respective pressure maxima and minima.  These quantities depend only upon a single shock, so 

this analysis will focus on different types of individual shocks.  For each of these shocks, we will 

assume that the sampling rate is 1/Δ , and that the difference between the maximum and 

minimum pressures is Δ . 

A.2.1  Two-Data-Point Shock 

The minimum number of data points that could possibly constitute a shock is two, where 

the first data point has a pressure of  and the second data point has a pressure of .  

Therefore, the time derivative of this shock is found to be simply Δ /Δ Δ .   This means 

that the location of this shock on a McInerny plot will be Δ , Δ .  Using the sampling 

frequency normalization defined just before Section A.1, the vertical position of the shock on a 

scatter plot would become one, regardless of the pressure increase. 

A.2.2  Three-Data-Point Shock 
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Suppose that a shock consists of three data points, with pressures , , and .  

Define the pressure differences Δ  and Δ .  Without loss of generality, 

we may assume that Δ Δ .  There are two limiting cases for the three-data-point shock, which 

is that Δ Δ Δ, or that Δ ≫ Δ .  If we examine the first limiting case, we find that 

Δ 2Δ, and the maximum time-derivative estimate is  
 

 
Δ
Δ

Δ. 
(A.9) 

Therefore the vertical position of this shock on the normalized scatter plots would be  
 

 Δ/2 Δ 1/2. (A.10) 

Examining the second limiting case, we find that Δ Δ Δ Δ , and that the 

maximum time-derivative estimate is Δ .  Then the vertical position of this shock on the 

normalized scatter plots would be Δ /Δ 1.  Since all three-point-shocks must fall between 

these two limiting cases, we conclude that the vertical position of any three-point-shock is 

constrained to be between one half and one. 

A.2.3  -Data-Point Shock 

Using similar arguments as those in the three-data-point shock discussion, it can be 

shown that all shocks with  data points will be constrained to stay between 1/ 1  and one. 

A.2.4  ILWSF Normalization 

The limitations discussed above also apply to the ILWSF normalization scheme, except 

that the ILWSF normalization uses both the positive and negative slope extrema, not just the 

positive.  Constraints on the estimate of the negative slope apply much as they do for the positive 

slopes discussed above.  However, for most waveforms with significant shock content, the 

pressure increase usually happens much faster than the succeeding pressure decrease.  This 
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means that the estimate of the true location of a pressure rise and fall on the McInerny plot with 

ILWSF normalization is likely to be more accurate than an estimate of the true location on a 

McInerny plot with no normalization.  However, if there are any small scale oscillations, 

physical or digital, around a pressure rise, then the calculated location on a McInerny plot with 

ILWSF normalization may be misleading. 

 

A.3 McInerny Plots of Plane Wave Tube Measurements 

 

The waveforms measured in the plane wave tube experiments described in Chapter 5 

were analyzed in terms of McInerny plots, in addition to the WSF and derivative skewness.  

Once again, the purpose of using a plane wave tube measurement is that it allows for a relatively 

well understood system.  The known geometrical propagation and absorption in a plane wave 

tube give the necessary information to be able to discern what phenomena are due to 

nonlinearity. 

McInerny plots allow one to study each pressure rise in a given waveform as a part of a 

set.  This approach seems to be especially useful in studying nonlinear noise propagation because 

not every pressure rise in a distorted noise waveform is going to be a shock, or even have 

significant nonlinear distortion.  As discussed above, the McInerny plots presented here will be 

normalized using the ILWSF normalization scheme.  This means that every pressure rise and 

succeeding pressure fall will create a single point on the scatter plot, located at 
 

 
Δ

,
/ |

/ |
, (A.11) 

where Δ  is the pressure difference between the greatest and smallest pressure measured for the 

pressure rise of interest,  is the standard deviation of the pressure of the entire waveform, 

/ |  is the time-derivative estimate during the pressure rise of interest with the greatest 
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value, and / |  is the time-derivative estimate during the succeeding pressure fall with the 

lowest value.  The vertical position is also referred to as the ILWSF.  Higher values of the 

ILWSF indicate that the waveform shows more nonlinear waveform distortion, higher values of 

Δ /  indicate large pressure rises.  The region of a McInerny plot most likely to describe 

shocks in a waveform then is near the upper right corner. 

In order to facilitate an understanding of the McInerny plots of the waveforms measured 

in the plane wave tube, McInerny plots of numerically generated, specrally (a) white, (b) 

broadband, and (c) narrowband Gaussian noise are shown in Figure A.3, along with two-

dimensional histograms of the plots.  Both the broadband and narrowband Gaussian noise signals 

were given a characteristic frequency of 1500 Hz, and have a bandwidth of 1600 Hz and 100 Hz, 

respectively.  The varying bandwidths were obtained by bandpass filtering the white Gaussian 

noise signal.  The number of samples in each waveform is 2 , and an artificial sampling 

frequency of 204800 Hz was chosen. 

The McInerny plots in Figure A.3 themselves do not yield much information.  It is noted 

that the points on a McInerny plot due to Gaussian noise lie within a triangular shaped region.  

