
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-08-06

Quantum Dynamics Using Lie Algebras, with
Explorations in the Chaotic Behavior of Oscillators
Ryan Thomas Sayer
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Sayer, Ryan Thomas, "Quantum Dynamics Using Lie Algebras, with Explorations in the Chaotic Behavior of Oscillators" (2012). All
Theses and Dissertations. 3285.
https://scholarsarchive.byu.edu/etd/3285

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3285?utm_source=scholarsarchive.byu.edu%2Fetd%2F3285&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Quantum Dynamics Using Lie Algebras, with Explorations

in the Chaotic Behavior of Oscillators

Ryan Thomas Sayer

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jean-François S. Van Huele, Chair
Manuel Berrondo
Scott D. Bergeson

Department of Physics and Astronomy

Brigham Young University

December 2012

Copyright © 2012 Ryan Thomas Sayer

All Rights Reserved



ABSTRACT

Quantum Dynamics Using Lie Algebras, with Explorations
in the Chaotic Behavior of Oscillators

Ryan Thomas Sayer
Department of Physics and Astronomy, BYU

Master of Science

We study the time evolution of driven quantum systems using analytic, algebraic, and numer-
ical methods. First, we obtain analytic solutions for driven free and oscillator systems by shifting
the coordinate and phase of the undriven wave function. We also factorize the quantum evolution
operator using the generators of the Lie algebra comprising the Hamiltonian. We obtain cou-
pled ODE’s for the time evolution of the Lie algebra parameters. These parameters allow us to
find physical properties of oscillator dynamics. In particular we find phase-space trajectories and
transition probabilities. We then search for chaotic behavior in the Lie algebra parameters as a
signature for dynamical chaos in the quantum system. We plot the trajectories, transition proba-
bilities, and Lyapunov exponents for a wide range of the following physical parameters: strength
and duration of the driving force, frequency difference, and anharmonicity of the oscillator. We
identify conditions for the appearance of chaos in the system.

Keywords: quantum dynamics, oscillator, driving force, dynamical chaos, Lie algebra, mean field,
anharmonicity, Lyapunov exponent, transition probability
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Chapter 1

Introduction

1.1 Background

This work is about quantum dynamics, the study of how quantum systems evolve in time. Time

evolution of quantum systems is a topic of continuing importance in physics research. Scientists

look for ways to map out how tiny systems will behave over time when acted upon by external

forces [1]. There are many different methods that can be employed to treat quantum dynamical

systems; some of these methods includes Fourier transforms, numerical solvers, and sudden, adia-

batic or perturbative approximations [2]. Ehrenfest’s theorem can be used to take a semiclassical

approach to solving for quantum dynamics (see Sec. 2.2). Also, algebraic structures of the dynam-

ics can be used to simplify the calculations, and in particular Lie algebras can be used to reduce the

partial-differential Schrödinger equation into a system of coupled ordinary differential equations

(see Sec. 2.4).

The topic of quantum chaos, or the manifestation of classical chaos in quantum systems, is

also a matter of great interest in physics research [3] [4]. The correspondence between classical

and quantum chaos has proven problematic because of the seemingly incompatible definitions of

1



1.2 Objectives 2

quantum uncertainty and loss of predictability. Chaos in classical systems is well understood. It

would be of great value to have a way of treating quantum chaos using classical approaches, which

often involve the measurement of exact trajectories.

By combining the properties of quantum dynamics with the conditions and approaches of the

treatment of classical chaos, we will be able to answer questions about the time evolution of quan-

tum systems that would otherwise be difficult to address. The Lie algebra method in particular

provides a useful bridge between quantum dynamics and chaos. Although references to chaos

and Lie algebra can be found [5] [6], the approaches taken in these studies are different from the

method developed here, and their relevance to my work is not immediately apparent. My contri-

bution answers questions about chaos and quantum dynamics in a specific way that I have not seen

elsewhere.

1.2 Objectives

My objective is to solve for the time evolution of quantum dynamical systems. I will use a semi-

classical ansatz to reduce the dynamics of a quantum system to a time-dependent shift in coordinate

and a time-dependent quantum phase. I will also employ an ansatz for the time evolution operator

in terms of a Lie algebra basis, and then I will use the commutation relations of that basis to reduce

the PDE to a system of coupled ODE’s.

My second objective is to study the properties of a given quantum system and look for signs

of chaos using classical criteria. I will accomplish this by calculating phase-space trajectories

and Lyapunov exponents for the solutions of the coupled ODE’s. I will also calculate energy

level transition probabilities in order to characterize how the system responds over time to a given

driving force.
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1.3 Outline

Sec. 2.2 gives a description of a semiclassical analytic method for solving quantum dynamics,

which was recently proposed by Andrews [7]. I will apply this method to two simple but exemplary

systems: the driven free particle (FP), and the driven simple harmonic oscillator (SHO). Finally I

will discuss the extent and limits of the efficacy of this method.

Sec. 2.3 gives the definition of an "algebra" and explains some of its properties. It then specif-

ically discusses Lie algebras and their properties. Sec. 2.4 shows how a Lie algebra can be used to

solve for the time evolution of a quantum dynamical system. This is done for the driven FP and the

driven SHO. This Lie algebra method gives directly useful information about a quantum system,

such as expectation values and transition probabilities.

The meaning of "chaos" and "quantum chaos" is briefly reviewed in Sec. 2.5. I will discuss

how to calculate and interpret Lyapunov exponents as a criterion for chaos.

Chapter 3 discusses specific quantum systems, all driven by a Gaussian pulse driving force.

Sec. 3.1 studies the FP and its Lyapunov exponents. Next, Sec. 3.2 calculates the phase-space

trajectories, transition probabilities, and Lyapunov exponents of a driven SHO. Sec. 3.3 shows

how to approach a quartic anharmonic potential problem and gives some example plots for the

equivalent classical system. Sec. 3.4 will then repeat what was done for the SHO but with a driven

anharmonic oscillator. Sec. 3.5 will take a brief look at the Caldirola-Kanai damped SHO and its

Lyapunov exponents.

In the concluding Chapter 4 we will argue that these methods are powerful and allow for the

detailed study of the properties of dynamical systems in time. In particular, the Lie algebra method

allows us to distinguish between systems with and without chaotic behavior. I will then briefly

remark on some of the difficulties I had while completing this research, and will finally state some

future goals and directions to which this research may lead.

An appendix contains the explicit factorization of the free particle and simple harmonic oscil-
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lator time derivatives of the Wei-Norman Lie algebra parameters.



Chapter 2

Methods

2.1 The Time-Dependent Hamiltonian

The Schrödinger equation is used to determine how quantum systems evolve in time:

ih̄
∂

∂ t
ψ(x, t) = H (x, p, t)ψ(x, t), (2.1)

where H (x, p, t) is the Hamiltonian of the system and ψ(x, t) is the wave function . Once Eq. (2.1)

has been solved, ψ(x, t) can be used to determine important properties of the system, such as

its energy, position, and the energy transitions or position evolution as time progresses. These

characteristics in turn inform us about the nature of the system. For instance, in this work we’ll be

interested in discovering what the transitions and trajectories can teach us about the chaotic nature

of some anharmonic oscillators.

For a system with a time-independent Hamiltonian H (x, p) (with p = h̄
i

∂

∂x ), Eq. (2.1) can be

easily solved by the separation of variables x and t, as is often demonstrated in quantum textbooks

[8]. However, for a system with a time-dependent Hamiltonian H (x, p, t), separation of variables

usually doesn’t work. Some other method must be employed to deal with this general case.

5



2.2 A Semi-Classical Ansatz 6

2.2 A Semi-Classical Ansatz

One interesting method for treating forced quantum dynamical systems has been proposed by An-

drews [7]. In this paper it is shown that a spatially-uniform, time-dependent driving force f (t) act-

ing on a quantum system results in two simple effects: a time-dependent shift in the coordinate,

x̄(t), such that

x→ ξ = x− x̄, (2.2)

and a time-dependent phase shift of the wavefunction θ(x, t). The ansatz is that the wave function

will have the form

ψ(x, t) = exp[iθ(x, t)]Ψ(x− x̄(t), t), (2.3)

where Ψ(x, t) is the wave function of the system when no forcing occurs. In what follows, I will

refer to this method as the "Andrews method" for the sake of clarity. I will not repeat the derivation

of this method, but will refer the reader to the paper [7]. In Sec. 2.4 I will directly compare the

Andrews method results with those of the Lie algebra method, which I develop in Sec. 2.4.1.

2.2.1 Ehrenfest’s Theorem

According to Ehrenfest’s theorem [9], the expectation values of position and momentum corre-

spond to the trajectories of a classical particle in a similar potential. A particle’s shift in position

due to a driving force will therefore be given by the difference of the semiclassical trajectories, i.e.,

the trajectories of the expectation values obtained using quantum mechanics.

The term x̄(t) in Eq. (2.3) is found to be the difference in position expectation values of the

forced system 〈x〉
ψ
(t) and unforced system 〈x〉

Ψ
(t),

x̄(t) = 〈x〉
ψ
(t)−〈x〉

Ψ
(t), (2.4)

where x is the position operator, multiplicative in the coordinate representation, as can be verified

by explicit calculation.
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The quantum phase shift from the force will depend on the shift in momentum p̄(t), which is

necessarily the difference in momentum expectation values of the forced and unforced systems,

p̄(t) = 〈p〉
ψ
−〈p〉

Ψ
. (2.5)

This shift in momentum is related to the quantum phase shift by the equation p̄(t) = h̄∂θ(x,t)
∂x , which

can be integrated with respect to x to give

θ(x, t) =
1
h̄
(p̄(t)x−β (t)). (2.6)

The term β (t) is a constant of integration determined by substituting our ansatz Eq. (2.3) into

Eq. (2.1). As it turns out, β (t) is equal to the action of the unforced system, found by taking the

time integral of the classical Lagrangian .

The values of x̄(t) and p̄(t) are determined by the classical Hamiltonian equations of motion,

˙̄x =
∂H

∂ p̄
, (2.7)

˙̄p =−∂H

∂ x̄
, (2.8)

subject to initial conditions

x̄(0) = p̄(0) = 0. (2.9)

I will now show the Andrews method in action for a couple of cases with general driving force:

a forced free particle and a forced simple harmonic oscillator.

2.2.2 The Free Particle

Let’s first take a look at the free particle (FP) system . The Hamiltonian of a driven FP is given by

H =
p̂2

2m
− f (t)x̂ (2.10)

for some arbitrary time-dependent force f (t). The classical equations of motion for x̄(t) and p̄(t),

as determined with the coordinate and momentum operators by Eq. (2.10), are ˙̄x(t) = 1
m p̄(t) and
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˙̄p(t) = f (t). These equations, taken with the initial conditions as given in Eq. (2.9), can be solved

to give

x̄(t) =
1
m

∫ t

0

∫ t ′

0
f (t”)dt”dt ′ =

F1(t)
m

, (2.11a)

p̄(t) =
∫ t

0
f (t ′)dt ′ = F(t), (2.11b)

where F(t) is the time integral of the force and F1(t) is the time integral of F(t). We plug these

solutions into Eq. (2.3) to get the following explicit expression for our ansatz:

ψ(x, t) = exp[
i
h̄
(F(t)x−β (t))]Ψ(x− F1(t)

m
, t). (2.12)

To solve for β (t) we substitute Eq. (2.12) into Eq. (2.1), make a change of variables ξ = x− F1(t)
m

(as seen in Eq. (2.2)), and simplify to get

ih̄
∂

∂ t
Ψ(ξ , t) =− h̄2

2m
∂ 2Ψ(ξ , t)

∂ξ 2 +

[
F(t)2

2m
− ∂β (t)

∂ t

]
Ψ(ξ , t). (2.13)

The first two terms correspond to the undriven FP Schrödinger equation for Ψ(ξ , t), and they

cancel out. When we solve the remainder for β , we get

β (t) =
1

2m

∫ t

0
F(t ′)2dt ′ = F2(t). (2.14)

We can now express the time-dependent wave function of the forced FP system in terms of

F(t), F1(t), and F2(t), which can be easily determined for any given time-dependent driving force

f (t).

2.2.3 The Simple Harmonic Oscillator

To apply the Andrews method to the simple harmonic oscillator (SHO), we follow the same pro-

cedure as with the FP. It just takes a little more algebra work to get the solutions.

The SHO Hamiltonian is given by

H =
p̂2

2m
+

1
2

mω
2x̂2− f (t)x̂, (2.15)



2.2 A Semi-Classical Ansatz 9

where ω is the angular frequency of the oscillator. The classical Hamiltonian equations of motion,

defined by Eq. (2.7) and Eq. (2.8) are

˙̄x =
p̄
m
, (2.16)

˙̄p =−mω
2x̄+ f (t), (2.17)

and the initial conditions are given by Eq. (2.9). These equations can be solved with a Fourier

transform or a Green’s function to get the following integral expressions:

x̄(t) =
1

mω

∫ t

0
f (t ′)sin[ω(t− t ′)]dt ′ ≡ S(t)

mω
, (2.18a)

p̄(t) =
∫ t

0
f (t ′)cos[ω(t− t ′)]dt ′ ≡C(t). (2.18b)

We now solve for β (t) as we did for the FP system, by substituting the ansatz into Eq. (2.1),

performing a change of variables ξ = x− S(t)
mω

, and simplifying. After some algebra we are left with

ih̄
∂

∂ t
Ψ(ξ , t) =− h̄2

2m
∂ 2Ψ(ξ , t)

∂ξ 2 +
1
2

mω
2x2

Ψ(ξ , t)+
[

C(t)2

2m
− S(t)2

2m
− dβ (t)

dt

]
Ψ(ξ , t). (2.19)

When we cancel out the terms for the undriven SHO Schrödinger equation and simplify we recover

the following:
dβ

dt
=

1
2m

[C2−S2] =
p̄2

2m
− 1

2
mω

2x̄2. (2.20)

To solve this, we can take advantage of a useful identity. By multiplying Eq. (2.16) by p̄,

Eq. (2.17) by x̄, and then adding them together, we get the following:

d(x̄ p̄)
dt

=
p̄2

m
−mω

2x̄2 + f (t)x̄. (2.21)

We substitute this into Eq. (2.24) to get

dβ

dt
=

1
2
[
d(x̄ p̄)

dt
− f (t)x̄], (2.22)

which can then be integrated with respect to time to give us

β (t) =
1
2

x̄(t)p̄(t)− 1
2

∫ t

0
f (t ′)x̄(t ′)dt ′, (2.23)
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or, in terms of C(t) and S(t),

β (t) =
C(t)S(t)

2mω
− 1

2mω

∫ t

0
f (t ′)S(t ′)dt ′. (2.24)

We can now express the time-dependent wave function of the forced system in terms of a

couple of functions, S(t) and C(t), which can be determined for an arbitrary driving force f (t). As

in the FP case, this approach works equally well for any spatially-uniform force that is turned on

at t = 0. Also, the solutions we get are exact, as no approximations were required.

