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ABSTRACT

Modeling Radial Bernstein Modes in a Finite-Length
Axisymmetric Non-Neutral Plasma

Mark Hutchison
Department of Physics and Astronomy, BYU

Master of Science

Axisymmetric radial Bernstein modes are known to exist in non-neutral plasmas and have been
studied theoretically and computationally in 1D, but detection of these modes has still proven to
be difficult due to self-shielding. To help advance the work on this front we created a 2D particle-
in-cell (PIC) code that simulates a non-neutral plasma in a Malmberg-Penning trap. A detailed
description of the PIC code itself has been included that highlights the benefits of using an r2–z
grid and how it can be tested. The focus of the PIC simulation was to discover how best to drive
and detect these modes. While it is improbable that radial Bernstein modes will be detected in
long plasmas, we show that it may be a possible due to the axial nodal structure in the potential
and electric field generated by confining plasmas of any finite-length. Additionally, we find that
for a short plasma the strongest detection signal along the trap wall occurs at the plasma’s midpoint
rather than near the ends. Results show that oscillating the confinement potentials is sufficient to
excite the fundamental radial Bernstein mode, but not any of the higher order modes. The higher
order modes can be seen in the simulation, however, by sinusoidally driving the radial electric
field. Unfortunately, the individual modes are difficult to isolate which we suspect is due to mode
mixing. Finally, we report frequencies and mode shapes for the fundamental mode and the (lower)
first higher order mode.

Keywords: axisymmetric, Bernstein modes, finite-length, Malmberg-Penning, non-neutral, particle-
in-cell, radial
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Chapter 1

Introduction

Background

Non-neutral plasmas are often studied in plasma physics because they can be confined for

relatively long periods of time when compared to confinement times of neutral plasmas. A basic

difficulty in neutral plasmas is the recombination between electrons and ions themselves. But even

at temperatures when this is small, electrostatic attraction between electrons and ions cause them

to reorient themselves in order to preserve neutrality. Because electrons are much lighter than ions

and, thus, have a higher thermal velocity, they tend to diffuse through the plasma faster than the

ions [1]. This imbalance in charge creates an electric field that then pulls the ions along. This of

course slows the diffusion of the electrons, but the overall diffusion of the plasma is increased.

Furthermore, this complicated interaction between electrons and ions inside internal and external

electromagnetic fields give rise to a large number of fluid and kinetic instabilities making long

confinement times extremely difficult to obtain.

By extracting one species of charge, the complexity decreases significantly and confinement

is much easier. Four of the more important features of non-neutral plasmas were outlined by

Peurrung et al. [2]. First, non-neutral plasmas can exist at any temperature because recombination

1
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does not occur within the plasma. Second, long confinement times allow the plasma to easily reach

thermal equilibrium. Third, non-neutral plasmas respond well to electric fields, which makes it

possible to move or modulate the shape of the plasma. Fourth, there are already in existence many

diagnostic tools for analyzing non-neutral plasmas. Fortunately, despite the complexity loss, non-

neutral plasmas still have many of the same characteristics as neutral plasmas including drifts, wave

propagation, and Debye shielding. Therefore, non-neutral plasmas offer an ideal environment for

experimentation with and observation of plasma phenomena.

Confinement of non-neutral plasmas is often achieved using the Malmberg-Penning trap con-

sisting of a strong axial magnetic field to provide radial confinement and a deep electric potential

well for axial confinement. Because perturbations in the plasma can be achieved through a simple

modulation of the end potential, the Malmberg-Penning trap is ideal for studying wave propagation

and/or normal modes. Detection of these modes is done with an electrically isolated ring (here-

after referred to as the diagnostic ring) where oscillations in the induced charge are recorded and

analyzed for mode frequencies in the plasma. This method is particularly good at measuring axial

modes because the longitudinal compression and rarefaction of plasma under the diagnostic ring

leaves a clear signature.

Of particular interest to us are the axisymmetric radial Bernstein modes (waves that propagate

perpendicular to the external magnetic field). These radial modes can also be detected using the

method described above, especially in short plasmas where there exists a strong coupling between

the radial and axial motion; squeezing the plasma longitudinally forces the plasma to expand ra-

dially (the opposite also being true). However, as the plasma increases in length, the coupling

between radial and axial motion weakens, making the radial modes more difficult to detect. An

important aspect of detecting radial modes is deciding where to place the diagnostic ring. In the

past we assumed that this was near the end of the plasma, but there is no a priori reason for this to

be the case. In fact, the sensitive region(s) may well change depending on the length of the plasma.
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The radial Bernstein modes are not to be confused with azimuthal Bernstein modes which

also propagate perpendicular to the external magnetic field and are often simply referred to as

“Bernstein” modes. Azimuthal Bernstein waves have been detected and studied extensively [3–8],

particularly the mθ = 1 azimuthal mode, commonly called the diocotron mode, which is used in

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). There have also

been a number of studies done on mθ = 2,3,and 4. But it seems rather surprising that compar-

atively little has been done on the mθ = 0 breathing mode (one exception is the work done by

Barlow et al. [9]). It is also interesting to note that almost all of these studies assume an axial wave

number of kz = 0.

Motivation

The study of normal modes in plasma physics is important. Knowing of and understanding all

of the possible phenomena in a plasma is significant in and of itself, but normal modes have an

added significance in that they carry actual information about the interior of the plasma. Due to

self-shielding effects it is difficult to measure quantities of the plasma without using destructive

methods. While diagnostics using destructive methods are useful and important, nondestructive

methods of gathering information are usually preferred. Plasma modes offer many nondestructive

as well as destructive diagnostics for plasmas [10]. Radial modes are no exception. One known

application for the mθ = 0 radial mode, or breathing mode, in a short plasma is to very gently

acquire accurate mass spectrum measurements using ion cloud calorimetry [2]. Limited research

could be hindering other applications from coming to light.

The plasma group at Brigham Young University has already performed much of the work

in simulating and developing a kinetic theory for these modes in a 1D infinite length plasma1

and efforts have been made to create a Malmberg-Penning trap suitable for making experimental

1At the time of writing, this work has not yet been published.
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measurements of the modes as well. This thesis is primarily concerned with performing a 2D

particle-in-cell (PIC) simulation of an axisymmetric finite-length non-neutral plasma to work in

conjunction with the developing experiment by investigating detection signatures of the radial

Bernstein modes. Specifically we are interested in the mode frequencies, shapes, and amplitudes

as well as a description of how they can be driven and the location in which they can best be

measured.



Chapter 2

Methodology

2.1 Initialization

We start by generating a thermal rigid-rotor equilibrium density on an r–z grid using a succes-

sive over-relaxation code EQUILSOR. This density is then linearly interpolated onto an r2–z grid

and particles are distributed to individual cells according to the average density of the cell’s four

bounding grid points. From there the particles are placed at random inside their respective cells

and the particles are assigned r,z and θ thermal velocities from a Maxwell-Boltzmann distribution

calculated using the Box-Müller method (see Appendix A). In addition to the thermal velocity, the

plasma must have an overriding rotational velocity about the center of the trap in order to maintain

radial confinement. In the limit of zero density, the equilibrium rotation velocity is just the E×B

drift velocity, but as the density increases the rotation velocity must be modified [8]:

ωR =
ωc

2

(
1±
√

1−β

)
, (2.1)

where ωR is the plasma’s rotational velocity, ωc is the cyclotron frequency, and β is the ratio of

the plasma density to the Brillouin density limit nB = (ε0B2/2m), the maximum density that can

5



2.2 Particle-in-cell algorithm 6

be trapped in a given magnetic field (see Figure 2.1).1 We use the smaller of the two equilibrium

velocities in our simulation simply because the higher frequencies are more difficult to work with

experimentally.

Figure 2.1. The equilibrium rotation velocity is plotted as a function of β . Above the Brillouin limit

(β = 1) the magnetic field is no longer able to provide radial confinement. In the limit of β → 0 the

equilibrium rotation velocity is just the E×B drift velocity.

2.2 Particle-in-cell algorithm

Leapfrog method

To model the radial modes, we have written a 2D particle-in-cell (PIC) code that employs the

leapfrog method to move the charged particles through space and time. The leapfrog method is

a standard integration technique used in solving the equations of motion by centering the finite-

differenced derivatives of the position and velocity at two different times separated by half a time

1β can also be calculated in terms of frequencies rather than densities: β = 2ω2
p/ω2

c , where ωp =
√

nq2/ε0m (the

plasma frequency) and ωc = qB/m (the cyclotron frequency).
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step ∆t/2. For example, suppose we have the equation of motion z̈ = a(t). For the leapfrog

method to work, it is imperative that the function a(t) not be a function of the velocity; this will

be apparent below. First separating the second order differential equation into two first order

differential equations, we then center the derivative in velocity at time t while the derivative in

position is centered at ∆t/2:
ż = v −→ zt+∆t− zt

∆t
= vt+∆t/2

v̇ = a(t) −→
vt+∆t/2− vt−∆t/2

∆t
= at .

(2.2)

We then solve for the advanced variables zt+∆t and vt+∆t/2,

zt+∆t = zt +∆t vt+∆t/2

vt+∆t/2 = vt−∆t/2 +∆t at ,
(2.3)

and use these formulas to advance the position and velocity forward in time at every time step

using the previous values. Now we can see that if a(t) were dependent on the velocity, we would

be adding values centered at two different times which could lead to grave instabilities in the

simulation.

