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ABSTRACT 
 

Thin Films of Carbon Nanotubes and 
Nanotube/Polymer Composites 

 
Anthony D. Willey 

Department of Physics and Astronomy, BYU 
Master of Science 

 
A method is described for ultrasonically spraying thin films of carbon nanotubes that 

have been suspended in organic solvents. Nanotubes were sonicated in N-Methyl-2-pyrrolidone 
or N-Cyclohexyl-2-pyrrolidone and then sprayed onto a heated substrate using an ultrasonic 
spray nozzle. The solvent quickly evaporated, leaving a thin film of randomly oriented 
nanotubes. Film thickness was controlled by the spray time and ranged between 200–500 nm, 
with RMS roughness of about 40 nm.  Also described is a method for creating thin (300 nm) 
conductive freestanding nanotube/polymer composite films by infiltrating sprayed nanotube 
films with polyimide. 
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1. Introduction 

Because of their unique electrical properties, thin films of carbon nanotubes (CNTs) have several 

potential applications in the rapidly growing fields of organic electronics and photovoltaics.1,2 In 

organic phovoltaics carbon nanotubes have been used as a semitransparent electrode material, as 

an electron acceptor material, and as an additive to improve performance of bulk heterojunction 

solar cells.3 

There are several ways to create thin films of carbon nanotubes, including filtration of nanotube 

suspensions,4 nanotube ink printing,5 spin casting,6 and ultrasonic spraying.7,8 Of these methods, 

spraying is the most scalable process capable of producing submicron thickness films of carbon 

nanotubes. The basic ultrasonic spraying process is illustrated in Figure 1, a-b.  Current spraying 

methods require that the nanotubes be suspended by wrapping them in surfactants or long chain 

polymers that must be removed after spraying, using baths that can easily delaminate the 

nanotube films from a substrate or harsh nitric acid treatments that can modify the physical and 

chemical properties of the nanotubes.  

Thin film nanotube/polymer composites have many possible applications, one of them being X-

ray windows, which require high strength thin films made with low-Z materials. There is an 

active body of research dedicated to carbon nanotube/polymer composites, much of it focused on 

exploiting the mechanical, electrical, and thermal properties of nanotubes.9 Little work, however, 

has been done on creating submicron thick polyimide composite films with a high weight 

percentage of carbon nanotubes. Such films can be created by impregnating a nanotube film with 

a polyimide precursor.10 In order for the nanotubes to chemically bond with the polyimide, it is 

necessary to use films of functionalized nanotubes. 
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1.1. Overview  

In this thesis I will present a process for spraying carbon nanotubes in which nanotubes are 

suspended in organic solvents. This process eliminates the need for surfactant removal baths, is 

compatible with single walled, multiwall, and functionalized nanotubes, and can produce 

submicron thickness films of randomly oriented nanotubes on a variety of substrates.  

I will also present a process for creating thin (300 nm) polyimide/nanotube composite films by 

spraying nanotubes onto a wafer and then spinning on a polyimide precursor (Figure 1). The 

films are strong enough to be freestanding, with mechanical properties comparable with pure 

polyimide. They are also conductive and semitransparent.  

 

Figure 1: Process schematic:  a) Carbon nanotubes are dispersed in a liquid by sonication. b) The nanotube 
suspension is ultrasonically sprayed onto a heated substrate. c) A polyimide precursor is spun onto the nanotube 
film. d) The composite film is cured, attached to a metal support ring, and released from the substrate. 

Chapter 2 will consist of a brief review of published methods for spraying nanotubes and 

creating composite films, as well as a short introduction to characterization techniques used in 
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this work. Chapter 3 will describe in detail the methods for creating and characterizing films. 

Chapters 4-5 present and discuss the results of the characterization, while Chapter 6 will discuss 

possible future work, particularly applications in organic electronics and photovoltaics.  