2.2.4 Extensions And Limits

The Andrews method is valid for any single or multi-dimensional isotropic system with a Hamil-

tonian that is at most quadratic in coordinate and momentum. Given a Hamiltonian of the form

Ĥ =
1
2

a(t)p̂2 +
1
2

b(t)(p̂ · x̂+ x̂ · p̂)+ 1
2

c(t)x̂2 + f(t) · p̂+g(t) · x̂, (2.25)

where a(t), b(t), c(t), and f(t) are coefficients of arbitrary time dependence and g(t) is the driving

force of the system, the equations of motion to determine x̄ and p̄ are the following:

˙̄x(t) = a(t)p̄(t)+b(t)x̄(t)+ f(t), (2.26a)

− ˙̄p(t) = b(t)p̄(t)+ c(t)x̄(t)+g(t). (2.26b)

Finally, β (t) is determined by taking the time integral of the Lagrangian of the classical system,

i.e. the action of the system:

β̇ (t) =
1
2

a(t)p̂2− 1
2

c(t)x̂2−g(t) · x̂. (2.27)

The ansatz solution for the wavefunction of the forced system will take the same form as in

Eq. (2.3) and (2.6), but for x̄ and p̄ as vectors instead of scalars [7].

For systems with Hamiltonians that are higher order than quadratic in position and momentum,

some approximation must be made to restore linearity to the classical equations of motion. This
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would apply to anharmonic oscillators of the type we study in Chapter 3. A similar problem is

encountered when employing the Lie algebra method, as will be discussed in Sec. 2.4.3.

As an example of such a system, consider Schrödinger’s equation with a quartic potential of

the form

ih̄
∂

∂ t
ψ =

−h̄2

2m
∂ 2

∂x2 ψ +
1
2

mω
2x2

ψ +λx4
ψ− f (t)xψ. (2.28)

To solve this system using the Andrews ansatz we must solve for the "classical" trajectory using

the Hamilton equations of motion. The Hamiltonian of the system is given by

H =
p̂2

2m
+

1
2

mω
2x̂2 +λ x̂4− f (t)x̂. (2.29)

From the Hamiltonian we can find the classical equations of motion used to solve x̄ and p̄:

˙̄x =
∂H

∂ p̄
=

p̄
m
, (2.30)

˙̄p =−∂H

∂ x̄
=−mω

2x̄−4λ x̄3 + f (t). (2.31)

The coupled equations can be rewritten as a single, second-order differential equation:

m
d2x̄
dt2 =−mω

2x̄−4λ x̄3 + f (t). (2.32)

For sinusoidal f (t), Eq. (2.32) is known as the Duffing equation, and in general cannot be

solved analytically. When solved using numerical methods, the solution exhibits chaos depending

on the strength of f (t), as will be discussed in Sec. 2.5.4 and demonstrated in Sec. 3.3.

2.3 Algebraic Structures

2.3.1 Properties of Algebras

The partial differential Schrödinger equation, Eq. (2.1), can also be solved by using Lie algebras.

In this way, as will be shown in Sec. 2.4, a second-order partial differential equation can be turned
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into a system of coupled first-order ordinary differential equations. Lie algebras appear quite often

in physics, though they’re not always referred to as such [10]. Lie algebras are a type of algebraic

structure. I now will give a brief explanation of what that means.

In general, an algebra is a set of elements for which one or more binary operations are defined.

Binary operations combine two elements of the set and give one element back; some common

examples include the operations of addition, subtraction, multiplication, and division that define

the "elementary algebra" of the real number set, which is probably the most familiar type of algebra

to non-mathematicians.

An identity element of a binary operation, when combined with any element, returns the origi-

nal element; some examples of identity elements are 0 for addition (A+0 = A for any A) and 1 for

multiplication (A∗1 = A). An element A of an algebra may have an inverse, which when combined

with the element will yield the identity: A+(−A) = 0, A∗ (A−1) = 1, etc.

An operation is said to be associative when the order in which two or more operations are

carried out doesn’t matter, as long as the order of the elements stays the same. Some examples

of associative operations are addition ((A+B)+C = A+(B+C)) and multiplication ((A ∗B) ∗

C = A ∗ (B ∗C)). By contrast, the property of commutativity says that the order of the elements

themselves doesn’t matter. In elementary algebra the operations of addition and multiplication are

commutative, or in other words they "commute," (i.e. A+B = B+A, A∗B = B∗A). For some sets

of elements, commutivity of multiplication is not required, as will be discussed in Sec. 2.3.2.

One more important property of algebraic structures is closure. A "closed" set is one such that

a binary operation of any two elements of the set will yield another element of the set. A set must

be closed in order to form an algebra. As an example, consider the set of vectors confined to the

xy-plane,~r = (x,y): this set is closed under any operation that returns another vector confined to the

xy-plane, which is true for the operation of addition:~r1+~r2 = (x1,y1)+(x2,y2) = (x1+x2,y1+y2).

An operation such as a cross product (×), however, would not be closed for this set: ~r1×~r2 =
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(x1,y1)× (x2,y2) = (0,0,x1 ∗ x2− y1 ∗ y2). before the cross product operation can be defined, the

set must be extended beyond the xy-plane to include z components.

These properties or axioms are taken together to define a group. In general, a group is a set

of elements and an operation with the following properties: (a) an identity, (b) an inverse, (c)

associativity, and (d) closure. An Abelian group has the additional property of commutativity. Lie

groups, which may or may not be Abelian, will be discussed in Sec. 2.4.

2.3.2 Lie Algebras

A Lie algebra is a vector space with an antisymmetric binary operation, such as a commutator. A

commutator is written as square brackets with two elements separated by a comma [∗,∗] and is

taken to be the difference of products of two elements with the order of the elements in the second

product reversed:

[A,B] = A∗B−B∗A. (2.33)

Two elements are said to commute if their commutator is zero.

Lie algebras and Lie groups appear quite often in the field of physics [11] [12]. Some examples

of Lie algebras include the three-dimensional Euclidian space R3, with the commutator defined as

the cross product of vectors. Another example of a Lie algebra is the set of n× n anti-Hermitian

matrices. In quantum physics, the angular momentum operators and their commutators form a

Lie algebra. In Sec. 2.4 we will make use of the property that a Hamiltonian sometimes can be

expressed as a sum of elements of a Lie algebra. In this way, the time evolution of the system can

be determined.
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2.4 Solving for Time Evolution with Lie Algebras

The equation which is used to determine the time evolution of a quantum system has the Schrödinger

form

ih̄
∂U(t)

∂ t
.
= H U(t), (2.34)

where U(t) is the time evolution operator and H is the Hamiltonian. The dotted equal sign .
=

will be used to designate an operator equation. For an evolution operator with inverse U−1(t),

Eq. (2.34) can be written as

ih̄
∂U(t)

∂ t
U−1(t) .

= H , (2.35)

and the equation can be solved for specific Hamiltonians in the right-hand side by manipulating

the structure of the evolution operator U(t) in the left-hand side.

2.4.1 The Wei-Norman Ansatz

J. Wei and E. Norman proposed a product form [13] for the operator U ,

U(t) .
=

N

∏
i=1

eαi(t)Hi, (2.36)

where αi(t) are a set of time-dependent, complex, scalar parameters to be determined, and Hi are

the basis elements of a Lie algebra A , chosen to include all the terms of the Hamiltonian H

A
.
= {H1, ..,HN} . (2.37)

The elements Hi in Eq. (2.36) do not necessarily commute, so care must be taken when applying

the partial time derivative and the inverse operator in Eq. (2.35), as will be mentioned in Sec. 2.4.5.

These basis elements are chosen based on a Hamiltonian of the form

H
.
=

N

∑
i=1

bi(t)Hi, (2.38)
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with coefficients bi(t). Some of the bi(t) may be zero without necessarily implying that the corre-

sponding αi(t) vanish. The total time evolution operator U(t), which is an exponential mapping of

the algebra A , is a representation of the Lie group corresponding to that algebra.

The next step is to factorize the ∂U(t)
∂ t U−1(t) term in the left-hand side of (2.35). This is done

by taking the time derivative of U(t), one exponential term at a time, and then using the Baker-

Campbell-Hausdorff identity to simplify (see Eq. (A.6)). A step-by-step explanation of this process

can be found in Appendix A. In the end we are left with an equation of the form

ih̄
N

∑
i

gi (α̇1(t), .., α̇N(t),α1(t), ..,αN(t))Hi
.
=

N

∑
i

bi(t)Hi, (2.39)

where gi(α̇1(t), .., α̇N(t),α1(t), ..,αn(t)) are functions of the αi parameters and their time deriva-

tives. The next step is the equate the coefficients of each algebra element, which yields a set of

coupled first-order ordinary differential equations gi(α̇1(t), .., α̇N(t),α1(t), ..,αn(t)) = bi(t), one

for each Hi. These can be solved to determine the values of the αi(t).

2.4.2 Choosing an Algebra Basis

To minimize the work, the chosen Lie algebra basis should be the smallest algebra which includes

every term in the Hamiltonian. This means that a smaller or more workable Lie algebra can some-

times be chosen by rewriting the Hamiltonian. A given Hamiltonian may be expressed in several

different forms. For example, oscillator dynamics can be written in terms of the coordinate opera-

tor x and its derivatives ∂

∂x and ∂ 2

∂x2 , or in terms of the creation and annihilation (ladder) operators

(a† and a, respectively) and the number operator N = a†a.

Consider a simple harmonic oscillator whose Hamiltonian can be written in terms of the num-

ber operator,

H
.
= h̄ω(N +

1
2
). (2.40)

The corresponding algebra for this Hamiltonian, written as in Eq. (2.37), would be A
.
= {N,1}.
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Now, consider a simple harmonic oscillator with an added driving force:

H
.
= h̄ω(N +

1
2
)− f (t)

√
h̄

2mω
(a+a†). (2.41)

The Lie algebra basis as chosen before no longer includes all the terms in the Hamiltonian. The

basis must be extended to include a and a†:

A
.
=
{

a†,a,N,1
}
. (2.42)

This new closed set forms an algebra which covers every term in the Hamiltonian defined in

Eq. (2.41).

2.4.3 Closure Under Commutation

As mentioned in Sec. 2.3, an operation between any two elements of a set must be closed for the

set to constitute an algebra. For Lie algebras this means that any non-vanishing commutator of

any two algebra elements must also be an element of the algebra. To determine if a chosen set

maintains closure, take the commutator of every possible two-element combination in the set.

As an example, consider the commutators for the algebra given in Eq. (2.42):

[1,a] .= 0, [1,a†]
.
= 0, [1,N]

.
= 0, (2.43)

[a,a†]
.
= 1, [a,N]

.
= a, [a†,N]

.
=−a†. (2.44)

The result of every commutator is itself an element of the set, which means that the set is closed. It

may be necessary to add terms to the basis that aren’t found in the Hamiltonian to ensure closure.

2.4.4 Normal Ordering

The Wei-Norman ansatz gives flexibility in choosing the order of the exponentials, but some

choices lead to considerable simplification. When working with products of creation and anni-

hilation operators, the most convenient order is with the creation operators a† to the left of the
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annihilation operators a. This arrangement is known as "normal ordered," and its convenience

comes from the fact that annihilation operators acting on ground-state kets |0〉 and creation opera-

tors acting on ground-state bras 〈0| will both equal zero:

〈0|a† = 0, (2.45)

a|0〉= 0. (2.46)

2.4.5 Unitarity

The time-evolution operator defined in Eq. (2.36) is assumed to be a unitary operator for systems

of "closed" quantum Hamiltonians (here closed is meant in the physical and not algebraic sense).

When a quantum system is no longer closed, i.e. when it is in contact with an external heat bath

or includes factors for internal losses, the time-evolution operator will no longer be unitary. This

can be seen when looking at quantum systems with damping factors, such as the Caldirola-Kanai

Hamiltonian that will be encountered in Sec. 3.5.

As long as the Hamiltonian under consideration is closed to its environment and real-valued,

the unitarity of the evolution operator is assured. For a unitary U(t) its inverse must equal its

Hermitian conjugate, U† .
=U−1. Relationships between the αi parameters of the Lie algebra basis

can be determined from this condition.

As an example, for the algebra defined in Eq. (2.42) we get

U(t) .
= eα1(t)a†

eα2(t)aeα3(t)Neα4(t)1. (2.47)

By setting U(t)−1 .
= U(t)†, the following identities for the real and imaginary parts of the αi
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parameters can be determined:

ℜ{α1(t)}=−ℜ{α2(t)} (2.48a)

ℑ{α1(t)}= ℑ{α2(t)} (2.48b)

ℜ{α3(t)}= 0 (2.48c)

ℜ{α4(t)}=−
1
2
|α1|2 =−

1
2
|α2|2 . (2.48d)

These relations have been confirmed by actual data (see Chapter 3). Systems for which the time-

evolution operator is not unitary are still solved in the same way. The only requirement to get from

Eq. (2.34) to Eq. (2.35) is that U(t) have an inverse (which may or may not equal its Hermitian

conjugate).

2.4.6 The Free Particle

The time evolution operator for a free particle with a driving force is given by solving Eq. (2.34),

where the Hamiltonian of the system is

H
.
=− h̄2

2m
∂ 2

∂x2 − f (t)x .
= H0− f (t)x. (2.49)

We can construct a Lie algebra to contains this Hamiltonian,

A
.
= {1,x, ∂

∂x
,

∂ 2

∂x2 }, (2.50)

with which we can propose an ansatz for the evolution operator in terms of the Wei-Norman rep-

resentation of the Lie group corresponding to the chosen algebra:

U .
= eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 , (2.51)

with complex, time-dependent parameters αi(t) (i= 1...4). We can take the inverse of the evolution

operator to get

ih̄[
∂

∂ t
U(t)]U(t)−1 .

= H (2.52)
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⇒ ih̄ [
∂

∂ t
(eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 )](e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t))
.
=− h̄2

2m
∂ 2

∂x2 − f (t)x.

(2.53)

The factorization of the left-hand side of this expression is worked out in Sec. A.1 of Appendix A.