To begin, initial conditions for both the velocity and position must be provided at t = 0 from

which the fields are calculated. Typically the fields are then used to extrapolate the velocity back in

time by half a time step to v−∆t/2 to initialize the leapfrog like advancement of information in time;

however, when perturbing an equilibrium this extrapolation is unnecessary since by definition an

equilibrium is unchanging in time (at most the velocities would only differ in thermal noise). A

cyclic process ensues in which, first, the velocity is advanced forward by one full step to v∆t/2 using

the fields and the acceleration equation. Second, the position is advanced forward to z∆t using the

velocities and, third, the new fields are calculated based upon the new positions of the charges (see

Figure 2.2). The process is repeated as many times as necessary.
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–Δt/2 Δt/2

Velocity

Δt0

Position

Figure 2.2. This illustrates the leapfrog like advancement of velocity and position that is used in the

leapfrog method. Extrapolating the velocity back half a time step initializes the process and allows the

calculations to be centered. [11]

Interpolation/extrapolation scheme

Because PIC codes use a discrete computational grid on which the density, potential, and elec-

tric field are kept, the leapfrog method described above requires an interpolation/extrapolation

scheme by which one can transfer information back and forth between particles and grid. This is

the mechanism that allows the field to push particles and conversely for the particles to update the

field. We use a bilinear interpolation/extrapolation technique that effectively transforms the point-

particles into rectangular “tents” of charge with definite shape and dimension. The tent is centered

about the particle and extends across a rectangular area equivalent to four grid cells. It has a peak

charge of q in the center and tapers to zero at the edges. The shape is determined by the equation

S = (dr−|r|)(dz−|z|), (2.4)

where −dr ≤ r ≤ dr and −dz ≤ z ≤ dz (see Figure 2.3). At any given time the particle is in

contact with four grid points2 to whom it contributes a charge equal to the height of the tent at their

respective locations. Mathematically this is equivalent to subdividing the cell into four rectangular

areas whose vertices are defined by the charge and its four nearest grid points. Then each grid

2Unless it is located exactly at a grid point in which case there is only one grid point affected.
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Figure 2.3. Shape of the effective charge (normalized to

1) when using the bilinear method. The computational

grid is also included for perspective. Grid points receive

a fraction of the total charge equal to the height of the

tent at their respective locations.

A

B C

D

A

BC

D

Figure 2.4. Extrapolation of the charge

density to the grid points is done by split-

ting the cell into four rectangles and cal-

culating the fractional area of the cell con-

tained in each. Each grid point receives

a fractional charge equal to the fractional

area diagonally opposite to the grid point

[11].

point is assigned a fraction of the charge equal to the fractional area in the opposite corner (see

Figure 2.4).

As one might expect, this method is inadequate for modeling small-scale interactions between

charges or finding trajectories of individual ions, but the large-scale physics is still very well pre-

served. While more accurate methods exist for extrapolating charge density to grid points, they

involve higher order functions and cost a significant amount of time per cycle [11]. This bi-linear

method of assigning charge is fast and efficient and is sufficient for the needs of this project.
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Mover

The equations of motion used in our leapfrog algorithm are obtained using the Lagrangian for-

mulation. In cylindrical coordinates, the Lagrangian for a particle with charge q in an axisymmetric

electromagnetic field is given by

L =
m
2
(
ṙ2 + r2

θ̇
2 + ż2)+qA ·v−qφ(r,z), (2.5)

where A is the magnetic vector potential, v is the velocity, and φ is the electric scalar potential.

The magnetic potential can be obtained from the uniform external magnetic field directed along

the z axis via the equation

Bz = [∇×A]z =
1
r

∂

∂ r
(rAθ ) , (2.6)

which yields

Aθ =
1
2

Br. (2.7)

Because A only has a θ̂ component, the dot product picks off the azimuthal velocity vθ = rθ̇ and

the resulting Lagrangian is now

L =
m
2
(
ṙ2 + r2

θ̇
2 + ż2)+ qr2B

2
θ̇ −qφ(r,z). (2.8)

The equations of motion are obtained from the Euler-Lagrange equations

∂L
∂qi
− d

dt
∂L
∂ q̇i

= 0, (2.9)

where qi and q̇i are the individual coordinates and coordinate velocities respectively.

Since θ does not explicitly show up in the Lagrangian it is an ignorable coordinate with a

conserved conjugate momentum that can immediately be written as:

pθ =
∂L
∂ θ̇

= mr2
θ̇ +

qr2B
2

. (2.10)

Meanwhile, equation (2.9) dictates that the equation of motion in r is

r̈ = rθ̇
2 +ωcrθ̇ − q

m
∂φ

∂ r
, (2.11)
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where ωc is the cyclotron frequency qB/m. Substitution from equation (2.10) allows us to replace θ̇

in favor of an expression involving the constant pθ while the derivative of the electric potential can

likewise be exchanged for the radial component of the electric field (i.e. ∂φ/∂ r = −Er). Finally,

upon separating the second order differential equation into two first order differential equations we

get 
ṙ = v

v̇ =
p2

θ

m2r3 −
pθ ωc

mr
+

ω2
c

4
+

qEr

m
.

(2.12)

The 1/r3 dependence creates a strong centrifugal barrier around the central axis. Physically, this

is due to conservation of angular momentum which prohibits particles with nonzero angular mo-

mentum from ever reaching r = 0. Despite being physical, numerically a third order singularity

poses a significant threat to the stability of the simulation. Figure 2.5 shows a cartoon of the radial

position of a particle versus time. As the particle nears the origin, the particle makes a sharp, but

smooth reversal in direction. Far from this turning point, the motion of the particle can be captured

accurately by relatively large time steps. However, as the particle nears the turning point, the time

step must decrease significantly in order to accurately step through the tight curves. Of course a

smaller time step can be employed everywhere, but the code will run impossibly slow. Even us-

ing adaptive time steps does not gain much due to the number of particles constantly making this

turnaround. The trouble near the origin can be alleviated significantly if the radial grid spacing is

changed from r to r2. Changing to an r2 coordinate system effectively enlarges the tight curve near

the origin while essentially preserving the trajectory further away. Figure 2.6 illustrates this ex-

pansion near the origin. The uniformity in the trajectory now allows us to use a large constant time

step. To this end, returning to the Lagrangian in equation (2.8), we employ a change of variables

by defining x ≡ r2. Using this definition, and the resulting relation ṙ = ẋ/(2
√

x), the Lagrangian

can be expressed in terms of the new coordinates x, θ , and z:

L =
m
2

(
ẋ2

4x
+ xθ̇

2 + ż2
)
+

qxB
2

θ̇ −qφ . (2.13)
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Figure 2.5. Cartoon showing the radial position vs

time of a single particle in an r–z coordinate sys-

tem. Near the origin, the particle makes a sudden

reversal in direction. The large change in such a

short period of time necessitates a small time step

in order to capture the motion of the particle.

Figure 2.6. Cartoon showing the radial position vs

time of a single particle in an r2–z coordinate sys-

tem. The coordinate change enlarges the turning

points near the origin making the curve more uni-

form throughout. This then allows a uniform time

step to be used everywhere in the trajectory.

Using a derivation similar to the one used above to obtain the equation of motion in r, it is straight-

forward to show that

ẍ =
ẋ2

2x
+

2p2
θ

m2x
− ω2

c x
2
− 4qx

m
∂φ

∂x
. (2.14)

As before, we would like to replace the potential with the radial electric field. This can easily

be done, but the new grid significantly changes the shape of the radial electric field near the origin.

In r, the electric field was fortuitously linear making our bilinear interpolation to the particles more

accurate, but now the electric field is proportional to
√

x. Thus, it would be in our best interest to

preserve this linear relationship in our equations. To this end we define a new variable G ≡ rEr

that preserves the linearity on the new grid and use this to replace the potential. Substituting

∂φ/∂x =−G/2x into equation (2.14) for the potential, the set of first order differential equations
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involving the new coordinate and its generalized velocity is
ẋ = v

v̇ =
v2

2x
+

2p2
θ

m2x
− ω2

c x
2

+
2qG

m
,

(2.15)

where v and v̇ now represent ẋ and ẍ respectively.

Although the centrifugal barrier from before is still present, it is much weaker (a first order

pole as opposed to a third order pole). Encouraged by this result we proceed by finite differencing

the new equations of motion. The acceleration equation becomes

vt+∆t/2− vt−∆t/2

∆t
=

1
2xt

(
vt+∆t/2 + vt−∆t/2

2

)2

+
2p2

θ

m2xt
− ω2

c xt

2
+

2qGt

m
, (2.16)

where we have been careful to average the generalized velocity term to preserve time centering.

This equation is now solved for vt+∆t/2 so as to provide a method for advancing the generalized

velocity in time. Because the generalized velocity is quadratic, there exist two roots; the correct

root is chosen by testing which root yields vt−∆t/2 in the limit that ∆t→ 0:

vt+∆t/2 =
4xt

∆t
− vt−∆t/2−4

√(
1

∆t2 +
ω2

c
4

)
x2

t −
(

vt−∆t/2

∆t
+

qGt

m

)
xt−

p2
θ

m2 . (2.17)

For comparison, the equation for advancing the radial velocity in a standard r–z grid is

vt+∆t/2 = vt−∆t/2 +∆t
(

p2
θ

m2r3
t
− ωc pθ

mrt
+

ω2
c

4
+

qEr

m

)
. (2.18)

At first glance it appears that the singularity in position has simply been replaced by one in

time. Since the error in the leapfrog method vanishes as ∆t→ 0, this would still be troublesome.3

However, when equation (2.17) is expanded in small ∆t the time singularity is again replaced by

the original singularity in x. Nonetheless, apart from a slight increase in computation time per

particle due to the square root and increased complexity of the equation, the change of variable

succeeds in reducing the order of the singularity by two—an impressive simplification!
3Of course there are always round-off errors when dealing with computer simulations and care must be taken not

to choose a time step that is too small.
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There is another advantage of using an r2–z grid. Making a uniform grid in x creates equivolu-

metric cells that contain approximately equal numbers of particles. This helps to reduce numerical

noise—especially near the central axis. Furthermore, the cell width is inversely proportional to r,

making a finer grid near the edge of the plasma. Therefore, we have the advantage of resolving the

fine detail in the edge without paying for the enormous computation cost associated with such fine

grids.