This triangular region is significantly reduced in size for narrower bandwidths.  In particular the 

triangular region of the plot of the narrowband waveform (plot (c)), is very narrow, to the point 

that it may be considered to be a line.  The narrowband noise positions appear to be consistent 

with the interpretation of the results in Section A.1.  Notice that the majority of points in plot (a) 

and all of the points in plots (b) and (c) have values of ILWSF less than 1000, which is also 

consistent with the guidelines found in Section A.1.  
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larger than 0.3% of the amplitude of the largest pressure rise in the waveform. [33]  This lower 

threshold is plotted as the red dashed lines in Figure A.4.  If this limit is considered to be 

meaningful, then the large group of points centered about 10 , 1  is likely to be associated 

with unexpected vibrations. 

Another way to identify data that are meaningful is to compare a waveform at different 

stages of its propagation.  Notice that the histogram in Figure A.4(a) only has one region with a 

high point-density, centered about (2, 1).  Since the waveforms being considered are much 

longer than their characteristic periods, it may be assumed that only the trends of high-density 

regions can be interpreted in terms of propagation effects.  Thus, much of the histogram in plot 

(a) is not likely to be meaningful.  Since the area around (2, 1) seems to characterize the 

waveform measured 0.3 m from the source, it is likely that propagation would cause a 

continuous modulation of this region.  Thus, the cluster of points about (2,10) in plot (b) is the 

most likely cluster in the histogram to have meaning with respect to propagation. 

A simple numerical test can be used to test the hypothesis that the points in Figure A.4(b) 

near (2,10) are the important ones.  A prediction of the waveform that was measured 11.6 m 

from the source was obtained using the propagation model discussed in Chapter 4.  The 

waveform analyzed in Figure A.4(a), which was measured 0.3 m from the source, was used as 

the input waveform.  The measured and predicted waveforms are shown in Figure A.5(a), the 

two-dimensional histogram of the McInerny plot of the measured waveform is shown in Figure 

A.5(b), and the histogram of the predicted waveform is shown in Figure A.5(c).  The predicted 

waveform is nearly identical to the measured waveform with the notable exception of some small 

oscillations.  Note that the histogram of the predicted waveform has significantly less data 

beyond the cluster near (2, 10) than the histogram of the measured waveform.  The lack of 

oscillations in the waveform and compactness of the points in the histogram of the predicted 

waveform suggests that the large cluster of points in plot (c) are due to some kind of systematic 

error in the measurement. 
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nonlinear propagation.  In order to simplify the explanations, all of the histograms of waveforms 

measured in the plane wave tube presented below will be compared with the histograms of an 

initially broadband Gaussian noise waveform with a characteristic frequency of 1500 Hz.  The 

waveforms analyzed were chosen to have  values similar to those of the reference waveforms.  

Following McInerny and Ölçmen, only those points on the McInerny plot with values of Δ  

greater than 0.3% of the maximum value of the waveform are included in the plots. 

First, the reference set of histograms (initially 1500 Hz, broadband Gaussian noise) will 

be discussed.  Then, the effects of different characteristic frequencies will be discussed by 

comparing histogram sets from initially 1000 Hz and from 2000 Hz broadband Gaussian noise 

waveforms with the reference set.  The effects of bandwidths are then analyzed by comparing 

initially 1500 Hz narrowband Gaussian noise with reference set.  Finally, initially 1500 Hz 

broadband jet noise-like noise will be compared with the reference set to understand the effects 

of different initial statistics. 
 

Initially 1500 Hz, Broadband Gaussian Noise 

Portions of the histograms of the McInerny plots of initially 1500 Hz broadband Gaussian 

noise measured in a plane wave tube (a) 0.3 m, (b) 2.5 m, (c) 5.6 m, (d) 8.6 m, and (e) 11.6 m 

from the source are shown in Figure A.6.  (It should be noted that the portions shown in plot (a) 

and plot (e) are portions of the histograms shown in Figure A.4 and Figure A.5.) 
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of the noise waveform are becoming significantly distorted.  It appears that the main dense 

region has bifurcated into two portions, one centered about (2, 3) and the other centered about (3, 

27).  In addition to the main dense region on the right hand side of the plot, another dense region 

has started to form on the left hand side of the plot.  It appears to be truncated by the threshold 

introduced by McInerny and Ölçmen, suggesting that this region is similar to the region centered 

about (10 ,1) in Figure A.4(b).  The dense region developing on the left of plot (c) is likely 

noise generated by some systematic error in the measurement. 

By plot (d) the dense region on the left of the histogram has become the main dense 

region in the histogram.  However, the dense region on the right, which is more likely to 

represent the evolution of the initial waveform, is still easily distinguishable.  The dense region 

on the right side of the histogram still looks like there are two portions of it, creating an inverted 

“v” shape.  The peak of the “v” shape is located near (3, 80).  It is interesting that largest values 

of ILWSF for the dense region on the right of plot (d) is approximately the same as the largest 

values of the ILWSF for the dense region on the right of plot (c), as well as the largest ILWSF 

values for the dense region on the right of plot (e).  While there is some interesting structure to 

these right-hand dense regions, the overall shape does not vary much between plots (c), (d), and 

(e), suggesting that the waveform has reached a more stable part of the propagation by 0.55.  

The most likely case would be that the waveform has already passed some threshold similar to 

the shock formation distance for sine waves.  This conclusion is strengthened by the derivative 

skewness estimates presented in Section 5.6.  The derivative skewness estimates of noise follow 

a similar trend of the initially sinusoidal signals, but progress at much faster in terms of . 
 

Characteristic Frequency Comparison 

Comparing the histograms of McInerny plots of initially broadband Gaussian noise with 

different characteristic frequencies can help us understand the importance of absorption on the 

nonlinear propagation of noise. 
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