By equating the Lie algebra elements in Eq. (A.15) with the Hamiltonian, we recover the following

set of four coupled first-order differential equations, one for each basis element of the algebra:

α̇1(t) = α̇3(t)α2(t)− α̇4(t)α2(t)2 (2.54)

α̇2(t) =
i
h̄

f (t) (2.55)

α̇3(t) = 2α̇4(t)α2(t) (2.56)

α̇4(t) =
ih̄
2m

, (2.57)

which can be solved to give

α1(t) =−
i
h̄

[
1

2m

∫ t

0

(∫ t ′

0
f (t”)dt”

)2

dt ′
]
=− i

h̄
β (t) (2.58)

α2(t) =
i
h̄

[∫ t

0
f (t ′)dt ′

]
=

i
h̄

p̄(t) (2.59)

α3(t) =−
[

1
m

∫ t

0

(∫ t ′

0
f (t”)dt”

)
dt ′
]
=−x̄(t) (2.60)

α4(t) =
ih̄t
2m

=− i
h̄

(
−h̄2

2m

)
t, (2.61)

where the solutions have been simplified by using the functions defined in Sec. 2.2.2 to replace the

terms in the square brackets. The total time evolution operator can now be written,

U(t) .
= e−

i
h̄ β (t)e

i
h̄ p̄(t)xe−x̄(t) ∂

∂x e−
i
h̄ (−

h̄2
2m

∂2

∂x2 )t (2.62)

.
= eiθ(x,t)e−x̄ ∂

∂x e−
i
h̄ H0t , (2.63)

with θ(x, t) = 1
h̄(p̄(t)x−β (t)).
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To show that the Andrews method solution Eq. (2.3) can be recovered, choose an initial wave

function Ψ(x,0) for a free particle with no driving force at t = 0. To evolve this wave function in

time, apply the evolution operator U(t) one exponent at a time:

e−
i
h̄ H0t

Ψ(x,0) = Ψ(x, t) (2.64)

e−x̄ ∂

∂x Ψ(x, t) = Ψ(x− x̄, t) (2.65)

⇒ ψ(x, t) = eiθ(x,t)
Ψ(x− x̄, t). (2.66)

2.4.7 The Simple Harmonic Oscillator

The Hamiltonian of a driven quantum simple harmonic oscillator is given by

H
.
= H0− f (t)x, (2.67)

where H0
.
= −h̄2

2m
∂ 2

∂x2 +
1
2mω2x2. This can be rewritten in terms of raising and lowering operators,

H0
.
= h̄ω(N +

1
2
)−g(t)(a+a†), (2.68)

with N .
= a†a, g(t) =

√
h̄

2mω
f (t), and where we’ve employed the relation x =

√
h̄

2mω
(a+a†).

In order to determine the effects of the driving force on the time evolution of the system we

must use this Hamiltonian to solve for the evolution operator U(t). We will use the ansatz given

by Eq. (2.47):

ih̄ [
∂

∂ t
(eα1(t)a†

eα2(t)aeα3(t)Neα4(t))](e−α4(t)e−α3(t)Ne−α2(t)ae−α1(t)a†
) = h̄ω(N +

1
2
)−g(t)(a+a†).

(2.69)

The factorization of the left-hand side of this expression is worked out in Sec. A.2 of Appendix A.

By equating the Lie algebra elements in Eq. (A.25) with the Hamiltonian, we recover the following

set of four coupled first-order differential equations, one for each basis element of the algebra:

α̇1(t) = α̇3(t)α1(t)+
i
h̄

g(t) =−iωα1(t)+
i
h̄

g(t) (2.70)
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α̇2(t) = α̇3(t)α2(t)+
i
h̄

g(t) = iωα2(t)+
i
h̄

g(t) (2.71)

α̇3(t) =−iω (2.72)

α̇4(t) = α̇3(t)α2(t)α1(t)+ α̇2(t)α1(t)− i
ω

2
=

i
h̄
(g(t)α1(t)−

h̄ω

2
) (2.73)

These can be solved using an integrating factor e±
∫

iωdt

α1(t) =
i
h̄

∫ t

0
e−iω(t−t ′)g(t ′)dt ′ (2.74)

α2(t) =
i
h̄

∫ t

0
eiω(t−t ′)g(t ′)dt ′ (2.75)

α3(t) =−iωt (2.76)

α4(t) =−
1
h̄2

∫ t

0
g(t ′)

(∫ t ′

0
e−iω(t ′−t”)g(t”)dt”

)
dt ′− iωt

2
(2.77)

As in Sec. 2.4.6, agreement can be shown between the parameter solutions found using Lie

algebra and the solution via Andrews method found in Sec. 2.2.3.

2.4.8 Mean Field Approximations to Ensure Closure

When using the Lie algebra method for the FP and SHO systems, obtaining a closed set of gener-

ators is straightforward. For more complicated systems, whose Hamiltonians have terms of higher

order algebra elements (such as N2), it may be difficult to find a set of elements that closes without

requiring a larger (but still finite) number of elements. This problem may be mitigated by making

a mean field approximation on the Hamiltonian.

The process is simple: For some operator P, the value of P2 may be approximated as 〈P〉P,

where 〈P〉 is the expectation value of P. Any algebra being made from the Hamiltonian will only

have to include P, not P2, and 〈P〉 will simply be a coefficient of P. In the case where 〈P〉 is time-

dependent, this is known as a "dynamical mean field" approximation. This type of approximation

will be used in Sec. 3.4 to simplify the Morse and Pöschl-Teller Hamiltonians [14].
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2.4.9 Some Useful Properties of the Lie Algebra Parameters

One of the real strengths of the Lie algebra methods is that useful properties of the system can be

easily expressed in terms of the αi parameters. By using the ladder operator algebra to construct a

Wei-Norman ansatz for U(t) as seen in Eq. (2.47), the following expressions can be determined:

U†aU = eα3a+α1, (2.78)

U†a†U = e−α3a†−α2, (2.79)

U†NU = N−α1α2. (2.80)

These expressions represent the operators a, a† and N in the Heisenberg picture. When taken with

the identities x = 1√
2ω

(a+a†) and p =−i
√

ω

2 (a−a†) (in the units of h̄ = m = ω = 1), we recover

the following expressions for expectation values in terms of the αi(t)’s:

〈x〉= 〈n|U†xU |n〉= 1√
2ω

(α1(t)−α2(t)), (2.81)

〈p〉= 〈n|U† pU |n〉=−i

√
ω

2
(α1(t)+α2(t)), (2.82)

〈N〉= 〈n|N |n〉= ni−α1(t)α2(t), (2.83)

where ni is the initial number eigenvalue of the system. The expectation values of 〈x〉 and 〈p〉 can

be used to find the phase-space trajectories of the system, and will be employed in Chapter 3.

The transition probabilities of the system can also be found in terms of Lie algebra parameters.

The probability of a transition from the nth energy level to the mth level is defined as follows:

Pnm(t) = |〈m |U(t)|n〉|2 . (2.84)

For some element Hi of a given algebra we use the following identity:

eαi(t)Hi|n〉=
∞

∑
k=0

αi(t)k

k!
Hk

i |n〉. (2.85)
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This expression can be simplified if we are using the ladder operator algebra. From the exponential

of the lowering operator a, and the properties of ladder operators [10], we get

eα2(t)a|n〉=
n

∑
k=0

α2(t)k

k!

√
n!

(n− k)!
|n− k〉. (2.86)

After acting on |n〉 with all of the exponential terms of U(t) and simplifying, we are left with the

following expression for the transition probabilities:

Pnm(t) =

∣∣∣∣∣eα4(t)eα3(t)n
√

n!m!
n

∑
k=0

α1(t)m−n+kα2(t)k

k!(m−n+ k)!(n− k)!

∣∣∣∣∣
2

. (2.87)

The value P00 is known as the ground-state persistence probability. The expression given by

Eq. (2.87) is only valid for transitions from lower to higher states, i.e., n ≤ m. Transitions from

higher to lower states, i.e., n≥ m, use the following formula:

Pnm(t) =

∣∣∣∣∣eα4(t)eα3(t)n
√

n!m!
m

∑
k=0

α1(t)kα2(t)n−m+k

k(m− k)!(n−m+ k)!

∣∣∣∣∣
2

. (2.88)

These expressions will be used in Chapter 3 to plot the transition probabilities for the SHO and the

Morse oscillator systems.

2.5 Chaos

Classical chaos is usually described as an extreme sensitivity to initial conditions [15].

2.5.1 Conditions for Chaos

The system needs to have some level of complexity in order to display chaos. The exact conditions

for the onset of chaos is the subject of considerable research, but some general results apply. In

particular, according to the Poincaré-Bendixson theorem, a system of equations will not manifest

chaos unless it has three or more degrees of freedom and is nonlinear [16].
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2.5.2 Lyapunov Exponents

The most commonly used tool to measure chaos is known as a Lyapunov exponent [17]. Lyapunov

exponents are determined by measuring strength of the exponential divergence of two trajectories

initially separated by a distance ε as follows:

|δx(t)|= |δxo|eλ t (2.89)

⇒ λ = lim
t→∞

1
t

log(
|δx(t)|
|δxo|

), (2.90)

where δxo corresponds to the initial difference of two trajectories of variable x (i.e. δxo = ε),

and δx(t) corresponds to the difference of the two trajectories at some later time t. It should be

noted that x does not necessarily refer to a coordinate variable. A system of coupled differential

equations will have one Lyapunov exponent for each degree of freedom of the system, with the

largest-valued exponent referred to as the "maximal" Lyapunov exponent. A system is considered

chaotic when its maximal Lyapunov exponent is positive-valued.

2.5.3 Phase Space Behavior

Chaos of a system is often determined by studying the phase-space behavior of the system using

the principles of ergodic theory [17], which considers the exploration of the phase space in time.

The phase-space trajectories of a chaotic system will tend to spread evenly over the region of phase

space that is accessible to the system. This spreading over phase space can be seen in several of

the figures in Chapter 3.

2.5.4 Examples of Chaotic Systems

Some examples of physical systems which manifest chaos are the double pendulum [18] and the

non-rectangular billiard table [19]. Another example, already encountered in Sec. 2.2.4, is the
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Duffing oscillator . This system is known to exhibit chaos when the driving force is sufficiently

strong. Some solutions of this system will be shown in Sec. 3.3.

2.5.5 Quantum Chaos

Extreme sensitivity to initial conditions is difficult to ascribe to quantum systems because the

uncertainty principle makes it impossible to exactly define the initial conditions and trajectories

[20]. Therefore, other criteria and methods have been developed in the study of quantum chaos. In

particular, the question of quantum chaos is often addressed by studying the statistical distribution

of energy levels [21].

What we will show in Chapter 3 is that exact trajectories can be determined for the Lie algebra

parameters in Sec. 2.4, making it possible to determine the values of the Lyapunov exponents of

the corresponding systems. This is done by solving Eq. (2.39) using two different sets of initial

conditions: first with αi(0) = 0, then with αi(0) =±ε . A minus sign may be necessary to preserve

unitarity when dealing with closely coupled α’s (such as the α’s corresponding to a and a†).

Throughout Chapter 3 I will use this method to calculate Lyapunov exponents for each αi of

the Lie algebra solution in order to determine if chaos is present. For chaotic systems, at least one

of the Lyapunov exponents will have a positive, nonzero value in the limit that t→ ∞.



Chapter 3

Results

In this chapter I present results obtained by numerical solutions of the dynamical equations for the

Lie parameters derived in Sec. 2.4. I consider successively the driven free particle, the driven sim-

ple harmonic oscillator, the quartic potential oscillator, the driven anharmonic Morse and Pöschl-

Teller oscillators, and the Caldirola-Kanai damped SHO.

For all of this chapter I will use a Gaussian pulse as the driving force, of the form

f (t) = Eosin(ω f t)e−λ (t−to)2
, (3.1)

where Eo is the amplitude or strength of the force, ω f is the frequency, λ is the inverse envelope

width (i.e., the inverse duration) of the force, and to defines the time the center of the pulse arrives

at the system. The pulse will always be centered at to = 50 so that at t = 0 the force will be either

zero-valued or very small, depending on the chosen value of λ (see Fig. 3.1). This driving force

can be used to model how a short laser pulse might interact with a given atomic system.

26
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Figure 3.1 Gaussian pulse force, λ -varying.
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3.1 The Driven Free Particle

The first system I wish to look at is the driven free particle, whose Hamiltonian is given in

Eq. (2.49). This system was already solved for a generic driving force f (t) using the Andrews

method and the Lie algebra method (see Sec. 2.2.2 and Sec. 2.4.6, respectively). Using the driving

force given in Eq. (3.1), the Andrews method defines following useful functions:

F(t) =
∫ t

0
Eosin(ω f t ′)e−λ (t ′−to)2

dt ′, (3.2)

F1(t) =
∫ t

0

∫ t ′

0
Eosin(ω f t”)e−λ (t”−to)2

dt”dt ′, (3.3)

F2(t) =
1

2m

∫ t

0
[
∫ t ′

0
Eosin(ω f t”)e−λ (t”−to)2

dt”]2dt ′. (3.4)

These three functions are used to determine the time evolution, via a shift in coordinate and a

quantum phase, of a given initial wavefunction. The system can also be solved with Lie algebras

by replacing the force f (t) in Eqs. (2.58) through (2.61) with the particular force given in Eq. (3.1).

I will use the solutions to the αs to determine Lyapunov exponents.

In Fig. 3.2 I plot the Lyapunov exponents (LE) as a function of time, one exponent λi for each

degree of freedom of the system. In the Wei-Norman formulation there is one degree of freedom

for each of the basis elements of the algebra, which means there is one λi for each αi. For the sake

of clarity I will label the λi with subscripts that are related to the basis element they represent (i.e.,

λdx corresponds to ∂

∂x , λ1 corresponds to the unity element operator 1, etc.).

The first thing to notice is that λdx has the most pronounced behavior in each of the plots. It

initially rises fast, then slowly decays as 1
t for the rest of the plot interval. The driving force, with

an inverse width of λ = 0.05, acts mostly on the interval of t = 40 to t = 60, but λdx seems to be

uninfluenced by the force turning on. Also, since the graph of λdx is unchanged as Eo is varied, it

appears that its value is entirely independent of the driving force.

The plot of λ1 is the next most interesting of the four. It becomes nonzero around the time

the driving force begins to act, and oscillates as the force is acting, then appears to "roll off" and
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Figure 3.2 Free particle Lyapunov exponents, Eo-varying, λ = 0.005, ω f = ω .
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asymptotically approach the y-axis once the force has ceased. The amplitude of its oscillations as

well as its maximum value before the rolling off period correspond to the strength of the driving

force. In the plot corresponding to Eo = 0.1 we can see a small downward bump in λdx, long

after the driving force has passed: While this is an interesting feature, it does not appear to be

significant.

The final thing to note from these plots is that the exponents corresponding to x and ∂ 2

∂x2 are

everywhere flat and nearly zero. Chaos wouldn’t be expected in a driven free particle system,

which means that these exponents behave as might be predicted.