Field solver

The third and final element of our leapfrog algorithm is the field solver. The field solver first

calculates the potential from the charge density and boundary conditions and then uses the potential

to calculate the electric field.4 Rewritting Poisson’s equation in terms of our new variable x we

obtain

4
∂

∂x

(
x

∂φ

∂x

)
+

∂ 2φ

∂ z2 =− ρ

ε0
, (2.19)

whereupon finite differencing yields

4
∆x

(
xi+1/2

φi+1, j−φi, j

∆x
− xi−1/2

φi, j−φi−1, j

∆x

)
+

φi, j+1−2φi, j +φi−1, j

∆z2 =−
ρi, j

ε0
, (2.20)

where φi, j is used as shorthand for φ
(
xi,z j

)
(similarly for ρ). Because the indices i and j so closely

resemble the indices of a matrix, it is convenient to use matrix operations to solve for the potential.

However, the math is more transparent if the potentials and densities are relabeled using a single

index. This can be done by simply assigning each grid point a number (i.e. counting the grid

points) starting at, say, the bottom left corner of the grid and ending at the top right corner of the

grid as shown in Table 2.1. Thus, if 1≤ i≤ Nr and 1≤ j≤ Nz, then the total number of grid points

through which the new index ranges is 1≤ k ≤ N = NrNz. The problem can now be written using

matrices

Aφφφ = b, (2.21)
4The magnetic field produced by the motion of the charges is negligible [1].
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Table 2.1. Relabeling the potentials using a single index allows equation 2.5 to be put into matrix form.

This table illustrates one method of replacing the double index with a single index by counting the grid

points starting from the bottom left corner to the top right corner.

i = Nr φNr,1 = φNr φNr,2 = φ2Nr φNr,3 = φ3Nr · · · φNr,Nz = φNrNz

...
...

...
... ... ...

i = 3 φ3,1 = φ3 φ3,2 = φNr+3 φ3,3 = φ2Nr+3 · · · φ3,Nz = φNr(Nz−1)+3

i = 2 φ2,1 = φ2 φ2,2 = φNr+2 φ2,3 = φ2Nr+2 · · · φ2,Nz = φNr(Nz−1)+2

i = 1 φ1,1 = φ1 φ1,2 = φNr+1 φ1,3 = φ2Nr+1 · · · φ1,Nz = φNr(Nz−1)+1

j = 1 j = 2 j = 3 · · · j = Nz

where

φφφ =



φ1

φ2

φ3

...

φN


, b =



−ρ1
ε0

−ρ2
ε0

−ρ3
ε0
...

−ρN
ε0


, (2.22)

and A is an N×N banded matrix built directly out of the remaining quantities in equation (2.20).

The band has a width of 2Nr + 1, but has at most five nonzero values in each row because the

potential at any given point depends only on its four nearest neighbors. A typical row in A will

have the following form
. . .

. . .
. . .

0 · · · 0 1
∆z2 0 · · · 0

4xi−1/2
∆x2 − 4

∆x2

(
xi+1/2 + xi−1/2

)
− 2

∆z2
4xi+1/2

∆x2 0 · · · 0 1
∆z2 0 · · · 0

. . .
. . .

. . .

 (2.23)

although it should be noted that the symmetry is altered somewhat for points located at the corners

or along the edges of the grid since the number of neighboring points decreases. Also note that the

index i has been left explicit on the radial positions to emphasize the fact that the values are cycled
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every Nr rows.

While the matrix A is very large and relatively expensive computationally to assemble, it is

important to realize that it only needs to be done once in the entire simulation and thereafter allows

all of the potentials in a particular time step to be solved directly in one operation, φφφ = A−1b.

Furthermore, only the diagonals of the band need be stored because the rest of the matrix is filled

with zeros. This reduces the number of values to be stored from N2 down to N (2Nr +1).5

Boundary Conditions

The boundary conditions for an axisymmetric grounded Malmberg-Penning trap are intuitive

for an r–z grid—the potential is zero along conducting boundaries and has zero radial derivative

along the r = 0 axis. By swapping coordinate grids no change occurs in boundary conditions along

conducting surfaces, but there is a subtle change at the r = 0 boundary. While continuity across

r = 0 must be conserved, slope need not be. Therefore, on our new grid, the potential has a finite

radial slope along the axis. To illustrate, consider equation (2.19) with no z dependence

4
∂

∂x

(
x

∂φ

∂x

)
=− ρ

ε0
. (2.24)

If we do a power series expansion of the potential (φ = c1+c2x+c3x2+ . . .) and plug this into the

equation above we get

c2 +4c3x+9c4x2 + . . .=− ρ

4ε0
. (2.25)

5To illustrate the advantage of using the banded matrix over the full matrix, consider a grid with 100×1000 grid

points. With each matrix element requiring 8 bytes of storage, the banded matrix only uses 153 MB while the full

matrix surprisingly requires over 74 GB of space. Even though 74 GB of storage is becoming more feasible with

modern technology, this information must be accessed every time step; sifting through such an enormous amount of

memory would make the code run impossibly slow. There are other methods that are even more efficient than the

banded matrix solver, but require an enormous amount of work for very little gain in speed.



2.2 Particle-in-cell algorithm 17

Now solving for the derivative of the potential, evaluated at x = 0, we find

∂φ

∂x

∣∣∣∣
x=0

= c2 = −
ρ

4ε0

∣∣∣∣
x=0

, (2.26)

where the second equality follows after substitution from equation (2.25). Thus we see that the

derivative boundary condition is indeed nonzero and in fact depends on the density at the origin.

The fact that the derivative depends on a quantity at the origin brings up an important question

as to the type of grid that will be used in the simulation. There are two main types of rectangular

grids—cell-center and cell-edge. Cell-center grids with ghost points usually have an advantage

when defining Neumann (derivative) boundary conditions because the boundaries can easily be

defined using a finite differenced derivative involving quantities already on the grid. Conversely,

cell-edge girds are advantageous with Dirichlet (fixed) boundary conditions because the boundary

can be directly assigned without recourse to interpolation/extrapolation. While we technically

have a Neumann boundary condition at the origin, the derivative depends on a non-cell-center grid

quantity that fluctuates in time. However, if we persist in using a cell-center grid with ghost points,

at the origin (i.e. i = 1) we set x1/2 = 0 and x3/2 = ∆x in equation (2.20) and the resulting relation

simply regurgitates the boundary condition—we get no new information. This, coupled with the

fact that all of the other boundaries are grounded (Dirichlet), has led us to chose a cell-edge grid in

our PIC code.

Using a cell-edge grid, however, requires extrapolation from interior points in order to get the

derivative at the boundary. Linear extrapolation is fast and easy to implement, but with a little more

effort, and a very small loss in speed, we can get better accuracy using quadratic extrapolation. We

start by letting φ = ax2+bx+c, where a, b, and c are constants yet to be determined.6 We then take

the derivative of φ , evaluate it at dx/2, and set it equal to its equivalent finite difference derivative.

Similarly, we can obtain a second equation for the point 3dx/2. The resulting system of equations

6Actually, we don’t need to find c because we are only interested in the derivative of φ where c is no longer present.
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is 
φ3−φ2

dx = b+adx

φ4−φ3
dx = b+3adx,

(2.27)

from which a and b can now be found. Upon substituting these constants back into our derivative

and evaluating our equation at the boundary (i.e. r = 0), we get our desired quadratic extrapolation

formula:

φ
′
1 =−

3
2dx

φ2 +
2
dx

φ3−
1

2dx
φ4. (2.28)

This, together with the charge density and the corresponding z components from equation (2.20),

are what make up our final axial boundary condition.

2.3 Analysis

The PIC code itself is not written to do any of the analysis of the data. Instead we save the root-

mean-square (RMS) radial and axial positions of the plasma as well as the grid’s fluid velocity and

charge density at every time step to analyze after the simulation has finished. However, as was

mentioned in the introduction (see page 2), the only quantity that can be measured in the experi-

ment is the induced charge on a diagnostic ring placed near the end of the plasma.7 Therefore, as a

final diagnostic, we also output the charge induced on a small section of the conducting wall near

one of the confinement rings. The RMS values, fluid velocity, and charge density help in identify-

ing the modes, but it is this charge density that ultimately identifies how well the experiment will

be able to pick up on these radial Bernstein modes.

We initially look for resonance peaks in the fast Fourier transforms (FFT) of the RMS values

and induced charge. Then, once a potential mode frequency has been located, the fluid velocities
7Fortunately, the surface charge density (σ ) is easy to compute from the difference of inner and outer radial electric

fields at the conducting wall (E1 and E2 respectively), in particular σ = ε0 (E2−E1) ·n. This is further simplified by

the fact that the trap walls are conductors and, hence, the field inside is identically zero.
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are used to construct the individual mode shapes. This is done by looking at the radial velocity

flux. In practice this is done by performing a least squares fit (LSF) of the amplitude, frequency

and phase of the function

f (t) = Acos(ωt +φ). (2.29)

Even though we already have an idea of the frequency, the exact frequency may lie in between

points in our FFT. Therefore, the LSF allows us to determine more accurately the frequency and

phase. Replacing the frequency and phase in equation (2.29) and taking into account the 90◦ phase

shift between velocity and displacement, we then proceed to perform a LSF of the amplitude at

every grid point. The amplitude of the radial velocity flux, being sensitive to the nodal structure of

the mode, creates a distinct surface we term the mode shape. This allows us to identify the modes

we are actually detecting.



Chapter 3

Testing

An important aspect of computational work is ensuring that the code is error free and that

the resulting simulation actually relates to the physical world. However, because PIC codes are

actually just an ensemble of smaller functions working together, it is difficult to come up with a

single test that verifies the entire code is working. Often errors will not exhibit themselves outright

until just the right set of parameters are chosen, making them difficult to pinpoint in a large code.

Fortunately, once one section of code has been tested, it can be used in evaluating another whether

as a tool itself or as an element of a larger function. For this reason we chose to test our field

solver and mover first. Then, once these had been verified to be working correctly, we went about

evaluating our interpolation/extrapolation technique and whether or not it produced unphysical

self-forces.