2. Background 

2.1. Spraying carbon nanotubes 

To spray nanotubes, the nanotubes must first be suspended in a solution. This is difficult because 

nanotubes have strong van der Waals interactions with each other, and consequently form rope-

like bundles that impair their conductivity and strength.11 Nanotube suspension is frequently 

achieved by covalent functionalization of the nanotubes7; however this can be undesirable 

because functionalization changes the electrical and mechanical properties of tubes.12  

Surfactants like sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and 

Triton-X are frequently used to suspend nanotubes in aqueous solutions7 without modifying their 

properties. Alternatively, long chain polymers like sodium carboxymethyl cellulose (CMC) can 

also suspend nanotubes.8 The surfactants or polymers are thought to surround or wrap around the 

nanotubes as they “unzip” from their bundles during sonication.13  

High quality nanotube films have been created by using an ultrasonic spray nozzle to spray 

aqueous nanotube suspensions (in SDBS or CMC) onto a heated substrate.7,8 When sprayed, the 

solvent evaporates, leaving a film of nanotubes and surfactant. SDBS is removed by soaking the 

film in a bath of methanol and water to redissolve the surfactant, leaving a film of nanotubes.7  

CMC is removed by soaking the film in nitric acid, removing the polymer and leaving a very 

smooth (3 nm RMS roughness) collapsed nanotube film.8  



4 
 

In my experience, care is required to avoid delaminating the film from the substrate during 

SDBS surfactant removal baths. Also for some applications, a nitric acid step may have 

undesirable consequences such as modifying the electronic and optical properties of the 

nanotubes via carboxylic functionalization and (reversible) HNO3 intercalation,14 chemically 

altering functional groups (e.g. amines) of functionalized nanotubes, or damaging the substrate 

material. It was to avoid these problems that organic solvents were used to disperse the carbon 

nanotubes.  

 Most organic solvents suspend less than 100 mg of nanotubes per liter of solvent (as opposed to 

1000 mg/L for surfactants). N-Methyl-2-pyrollidone (NMP) has been shown to form relatively 

stable dispersions of individual carbon nanotubes9, 15 with concentrations around 50 mg/L for 

single walled tubes, while N-cyclohexyl-2-pyrrolidone (CHP) has been shown to suspend carbon 

nanotubes with concentrations over 1000 mg/L.16,17   

a) b)  

Figure 2: a) N-Methyl-2-pyrrolidone (NMP). b) N-Cyclohexyl-2-
pyrrolidone (CHP) 

 

2.2.  Thin nanotube/polyimide composite films 

Because of the excellent mechanical and electrical properties of nanotubes, there is an active 

research effort focused on creating composites of nanotubes and polymers, including 
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polyimides.18 There has, however, been little work on creating thin film polyimide composites of 

submicron thickness with a high weight percentage of carbon nanotubes. Infiltration of single 

walled nanotubes in polyimide has been reported to increase the hardness and elastic modulus of 

pristine polyimide thin films.19 A major challenge with making nanotube composite materials is 

getting the nanotubes uniformly dispersed in the polymer. This has been achieved in thicker 

films by using covalently functionalized nanotubes and by suspending nanotubes in organic 

solvents before mixing them into the polyimide matrix.20  

Pei et al. (2011) describe a method for creating very thin composite films by mechanically 

flattening a vertically aligned forest into a dense mat of multiwall nanotubes, spinning on a 

solution of polyimide precursor, and then curing the polyimide.10 This resulted in smooth 

conductive films between about 300–600 nm in thickness that could be suspended on a frame. 

The films, however, suffered from a high defect density. Specifically, tears were observed in the 

nanotube films, probably caused by the process of manually flattening (via rolling) the nanotube 

forest.10  

2.3. Characterization techniques 

Atomic force microscopy (AFM) is a surface-characterization technique that was developed 

during the 1980s. An atomic force microscope has a small cantilever with a very sharp tip at the 

end which is scanned over the surface of a sample using piezoelectric elements. AFM is able to 

produce high quality images of nanoscale surface morphology.  

In scanning electron microscopy (SEM) a focused electron beam is rastered over the surface of a 

sample. The electrons interact with atoms and electrons in the substrate, emitting secondary 

electrons, backscattered electrons and X-rays, which can all be detected. Different materials and 
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geometries eject different numbers and types of electrons, so the detector signal can be combined 

with the beam position to produce an image of the sample.  

A 4-point probe measurement is used for getting conductivity measurements of thin films. Four 

equally spaced probes arranged in a straight line come in contact with a surface. The outer two 

probes pass a known current through the film while the inner two probes detect voltage. When 

the thickness of a film is known and is much smaller than the distance between probes, 4-point 

measurements can be used to determine the resistivity of material.  