I will now vary the duration of the peak λ rather than the strength Eo of the driving force. In

Fig. 3.3 and Fig. 3.4 I vary λ while holding the amplitude at Eo = 1 and Eo = 10, respectively. The

behavior of λdx in each of the plots is identical, regardless of the value of λ . It appears that this LE

is independent of the strength AND duration of the driving force. Since the system only consists of

a free particle and a driving force, and λdx appears to be independent of the driving force, there’s

not much left, physically, to account for its behavior.

One possibility: Since this exponent corresponds to the term eαdx
∂

∂x , which is the infinitesimal

generator of translation for the system, it could mean that the initial separation ε of the αdx values

is physically manifested as an initial displacement of the two trajectories, and that this initial

displacement becomes less pronounced over time as the two systems naturally evolve. However,

if this were the case, the Lyapunov exponent would be expected to immediately begin at some

high value and then roll off, not start at −∞ and quickly rise before rolling off as it is seen to do.

Whatever the interpretation may be, the behavior of λdx does not seem to indicate the presence of

chaos in the system.

As we saw in Fig. 3.2, the Lyapunov exponents λx and λdx2 are everywhere almost zero-valued,

and so were unaffected by changes in driving force duration just as they were unaffected by changes

in its strength. A few things can be seen in the graphs of λ1 in Fig. 3.3 and Fig. 3.4 that weren’t
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Figure 3.3 Free particle Lyapunov exponents, Eo = 1, λ -varying, ω f = ω .
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Figure 3.4 Free particle Lyapunov exponents, Eo = 10, λ -varying, ω f = ω .
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apparent from the graphs in Fig. 3.2. When the driving fore is shorter in duration, i.e. when 0.2,

the exponent λ1 is kicked to a higher positive value and then gradually approaches zero. When the

driving force is longer in duration (corresponding to λ = 0.02, λ = 0.005, and λ = 0.002), there is

no positive kick in λ1 and no tail-end behavior. The last place we can see any kind of rolling off at

the tail is for λ = 0.05. It appears that the more impulsive the driving force is, the less chance the

system has to gradually adjust. For λ = 0.5, the driving force appears to be too short in duration

to cause any response from λ1.

The oscillations in λ1 correspond to exactly to the region where the driving force is acting and

appear to have the same frequency. These ripples stretch farther in the negative values than they do

in positive values, which is especially apparent in the λ = 0.005 and λ = 0.002 plots in Fig. 3.3.

It doesn’t seem likely that chaos is manifest in the graphs of λ1. The positive tail-end behavior

is most likely a consequence of the impulsive nature of the force, where the system doesn’t have

enough time to gradually respond to the force. The real test of chaos is in the limit of the Lyapunov

exponents for asymptotically large values of t; in light of this criterion, chaos does not appear to

be present in any of the graphs in Fig. 3.3 or Fig. 3.4, again as we would expect for a free particle.

3.2 The Driven Simple Harmonic Oscillator

As with the free particle case, the driving force f (t) for the SHO is chosen to take the form of a

Gaussian pulse, as given in Eq. (3.1). With this driving force, the values of S(t) and C(t) as defined

in section. (2.2.3) are the following:

S(t) =
∫ t

0
f (t ′)sin[ω(t− t ′)]dt ′ =

∫ t

0
Eocos(ω f t ′)e−λ (t ′−to)2

sin[ω(t− t ′)]dt ′, (3.5)

C(t) =
∫ t

0
f (t ′)cos[ω(t− t ′)]dt ′ =

∫ t

0
Eocos(ω f t ′)e−λ (t ′−to)2

cos[ω(t− t ′)]dt ′, (3.6)
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and β (t) is determined by Eq. (2.24). The wave function of the initial undriven system is chosen

to be the ground state of the SHO:

Ψ(x, t) = (
mω

h̄π
)

1
4 exp(−mω

2h̄
x2)exp(− iωt

2
). (3.7)

The final wavefunction of the driven system is then given according to the ansatz, Eq. (2.3):

ψ(x, t) = exp[
i
h̄
(C(t)x−β (t))](

mω

h̄π
)

1
4 exp[−mω

2h̄
(x− S(t)

mω
)2]exp(− iωt

2
). (3.8)

The system can also be solved using Lie algebras to determine the time evolution operator, as

seen in Sec. 2.2.3. Once the time evolution operator has been determined, other properties of the

system, such as phase plots, transition probabilities, and Lyapunov exponents can determined as

outlined in Sec. 2.4.9 and Sec. 2.5.2. I will now take a look at each of these properties, starting by

varying the driving force strength Eo as I did in Sec. 3.1 for the free particle. After varying Eo, I

will make plots of varying driving force duration λ and driving frequency ω f for Eo = 1 as well as

Eo = 10 (again, as was done in Sec. 3.1 for the free particle).

3.2.1 Strength of Driving Force

In Fig. 3.5 I make phase-space plots (i.e., plots of 〈p〉 vs. 〈x〉) for two systems: one with the

αi(0) = 0 (in red) and the other with the αi(0) initially offset by a small value of ε = 0.001 (in

blue). The plots are made for various small values of Eo. For all these plots I’ve set the driving

force inverse duration λ = 0.005 and the driving frequency ω f = ω (or at resonance with the

natural frequency of the oscillator). In later plots I will vary both of these quantities while holding

Eo at a fixed value.

In the case of no driving force Eo = 0 the system behaves exactly like one would expect: The red

dot in the middle corresponds to the system with all the αis initially set to zero, and the blue circle

with radius just over 1e−3 corresponds to the system with initial conditions αa(0) = ε , αa†(0) =
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−ε , αN(0) = iε , and α1(0) = iε (with ε = 1e−3). The minus sign and imaginary i modifying the ε

in the last three conditions are chosen with consideration to the identities mentioned in Sec. 2.4.5.

As expected, the system initially at zero does nothing, and the system with an initial offset simply

stays at the cycle corresponding to that offset.

In the case of Eo = 1e−4, the red trajectory starts at the origin then grows clockwise to a limit

cycle (i.e. a final closed trajectory) of radius just under 1e−3, while the blue trajectory starts off

clockwise on a cycle just over 1e−3 (as in the Eo = 0 case), but falls to a much smaller limit cycle

as a result of the driving force. If the area of the phase-space cycle is proportional to the energy

of the system, this means that that the blue system was stimulated by the driving force to emit

energy, rather than gain energy. For Eo = 1e− 3, the red and the blue trajectories both grow to a

larger limit cycle, but the red one appears to absorb slightly more energy than the blue one. This

effect disappears for larger values of Eo. For the cases where Eo = 1e−2, Eo = 0.1, and Eo = 1,

the initial difference between the red and blue trajectories becomes negligible as the driving force

turns on. Both trajectories almost perfectly overlap and reach a final radius of about 10 ∗Eo for

each of those driving forces. Note that the resolution of the plots decreases as Eo increases.

In Fig. 3.6 I plot the persistence and transition probabilities, which are determined using

Eq. (2.87), for several small values of Eo and beginning at t = 0. I’ve only included transitions

to the first four excited states. This means that if the system has a high probability of transition

above the first four excited states, the lower-level transition probabilities will no longer normalize

to unity and may in fact all go to zero. For Eo = 0.05, the transition probabilities are approxi-

mately 82% ground state (P00), 15% first excited state (P01), and 3% second excited state (P02),

with negligible probabilities for higher states. As Eo is increased to 0.1 the probabilities become

approximately 44% P00, 36% P01, 14% P02, 4% third excited state (P03), and 1% fourth excited

state (P04), with higher level transition properties assumed to be negligible.

In the plot of Eo = 0.2, the persistence probability gradually drops as it has before, but to an
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even lower value of around 5%. The first excited state transition probability P01 rises to a maximum

value of about 35% at t = 50 but then falls to a final value of 14% for large t. The second excited

state transition reaches a peak probability of 28% at t = 58, a little later than the peak of P01,

and finally ends up at around 22%. The probabilities P03 and P04 rise to a max of 23% and 17%

respectively, without ever decreasing. These probabilities only add up to a total value of 81%,

which means that there’s about 19% of the probability unaccounted for in order to normalize to

100%; this 19% must be transitions to states even higher than the fourth excited state, none of

which have been plotted here.

In the plot of Eo = 0.3 we can see that all of the probabilities have switched places for large t,

with almost zero probability of the system staying in the ground state or the first excited state. It

is also even more apparent that the final probabilities no longer add to 100%, meaning that higher

level transitions make up an even larger portion of the probability. In the cases of Eo = 0.5 and

Eo = 1 it has reached the point that there is zero probability of the system staying in any of the

first five energy levels. Another thing worth mentioning in these plots is that the peak values of

the transition probabilities stay about the same when Eo is greater, but these peaks occur at earlier

times. These plots tell us that systems with a driving force amplitude of Eo < 0.1 are most likely

to stay at the ground level, while systems with Eo > 0.5 are most likely to transition to a level even

higher than E5.

In Fig. 3.7 I plot the LE for each degree of freedom of the Wei-Norman ansatz with the chosen

algebra basis, with the exception of the LE corresponding to αa† . Because αa† =−α∗a , the values

of λa† and λa will be the same. Plots are made for varying small values of Eo while λ = 0.005 and

ω f = ω .

In these plots λa and λN are almost zero everywhere. A small hump in λ1 begins to appear at

around t = 50 for larger Eo, which forms a tail that gradually falls of as 1
t . On a closer inspection,

the tail end appears to converge to zero rather than some positive value for large t (see Fig. 3.8).
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Figure 3.7 SHO Lyapunov exponents, small Eo values, λ = 0.005, ω f = ω .
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Figure 3.8 A close-up look at the SHO Lyapunov exponents for Eo = 1 at later times,
λ = 0.005, ω f = ω .
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The criterion for chaos is that a Lyapunov exponent converges to a positive non-zero value in the

limit that t→ ∞, so this LE does not appear to indicate that chaos is present.

I will now repeat these plots using larger values of driving force amplitude Eo. In Fig. 3.9 I

make phase-space plots for systems with Eo varying from 1 to 1e5. In every case, the trajectories

follow the behavior as seen in Fig. 3.5 for Eo = 1e− 2, Eo = 0.1, and Eo = 1: The initial differ-

ence between the red and blue trajectories becomes negligible as the driving force turns on. Both

trajectories almost perfectly overlap and reach a final radius of about 10 ∗Eo. Note the change in

scale as Eo increases.

In Fig. 3.10 I plot the persistence and transition probabilities for the SHO for several large

values of Eo. As with Fig. 3.6, I’ve only included transitions to the first four excited states. These

plots follow the trend that was seen in the cases of Eo = 0.5 and Eo = 1, where all probabilities of

transitions lower than at least the fifth excited state go to zero for large t.

Three main trends can be seen as Eo increases. The first is that the peaks in the probability

curves are shifted earlier in time. I had to change the plot window to start at t = 0 in order to see

anything for the last two plots. The second trend is that the peaks move closer together as they

move to the left, to the point that they are just about lined up when Eo = 1000. The third trend

is that the width of the peaks is decreasing for larger Eo. These trends can all be explained by

the fact that higher and higher energy level transitions are occurring for larger Eo. On this point,

Fig. 3.6 and Fig. 3.10 serve as a good check of expected behavior. In later sections, when looking

at transition probabilities for more complicated systems, these figures will be useful as a basis for

comparison.

Finally, in Fig. 3.11 I plot the Lyapunov exponents for Eo = 1 through Eo = 100. As in Fig. 3.7,

λa and λN are everywhere almost zero. The same hump appears in λ1 at around t = 50 which

rolls off with a positive tail that gradually decreases. The size of the hump becomes even more

pronounced as Eo increases, but in each case the tail end still appears to converge to zero, meaning
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Figure 3.9 SHO phase space, large Eo values, λ = 0.005, ω f = ω .
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Figure 3.10 SHO transition probabilities, large Eo values, λ = 0.005, ω f = ω .
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Figure 3.11 SHO Lyapunov exponents, large Eo values, λ = 0.005, ω f = ω .
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no chaos, just as expected for a driven SHO.

3.2.2 Duration of Driving Force

I will now take a closer look at how the duration of the driving force affects the system by plotting

the phase space, transition probabilities, and Lyapunov exponents while varying the value of λ , the

inverse duration of the force, while the strength of the force is first Eo = 1 and then Eo = 10. In

Fig. 3.12 I plot the phase space for several different values of λ (the same values that were used in

Figs. 3.3 and 3.4 in Sec. 3.1 for the driven free particle).

There are two things worth noting in these plots. The first is that the phase trajectory circles

the phase space more times before reaching a limit cycle when the force lasts longer. For λ = 0.5

and λ = 0.2, the trajectory has barely made one revolution before reaching its final limit. This is

what we would expect to have happen for a more impulsive force. As long as the force is acting,

the amplitude of the trajectory increases, which means that the force is transferring energy to the

system. Once the force has passed, the phase-space trajectory will stay on a cycle whose area

corresponds to the final energy of the system.

This fact leads to the second behavior worth noting about these plots, that the duration of force

corresponds to the final area of the phase-space cycle. The radius of the limit cycle is about 1,

2, 4, 5, 10, and 20 for λ = 0.5, 0.2, 0.05, 0.02, 0.005, and 0.002, respectively. One thing that

is apparently absent from these plots is any sort of divergent behavior between the red and the

blue trajectories. The small initial difference in the values of the αs doesn’t make a noticeable

difference for any value of λ when Eo = 1.

In Fig. 3.13 I plot the transition probabilities for various the values of λ , with Eo = 1. The first

thing we can see from these plots is that transitions to higher energy levels become more probable

for longer pulses. By the time we get to an inverse width of value λ = 0.02 we have reached the

point that all of the lower-level probabilities being plotted have negligible values, while for a much
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Figure 3.12 SHO phase space, Eo = 1, λ -varying, ω f = ω .
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Figure 3.13 SHO transition probabilities, Eo = 1, λ -varying, ω f = ω .
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shorter pulse of λ = 0.5 the system is most likely to stay in the ground state.

The other thing we can see from the plots in Fig. 3.13 is that the width of the probability peaks

increases as the pulse width increases. This is the opposite of the trend seen in Fig. 3.10 when Eo

is increased. In other words, increasing the pulse width or increasing its amplitude will increase

the probability of higher-level transitions, while increasing the pulse width or DECREASING its

amplitude will increase the width of the probability peaks of lower-level transitions.

In Fig. 3.14 I plot the Lyapunov exponents of SHO using the same values as were used in the

last two figures (Fig. 3.12 and Fig. 3.13). As was the case in Fig. 3.11, λa and λN are everywhere

almost zero. The hump in λ1 at around t = 50 becomes even more pronounced as λ decreases.