3.1 Field Solver

The basic solver was first created and tested in Matlab in order to take advantage of the pre-

defined matrix operations, particularly those relating to banded matrices. The solver was tested

against exact solutions to Poisson’s equation (∇2Φ = ρ) for arbitrary (not necessarily physical)

20
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functions of ρ and found to give normalized root mean square errors (NRMSE) on the order of

10−5 for a sufficiently fine grid. Of course the real difficulty is in writing the banded matrix

solver itself. For this we used a Fortran subroutine written by J. P. Moreau [12, 13] that uses LU

decomposition without pivoting to solve linear systems with nonsingular linear banded system

matrices. Comparing the results of the two field solvers we found them to be identical, modulo

roundoff errors, for both single and multiple particle calculations.

3.2 Mover

The mover itself is very basic and does not involve a lot of testing because it is simply a

finite differenced equation derived from an analytic solution. However, depending on the time

step chosen, negative quantities can occasionally occur beneath the radical due to roundoff, thus

resulting in imaginary velocities and positions. The size of the time step can also cause particles

to occasionally cross the r = 0 boundary resulting in a negative position. In both of these cases,

it is sufficiently accurate to simply force the respective negative quantities to be positive by taking

their absolute value. Additionally, care must be taken to remove any particles from calculation that

pass through any of the conducting boundaries. A simple diagnostic has been coded to ensure that

this is true.

3.3 Interpolation/Extrapolation

Interpolation and extrapolation are used extensively throughout the code.1 The bilinear method

has been used for decades and known to work, but it was somewhat unclear whether the interpo-

lation/extrapolation could be done without loss of precision using the fractional pseudo-areas in

1Although interpolation and extrapolation are technically different techniques, the bilinear method uses the same

weighting factors in each case and can be tested simultaneously.
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the r2–z coordinates or if it was absolutely necessary to use the fractional areas computed in r–z.

A simple example illustrates the difference (for this and the discussion that follows we will as-

sume that the particle is always located at the midpoint between axial grid points since the axial

dimension is the same in both cases). Suppose we space our grid points equally in r2, but place

a charge at the center of a particular cell in r (see Figure 3.1). If we were to distribute the charge

Figure 3.1. The two sets of coordinate grids (top: r2–z; bottom: r–z) show the difference between

placing a particle at the center of a cell in r (shown in red) as opposed to placing it at the center in x or

r2 (shown in blue). Depending on which coordinate system is used, the surrounding grid points will be

assigned different charge densities according to their relative proximity to the charge.

of this particle to the surrounding grid points in r, each would receive exactly 1/4 of the charge.

Alternately, we can calculate the position of this particle on the r2 grid and find that the particle

does not sit at the center of the cell in this coordinate system. Therefore, when we distribute the

charge bilinearly in this frame we distribute more charge to the grid points on the left than to the

grid points on the right. More explicitly the left grid points receive

x(i+1)− 1
4

[
x(i)+ x(i+1)+2

√
x(i)x(i+1)

]
2[x(i+1)− x(i)]

, (3.1)
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while the grid points on the right receive

1
4

[
x(i)+ x(i+1)+2

√
x(i)x(i+1)

]
− x(i)

2[x(i+1)− x(i)]
. (3.2)

More generally we can extend this to a particle at an arbitrary radial position within the cell. To

make the equations more transparent and because we are only interested in fractional areas anyway,

let α be the fractional length of the cell that represents the distance to the particle as measured from

the left edge of the cell. Bilinear extrapolation in r would dictate that the left and right grid points

would receive the fractional densities (1−α)/2 and α/2 respectively. In contrast, when we use

the same method in r2, equations (3.1) and (3.2) become(
1−α

2

)[
(1−α)

√
x(i)+(1+α)

√
x(i+1)√

x(i)+
√

x(i+1)

]
(3.3)

(
α

2

)[(2−α)
√

x(i)+α
√

x(i+1)√
x(i)+

√
x(i+1)

]
, (3.4)

for the left and right grid points respectively. Thus, by switching from r to r2 we pick up a multi-

plicative factor in the fractional areas. While these equations are good for illustrating the difference

between coordinate systems, they are not conveniently written for testing because α is defined in

the r coordinate system and all the variables are defined in r2. If we define β to be the analogue

of α in r2 and then reverse the derivation by going from r2 to r, the equations are much easier to

code. For reference they are as follows:√
x(i+1)−

√
(1−β )x(i)+βx(i+1)

2[x(i+1)− x(i)]
(3.5)

√
(1−β )x(i)+βx(i+1)−

√
x(i)

2[x(i+1)− x(i)]
. (3.6)

It is well known that bilinear interpolation/extrapolation works in r; therefore, one way we

can test the method of interpolation/extrapolation in r2 is by merely reproducing the results of

the calculations in r. Obviously minor differences in numerical values can be expected, but small
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deviations are permitted since the bilinear method itself—while very efficient—is far from being

the most accurate method available. In fact, the method is only guaranteed to work for small grid

spacings. Thus we can expect that the greatest discrepancy will occur near r = 0 where the cells

in r will be the largest. First, we compared calculations of the electrostatic potential and field

generated by a single particle located at various radii using the two weighting systems. Typically

the two methods had a normalized root mean square deviation (NRMSD) of about 10−5. The only

exception occurred, as expected, when the particle was within the first radial grid point due to its

increased size in r. However, even though the error was large near the point charge, the NRMSD

for the entire grid was still on the order of 10−3 indicating that long range effects still showed a

fair amount of agreement. Fortunately, as we increased the number of particles contained in the

cells along the axis the discrepancy between the two methods diminished significantly.

3.4 Self-Forces

In addition to testing the interpolation/extrapolation technique on the new grid, it is important to

verify that the new interpolation/extrapolation scheme does not produce any unphysical self-forces

on the particles. Conceptually, these self-forces are most easily found by analytically solving for

the total force exerted on a single particle in the region of interest and then comparing it to the force

produced in the simulation. However, this is one case where having fewer dimensions complicates

the calculations rather than simplifying them. To illustrate, consider a point charge in 3D free

space. While the charge creates a field that permeates all of space, it cannot exert a force on itself;

the self-force is zero. Even when a grounded conducting boundary is added and the self-force is

not identically zero, this force can be calculated (see page 56 in Appendix B).

On the other hand, a point charge in 2D free space physically represents an extended object in

3D to account for the assumed symmetry in the vacant dimension. Therefore, in an r–z grid every
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point charge physically represents a ring of charge and a ring of charge does produce a repulsive

self-force that causes the ring to expand outward. While the electric field generated by a ring of

charge can be calculated using Elliptic integrals, the equation contains a pole at the location of

the ring. Furthermore, the electric field produced by the differential length in question would have

to be somehow removed. Unfortunately, even by removing this “extra” field, the force retains its

logarithmic pole. This can be demonstrated by expanding the potential in a Taylor series about

the wire. The potential at a point (ρ,z) produced by a uniformly charged ring with radius R and

centered about the z axis is given by (see Appendix C)

Φ(ρ,z) =
λR

πε0
√

(R+ρ)2 + z2
K
[

4ρR
(R+ρ)2 + z2

]
. (3.7)

If we expand this equation about the coordinates ρ = R and z = 0, we obtain an approximation to

the field in the vicinity of the ring. The expansion is difficult to do correctly because of the elliptic

integral. It is easiest to perform the two expansions separately and combine the two results “by

hand.” Expanding about ρ = R and equating z = 0 yields

Φ(ρ→R,z=0) =
2λ

4πε0

{
ln
(

8R
ρ−R

)
+

ρ−R
2R

[
1− ln

(
8R

ρ−R

)]
+
(ρ−R)2

16R2

[
−7+5ln

(
8R

ρ−R

)]
+O[(ρ−R)5]

}
, (3.8)

while expanding about z = 0 and equating ρ = R gives

Φ(ρ=R,z→0) =
2λ

4πε0

{
ln
(

8R
z

)
+

z2

16R2

[
−7+5ln

(
8R
z

)]
+O(z7)

}
. (3.9)

Evidently only odd orders in ρ −R (0, 1, 3, 5, . . . ) and only every fourth order in the z (0, 3, 7,

11, . . . ) survive. For the orders that are present, there is a corresponding factor of z for every factor

of ρ−R. Naively we may guess that the general expression for the expansion in both coordinates

would therefore be

Φ(ρ→R,z→0) =
2λ

4πε0

{
ln
(

8R
r

)
+

ρ−R
2R

[
1− ln

(
8R
r

)]
+ · · ·

}
, (3.10)
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where r =
√
(ρ−R)2 + z2 now represents a radial distance from the ring. Validation for this choice

comes from the excellent fit it provides near the ring and the fact that it noticeably outperforms any

other expansion we have derived.

The real value in this expansion is not in the fit however, but rather its form. Notice that

the zeroth order term in the expansion is simply the potential from a uniformly charged straight

(infinite) wire. This reflects the fact that a test charge very close to the loop sees a straight wire with

no curvature. The higher order terms carry the entirety of the curvature in the rest of the ring. Thus

by removing the zeroth order potential we are ridding ourselves of the portion of the potential (and

thereby the field) that does not contribute to the self-force. The hope was that this small fraction

of the field would be enough to keep the self-force finite, but it is plain to see from the expansion

that all higher order terms carry the same logarithmic pole. Therefore, a direct comparison with

analytical results is unavailable.

Alternatively, we can an use an amalgamation of part simulation and part theory in an effort to

validate, at least to some degree, the results from the PIC simulation. Because the simulation uses

the electric field interpolated from four grid points to calculate the force on a particular charge, we

can mimic the simulation analytically by using four uniformly charged rings and a point charge

placed within the rectangular “torus” generated by these four rings (see Figure 3.2). This then

sidesteps the issue with the pole by removing it to another location altogether and allows the

force on the charge to remain finite. This, of course, assumes that the point charge remains at a

respectable distance from the rings. While this is potentially problematic as the grid size decreases,

it at least provides some insight into how well the simulation is performing.