An Instron® single column force testing system can be used to test force as a function of 

extension, and is often used for tension or compression applications. Thin films mounted on 

small washers can be probed with a rounded tip (see Figure 3), and force vs. extension curves 

can be obtained with a resolution of millinewtons per micrometer. 

 

 

 

 

 

 

A “bulge” test can be used to determine properties of thin films. In a bulge test, a circular section 

of thin film is subjected to a pressure differential and the resulting deflection is measured, as 

shown in Figure 4. The bulge testing equation is given as  

 

Figure 3: Force test performed by pressing a 1/16" ball bearing 
into a film suspended on a small washer. 
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𝑌
1 − 𝑣

= �𝑃 ∗
𝑟2

4𝑑ℎ
− 𝜎� ∗

3𝑟2

2ℎ2 , 

Where Y is the Young’s modulus, v is the Poisson ratio, P is the pressure differential, 𝜎 is the 

stress, r is the radius, d is the film thickness, and h is the deflection measured at the center.21  

 

Figure 4: Schematic of a bulge test. A differential 
pressure was applied under the film and the 
deflection was measured at the center of the film 
using a microscope.  

3. Methods 

3.1.  Thin films of carbon nanotubes 

Carbon nanotubes were suspended in NMP or CHP and sprayed using an ultrasonic nozzle. The 

substrate was heated so as to quickly evaporate the solvent and leave a film of randomly oriented 

nanotubes.  

The nanotube suspension was prepared by adding a few milligrams of nanotube powder 

(SWeNT SG nanotubes from Southwest Nanotechnology) into a beaker containing 100–200 mL 

of NMP or CHP and then sonicating the mixture for about 20 minutes using a 350 W horn 

sonicator (Cole Parmer, 0.5 in. tip) with a 50% duty cycle and a power of 40% max power. 
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(Longer sonication times result in higher concentrations of nanotubes, but with shorter tube 

lengths.)7  Concentrations of nanotubes are lower in NMP than in solutions where the nanotubes 

are suspended via surfactant (less than 0.1 mg/mL, compared to around 1 mg/mL)16, 22 but 

sonication resulted in a dark black mixture. After centrifugation at 12,000 RPM (~17,000 g), the 

supernatant was collected by pipetting the top 75% of solution, being careful to not disturb the 

pellet of still-bundled nanotubes.  

Solution concentration was measured optically. A spectrophotometer was used to perform 

absorption measurements of a small cuvette of the suspension at 763 nm with an assumed 

absorption coefficient of 0.043 L/(mg∙cm).11 Typical concentrations ranged from 5-50 mg/L in 

NMP for single walled nanotubes. Multiwall nanotubes had much higher concentrations; the 

concentration of SW-100 multiwall nanotubes from Southwest Nanotechnologies was so high 

that it could not be measured optically.  

Solutions were loaded into a syringe pump connected to a Sono-Tek 250 kHz “Impact” 

ultrasonic spray nozzle. The Sono-Tek nozzle atomizes the liquid while a pressurized airflow 

directs the droplets down onto a heated substrate. Substrates were typically a silicon wafer or a 

glass slide, although copper and indium-tin oxide were also used. The hotplate temperature was 

kept around 180° C for NMP and 200° C for CHP. (NMP boils around 202° C.) 

An automated x-y stage was used to raster scan the nozzle over the substrate at a speed of 2.5 

cm/s, with a sweep separation of 0.6 cm, and a working distance of 5–8 cm. The nozzle power 

was 2.5 Watts and the solution was fed to the nozzle with a syringe pump at a flow rate of 

0.25 mL/min. The flow rate, temperature, and speed were adjusted so that the solvent evaporated 
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quickly and didn’t stay wet for the next pass. (Higher flow rates can be used with higher 

temperatures.)  

3.2. Carbon nanotube/polymer composites 

Polymer-nanotube composite films were made by spraying thin (~100 nm) films of nanotubes 

onto a silicon wafer and then spin coating the films with a layer of polyimide precursor 

approximately 300 nm in thickness. The polymer solution was a 

biphenyldianhydride/1,4 phenylenediamine (BPDA/PPD) polyamic acid precursor dissolved in 

NMP, and was spun on at 2600 RPM for 90 seconds, soft baked at 90° C for about 2 minutes, 

and then cured at 400° C for 3 hours under argon.  