The bump in λ1 gets broader as the pulse width increases, much as the transition probabilities in

Fig. 3.13 also broadened for smaller λ . The tail end of λ1 still seems to be converging to zero for

large t, meaning there’s still no indication of chaos. I will now repeat the plots using Eo = 10, to

see if any new behavior in λ emerges with a stronger driving force.

In Fig. 3.15 I plot the phase-space trajectories for different λ values as in Fig. 3.12, this time

for Eo = 10 instead of Eo = 1, with driving frequency ω f = ω just as before. The only difference

between these plots and those of Fig. 3.12 is the amplitude, which is now larger by a fact of ten just

as the driving force is now larger by the same factor. This simply confirms the conclusion reached

by inspecting Fig. 3.9, that for any large value of Eo the shape of the phase-space plot for a given

value of λ will be the same. In other words, the value of λ affects both the shape and the amplitude

of the phase-space trajectory, while the value of Eo affects only the amplitude and not the shape.

In Fig. 3.16 I plot the transition probabilities using the same values of λ as in Fig. 3.15 and

Fig. 3.15. The probability peaks are narrower than in Fig. 3.13 because Eo is stronger, which

would indicate that higher-level transitions are happening quicker. The nonzero probabilities of

lower-level transitions and ground-level persistence that were seen after t = 50 in Fig. 3.13 for

λ = 0.5 and λ = 0.2 are now completely suppressed, which means the system ends up in some
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Figure 3.14 SHO Lyapunov exponents, Eo = 1, λ -varying, ω f = ω .
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Figure 3.15 SHO phase space, Eo = 10, λ -varying, ω f = ω .
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Figure 3.16 SHO transition probabilities, Eo = 10, λ -varying, ω f = ω .
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energy level above n = 5.

Finally, in Fig. 3.17 I plot the Lyapunov exponents as I did in Fig. 3.14, but with Eo = 10. The

plots of λa and λN are everywhere almost zero, as has been the case in every LE plot for the driven

SHO so far. As λ decreases, the hump in λ1 becomes even more pronounced and begins sooner,

which was also seen in Fig. 3.14. The leading edge of the hump becomes less abrupt for wider

pulses. The tail end of λ1 still appears to converge to zero. I’m going to say that there is still no

evidence of chaos being present.

3.2.3 Frequency of Driving Force

I will now take a closer look at how the frequency of the driving force affects the system by

repeating the plots of the phase space trajectories, transition probabilities, and Lyapunov exponents

that were made in Sec. 3.2.2, this time while varying the value of the driving frequency ω f (as a

fraction of ω , the natural frequency of the oscillator) rather than λ , while the strength of the force

is first Eo = 1 and then Eo = 10. In Fig. 3.18 I plot the phase space for various values of ω f . As

was also seen in Fig. 3.12 when varying λ , the phase-space trajectories for the red and the blue

initial systems appear to almost perfectly overlap, regardless of the value of ω f . When Eo = 1, the

initially difference between the two trajectories becomes negligible at later times, regardless of the

frequency of the driving force.

For small driving frequencies, i.e. ω f = 0.2ω and 0.5ω , the phase space trajectory initially

responds to the driving force by growing in amplitude but falls back down to zero after the force has

ceased. When the force is pumping the system too slowly, less energy is permanently transferred.

In the plots where ω f = 0.8ω and ω f = 1.2ω , which are both closer to resonance, the phase-

space trajectories grow to much larger amplitudes as the force is acting, and they remain on limit

cycles with radii approximately equal to 1 rather than fall back to the origin. Farther away from

resonance, at ω f = 1.5ω , the trajectory again falls back to the origin after the force has passed.
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Figure 3.17 SHO Lyapunov exponents, Eo = 10, λ -varying, ω f = ω .



3.2 The Driven Simple Harmonic Oscillator 54

−1 −0.5 0 0.5 1
−0.3

−0.2

−0.1

0

0.1

0.2

ωf = 0.2ω

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ωf = 0.5ω

−4 −2 0 2 4
−4

−2

0

2

4

ωf = 0.8ω

−15 −10 −5 0 5 10 15
−20

−10

0

10

20

ωf = ω

−4 −2 0 2 4
−4

−2

0

2

4

ωf = 1.2ω

−1 −0.5 0 0.5 1
−2

−1

0

1

2

ωf = 1.5ω

Figure 3.18 SHO phase space, Eo = 1, λ = 0.005, ω f -varying.
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The area of the final phase-space limit cycle seems to be dependent on how close to resonance the

driving force is acting.

When the driving force is at resonance, i.e. ω f = ω , the phase-space trajectory continues to

grow while the force is acting, and it stays at its largest value after the driving force has stopped.

This can be seen as an outward "whirlpool" shape, and has been seen in every phase plot where

ω f = ω and Eo is sufficiently large, i.e. Eo > 0.01.

In Fig. 3.19 I plot the transition probabilities using the same values of ω f as in Fig. 3.18. A

few things to note about these plots: The ripples in the transition probability plots correspond to

the driving force frequency. The plots for ω f = 0.5ω and ω f = 1.5ω are similar in their transition

probability values and only differ in ripple size. This is also true with ω f = 0.8ω and ω f = 1.2ω ,

which both show all probabilities dipping down from around t = 45 to about t = 60, after which

they converge to almost the exact same final probability values, with P01 = 35%, P00 and P02 =

25%, P03 = 12%, and P04 = 5%. For ω f = ω , no probability of lower-level transitions remains

after about t = 45; when driven at resonance, the SHO system is most likely to end up in a higher

energy state after the force has stopped. We can conclude from these plots that the SHO responds

more strongly, and retains more energy, when it is being forced with a frequency closer to its

natural frequency.

In Fig. 3.20 I plot the LE values while varying ω f . The plots of λa and λN are zero-valued

regardless of the specifics of the driving force. The value of λ1 oscillates around the x-axis for

ω f = 0.2ω , ω f = 0.5ω , and ω f = 1.5ω without forming any hump or tail end. A hump does

appear in λ1 for ω f = 0.8ω , ω f = ω , and ω f = 1.2ω , and the hump has a positive tail for ω f = ω .

This tail end still appears to go to zero at later times, so again no chaos is present. I will now repeat

these plots using Eo = 10 instead of Eo = 1 to see if new features in the ω f -dependency of system

can be seen.

In Fig. 3.21 I make phase plots for different ω f values as in Fig. 3.18, but this time for Eo = 10
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Figure 3.19 SHO transition probabilities, Eo = 1, λ = 0.005, ω f -varying.
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Figure 3.20 SHO Lyapunov exponents, Eo = 1, λ = 0.005, ω f -varying.
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Figure 3.21 SHO phase space, Eo = 10, λ = 0.005, ω f -varying.
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instead of Eo = 1. The only difference between these plots and those of Fig. 3.12 is the amplitude,

which is now larger by a fact of ten just as the driving force is now larger by the same factor.

This again confirms the conclusion reached by inspecting Fig. 3.9, that for any large value of Eo

the shape of the phase-space plot for a given value of ω f will be the same. The value of ω f , like

the value of λ as seen in Sec. 3.2.2, affects both the shape and the amplitude of the phase-space

trajectory, while the value of Eo affects only the amplitude and not the shape.

In Fig. 3.22 I plot the transition probabilities for the system using the same values as in

Fig. 3.21. All lower-level transition probabilities are suppressed after about t = 35 for ω f = 0.8ω ,

ω f = ω , and ω f = 1.2ω . For ω f = 0.5ω and ω f = 1.5ω , lower-level transition probabilities dis-

appear while the peak of the force pulse is present, from about t = 40 to t = 60, after which the

probabilities return to their initial values. This also happens for ω f = 0.2ω , except for an unusual

spike in lower-level probabilities at about t = 46. For some reason, the system appears to fall from

a higher energy state to a lower one for just that moment, and then it jumps back up. There will

be many more appearances of lower-level "spikes" like this in Sec. 3.4, where we’ll consider the

anharmonic Morse oscillator.

Finally, in Fig. 3.23 I plot the Lyapunov exponents using the same values as in Fig. 3.21 and

Fig. 3.22. As always, there is no activity in the plots of λa and λN . A small hump in λ1 at around

t = 50 is now present for every value of ω f . The hump is followed by a long positive tail end

for ω f = 0.8ω , ω f = ω , and ω f = 1.2ω . These tails all appear to converge to zero and not some

positive value. Once again, chaos doesn’t appear to be present for this system.

3.3 The Driven Quartic Potential λx4

The Hamiltonian for a quartic anharmonic oscillator with a driving force is given by Eq. (2.29) and

was briefly discussed in Sec. 2.2.4, and again in Sec. 2.5.4.



3.3 The Driven Quartic Potential λx4 60

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
ωf = 0.2ω

t
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
ωf = 0.5ω

t

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
ωf = 0.8ω

t
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
ωf = ω

t

 

 

Persistence
P(0−1)
P(0−2)
P(0−3)
P(0−4)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
ωf = 1.2ω

t
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
ωf = 1.5ω

t

Figure 3.22 SHO transition probabilities, Eo = 10, λ = 0.005, ω f -varying.
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Figure 3.23 SHO Lyapunov exponents, Eo = 10, λ = 0.005, ω f -varying.
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Figure 3.24 Classical Duffing oscillator Phase space and Lyapunov exponents, Eo-
varying, ω f = 1.
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Using a driving force of the form f (t) =Eosin(ωt) I can numerically solve the classical system.

In Fig. 3.24 I plot the phase-space trajectories and Lyapunov exponents (corresponding to x and p)

of the classical Duffing oscillator (as seen in Sec. 2.2.4) for values of Eo ranging from 0.1 to 10.

For Eo = 0.1 and Eo = 1 the phase-space trajectories reach a limit cycle after only a few rotations

around phase space, and there isn’t any noticeable deviation between the red and blue trajectories.

The Lyapunov exponents for Eo = 0.1 and Eo = 1 show numerous downward spikes, but their

values eventually converge to zero at later times.

Two things can be seen in the phase-space plot for Eo = 10 that may suggest the system is

chaotic: First, there is a noticeable separation between the red and blue trajectories, and second,

the trajectories have begun to spread out over the phase space rather than converge to one limit

cycle. In the corresponding Lyapunov exponent plots, the two LE are initially negative-valued,

but then they rise to positive values at around t = 100 and remain positive for all later times. The

phase-space behavior and positive Lyapunov exponents can be taken as evidence that the system

is chaotic for Eo = 10. Since the Duffing oscillator is known to exhibit chaos for sufficiently large

driving forces, the data in Fig. 3.24 simply confirms this fact. We can use what was seen here in

a system known to be chaotic as a point of reference to determine whether chaos is present when

looking at the driven anharmonic oscillator systems in Sec. 3.4.

This system can be approximately solved with Lie algebras by using a perturbation approx-

imation. I didn’t do this myself, but the specifics on how it is done can be found in a paper by

Alexander [22]. A mean field approximation could also be used to simplify the algebra, though

expectation values will be more difficult to evaluate in the |n〉 representation when not employing

the ladder operator Lie algebra.
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3.4 The Driven Morse and Pöschl-Teller Oscillators

I will now consider a driven anharmonic oscillator (AO) whose Hamiltonian is the following (as

seen in the paper by Berrondo and Récamier [14]):

H
.
=

ωo

1+χ
[(1+χ[N +

1
2
])(N +

1
2
)+

χ

4
]− 1√

2ω
f (t)(a+a†), (3.9)

where χ is known as the "anharmonicity parameter ." When χ < 0, a system is called a Morse

oscillator , while for χ > 0 it is called a Pöschl-Teller oscillator . By setting χ = 0, I recover the

simple harmonic oscillator. As shown in Sec. 2.4.8, a mean field approximation can be made to

simplify the higher-order N + 1
2 term [14],

(N +
1
2
)2 =

〈
N +

1
2

〉
(N +

1
2
), (3.10)

so that I can use the same algebra as for the SHO, which is given in Eq. (2.42). The value of the

mean field term in the Heisenberg representation, using the values in Sec. 2.4.9, is〈
N +

1
2

〉
=

〈
n|U†(t)(N +

1
2
)U(t)|n

〉
= ni +α1(t)α2(t)+

1
2
, (3.11)

where ni is the initial energy level of the system. The α parameters of the time evolution operator

can now be solved in the same way as was done in Sec. 2.4.7 for the SHO, but with a different

Hamiltonian in the RHS. The addition of the αs in the mean field term given by Eq. (3.11) in-

troduces more nonlinearity to the four coupled differential equations for αi, which makes chaos

possible. Classically, the driven Morse oscillator is known to exhibit chaos [23]. The quantum

Morse oscillator can be used to model the oscillations of a diatomic molecule (such as H2) [24].

I will take a look at this system by plotting the phase-space trajectories, transition probabilities,

and Lyapunov exponents as I did for the SHO, using a Gaussian pulse driving force as given in

Eq. (3.1). I will start by varying the force strength Eo over small and large values. I will then vary

the inverse pulse width λ , the driving frequency ω f , and the anharmonicity parameter χ , all for

Eo = 1 and Eo = 10 and all initially in the ground state (i.e. ni = 0).
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3.4.1 Strength of Driving Force

To begin with, I consider a Morse oscillator (χ =−0.025) driven with different values of Eo, with

λ = 0.005 and ω f = ω . In Fig. 3.25 I plot the phase-space trajectories of two systems, one with

the αi initially equal to zero (in red) and the other with the αi initially offset by a small value of

ε = 0.001 (in blue).

The phase space plots are almost identical to those of the SHO in Fig. 3.5, except for a few

differences. First, in the case of Eo = 1e−4, the final limit cycle of the blue trajectory has a lager

area than the blue trajectory in Fig. 3.5, meaning that slightly more energy was absorbed by the

anharmonic system than by its harmonic counterpart. The biggest difference, though, is seen in the

case of Eo = 1: In the SHO, the Eo = 1 phase plot was almost identical to the Eo = 0.1 phase plot

in shape, though their sizes were different. In the AO case, the trajectories initially spiral outward

but then spiral back to the center as the driving force diminishes. For this strength of driving force,

the AO system was unable to absorb as much energy. At larger values of Eo the red and blur

trajectories overlap each other, showing no significant divergence between the two initially similar

systems at later times, which means there is no evidence of chaotic-like divergence.

In Fig. 3.26 I plot the Morse oscillator transition probabilities over Eo values ranging from 0.05

to 1. The transition probabilities follow the same pattern as seen in Fig. 3.6 for Eo = 0.05 through

Eo = 0.3. For larger driving forces we begin to see that after the probabilities reach a peak they

will dip down and then rise to some new limit rather than gradually decreasing as they did for the

SHO. For Eo = 0.7 and higher the lower-level transition probabilities almost all go to zero, but

then rise after the force has stopped, with P03 and P02 ending up the highest, followed by P04, P01,

and finally the ground state persistence.