We start by generalizing equation (3.7) to a ring with nonzero height Z. This is done by simply

replacing z by Z− z everywhere in the equation. Only being interested in the radial electric field
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Figure 3.2. Setup for the force calculation using four uniformly charged rings located at the particle’s

cell grid points.

we take the derivative of Φ with respect to ρ:

Er(ρ,z) =
λR

2πε0ρ
√

(R+ρ)2 +(Z− z)2

{
K
[

4ρR
(R+ρ)2 +(Z− z)2

]
− R2−ρ2 +(Z− z)2

(R−ρ)2 +(Z− z)2 E
[

4ρR
(R+ρ)2 +(Z− z)2

]}
. (3.11)

Figure 3.3 shows the comparison between the self-forces obtained using the PIC code and the

analytic solution. As expected, the analytic solution wildly oscillates from one side of the cell to

the other. The points close to either edge are obviously wrong; at the right edge the force becomes

negative and an expanding ring cannot pull itself back in towards the middle while the symmetry

about the cell’s midpoint suggests that the error near the left edge of the cell is just as egregious,

but in the opposite direction. This confirms our assumption that the midpoint, if any, is the best

point with which to compare our code. Surprisingly, the midpoint shows fair agreement with the

PIC code even when the grid cells become quite small; we may ignore the image charge effects in

the PIC calculation that occur near the conducting wall since the analytic solution was for a ring in

free space. The discrepancy between the two solutions near the origin is probably a result of errors
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Figure 3.3. Self-force of a single particle plotted versus radius at z=0. The blue lines are the force cal-

culated using the PIC code and the red lines are calculated using the analytic solution for four uniformly

charged rings located at the four nearest grid points. The top graph shows the force calculated at seven

locations within each cell and the bottom graph shows only the calculation at the middle of the cell.

in both calculations and it is difficult to say which one is more accurate. Needless to say, this is far

from conclusive evidence that the simulation is correct, but it does lend credence to the accuracy

of the self-force calculations obtained by the PIC code.

We also compared radial and axial self-forces calculated using r and r2 weighting schemes as

we did above. This was calculated at 100 evenly spaced positions per cell for all cells straddling

the trap’s axial midpoint and their nearest neighbors (see Figures 3.4 and 3.5). The focus on the

midpoint was to ensure that the axial force correctly vanished everywhere along z = 0. As before,

large deviations occur within the first radial grid point due to the increased cell size inherent in
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the r2 grid. Nonetheless, the excellent agreement outside of these cells suggest that there are no

self-forces that arise from using r2 weighting factors.

Finally, because our single particle calculations were somewhat inconclusive, we also tested the

self-force using multiple particles. At best, a multiple particle calculation can only prove average

effects, but since the simulation requires a large number of particles to work correctly anyway, this

is sufficient for our needs. Smearing the charge in space causes the poles to disappear and the

potential and field to become finite, but also complicates the integrals involved. One approach to

the problem would be to use Green’s functions. The advantage of using Green’s functions over

the other methods is the ease with which you can account for conducting boundaries, finite-length

effects, and irregular shapes, thus making our test as accurate as possible.

Because there are sometimes convergence issues when integrating/summing Green’s functions,

we compared solutions from three different derivations to ensure that none of the features were

caused by numerical errors (see Appendix B for derivations of these Green’s functions). Although

the different methods required a different number of terms to converge, they all converged to the

same results. We placed one million equally spaced particles2 inside a rectangular region thus

forming a uniformly charged rectangular torus. Figure 3.6 shows the agreement between the elec-

tric field obtained by both the PIC code and the Green’s function. The largest deviations occur

at the boundaries of the torus, the corners being the worst; the NRMS error for this radial cross-

section is 9.59× 10−3. This relatively large error is a result of the PIC simulation’s inability to

produce sharp boundaries (removing the boundaries reduces the error by about an order of mag-

nitude). Fortunately, the plasma does not have an infinitely sharp boundary and this discrepancy

from the analytic solution is not an issue.

2We also tested randomly placed particles inside the same region. The results were the same, but the randomly

placed particles did produce a little more noise.
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Figure 3.4. Radial self-force (top) and the absolute value of the axial self-force (bottom) of a single

particle as a function of r and z near the midpoint of the trap using r2–z weighting factors. The oscillations

are an artifact of interpolation/extrapolation, but persist regardless of which weighting factors are used.

Also visible is how the force becomes more and more smooth as the cells shrink in size at larger radii.
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Figure 3.5. The difference between radial/axial self-forces (top/bottom) calculated using r–z and r2–z

weighting schemes. The two weighting systems yield almost identical results except near the axis.
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Figure 3.6. Top: a comparison between the electric fields obtained from the PIC simulation (mesh) and

an analytic calculation using Green’s functions (circles). Bottom: the difference between the two electric

fields.



Chapter 4

Results

4.1 Chosing Parameters

The physical parameters used in the simulation are based on the actual experimental apparatus

that will eventually be used to measure the radial Bernstein modes, but we have modified some of

the parameters in order to simplify the simulation and increase our intuition of these modes. The

biggest change was in the confinement region where we have doubled its length (now 20 cm) in or-

der to produce a longer plasma column. This was done to limit the overlap and potential confusion

and/or interaction between the Trivelpiece-Gould modes and the radial Bernstein modes in which

we are interested. Doubling the length of the plasma lowers the frequency of the Trivelpiece-

Gould modes without significantly altering the frequencies of the radial Bernstein modes. Once

we have a good grasp on the frequencies of the radial modes, we can then revert back to the smaller

confinement region and really assess the finite-length effects and the possibility of detecting these

modes under these conditions. Another minor difference is that we have made the confinement

rings exactly the same width (10 cm) whereas machining and trap design have given rise to slight

asymmetries in their widths in the actual experiment. The diagnostic ring on the other hand, re-

33
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Figure 4.1. Overlaid colormap of the plasma density and confining potential inside the computation

region. The green and purple rectangles represent the confinement (10 cm wide) and diagnostic (4 cm

wide) rings respectively.

mains consistent with the experiment at a width of 4 cm and sits just inside one of the confinement

rings.

The other parameters are a bit more arbitrary because there is no way of knowing the exact

number density that will be produced in a given experimental shot. The only physical limitations

are in the maximum magnetic field (.44 T) and confinement voltage (150 V) that we can produce

in the experiment. From work done on the 1D infinite-length plasma, we know that the radial

Bernstein modes achieve the greatest separation at about 6/7 of the Brillouin limit. Therefore, we

have chosen a peak central density of 1.4846× 1013 particles/m3 and a magnetic field of .2144

T which corresponds to β = .85.1 With these parameters, we need the full 150 V to provide

the proper axial confinement of the plasma. Finally, we use a relatively cold thermal equilibrium

temperature of 0.2 eV in an effort to reduce damping of the modes. The combination of these

parameters produces a plasma column that is approximately 17 cm in length and 2 cm in diameter

(see Figure 4.1).

The plasma is driven by sinusoidally modulating the voltage with an amplitude of 5 V on both

confinement rings for a total of 50 cyclotron periods. The drive is then turned off and we record the

RMS radial and axial positions, the charge on the diagnostic ring, and the fluid velocity on the grid

1The particles are 7Be ions for experimental reasons.
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Figure 4.2. The equilibrium RMS radial FFT spectrum is shown in blue while the spectrum obtained

from a plasma driven at 5 V is shown in red. The driven peak is two orders of magnitude larger than the

equilibrium case and does not produce any nonlinear effects.

for 1000 cyclotron periods. The amplitude of the modulating potential was chosen by comparing

FFT spectra produced by various drives with that of the equilibrium spectrum. If too large an

amplitude was used, we found that non-linear effects dominate and shift the mode frequencies

significantly. Conversely, an amplitude that was too small produced undetectable differences from

the equilibrium spectrum. Therefore, we incrementally varied the amplitude from 1 to 15 V and

found that the driving amplitude needed to be about 5 V in order to ensure detectable changes in the

FFT spectrum while keeping the plasma in the linear regime. Figure 4.2 compares the equilibrium

RMS radial FFT spectrum with that of a plasma driven with a 5 V potential.

4.2 Fundamental Mode

Driving the plasma at a frequency of 0.7608ωc we observed three main features in our FFT

spectra (see Figure 4.3), all of which corresponded very closely to estimated frequencies we ob-

tained using a 1D code (see Table 4.1).2 First, we were able to identify the mz = 1,2, and 3

Trivelpiece-Gould modes. Interestingly, these were all slightly downshifted from the 1D case and

2The agreement between codes provides further evidence that the PIC code is working properly.
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Figure 4.3. Left: the normalized FFT power spectrum for the RMS radial (blue) and axial (red) positions

along with the charge on the diagnostic ring (green). The three prominent resonance peaks are identified

as the Trivelpiece-Gould mz = 2 mode, the Doppler-shifted cyclotron resonance, and the fundamental

radial Bernstein mode. Right: a close up of the fundamental radial Bernstein mode obtained from the

radial velocity flux illustrating the small cluster of modes in the vicinity of the fundamental (C). Although

not particularly obvious here, it appears that modes with higher kz occur on either side of the fundamental.

Table 4.1. A list of the frequencies we expected to find in our FFT spectra and the frequencies we

actually observed. The first three frequencies correspond to three of the Trivelpiece-Gould modes and

the other two frequencies are respectively the Doppler-shifted cyclotron resonance and vortex frequency.

It so happens that for the β we are using ωv ≈ 2ω̃ .

Expected Frequency Observed Frequency
(ω/ωc) (ω/ωc)

mz = 1 0.144 0.136
= 2 0.265 0.246
= 3 0.356 0.325

ω̃ 0.387 0.380

ωv 0.758 0.764
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the gap increased with higher mode number—probably a result of finite-length effects. The mz = 1

and 3 modes were significantly weaker than the mz = 2 mode because the drive was symmetric in

z. Therefore, it was somewhat surprising that we could even see these modes at all. However, in

hindsight, it makes sense that these modes showed up only on the diagnostic ring because it is not

centered about the middle of the plasma.