To release the films from the substrate, they were first attached to metal support rings or 

washers. A spray adhesive was applied to the ring, which was then pressed to the top of the film. 

The entire structure was then released from the wafer with hydrofluoric acid. The films 

suspended on washers were then tested mechanically, and were compared to identical polyimide 

films prepared without nanotubes.  

4. Results 

4.1.  Characterization of nanotube films 

Sprayed nanotube films ranged from being optically transparent to completely black (see Figure 

5). This was controlled by varying the length of the spray time (number of rasters) and the 

concentration of the suspension being sprayed. The films were mechanically stable, and did not 

delaminate from the substrate during repeated baths in water and NMP, but could be easily 

scratched with a pair of tweezers or a razor blade. 
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Figure 5: Film of single walled nanotubes sprayed from NMP 
onto a 3” glass slide. The spray area was 1.5 inches wide, and 
was covered by repeatedly rastering over the area in 6 sweeps 
that were 0.25 inches apart. The film is thick enough to be black 
in the spray area, but becomes transparent as it thins near the 
edges.  

Characterization of the sprayed CNT films was performed using scanning electron microscopy 

(SEM) and atomic force microscopy (AFM). SEM images showed that the nanotubes were 

randomly oriented, forming a uniform carpet (see Figure 6). Film thickness was measured by 

gently scratching a film and then measuring the edge with AFM. Film thickness ranged from 

about 200 nm to over one micron, and could be controlled by the number of rasters (see Figure 

7).  
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Figure 6: SEM images of nanotube films sprayed with NMP. a) A film of amine-functionalized 
multiwall nanotubes. b) A film of (6,5) single walled nanotubes. 

 

 

Figure 7: Thicknesses of several multiwall nanotube 
films, as measured by AFM, plotted as a function of 
spray time (number of rasters over the spray area) 

Because nanotube concentrations are very dilute in organic solvents, one challenge with making 

films by evaporating the solvent is that any impurities native to the solvent or nanotubes (or that 

are introduced during processing) remain on the substrate. These impurities showed up under 

SEM as dark splotches (often forming circular ring patterns, presumably at droplet edges (Figure 

8 a).  These splotches were not observed when spraying highly concentrated solutions of SWeNT 

SMW100 multiwall nanotubes, but became clearly evident when spraying less concentrated 
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solutions of single walled nanotubes. It was confirmed by AFM that these “coffee stains” were 

actually raised rings of material (see Figure 9). 

 

 

Figure 8: SEM images of CHP-sprayed films: a) to c) show a 
film at different magnifications before being washed in NMP, d) 
to f) show a  film after being washed in NMP.  

 



13 
 

 

Figure 9: AFM image showing height of a droplet ring resulting 
from sprayed NMP. The film was scratched with a pair of 
tweezers on the left. 

Because the impurities had come from evaporating NMP, the wafers were dipped in a hot bath of 

NMP in an attempt to redissolve the impurities. Subsequent AFM and SEM images showed that 

the nanotubes had been cleaned up significantly (see Figure 8 d). The rings were gone, and the 

nanotube films looked much cleaner. Similar results were achieved by soaking the film in hot 

water for an hour. 

Energy-dispersive X-ray spectroscopy (EDS) analysis of the rings before the wash and of the 

nanotube film after the wash showed that the rings were composed, at least in part, of a 

molybdenum containing compound (Figure 10) that was likely native to the nanotubes. (The 

nanotubes were Southwest Nanotechnology CoMoCAT tubes, grown from a molybdenum-

stabilized cobalt catalyst.) 
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Figure 10: a). EDS of dark splotches showing 
molybdenum peak; b). EDS of identical film 
after washing. These films were sprayed on a 
copper substrate (something that would have 
been impossible with the nitric acid process). 

 

Figure 11 shows atomic percentages of selected elements from three EDS measurements. The 

first measurement was of an unwashed sample where the beam was focused on a nanotube-rich 

region. The second measurement was focused on a dark region, and the third measurement was 

focused on a large area of the film after it had been washed and the dark splotches had 

disappeared.  
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Figure 11: Semi-quantitative analysis showing atomic percentages of 
elements detected using EDS. 