For Eo = 1, the transition probabilities resemble those of the SHO system driven off-resonance,

as seen in Fig. 3.22. After the force has passed, the system is most likely to return to the ground

state, with about 7% probability of ending in the first excited state. This confirms what was seen
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Figure 3.25 Morse oscillator phase space, small Eo values, λ = 0.005, ω f = ω , χ =
−0.025.
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Figure 3.26 Morse oscillator transition probabilities, small Eo values, λ = 0.005, ω f =
ω , χ =−0.025.
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in the phase plot for Eo = 1 in Fig. 3.25: The AO system is not as responsive to a driving force of

strength Eo = 1 as it is to forces of lower strength.

In Fig. 3.27 I plot the Lyapunov exponents λi of the αi parameters for the a, N, and 1 elements

of the Lie algebra (neglecting a† for the reason stated in Sec. 3.2.1). The LE λa is mostly zero, but

begins to form a small bump after t = 50 for larger Eo. The exponent λN stays near zero except

for a downward spike. This spike takes place at an earlier time for larger Eo. The behavior of λ1 is

similar to λa: It is mostly zero, but begins to form a small bump near t = 50 as Eo increases. These

bumps don’t line up with the ones in λa: They start sooner, and the tails drop off faster. None of the

exponents appear to converge to values above zero for large t, so there doesn’t appear to be chaos

in the system for these values of Eo. I will now take a look at this system using larger numbers for

Eo.

In Fig. 3.28 I plot the phase-space trajectories of the Morse oscillator using values of Eo rang-

ing from 1e0 to 1e5. For Eo = 10 the red and blue trajectories are still mostly overlapping, but

the phase plots have some unusual features. The trajectories abruptly switch from clockwise to

counterclockwise at one point, and there are a couple of kinks as well. Also, the final limit cycle is

much larger than was seen for Eo = 1, which means that system absorbs and retains more energy

from the driving force.

For Eo = 1e2, the red and blue trajectories have begun to diverge noticeably. Also, the phase

plot has begun to split into two lobes instead of one central circle. This becomes even more

pronounced for Eo = 1e3, Eo = 1e4, and Eo = 1e5, as does the separation between the red and blue

trajectories. The red and blue trajectories are more spread out over phase space for larger values

of Eo, to the point that the red and blue plots are evenly distributed over the whole phase space for

Eo = 1e5. The divergence of initially nearby trajectories, as well as the equidistribution over phase

space, seem to be indicative of a potentially chaotic system.

In Fig. 3.29 I plot the transition probabilities over values of Eo ranging from 1 to 100. For
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Figure 3.27 Morse oscillator Lyapunov exponents, small Eo values, λ = 0.005, ω f = ω ,
χ =−0.025.
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Figure 3.28 Morse oscillator phase space, large Eo values, λ = 0.005, ω f = ω , χ =
−0.025.
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Figure 3.29 Morse oscillator transition probabilities, large Eo values, λ = 0.005, ω f =ω ,
χ =−0.025.
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Eo = 3 the lower-level transition probabilities show a series of bumps but eventually approach

small nonzero final values, with P04 greater than the rest and the ground-state persistence P00 being

the least likely. For Eo = 5 and above there is no longer any nonzero probability of transitions to

lower states at later times, only small spikes in probability. For Eo = 100 the probability spikes

have become a comb of many narrow peaks with varying heights. These spike correspond to times

when the Morse oscillator rapidly drops to lower energy level and then just as quickly returns to a

higher level. These rapid changes in energy may be why the phase-space trajectories of this system

were able to visit so many points in phase space.

Finally, in Fig. 3.30 I plot the Lyapunov exponents for the same values of Eo used in Fig. 3.29.

For Eo = 1 and Eo = 3 the three LE mostly stay around zero. The exponent λ1 makes a small

positive hump, followed by a tail that appear to go to zero as t → ∞. The LE λN consists of some

small downward spikes centered around t = 50 before it also converges to zero at later times, while

λa makes some oscillation at t = 50 but stays pretty close to zero the whole time.

Some interesting behavior starts to happen at around Eo = 5: All three of the LE start to

oscillate while they ramp upward while the driving force is acting. After the force has passed,

the three LE all have positive tails that slowly decrease as 1
t , but they do NOT converge to zero

as t → ∞, but instead appear to converge to positive nonzero values. According to the Lyapunov

criterion, this signifies the presence of chaos.

λ1 reaches its peak before the other two and is the highest of the LE, so it would be considered

the "maximal" Lyapunov exponent of the system. The tail end seems to fall off slightly faster for

λ1 than for λa or λN (as seen for Eo = 10), but it still appears to converge to around the same value,

if not slightly greater. The LE all converge to positive nonzero values for driving force strengths

of Eo = 5 and greater, so the system appears to be chaotic for these values.



3.4 The Driven Morse and Pöschl-Teller Oscillators 73

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

Eo = 1

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

Eo = 3

t

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5
Eo = 5

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

0.5
Eo = 10

t

 

 

λa

λN

λ1

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5
Eo = 30

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

0.5
Eo = 100

t

Figure 3.30 Morse oscillator Lyapunov exponents, large Eo values, λ = 0.005, ω f = ω ,
χ =−0.025.



3.4 The Driven Morse and Pöschl-Teller Oscillators 74

3.4.2 Duration of Driving Force

I will now consider how variations in the inverse duration λ of the driving force affect the system.

I will plot the phase-space trajectories, transition probabilities, and Lyapunov exponents at various

values of λ , first with Eo = 1 and then with Eo = 10, as was done for the SHO in Sec. 3.2.2.

In Fig. 3.31 I plot the phase-space trajectories for a Morse oscillator (χ =−0.025) with Eo =

1 and ω f = ω . For shorter pulses the phase plots resemble those of the SHO system, as seen

Fig. 3.12. For longer pulses, i.e. λ = 0.005 and λ = 0.002, the trajectories spiral clockwise

outward while the force is acting but then fall inward after the force has passed, settling into a

smaller limit cycle. From this it would seem that in the AO case, as opposed to the SHO case,

more impulsive forces give the system energy but don’t allow it enough time to emit the energy

afterward. Perhaps a longer force is able to gradually take the energy of the system upward and

then downward.

In Fig. 3.32 I plot the first five transition probabilities for the same system and values as used

above in Fig. 3.31. Like the phase plots, the transition probabilities for larger λ resemble those of

the SHO system (see Fig. 3.13). For λ = 0.005 the probabilities that are plotted all drop to zero

around t = 50 but then rise again until they reach a final state that’s similar to the initial state, with

the ground-state probability P00 being the greatest, followed by a small nonzero P01. For λ = 0.002

the probabilities all go through two downward dips, located at about t = 40 and t = 70, separated

by a hump that peaks at around t = 55, before finally reaching limits of smaller nonzero probability

after t = 80. From these plots it appears that the system driven by a pulse with λ = 0.005 was able

to retain the least amount of energy from the force. There is no sign at this small Eo value of any

of the spike features that were seen in Fig. 3.29 and appear to be present in chaotic systems.

In Fig. 3.33 I plot the Lyapunov exponents for this system, again using the same values as

in Fig. 3.31 and Fig. 3.32. The LE λa is mostly near zero but has a small hump near t = 50 for

λ = 0.2 through λ = 0.005, and two humps located at about t = 40 and t = 70 for λ = 0.002, the
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Figure 3.31 Morse oscillator phase space, Eo = 1, λ -varying, ω f = ω , χ =−0.025.
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Figure 3.32 Morse oscillator transition probabilities, Eo = 1, λ -varying, ω f = ω , χ =
−0.025.
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Figure 3.33 Morse oscillator Lyapunov exponents, Eo = 1, λ -varying, ω f = ω , χ =
−0.025.
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same places where the dips in lower-level transition probabilities occurred in Fig. 3.32. λN has one

downward spike for larger λ values, which turns into more of a downward hump for λ = 0.02 and

λ = 0.005, and finally is two downward humps made of two spikes each for λ = 0.002, located at

the same times as the upward humps in λa. λ1 forms a hump with a tail and is larger for smaller

values of λ , with some waviness for λ = 0.002 that corresponds with the double hump seen in the

other two LE.

At large t these LE all seem to go to zero, meaning that the system probably is not chaotic. If

conclusions can be drawn from what was seen in Fig. 3.30, it follows that signatures of chaos will

not be present in systems with forces of strength Eo < 5, regardless of their duration. I will now

make the same plots for various λ , but with Eo = 10 rather than Eo = 1, which will possibly make

chaos more likely to appear.

In Fig. 3.34 I plot the phase-space trajectories for this system as I did in Fig. 3.31, with the

only difference being that now Eo = 10. For λ = 0.5 and λ = 0.2 the phase plot switches from

clockwise to counterclockwise shortly after the driving force turns on. For λ = 0.05 it actually

switches back to clockwise before reaching a limit cycle. Kinks start to appear for λ = 0.02 and

λ = 0.005. What’s most interesting is that the red and blue trajectories begin to move away from

each other for λ = 0.005 and end up greatly separated for λ = 0.002, ending up with different limit

cycles. This could signify that chaos is present at those values.

In Fig. 3.35 I plot the transition probabilities over the same values as in Fig. 3.34. For λ = 0.5

through λ = 0.05 the transition probabilities are similar to those of the corresponding SHO system

(see Fig. 3.16). Spikes in lower-level transition probabilities begin to emerge for λ = 0.02 and

λ = 0.005. For λ = 0.002 the spikes are taller, narrower, and more numerous. These same spikes

in lower-level probability were also seen when probing large Eo values in Fig. 3.29: It is possible

that they accompany chaos, or just that they are more likely to be seen in chaotic systems.

Finally, in Fig. 3.36 I plot the Lyapunov exponents of this system over the same values of λ
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Figure 3.34 Morse oscillator phase space, Eo = 10, λ -varying, ω f = ω , χ =−0.025.
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Figure 3.35 Morse oscillator transition probabilities, Eo = 10, λ -varying, ω f = ω , χ =
−0.025.
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Figure 3.36 Morse oscillator Lyapunov exponents, Eo = 10, λ -varying, ω f = ω , χ =
−0.025.



3.4 The Driven Morse and Pöschl-Teller Oscillators 82

as before. For smaller λ all three of the LE oscillate while they ramp up to some positive value

and then slowly fall off as 1
t , as they did in Fig. 3.30. It is difficult to say at what point the system

begins to manifest chaos, but by considering all three figures together I would say that chaos is

present for λ = 0.005 and λ = 0.002, but not present for larger values of λ .

3.4.3 Frequency of Driving Force

I will now take a look at how varying ω f affects the phase plots, transition probabilities, and

Lyapunov exponents of the Morse oscillator system. I will first make the plots for Eo = 1 and then

again for Eo = 10. I will compare most of these plots with those of the SHO system, as seen in

Sec. 3.2.3. It should be noted that, while for the SHO ω = ω f corresponds to driving at resonance,

for the AO this is not necessarily the case.

In Fig. 3.37 I plot the phase-space trajectories for Eo1 and λ = 0.05 while varying the driving

frequency ω f . None of the plots show any obvious divergence between the red and blue trajecto-

ries, which might have indicated the presence of chaos. For ω f = 0.2ω , ω f = 0.5ω , and ω f = 1.5ω

are all very similar to the plots for the SHO system (as seen in Fig. 3.18). The ones that differ the

most are closer to ω in value.

For the SHO system, ω f = 0.8ω and ω f = 1.2ω both featured the trajectories spiraling outward

before falling back to a limit cycle of around radius 2. In the Morse oscillator case, the ω f = 1.2ω

phase trajectory ends up on a much smaller limit cycle (r = 0.5) while the ω f = 0.8ω trajectory

ends up on a larger one (r = 5). For ω f = ω , the final limit cycle is almost as small as the one

for ω f = 1.2ω; for the SHO, the phase-space trajectory of ω f = ω was a whirlpool shape that

ended on its maximum outward radius. From these plots we can conclude that the Morse oscillator

system does not have the same resonance frequency as the simple harmonic oscillator.

In Fig. 3.38 I plot the transition probabilities for the Morse system with the same parameter

values as in Fig. 3.37. None of these plots have any spikes or other unusual features. By compar-



3.4 The Driven Morse and Pöschl-Teller Oscillators 83

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

ωf = 0.2ω

−2 −1 0 1 2
−1

−0.5

0

0.5

1

ωf = 0.5ω

−10 −5 0 5 10
−10

−5

0

5

10

ωf = 0.8ω

−5 0 5
−10

−5

0

5

10

ωf = ω

−4 −2 0 2 4
−4

−2

0

2

4

ωf = 1.2ω

−1 −0.5 0 0.5 1
−2

−1

0

1

2

ωf = 1.5ω

Figure 3.37 Morse oscillator phase space, Eo = 1, λ = 0.005, ω f -varying, χ =−0.025.
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Figure 3.38 Morse oscillator transition probabilities, Eo = 1, λ = 0.005, ω f -varying,
χ =−0.025.
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ison with the SHO transition probabilities seen in Fig. 3.19, we can see further evidence that the

SHO and AO have different resonance frequencies.

The plots for ω f = 0.8ω show that all of the lower level probabilities go to zero by the time

the center of the pulse has arrived and stay at zero afterward. This means that the system has most

likely made transitions to states that are above n= 5, which is more likely to occur when the system

is driven at its natural frequency. When ω f = ω and ω f = 1.2ω the force pulse drops all of the

lower level probabilities, but by the time the force has stopped the system has mostly returned to

the ground state. It would seem that ω f = 0.8ω , and not ω f = ω , is best candidate for resonance

frequency for a driven Morse oscillator with anharmonicity χ = −0.025. This is also visible in

Fig. 3.37.

In Fig. 3.39 I plot the LE for the Morse system with varying ω f and Eo = 1. The λa exponent

makes some small oscillations around t = 50 for ω f = 0.8ω and ω f = ω . In the SHO plots of

Fig. 3.20, λa is almost everywhere zero. Also, λN has a downward spike at t = 50 for ω f = 0.8ω

and ω , which is also not present in the SHO plots. λ1 hasn’t changed much from the SHO to the

Morse system, except for a small dip at t = 50 for ω f = 1.2ω . None of these LE appear to show

any strong evidence that the system is chaotic at these parameter values.

I will now take a look at what happens when ω f is varied while Eo = 10. The increased Eo

value may improve the odds of finding chaos, as seen in Sec. 3.4.1.