The other two prominent features in the FFT spectra were the Doppler-shifted cyclotron res-

onance (ω̃) and the fundamental radial Bernstein mode which is resonant at 2ω̃ . While ω̃ was

slightly downshifted from the 1D case, we observed a small increase in the frequency of the fun-

damental radial Bernstein mode. Again harmonics of both frequencies are easily identifiable. As

can be seen in Figure 4.3, the fundamental radial Bernstein resonance is actually a compact set

of modes with different axial wave numbers (kz); essentially, the end potentials act as fixed nodes

on a string and allow standing waves with odd half integer wavelengths to be erected in the axial

direction. These standing waves must slightly change the resonant frequency giving rise to the

tight cluster of distinct resonances in our FFT spectrum. The interesting thing is that they appear

to straddle both sides of the fundamental frequency, although the peaks above the fundamental

tend to be very noisy and difficult to isolate so it is not entirely clear whether these are real or just

numerical artifacts of our analysis.

Mode shapes were obtained for each of the four frequencies listed in the closeup in Figure

4.3. The mode shapes are usually normalized by the number density, but this distorts the shape

near the edge where the density decreases drastically. In effect this causes a sharp kick near the

edge followed by a large amount of noise. Therefore, for clarity, we have chosen to display the

unnormalized shapes.3 Figure 4.4 shows the mode shape of the main peak with kz = 1/2, Figures

4.5 and 4.6 are the two lower frequencies corresponding to kz = 3/2 and kz = 5/2 respectively, and

3This too can distort the shape; we have found this to be especially true of the axial shape of the modes. The

normalized shapes tend to provide a much more uniform amplitude across the axial direction. However, the basic

mode shape is most easily seen by the unnormalized shapes.
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Figure 4.4. Mode shape for the main frequency peak with kz = 1/2 (marked “C” in Figure 4.3).

Figure 4.7 is an upper frequency with kz = 3/2.4 From the 1D theory we expect the mode shapes

to be a Bessel function of the first kind with a general form:

AJ1(krr), (4.1)

where A is an arbitrary constant and kr is the radial wave number. For the fundamental mode,

kr should be quite small and the mode shape should be approximately linear inside the plasma.

To verify this we performed nonlinear least squares fits to radial cross-sections of the normalized

mode shapes (see Figure 4.8). While only the largest frequency peaks provide clean data, the other

modes have also been included for completeness.

The axial structure of these modes has important implications in where best to measure these

modes with the diagnostic ring. Although we have assumed the same setup as the experiment in
4It should also be noted that fundamental radial Bernstein mode occurs very near the third harmonic of the mz = 2

Trivelpiece-Gould mode. While the harmonics are relatively weak and we have not identified any adverse effects, this

could potentially cause some interference.



4.2 Fundamental Mode 39

Figure 4.5. Mode shape for the first lower frequency with kz = 3/2 (marked “B” in Figure 4.3).

Figure 4.6. Mode shape for the second lower frequency with kz = 5/2 (marked “A” in Figure 4.3).
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Figure 4.7. Mode shape for first upper frequency with kz = 3/2 (marked “D” in Figure 4.3).

Figure 4.8. Nonlinear least squares fits to radial cross-sections of the normalized mode shapes for each

of the four frequencies in the cluster of fundamental radial Bernstein modes shown in Figure 4.3. As

expected, they exhibit a very small kr and linear shape characteristic of the fundamental mode. The a

referred to in the legend is the equilibrium radius of the plasma column (2 cm). Note the characteristic

kick near the edge of the plasma that occurs when using normalized mode shapes. For this reason the fit

does not extend completely out to the outer edge of the plasma.
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Figure 4.9. Shown in gray is the maximum/minimum change in radial electric field (from equilibrium)

across the wall of the trap. The green sections indicate the location of the confinement rings while the

purple section indicates the location of the diagnostic ring. The nodal structure in z is apparent and

indicates that the ideal location for the diagnostic ring is not at the ends of the plasma, but near the

middle.

our PIC code, the placement of the diagnostic ring in the experiment does not necessarily yield the

optimal signal. In fact, the nodal structure we see near the ends of the plasma suggests that the

signal on the wall may actually be the smallest in this region. To discover if this is true, we observed

the radial electric field across the entire length of the wall at every time step and subtracted off the

equilibrium field at the wall. We then looked for the place where the greatest change occurs. Figure

4.9 shows the maximum and minimum ∆Er across the wall of the trap and indicates the current

locations for the diagnostic and confinement rings. As suspected, the regions immediately adjacent

to the confinement rings experience the smallest change in field. This means that the best location

for the diagnostic ring is actually in the middle of the trap where the change in radial electric field

is greatest.
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4.3 Higher Order Modes

Unfortunately, we have tried driving the plasma at many other frequencies and have still been

unsuccessful at exciting any of the higher order radial modes with just the end potentials. This

means that the higher order modes will likely be completely hidden from the experiment. The flip

side is that having fewer modes will make it easier to detect the fundamental mode. However, this

being a simulation, it is important that we try to understand the other modes as well. Fortunately,

we are able to do things in a simulation that would physically be impossible. Knowing that the

radial Bernstein modes have equation (4.1) as their shape function allows us to radially drive the

modes directly using the radial electric field without recourse to the axial motion. This is the radial

equivalent of moving the axial potential walls in and out, but instead of just striking the ends of the

plasma column, we are driving the plasma at every point along the radius. Because the amplitude

of the drive is again somewhat arbitrary, we went through a process very similar to the one we used

above for the axial drive amplitude. This time we found a good amplitude to be about 10 V/m.

The radial drive has the benefit of allowing us the possibility to seed a single mode, but in

order for it to work we need the mode’s precise frequency and kr. Unfortunately, it appears that

finite-length effects have a much stronger influence over the higher order radial modes; although

we indeed see new frequency peaks appear on either side of the fundamental when using our radial

drive (see Figure 4.10), they do not correspond very well to results from the 1D case. Instead

these resonance peaks are shifted away from the fundamental and are very broad. To enhance the

resolution we tried quadrupling the simulation’s run time, but to very little effect. This suggests that

the broadening of the frequency peaks is due to damping rather than just closely spaced resonances.

The raw fluid velocity data for a single grid point indeed shows a rapid decay to a steady state

(see Figure 4.11) Additionally we tried to vary the kr in our drive in order to isolate individual

peaks. Figure 4.12 shows two overlaid waterfall plots for two different driving frequencies and

ten different radial wave numbers. Strangely the resonant frequencies shift back and forth as kr
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Figure 4.10. RMS radial position spectra showing two new resonance peaks that appear when using a

radial drive as opposed to the axial drive. The blue curve used a driving frequency of 0.671ωc and the

red curve used a driving frequency of 0.863ωc. In both instances we used a kr ·a of 4.933.

Figure 4.11. Raw fluid velocity data at a single grid point showing a rapid decay in signal to a steady

state confirming that presence of damping in these modes. We believe damping is the cause for the broad

frequency peaks we observe in our FFT signals for the higher order modes.
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Figure 4.12. Waterfall plots of the RMS radial position FFT spectrum driven at 0.68ωc (green) and

0.7ωc (purple) for various radial wave numbers. In both cases, the peak frequencies undulate as kr

increases.

increases making it very difficult to correlate a wave number to a particular frequency.

Despite the difficulty of distinguishing the individual peaks in the FFT spectra, we have been

able to isolate two mode shapes in the lower resonance that make sense. The data for these peaks

comes from driving the plasma at 0.6715ωc and kr · a = 4.462. Counter intuitively, the first of

these frequency peaks (0.7029ωc) lies considerably above the largest peak (0.6694ωc), but very

close to where the 1D theory reports the frequency should be located (0.7031ωc). Being such a

small peak, the shape is noisy, but resembles quite clearly the structure of the next radial mode with

kz = 1/2 (see Figure 4.13). While we were unable to locate a kz = 3/2 mode, we were successful

in finding the kz = 5/2 mode at 0.6748ωc (see Figure 4.14); both the shape and spacing between

the two peaks is comparable to what we observed in the fundamental mode. The radial structure

is clearly different from the fundamental mode however. This time the mode shape in the interior



4.3 Higher Order Modes 45

Figure 4.13. The first higher order radial mode

with kz = 1/2 at ω = 0.7029ωc. The surface has

been smoothed using a running average to show

the general structure of the mode.

Figure 4.14. The first higher order radial mode

with kz = 5/2 at ω = 0.6748ωc. This surface has

also been smoothed, but the shape of this mode

was much clearer than the kz = 1/2. We were

unable to locate the kz = 3/2 mode.

of the plasma has a clear curvature. When we perform least squares fits for the two modes, as we

did with the fundamental modes, we found kr · a to be 4.5913 and 4.7669 for the two modes (see

Figure 4.15). The 1D simulation gives kr · a = 4.9331; surprisingly, we still see good agreement

between the 1D and 2D simulations. Although the resulting mode shapes for these two modes

is somewhat questionable due to the amount of noise we see, the close agreement with the 1D

simulations suggests that the radial structure is more than just numerical error.

It is also interesting to note that the largest frequency peak in this lower resonance (0.6692ωc)

sits very close to where the 1D simulation says the second higher order mode should be located

(0.6718ωc). However, the mode shape from the most prominent peak (see Figure 4.16) makes it

quite clear that it is not the second higher order mode. It appears to have the radial structure of the

first higher order mode, but it contains a rather strange axial structure. This could quite possibly be

explained by a superposition of the kz = 1/2 and kz = 3/2 modes, which have similar amplitudes.
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Figure 4.15. Nonlinear least Squares fits to radial cross-sections of the normalized mode shapes for the

first higher order radial modes with kz = 1/2 and kz = 5/2. The resulting kr · a values are markedly

different than the fundamental mode and match closely to the 1D simulation. Again, the fits are not

carried out all the way into the edge of the plasma due to edge effects and problems with normalization

in this region.
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Moving further down in frequency we find mode shapes do have more radial structure and that

resemble what we would expect in the second higher order mode (see Figure 4.17), but again the

structure is more complicated than what we observed for the fundamental and first higher order

mode. We see equally confusing mode shapes in the upper resonance (see Figures 4.18 and 4.19).

It is likely that these shapes represent a mixture of many different modes due to our current inability

to seed any one particular mode. Careful experimentation of the drive parameters is needed in order

to sort out exactly where these higher order radial Bernstein modes reside.5

5Care should be taken when experimenting with the larger values of kr because the large grid spacing near the

origin can distort the shape of the radial drive. More radial grid points should be added for kr > 7.
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Figure 4.16. Mode shape for the largest fre-

quency peak (0.6692ωc) in the resonance below

the fundamental.

Figure 4.17. Mode shape for a frequency

(0.6636ωc) lower than the largest resonance that

shows more radial structure.

Figure 4.18. Mode shape for one of the two

prominent peaks that shows up in the resonance

above the fundamental at ω = 0.8612ωc.

Figure 4.19. The mode shape for the second

prominent peak that shows up in the resonance

above the fundamental at ω = 0.8662ωc.



Chapter 5

Conclusions

In this thesis, we have presented the benefits of using an r2–z grid and describe how this type

of grid can be implemented into a PIC code. We have also demonstrated effective (and non-

effective) methods for testing the PIC code. In particular, we found that bilinear weighting in

r2 works effectively provided there are enough grid points to account for the large step size near

the origin. We also found that single particle self-force calculations are very difficult to perform

in a 2D r–z geometry due to the particle’s inherent ringlike properties. Instead, we found that

multiple particle calculations were necessary to confirm the absence of unphysical self-forces. Our

PIC code showed good agreement with all of our theoretical tests and furthermore reproduces

the frequencies calculated from a 1D code for the mz = 1,2, and 3 Trivelpiece-Gould modes, the

Doppler-shifted cyclotron resonance, and the fundamental radial Bernstein mode.

The fundamental radial Bernstein mode was effectively driven by modulating the endcap po-

tentials, but we found that the finite-length of the plasma allows axial standing waves to occur

which then split the fundamental radial Bernstein mode into a tight cluster of resonant peaks. The

FFT spectrum obtained from the induced charge on the diagnostic ring provides strong evidence

that our experiment should be able to detect the fundamental mode. Furthermore, we found that

placing the diagnostic ring near the center of the plasma would yield a stronger signal because the

49
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nodal axial structure kills the signal near the ends of the plasma.

Finally, we found that driving the higher order radial modes with just the endcaps is ineffective

and it is more than likely that these modes will be completely invisible to the experiment. However,

we found that radially driving the plasma, although unphysical, produces new frequency peaks on

either side of the fundamental. These frequencies indeed produce more radial structure like we

would expect. Unfortunately, we were only able to successfully isolate two of the first higher order

modes in the lower resonance. Although we did observe plenty of other mode shapes, the structure

was too complicated to be attributed to any one particular mode. Most likely this is a result of

exciting multiple modes simultaneously and we simply need to be more precise in choosing our

drive parameters in order to effectively seed a single mode. We have also observed more damping

with these non-fundamental frequencies and this could also be affecting our ability to see these

other modes. At the very least, damping seems to be what is limiting our ability to resolve the

frequencies in our FFT spectra when we run for longer time periods. Further work needs to be done

to resolve the higher order radial modes. We also need to test whether reducing the confinement

region by half will significantly alter the behavior of these modes and if the experiment will still

be able to detect the fundamental mode under these new conditions.
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Appendix A

Maxwellian Velocity Distribution

The Maxwell-Boltzmann distribution law is well known in molecular dynamics. Essentially it

describes the partitioning of energy among the constituent elements of an isotropic fluid in thermal

equilibrium. It assumes that the particles are identical but distinguishable and are freely moving

except for brief elastic collisions. With these assumptions, the velocity distribution in any given

direction is then equal to

P(vi) =
1√

2πvth
e−v2

i /2v2
th, (A.1)

where vth is the thermal velocity
√

kBT/m. Computers, however, are usually only equipped with

a pseudo-random number generator only capable of producing a uniform distribution of random

numbers between 0 and 1. Therefore we need a mapping of random numbers in a uniform distribu-

tion into a Maxwellian velocity distribution. A necessary and sufficient condition is that probability

density must be conserved. This can be written in equation form as∫
∞

0
Pdvi =

∫ 1

0
dR̄ = 1 or

∫ vi

0
Pdv̄i =

∫ R

0
dR̄ = R, (A.2)

where R is a random number from the uniform distribution. Unfortunately, upon substitution

from equation (A.1), the integral on the left hand side cannot be computed in terms of elementary

functions. Even so, the integral can be done numerically (tabulated results are also commonly
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used) and is known as the error function. This then must be inverted in order to obtain the velocity

as a function of the random number. While the inverse error function can be computed, it is tedious

to work with and lengthens computation time.

If a velocity distribution in more than a single dimension is needed, the Box-Müller method

provides an economic alternative to the inverse error function. Box-Müller assumes a 2D distribu-

tion of velocities; therefore, the velocity vi in equation (A.1) must be replaced by v =
√

v2
x + v2

y .

Transforming into polar coordinates, equation (A.2) becomes∫ v

0

1
vth

e−v̄2/2v2
th v̄dv̄ = R. (A.3)

Note the change in normalization constant from before. This integral is easily done by making the

substitution u = v2/2v2
th. The result is

1− e−u = 1− e−v2/2v2
th = R, (A.4)

whereupon solving for v yields

v = vth
√
−2ln(1−R) = vth

√
−2ln(R1), (A.5)

where the final equality comes about because 1 minus a random number (between 0 and 1) is just

another random number. The individual velocities vx and vy come from the polar equations

vx = vcos(2πR2) and vy = vsin(2πR2). (A.6)

The only requirement for independent vx and vy is that R1 and R2 be uncorrelated random num-

bers. While the equations are derived assuming only two independent velocity distributions, more

dimensions can be accommodated by simply repeating the method as many times as needed pro-

vided new uncorrelated random numbers are used each time. It should also be noted that there

are alternative methods to Box-Müller that exist that are also very efficient (e.g. the ziggurat algo-

rithm), but Box-Müller is fast and easy to implement.



Appendix B

Cylindrical Green’s Functions

The derivations presented in this appendix are all known and published in the literature; how-

ever, to the author’s knowledge, they are not published collectively. Because Green’s functions

are often derived with a particular problem in mind, not all Green’s functions work equally well

in every circumstance. Therefore, these derivations are given here as a quick reference in hopes

that it will provide the reader with a diversity of functions with which to solve problems involving

cylindrical systems.

Green’s functions provide a powerful tool for solving problems such as the Helmholtz equation

∇
2
ψ(x)+ k2

ψ(x) =−4πρ(x). (B.1)

The corresponding Green’s function G(x,x′) satisfies the homogenous point source equation

∇
2G(x,x′)+ k2G(x,x′) =−4πδ (x−x′), (B.2)

while being subject to the same boundary conditions imposed on ψ(x) [14]. These formulas and

their solutions simplify considerably when considering only electrostatic phenomena (k = 0). The

equations to be solved are, thus, Poisson’s equation and the corresponding point source equation
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for the Green’s function
∇2ψ(x) =−4πρ(x)

∇2G(x,x′) =−4πδ (x−x′).
(B.3)

Because G satisfies a point source equation, physically G is proportional to the potential of a point

charge. Therefore, with reference to Coulombs law, we can write down a general form for G as

G(x,x′) =
1

|x−x′|
+F(x,x′), (B.4)

where the first term on the right hand side is the contribution of the point charge and F is some

function that arises due to having boundaries in the system. An important result of manually

factoring out the point charge contribution is that F must satisfy the Laplace equation inside the

volume:

∇
2F(x,x′) = 0. (B.5)

Physically, F is proportional to the potential produced by the induced charge residing on the

boundary surfaces, a fact that is confirmed anytime the potential is obtained using the Method

of Images [15]. We can then infer that F must also be negative since the induced image charge

always carries a charge opposite to that of the volume charge. Now G will not always separate

into two components like this; however, when it does, F can be used to calculate the image charge

force on the volume charge.

To illustrate the usefulness of this method, consider a single point charge within a closed

grounded surface. In this case, the only force acting on the charge is the image charge force. Unfor-

tunately, if the full Green’s function were used to calculate this force, G would need to be evaluated

at x′ = x — a guaranteed pole! Of course the pole comes from expanding about 1/|x−x′|, but this

is the charge’s own self-field and cannot contribute to the force anyway. Eliminating the self-field

automatically eliminates the pole and allows the force to be calculated without problem [15, 16].

One important application of this method (which is particularly apropos to this paper) may be when
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testing a three dimensional PIC code for unphysical self-forces by loading only a single particle

and comparing the simulation’s calculated force with that of the image charge force.

B.1 Expansion of Green functions

The Green’s function is often obtained by expanding portions of both G(x,x′) and δ (x,x′)

using completeness relations of orthogonal functions. Herein lies a major difference between

Green’s functions; the Green’s function inherits different properties depending on which functions

are used and which dimensions are expanded. These differences can be beneficial especially when

a particular Green’s function leads to a solution that is unstable in one of its coordinates while

another Green’s function may lead to a solution that is stable [17].

The three dimensional delta function written in terms of its components becomes

δ (x−x′) = δ (ρ−ρ
′)

δ (φ −φ ′)

ρ
δ (z− z′), (B.6)

and the individual one dimensional delta functions can be expanded as follows [18]

δ (ρ−ρ ′)

ρ
=

∞

∑
n=1

2
a2J2

m+1(xmn)
Jm

(xmn

a
ρ

)
Jm

(xmn

a
ρ
′
)

(B.7a)

δ (φ −φ
′) =

1
2π

∞

∑
m=−∞

eim(φ−φ ′) (B.7b)

δ (z− z′) =
2
L

∞

∑
k=1

sin
(

kπ

L
z
)

sin
(

kπ

L
z′
)

(B.7c)

=
1

2π

∫
∞

−∞

dk eik(z−z′) =
1
π

∫
∞

0

dk cos[k(z− z′)]. (B.7d)

Likewise we can expand the Green’s function using the same functions. However, the expansion

of the left and right hand sides are only performed in two of the three dimensions, the advantage

being that the resulting cancelation leaves us with an ordinary differential equation in the third

dimension (as opposed to the original partial differential equation) that determines the ultimate
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form of the Green’s function. Finally, the appropriate boundary conditions are applied to determine

the remaining constants.