In Fig. 3.40 I plot the phase-space trajectories while varying the driving frequency ω as I did

in Fig. 3.37, only this time with Eo = 10. All of these trajectories show abrupt kinks and changes

in direction except for the ω f = 1.5ω plot, which is more like the plot for the corresponding SHO

system as seen in Fig. 3.21. The plots of ω f = 0.5ω through ω f = 1.2ω begin to show signs of

separation between the red and blue trajectories, but the separation is most apparent in the plot for

ω f = 0.2ω , where the red and blue trajectories both reach different limit cycles. This may indicate

a sensitivity to initial conditions that would characterize chaos.
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Figure 3.39 Morse oscillator Lyapunov exponents, Eo = 1, λ = 0.005, ω f -varying, χ =
−0.025.
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Figure 3.40 Morse oscillator phase space, Eo = 10, λ = 0.005, ω f -varying, χ =−0.025.
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Figure 3.41 Morse oscillator transition probabilities, Eo = 10, λ = 0.005, ω f -varying,
χ =−0.025.
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In Fig. 3.41 I plot the transition probabilities for the Morse system with the same parameter

values as in Fig. 3.40. The plots for ω f = 0.2ω , ω f = ω , and ω f = 1.2ω have sharp spikes at

certain times. The ω f −0.5 plots show small nonzero probabilities of the system ending up in one

of the five lowest energy levels.

In the ω f = 1.5ω plots there is a central dip in lower-level probabilities when the driving force

is strongest but the system returns to the ground state afterwards. As was the case for the phase

plots in Fig. 3.40, the ω f = 1.5ω transition probabilities most closely resemble those of the SHO

system (see Fig. 3.22).

In Fig. 3.42 I plot the Lyapunov exponents for the Morse system for various values of ω f ,

keeping the other parameters the same as in Fig. 3.40 and Fig. 3.41. As was the case in the last two

figures, the ω f = 1.5ω plot most closely resembles the SHO case (see Fig. 3.23). The λ1 exponent

oscillates more positively than the other two, though none of the LE show any of the "ramping up"

effect due to the driving force which may be seen in chaotic systems.

The plots for ω f = 0.2ω through ω f = 1.2ω all show similar features: All three LE begin to

oscillate and ramp up as the driving force is on, and then fall off at their tail end for larger times.

The λ1 is almost always on top, followed by λa and then λN . In the case of ω f = 0.8ω there is a

downward spike in both λa and λN at around t = 90. The oscillations in λN generally stretch more

downward than those of the other LE.

It is at the limit of large t that chaoticity may be determined. The plots for ω f = 0.2ω through

ω f = 1.2ω all appear to have some slight nonzero value for large t, with the largest values seen

in ω f = 0.2ω . There may be chaos present in each of these cases, with ω f = 0.2ω as the most

likely candidate, if the strongly divergent phase-space trajectories that were seen Fig. 3.40 are any

indication.



3.4 The Driven Morse and Pöschl-Teller Oscillators 90

0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

ωf = 0.2ω

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

ωf = 0.5ω

t

0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

ωf = 0.8ω

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

ωf = ω

t

 

 
λa

λN

λ1

0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

ωf = 1.2ω

t
0 50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

0.4

ωf = 1.5ω

t

Figure 3.42 Morse oscillator Lyapunov exponents, Eo = 10, λ = 0.005, ω f -varying,
χ =−0.025.
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3.4.4 Anharmonicity Parameter

I will now take a look at how different values of the anharmonicity parameter χ affect the phase

plots, transition probabilities, and Lyapunov exponents of anharmonic oscillator systems. As I

mentioned in the beginning of Sec. 3.4, positive χ values correspond to Pöschl-Teller oscillators,

while negative χ values correspond to Morse oscillators. As usual, I will first make the plots for

Eo = 1 and then again for Eo = 10. There will be no direct comparisons made with any of the plots

in Sec. 3.2, where variation of anharmonicity was not an option (for obvious reasons).

In Fig. 3.43 I plot the phase-space trajectories for values of χ ranging from −0.8 to +0.8, with

Eo = 1, λ = 0.05, and ω f = ω . For χ =−0.8 the trajectories are densely packed and make many

revolutions before reaching the final limit, though the radius of that limit is much smaller than in

the other plots. In the plot of χ =+0.8 the trajectories start to make a t-bone shape, which means

that a double-lobe in the limit cycles could be present for greater values of Eo.

For χ = −0.2, −0.02, and +0.02 the trajectories are mostly as we have seen before for the

Morse oscillator: they spiral outward in a clockwise direction, then fall back in to a smaller limit

cycle. The size of the limit cycle is smaller for the systems with χ further away from 0, which

corresponds to the SHO. This happens because the systems are being driven at the resonance

frequency of the SHO (i.e. ω f = ω), which is not necessarily the resonance frequency of an AO:

the greater the magnitude of χ , the further off-resonance the system is being driven. None of the

plots show any significant separation between the red and blue trajectories.

In Fig. 3.44 I plot the transition probabilities for the same systems. For χ = −0.8 there is no

significant probability of transitions at any time. For χ =+0.8, there is an upward bump in some

of the lower-level transitions at t = 50, but by later times the persistence probability has returned

to about 95%, with P01 at around 5% and the rest at zero.

Closer to χ = 0 the lower-level probabilities are more likely to vanish while the system is

forced. This reinforces what was seen in the phase plots: the closer a system is to being harmonic
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Figure 3.43 Morse and Pöschl-Teller oscillator phase space, Eo = 1, λ = 0.005, ω f = ω ,
χ-varying.
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Figure 3.44 Morse and Pöschl-Teller oscillator transition probabilities, Eo = 1, λ =
0.005, ω f = ω , χ-varying.
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(χ = 0), the closer ω f = ω is to resonance.

In Fig. 3.45 I plot the Lyapunov exponents for these systems. The plots for the Morse oscillators

(negative χ) are mostly flat, with a few ripples in λ1 that get bigger as χ approaches zero. For the

Pöschl-Teller oscillators with χ =+0.2 and +0.8 there are more positive-valued oscillations in λa

and λN , and in χ =+0.2 all three of the LE make a small hump with a decaying tail for later t. At

the limit of large t it looks like the LE may approach some positive nonzero value, but that may

not be the case. Since neither the phase plots nor the transition probabilities appear to give any

hint that chaos is present, it would seem that there is not chaos present in these systems. I will now

take a look at what happens when χ is varied for Eo = 10, the region where chaos is more likely.

In Fig. 3.46 I plot the phase-space trajectories for values of χ ranging from −0.8 to +0.8, with

λ = 0.05, ω f = ω , and now with Eo = 10. As before, for χ = −0.8 the trajectories are densely

packed and make many revolutions before reaching the final limit, though the gap in radius size

between this plot and the others isn’t as significant anymore. In the plot of χ =+0.8 the trajectories

now show the double-lobe in the limit cycles that was predicted from the t-bone shapes in Fig. 3.43.

The most significant feature of these phase plots is the separation of the red and blue trajectories

for χ =−0.2: This value of χ appears to be a strong candidate for chaos.

In Fig. 3.47 I plot the transition probabilities for the same systems. For χ =−0.8 there is little

significant probability of transitions, as was the case in Fig. 3.44. For χ = −0.2, χ = +0.2, and

χ =+0.8 there remain at later times some nonzero probability of transitions to lower levels. What

is most interesting in these plots is the spikes that are present for χ = −0.2, through χ = +0.8.

The spikes form a hump centered around t = 50 and are more numerous for systems with χ of

greater magnitudes (χ =−0.8 excepted).

In Fig. 3.48 I plot the Lyapunov exponents for these systems. In comparison with the Eo = 1

plots in Fig. 3.45, the LE for the Pöschl-Teller oscillators (χ > 0) are mostly the same, just with

larger ripples and slightly more positive humps. The values of these exponents for χ = +0.02,
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Figure 3.45 Morse and Pöschl-Teller oscillator Lyapunov exponents, Eo = 1, λ = 0.005,
ω f = ω , χ-varying.
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Figure 3.46 Morse and Pöschl-Teller oscillator phase space, Eo = 10, λ = 0.005, ω f =ω ,
χ-varying.
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Figure 3.47 Morse and Pöschl-Teller oscillator transition probabilities, Eo = 10, λ =
0.005, ω f = ω , χ-varying.
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Figure 3.48 Morse and Pöschl-Teller oscillator Lyapunov exponents, Eo = 10, λ = 0.005,
ω f = ω , χ-varying.
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+0.2, and +0.8 appear to approach zero for large t, meaning no chaos.

What is most striking in Fig. 3.48, though, are the plots of values χ = −0.2 and χ = −0.02:

All three of the LE rise sharply at t = 50 and appear to converge to positive values greater than

zero at large t. What’s more striking is that neither the next largest χ (+0.02) nor the next smallest

χ (−0.8) show the nearly as much positivity in their Lyapunov exponents. This fact, taken with the

phase-space trajectory divergence seen in Fig. 3.46, gives stronger support for chaos at χ = −0.2

and χ =−0.02 than for the other values.

3.4.5 Continuous (Sinusoidal) Driving Force

I will finally explore a special case of the driven anharmonic oscillators: In the limit that λ = 0,

the driving force is simply a sine wave of the form f (t) = Eosin(ω f t), with no beginning or ending

time. I will now take a look at what happens when Morse systems of various Eo are driven by this

continuous sinusoidal force.

In Fig. 3.49 I plot the phase-space trajectories for the Morse oscillator with ω f = ω , χ =

−0.025, and with Eo varying from 0.1 to 100. The plots of Eo = 0.1 and Eo = 1 both appear to be

pretty regular in their shape, with no real separation between the red and blue.

With Eo = 3, the phase plot takes on a much more unusual shape. It appears that the single

loop limit cycle is just beginning to form the double lobe cycle that is visible in the plots for larger

Eo. The plot for Eo = 30 is also unusual in how "regular" it is compared to the plots for larger

and smaller Eo. The plots that show a strong separation between the red and blue trajectories are

Eo = 3, 10, and 100, with a noteworthy absence of this trait in Eo = 30.

In Fig. 3.50 I now plot the transition probabilities for these systems. There appear to be periodic

oscillations in the transition probabilities for Eo = 0.1, 1, and 30, while the plots for Eo = 3,

10, and 100 seem to be comprised of spikes which aren’t distributed with any fixed periodicity.

This separates the plots into the same groups as did the divergence of red and blue trajectories in
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Figure 3.49 Morse oscillator phase space, Eo-varying, λ = 0, ω f = ω , χ =−0.025.
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Figure 3.50 Morse oscillator transition probabilities, Eo-varying, λ = 0, ω f = ω , χ =
−0.025.
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Fig. 3.49.

In Fig. 3.51 I plot the Lyapunov exponents for the sinusoidally-forced system used in the last

two figures. What’s worth noting here is that the LE for Eo = 3, 10, and 100 all converge to

positive, nonzero values, while the other three plots seem to converge to zero. This is the third

indication that chaos is present in this system for Eo ≥ 3 EXCEPT for Eo = 30.

I decided to investigate the Lyapunov exponents at points around Eo = 3 and Eo = 30 to de-

termine when chaos turns on and off. In Fig. 3.52 I plot the LE again, this time for values of Eo

leading up to 3 and 30 and over the extended time range of [0,900] so that I can better determine

whether the LE go to zero or stay positive. In the plots of Eo = 2.8 and Eo = 2.85 all three LE con-

verge to zero pretty quickly, but for Eo = 2.9 they now seem to be converging to positive nonzero

values at later times. The turn-on point for chaos appears to be between 2.85 and 2.9.

In the plot of Eo = 27 I can see the system is still chaotic, but when I move to Eo = 27.5 and

higher the signs of chaos disappear. The turn-off point appears to be between 27 and 27.5. To

find out where the chaos turns back on I followed the same procedure and made plots for Eo = 30

through Eo = 35 (not included in this thesis). This suppression of chaos is present until Eo = 32.5,

at which point chaos can once again be seen for higher values of Eo. I’m not sure what causes the

signatures of chaos to be suppressed over this particular range in this system, but it is an interesting

feature, nonetheless.

3.5 The Caldirola-Kanai Damped SHO

In order to address the issue of dissipative systems I look at the driven Caldirola-Kanai SHO [25],

whose Hamiltonian is the following:

H
.
= e−2γt p2

2m
+

1
2

e2γtmω
2x2− f (t)x, (3.12)
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Figure 3.51 Morse oscillator Lyapunov exponents, Eo-varying, λ = 0, ω f = ω , χ =
−0.025.
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Figure 3.52 Morse oscillator Lyapunov exponents, Eo-varying near points of chaoticity,
λ = 0, ω f = ω , χ =−0.025.
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where γ specifies the damping of the system. The form of this Hamiltonian is chosen so that

the Hamilton equations of motion of this system lead to a differential equation with a term that

resembles classical damping:

ṗ = −e2γtmω
2x+ f (t), (3.13)

ẋ = e−2γt p
m
, (3.14)

⇒ ẍ+2γ ẋ+ω
2x = f (t)

e−2γt

m
. (3.15)

The time evolution operator could be solved using the ladder operator algebra as with the SHO,

but the time-dependent γ exponential in front the kinetic and potential energy terms leads to time-

dependent operators a, a† and N [26]. I can instead rewrite the Hamiltonian as

H
.
=

1
2
[cosh(2γ)(p2 + x2)− sinh(2γ)(p2− x2)]− f (t)x, (3.16)

with m = ω = 1. I can now propose the following time-independent algebra for this system:

A =
{

p,x,(p2 + x2),(p2− x2),(xp+ px),1
}
. (3.17)

Unlike the algebras seen in Eq. (2.50) and Eq. (2.42), this algebra has six elements rather than four,

and while not every element appears in Eq. (3.16) all six are necessary for the algebra to maintain

closure under commutation (see Sec. 2.4.3). I choose a Wei-Norman ansatz for the time-evolution

operator,

U(t) .
= eαp peαxxeαp2+x2(p2+x2)eαp2−x2(p2−x2)eαxp+px(xp+px)eα11, (3.18)

which I then plug into the Schrödinger equation. Using the same process as outlined in Appendix A

I can solve for all six of the α parameters. Once I have solved all the α’s I can calculate a Lyapunov

exponent for each of them.

In Fig. 3.53 I plot the LE corresponding to each element of my algebra basis at various values

of damping γ , using the same Gaussian pulse as before as the driving force. For γ = 0 the LE are
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Figure 3.53 Caldirola-Kanai oscillator Lyapunov exponents, Eo = 1, λ = 0.005, ω f =ω ,
γ-varying.



3.5 The Caldirola-Kanai Damped SHO 107

all zero except for λ1, which starts out negative and slowly approaches zero as t increases. For

γ = 0.08 through γ = 0.12 we can see some interesting behavior: Three of the LE’s (λp, λx, and

λ1) initially rise to a large positive and then level out. A little later when the force starts to act, λ1

jumps to an even higher positive value. This value is greater when γ is closer to zero; for γ = 0.15

the jump in λ1 is much smaller, while λp and λx also go to smaller values. Finally, for γ = 0.2 all

of the LE converge to zero by about t = 100.

For this system it appears that a small amount of damping leads to chaos, while there is no

chaos when the damping is too strong, i.e. when γ > 0.15. However, I’ve only performed a

cursory exploration of the system, and I would have to take a closer look before I could come to

any certain conclusions about chaos. My results for the Caldirola-Kanai SHO are more akin to a

"proof of concept" of a different algebra (corresponding to a dissipative system) than they are an

exhaustive investigation of this system.



Chapter 4

Conclusion

4.1 Summary of Results

In this work I have studied how the time dependence of quantum systems can be solved in a va-

riety of ways. I have studied an analytic method based on the Andrews ansatz. I then extensively

explored the Wei-Norman Lie algebra method in order to find the time evolution of relevant prop-

erties of a system. I have shown that this method reproduces exactly the time evolution of the

wave function found using the Andrews ansatz method in the FP and SHO cases. In particular I

have been interested in plotting the phase-space trajectories, the transition probabilities, and the

Lyapunov exponents for some chosen dynamical systems.

The Wei-Norman ansatz parameter solutions open a new window on the study of quantum

chaos, which is defined by the appearance of chaos-like properties in the solutions of classical-

looking coupled differential equations pertaining to the α parameters. I have included systems in

which I wasn’t expecting to find chaos (namely the FP and the SHO) in order to get a better handle

on the method and to serve as a point of comparison for potentially chaotic systems.

The first system I investigated was the driven free particle. The Lyapunov exponents of the FP

108
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have interesting features, but don’t appear to indicate the presence of chaos. I was not expecting to

find chaos in this system.

In studying the driven SHO, I found that it absorbs more energy from driving forces that have:

(a) more strength, (b) longer duration, and (c) driving frequencies closer to resonance (i.e., ω f =

ω). In the plots of Lyapunov exponents, the value of the phase λ1 is greater for larger driving forces

Eo and smaller inverse envelope width λ while the force is acting, but in all cases λ1 appears to

eventually go to zero long after the force has passed. Chaos does not seem to be present in this

system for any value of Eo, λ , or ω f .

The classical Duffing oscillator was studied to show what chaos should look like. Chaos can be

seen when Eo is sufficiently large: the Lyapunov exponents go positive in the limit of large t, and

the phase-space trajectories show a divergence between the initially similar systems (portrayed as

red and blue curves in the figures).

The Morse oscillator with anharmonicity parameter χ = −0.025 seems to absorb less energy

from a driving force of magnitude Eo = 1 than it does from the driving forces of both higher and

lower strengths that I have probed. It also responds most strongly when the driving frequency is

around ω f = 0.8ω , instead of at ω f = ω like the SHO. Chaos appears to be possible in Morse

oscillators when they are driven with forces of magnitude Eo = 5 or greater. Signs of chaos can be

seen at Eo = 10 for systems with λ ≤ 0.005 and ω f ≤ 1.2ω .

For a Morse oscillator driven with a continuous sinusoidal force, chaos is present for Eo > 2.85,

except for the region where 27.5≤ E0 ≤ 32.5, where the chaos is somehow suppressed.

There is an inverse relationship in anharmonic oscillator systems between the magnitude of the

anharmonicity parameter χ and the response at driving frequency ω f = ω . The strongest evidence

of chaos is seen for Morse systems with χ = −0.2 and χ = −0.02, but not for the systems with

higher or lower values of χ that I probed.

Chaotic systems seem to all share three visible traits: (1) divergence of the initially close (red
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and blue) trajectories in the phase plots, as well as a greater coverage of phase space, (2) "spikes"

in the lower-level transition probabilities, and (3) all of the Lyapunov exponents grow to some

positive value while being forced, and then decay until reaching some positive nonzero limit as

t→ ∞.

One can notice that the Lyapunov exponents corresponding to the unitary element 1 are consis-

tently higher than the others. The next highest exponents correspond to the linear elements x and

p, (or a and a†), while the lowest exponents are seen for the quadratic elements N (= a†a), x2+ p2,

x2− p2, and xp+ px. There is a hierarchy present, with the LE of higher-order algebra elements

having lower values. This is caused by the propensity of the commutators of higher-order algebra

elements to contribute terms to the differential equations for the lower-ordered elements. Because

the commutators are passed downward and not upward, the equation for α1 is typically the longest

and most nonlinear of the set.

4.2 Discussion

Some specific points in this research should be highlighted. This study is necessarily limited in

the dynamical systems considered, and in the values of the parameters explored. But even in

the limited parameter space, we find interesting results. It makes sense that chaos is more likely

when the driving force strength and the pulse envelope width are greater. The fact that the Morse

oscillator is more responsive at frequencies lower than the SHO can be explained by the fact that

the natural frequency of the AO system is a function of the anharmonicity parameter χ .

The relationship between χ and the chaoticity of the system is interesting and not easily ex-

plained. The Pöschl-Teller oscillator was not explored as systematically as the Morse oscillator.

Perhaps some further exploration of those systems could help explain how they depend physically

upon the anharmonicity parameter.
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Much of my time during the research process was spent waiting for my Maple code to compile.

I didn’t have any problems when I was only looking at phase-space plots, but when I starting

plotting transition probabilities I noticed that Maple v.15 really began to struggle. Perhaps there

were ways that I could have written my code to run more efficiently. When I finally decided to

switch to Mathematica, and eventually Matlab, I noticed a dramatic improvement in how quickly

I was able to compile the transition probabilities. Using the best tools can make a significant

difference.

Another part of my research that was particularly time-consuming was working out the BCH

relations by hand to simplify the Wei-Norman ansatz for the Schrödinger equation. A computer

code that handles all the commutators could have sped thing up quite a bit. Those who wish to

use the Lie algebra method to solve for complicated Hamiltonians would be wise to find or create

a program that can automate the algebra work needed to arrive at the coupled ODE’s for the α

parameters.

4.3 Future Research

A natural continuation of this research would look at many more dynamical systems using many

different Lie algebras. I would like see the parameter spaces of the solutions explored more thor-

oughly so that chaotic regions of these systems could be more precisely defined.



Appendix A

Wei-Norman Factorizations

In this appendix we show how to factorize the ∂U(t)
∂ t U−1(t) in the LHS of the time evolution

Schrödinger equation. This will be shown explicitly for the driven FP and the driven SHO.

A.1 Driven Free Particle

For the driven free particle we will use the algebra given by Eq. (2.50): A
.
= {1,x, ∂

∂x ,
∂ 2

∂x2 }. The

Wei-Norman ansatz of the time evolution operator corresponding to this algebra is

U(t) .
= eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 . (A.1)

The Schrödinger equation for U(t) is then given by the following:

ih̄
∂U(t)

∂ t
U−1(t) .

= ih̄ [
∂

∂ t
(eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 )](e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t))
.
= H .

(A.2)

To factorize the LHS of this equation we first take the time derivative of U(t), one exponent at a

time, to end up with the sum of four terms:

∂U(t)
∂ t

.
= (α̇1(t))eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 + eα1(t)(α̇2(t)x)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 (A.3)

+eα1(t)eα2(t)x(α̇3(t) ∂

∂x)e
α3(t) ∂

∂x eα4(t) ∂2

∂x2 + eα1(t)eα2(t)xeα3(t) ∂

∂x (α̇4(t) ∂ 2

∂x2 )e
α4(t) ∂2

∂x2 .
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Then we multiply each term by U−1(t) to the right:

∂U(t)
∂ t

U−1(t) .
= (α̇1(t))eα1(t)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t) (A.4)

+ eα1(t)(α̇2(t)x)eα2(t)xeα3(t) ∂

∂x eα4(t) ∂2

∂x2 e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t)

+ eα1(t)eα2(t)x(α̇3(t)
∂

∂x
)eα3(t) ∂

∂x eα4(t) ∂2

∂x2 e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t)

+ eα1(t)eα2(t)xeα3(t) ∂

∂x (α̇4(t)
∂ 2

∂x2 )e
α4(t) ∂2

∂x2 e−α4(t) ∂2

∂x2 e−α3(t) ∂

∂x e−α2(t)xe−α1(t).

The α̇i(t) in each term can be moved to the front, but the Lie algebra elements (such as x and ∂

∂x )

can’t be moved without consideration of their commutativity with the exponents.

The goal now is to cancel out each exponential factor with its inverse. We can start with the

factors that aren’t separated by a Lie algebra element:

∂U(t)
∂ t

U−1(t) .
= α̇1(t) (A.5)

+ α̇2(t)eα1(t)(x)e−α1(t)

+ α̇3(t)eα1(t)eα2(t)x(
∂

∂x
)e−α2(t)xe−α1(t)

+ α̇4(t)eα1(t)eα2(t)xeα3(t) ∂

∂x (
∂ 2

∂x2 )e
−α3(t) ∂

∂x e−α2(t)xe−α1(t).

To simplify the remaining exponential factors we can use the Baker-Campbell-Hausdorff (BCH)

identity:

eλABe−λA .
= B+

λ

1!
[A,B]+

λ 2

2!
[A, [A,B]]+

λ 3

3!
[A, [A, [A,B]]]+ ..., (A.6)

where A and B are any two Lie algebra elements and λ is some constant. This series may be

infinite, or it will be truncated as soon as a nested commutator equals zero. The four-element

algebra we’re using has the following commutator values:

[1,x] .= [1,
∂

∂x
]
.
= [1,

∂ 2

∂x2 ]
.
= 0, (A.7)

[
∂

∂x
,

∂ 2

∂x2 ]
.
= 0, (A.8)
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[x,
∂

∂x
]
.
=−1, (A.9)

[x,
∂ 2

∂x2 ]
.
=−2

∂

∂x
. (A.10)

The only nonzero nested commutator is the following:

[x, [x,
∂ 2

∂x2 ]]
.
=−2 [x,

∂

∂x
]
.
= 2. (A.11)

All other nested commutators will equal zero, which means the series given by Eq. (A.6) will have

three or less terms for any combination of algebra elements in our chosen set.

We can automatically cancel out every eα1(t) in Eq. (A.5) since 1 commutes with everything.

This leaves us with the following:

eα2(t)x(
∂

∂x
)e−α2(t)x .

=
∂

∂x
+α2(t)

[
x,

∂

∂x

]
+

α2(t)2

2

[
x,
[

x,
∂

∂x

]]
+ ... (A.12)

.
=

∂

∂x
−α2(t),

eα3(t) ∂

∂x (
∂ 2

∂x2 )e
−α3(t) ∂

∂x
.
=

∂ 2

∂x2 +α3(t)
[

∂

∂x
,

∂ 2

∂x2

]
+ ... (A.13)

.
=

∂ 2

∂x2 ,

eα2(t)x(
∂ 2

∂x2 )e
−α2(t)x .

=
∂ 2

∂x2 +α2(t)
[

x,
∂ 2

∂x2

]
+

α2(t)2

2

[
x,
[

x,
∂ 2

∂x2

]]
+ ... (A.14)

.
=

∂ 2

∂x2 −2α2(t)
∂

∂x
+α2(t)2.

Once we plug these identities into Eq. (A.5) we get the following:

∂U(t)
∂ t

U−1(t) .
= α̇1(t)+ α̇2(t)x+ α̇3(t)[

∂

∂x
−α2(t)]+ α̇4(t)[

∂ 2

∂x2 −2α2(t)
∂

∂x
+α2(t)2]

.
=

[
α̇1(t)− α̇3(t)α2(t)+ α̇4(t)α2(t)2]+ α̇2(t)x (A.15)

+ [α̇3(t)−2α̇4(t)α2(t)]
∂

∂x
+ α̇4(t)

∂ 2

∂x2 ,

where the coefficients have been gathered for each Lie algebra element. The last step is to substitute

this factorization into the LHS of Eq. (A.2) and then equate the terms in Eq. (A.15) with the

coefficients of the corresponding Lie algebra elements in the hamiltonian H .
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A.2 Driven Simple Harmonic Oscillator

The process for factorizing the ∂U(t)
∂ t U−1(t) term for the driven SHO is the same as for the driven

FP. The only difference is in the Lie algebra elements used and their corresponding commutator

values. For the driven SHO we will use the algebra given by Eq. (2.42): A
.
=
{

a†,a,N,1
}

. The

corresponding Wei-Norman ansatz for the time evolution operator is

U(t) .
= eα1(t)a†

eα2(t)aeα3(t)Neα4(t)1. (A.16)

We repeat the steps used for the driven FP by taking the time derivative of each exponential factor

and canceling out the exponential factors that aren’t separated by Lie algebra elements. This give

us the following equation, comparable to Eq. (A.5):

∂U(t)
∂ t

U−1(t) .
= α̇1(t)a† (A.17)

+ α̇2(t)eα1(t)a†
(a)e−α1(t)a†

+ α̇3(t)eα1(t)a†
eα2(t)a(N)e−α2(t)ae−α1(t)a†

+ α̇4(t)eα1(t)a†
eα2(t)aeα3(t)N(1)e−α3(t)Ne−α2(t)ae−α1(t)a†

.

As in Sec. A.1 we will use the BCH identity given by Eq. (A.6). The commutator values for the

ladder operator algebra are the following (as given in Sec. 2.4.3):

[1,a] .= [1,a†]
.
= [1,N]

.
= 0, (A.18)

[a†,a] .=−1, (A.19)

[a,N]
.
= a, (A.20)

[a†,N]
.
=−a†. (A.21)



A.2 Driven Simple Harmonic Oscillator 116

These commutators lead to the following BCH identities:

eα1(t)a†
(a)e−α1(t)a† .

= a+α1(t)
[
a†,a

]
+

α1(t)2

2

[
a†,
[
a†,a

]]
+ ... (A.22)

.
= a−α1(t),

eα2(t)a(N)e−α2(t)a .
= N +α2(t) [a,N]+ ... (A.23)

.
= N +α2(t)a,

eα1(t)a†
(N)e−α1(t)a† .

= N +α1(t)
[
a†,N

]
+ ... (A.24)

.
= N−α1(t)a†.

Once we plug these identities into Eq. (A.17) we get the following:

∂U(t)
∂ t

U−1(t) .
= α̇1(t)a† + α̇2(t)[a−α1(t)]+ α̇3(t)[N−α1(t)a† +α2(t)(a−α1(t))]+ α̇4(t)

.
= [α̇1(t)− α̇3(t)α1(t)]a† +[α̇2(t)+ α̇3(t)α2(t)]a (A.25)

+ α̇3(t)N +[α̇4(t)− α̇2(t)α1(t)− α̇3(t)α2(t)α1(t)] ,

where the coefficients have been gathered for each Lie algebra element. The last step is to substitute

this factorization into the LHS of the Schrödiner equation and then equate the terms in Eq. (A.25)

with the coefficients of the corresponding Lie algebra elements in the Hamiltonian H .
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