Another popular technique for obtaining Green functions is by using an eigenfunction expan-

sion. In this case, the Green’s function is expanded in a series of normalized real orthogonal

eigenfunctions that satisfy the homogeneous Helmholtz equation [14]. Thus, if ϕn is such an

eigenfunction then it must satisfy

∇
2
ϕn(x)+ k2

nϕn(x) = 0, (B.8)

and the Green’s function can be written as

G(x,x′) =
∞

∑
n=0

an(x′)ϕn(x). (B.9)

Upon substituting this into equation (B.2) and by expanding the delta function in its own eigenfunc-

tion expansion similar to what we did above, we can exploit the orthogonality of the eigenfunctions

to solve for an:

an(x′) =
ϕn(x)

k2
n− k2 . (B.10)

Substitution of this back into equation (B.9) we obtain the Green’s function eigenfunction expan-

sion

G(x,x′) =
∞

∑
n=0

ϕn(x)ϕn(x′)
k2

n− k2 . (B.11)

Note that, just as before, if the calculation is electrostatic then k can be set to zero.

While these are not the only methods for obtaining Green’s functions, they probably have the

most consistent derivation despite being long. Hence, due to the similarity between derivations, the

details of obtaining each Green’s function have been left out and only the final results are stated. Of

course other methods of derivation exist and usually prove to be much shorter, but only by taking

advantage of obscure relations (as done by Barlow [16]) or by exploiting symmetries as with image

charge problems.
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B.2 Infinite-Length Green functions

Using the completeness relations (B.7a) and (B.7b) to do the expansion of the left and right

hand sides of (B.3), the final form of the Green’s function becomes

G(x,x′) =
2
a

∞

∑
m=−∞

∞

∑
n=1

Jm
(xmn

a ρ
)

Jm
(xmn

a ρ ′
)

xmnJ2
m+1(xmn)

eim(φ−φ ′)e−
xmn

a |z−z′|, (B.12)

whereas using the relations (B.7b) and (B.7d) instead yield the form

G(x,x′) =
2
π

∫
∞

0

dk cos[k(z− z′)]
∞

∑
m=0

(2−δ0,m)cos[m(φ −φ
′)]

× Im(kρ<)

[
Km(kρ>)−

Km(ka)
Im(ka)

Im(kρ>)

]
. (B.13)

Notice in this second form how the Green’s function has been split into two pieces; one term is

positive (volume charge contribution) and the other negative (image charge contribution).

B.3 Finite-Length Green functions

The derivation for the finite-length cases are very similar to the infinite-length cases and, there-

fore, the final forms of the equations look very similar. The trick is now to satisfy the boundary

conditions of the end caps. Now if we use the radial and azimuthal expansions (B.7a) and (B.7b)

the final form of G becomes

G(x,x′) =
4
a

∞

∑
m=−∞

∞

∑
n=1

Jm

(xmn

a
ρ

)
Jm

(xmn

a
ρ
′
) sinh

(xmn
a z<

)
sinh

[xmn
a (L− z>)

]
xmnJ2

m+1(xmn)sinh
(xmnL

a

) eim(φ−φ ′). (B.14)

If expanding in the azimuthal and axial coordinates, we now opt in favor of using equation (B.7c)

over (B.7d) because it lends itself better to the boundary conditions. The resultant Green’s function
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is now

G(x,x′) =
4
L

∞

∑
m=−∞

∞

∑
n=1

sin
(nπ

L
z
)

sin
(nπ

L
z′
)

× Im

(nπ

L
ρ<

)[
Km

(nπ

L
ρ>

)
−

Km
(nπa

L

)
Im
(nπa

L

) Im

(nπ

L
ρ>

)]
eim(φ−φ ′). (B.15)

We can generate a third Green’s function by using an eigenfunction expansion. A suitable

combination of eigenfunctions in cylindrical coordinates would be

ϕnml(x) =
√

2
aJm+1(xmn)

Jm

(xmnρ

a

) 1
2π

eimφ

√
2
L

sin
(

lπz
L

)
. (B.16)

Plugging this into equation (B.11) with k = 0 gives the following Green’s function

G(x,x′)=
8

La2

∞

∑
m=−∞

∞

∑
n=1

∞

∑
l=1

sin
(

lπ
L

z
)

sin
(

lπ
L

z′
)

Jm
(xmn

a ρ
)

Jm
(xmn

a ρ ′
)[(xmn

a

)2
+
( lπ

L

)2
]

J2
m+1(xmn)

eim(φ−φ ′). (B.17)

An important thing to note here is that the eigenfunction expansions always carry an extra sum

compared to the previous method and, therefore, could possibly result in longer calculation times

when employing them in a problem.

B.4 Helmholtz Green functions

There may be circumstances when it is inappropriate to assume k = 0 and the full Helmholtz

equation is needed. Although there is no direct application to the subject matter in this thesis, for

completeness we simply reproduce the results of E. G. Williams [19] without motivation and refer

the interested reader to his 1997 paper.
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B.4.1 Dirichlet

G(x,x′) =
2π

L

∞

∑
m=−∞

∞

∑
n=1

sin
(nπ

L
z
)

sin
(nπ

L
z′
)

× Jm(knρ<)

[
Ym(kna)
Jm(kna)

Jm(knρ>)−Ym(knρ>)

]
eim(φ−φ ′), (B.18)

where

kn =

√
k2−

(nπ

L

)2
. (B.19)

G(x,x′) =
4
a2

∞

∑
m=−∞

∞

∑
n=1

Jm

(xmn

a
ρ

)
Jm

(xmn

a
ρ
′
) sin(kmnz<)sin[kmn(L− z>)]

kmnJ2
m+1(xmn)sin(kmnL)

eim(φ−φ ′), (B.20)

where

kmn =

√
k2−

(xmn

a

)2
. (B.21)

B.4.2 Neumann

G(x,x′) =
π

L

∞

∑
m=−∞

∞

∑
n=1

(2−δ0,n)cos
(nπ

L
z
)

cos
(nπ

L
z′
)

× Jm(knρ<)

[
Y
′
m(kna)

J′m(kna)
Jm(knρ>)−Ym(knρ>)

]
eim(φ−φ ′), (B.22)

where

kn =

√
k2−

(nπ

L

)2
. (B.23)

G(x,x′) =− 4
a2

∞

∑
m=−∞

∞

∑
n=1

xmn
2Jm
(xmn

a ρ
)

Jm
(xmn

a ρ ′
)

(xmn
2−m2)J2

m(xmn)

cos(kmnz<)cos[kmn(L− z>)]
kmn sin(kmnL)

eim(φ−φ ′), (B.24)

where

kmn =

√
k2−

(
xmn

a

)2

. (B.25)



Appendix C

Potential/Field Calculation of a Uniformly

Charged Ring

The potential for a uniformly charged ring is probably most easily obtained by direct integra-

tion,

Φ(x) =
1

4πε0

∫
dq
|x−x′|

, (C.1)

where x is the vector from the origin to the field point and x′ is the vector from the origin to the

source point. If we assume cylindrical coordinates centered somewhere along the axis of the ring,

we can arbitrarily orient our axes such that the source point lies in the x–z plane. Then we can

rewrite the denominator in the integral above using the Law of Cosines as

|x−x′|2 = (ρ2 + z2)+(R2 +Z2)−2
√

(R2 +Z2)(ρ2 + z2)cos(ξ ), (C.2)

where x = ρ cos(φ) x̂+ρ sin(φ) ŷ+ z ẑ, x′ = Rx̂+Z ẑ, and ξ is the angle between them. The last

term on the right hand side can be recognized, using the definiting of the dot product, as 2x ·x′ =

2(ρRcos(φ)+ zZ). Combining this with the fact that dq for a ring in cylindrical coordinates is
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λRdφ , equation (C.1) can be written like

Φ(ρ,z) =
λ

4πε0

∫
Rdφ√

ρ2 +R2−2ρRcos(φ)+(Z− z)2
. (C.3)

This integral cannot be carried out in terms of elementary functions, but the integral can be

written in terms of the complete elliptic integral of the first kind [14]:

K(m) =

∫
π/2

0

dθ√
1−msin(θ)

. (C.4)

This can be done using the substitution φ = π+2θ [20]. Noting that cos(π+2θ) =−1+2sin2(θ)

the factor inside the square root in equation (C.3) becomes

(R+ρ)2 +(Z− z)2−4ρRsin2(θ), (C.5)

whereupon factoring out (R+ρ)2 +(Z− z)2 from inside the square root yields the desired form

with m = 4ρR/[(R+ ρ)2 +(Z− z)2]. The final result for the potential in terms of the complete

elliptic integral of the first kind is

Φ(ρ,z) =
λR

πε0
√

(R+ρ)2 +(Z− z)2
K
[

4ρR
(R+ρ)2 +(Z− z)2

]
. (C.6)

The electric field can now be obtained by taking the negative gradient of the potential, which yields

Er(ρ,z) =
λR

2πε0ρ
√

(R+ρ)2 +(Z− z)2

{
K
[

4ρR
(R+ρ)2 +(Z− z)2

]
− R2−ρ2 +(Z− z)2

(R−ρ)2 +(Z− z)2 E
[

4ρR
(R+ρ)2 +(Z− z)2

]}
, (C.7)

and

Ez(ρ,z) =−
λR(Z− z) E

[
4ρR

(R+ρ)2+(Z−z)2

]
πε0 ((Z− z)2 +(R−ρ)2)

√
(R+ρ)2 +(Z− z)2

. (C.8)
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