The first and third measurements are similar, showing roughly equal peaks for carbon (from the 

carbon nanotubes), oxygen (possibly from copper oxide), and copper from the underlying 

substrate. The second measurement shows new nitrogen and molybdenum peaks, as well as an 

increased oxygen peak, suggesting that the splotch material was some combination of 

compounds containing molybdenum, oxygen, nitrogen, and possibly some carbon.  

Film resistance measured by a 4-point probe showed sheet resistances ranging from 2x103 to 

6x103 Ω/square, and resistivities of around 0.1 Ω∙cm, well within the semiconductor range.23  

AFM measurements (see Figure 12) of film thickness and roughness for several films are shown 

in Figure 13. The roughness of these films ranged from 10–50 nm which was comparable with 

some of the previously published films sprayed from SDBS surfactant dispersions7 but not as 

smooth as films sprayed from CMC dispersions followed by a nitric acid rinse.8 
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Figure 12: Typical AFM measurements showing a) a 
scratched nanotube film (nanotubes on the left, scratch 
on the right); b) the thickness of the film, taken as the 
average difference of three traces; c) the roughness of 
the nanotube portion of the same film (measured only 
on the left) 

 

 

Figure 13: RMS roughness versus thickness of several nanotube 
films  measured by AFM 

 

4.2. Characterization of CNT/Polyimide composite films 

Torn sections of the nanotube-infused polymer films were imaged by SEM, confirming that 

nanotubes were infused in the polymer as shown in Figure 14.  
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Figure 14: SEM image of a MWNT film that has 
been infiltrated with a polymer and then torn. 
Multiwall nanotubes are seen protruding from 
the bottom portion of the film. 

To test the strength of the nanotube/polyimide composite films, several were mounted on 1/8” 

inner-diameter washers and broken using a 1/16” steel ball bearing attached to a pressure sensor.  

The films varied widely in the ultimate breaking force, which seemed to depend more on the 

thickness of the film than whether or not the film had nanotubes infused in it. Films with thicker 

layers of nanotubes infused tended to break at lower forces, as in Figure 15, b. Films were 

created and tested using both single-walled and COOH and Amine functionalized multiwall 

nanotubes obtained from Cheap Tubes, Inc. 
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Figure 15: Results of force testing. a) Several tests of a ~100 nm SWNT film impregnated with 
polyimide. Breaking force is plotted versus total film thickness. Films with nanotubes are fairly 
indistinguishable from films without nanotubes.  b) Breaking force of MWNT films vs. thickness of 
nanotube layer. The first data points on the left are pure polyimide films with no nanotubes, and the CNT 
layer thickness was varied by increasing the number of rasters over the substrate for each subsequent 
sample. Vertical lines represent the standard deviation of several pressure tests on each sample. 

 

“Bulge” tests (Figure 4) were used to quantify the stiffness of the washer-mounted films. A 

differential pressure was applied on one side of the washer and the deflection at the center of the 

film was measured with a microscope. For small deflections the Young’s Modulus Y is given by: 

𝑌
1 − 𝑣

= �𝑃 ∗
𝑟2

4𝑑ℎ
− 𝜎� ∗

3𝑟2

2ℎ2 , 

where v is the Poisson ratio (assumed to be 0.3), P is the pressure differential, 𝜎 is the stress, r is 

the radius, d is the film thickness, and h is the deflection measured at the center.21 The deflection 

data for a range of different pressures were fitted with a 3rd order polynomial (see Appendix 1) to 

obtain experimental values for Young’s Modulus. Values of Young’s modulus ranged from 

about 2–3 gigapascals for films, regardless of whether or not they had nanotubes in them.  



19 
 

 

Figure 16: Typical pressure data with a best 
fit. 

The Matlab program used for fitting the curves is given in Appendix 2. 

4.2.1. Electrical characterization 

The films retained a lateral electrical conductivity slightly lower than the nanotube films prior to 

polymer infiltration. The resistance was measured with a 4-point probe, and sheet resistances 

ranged from 2x103 to 6x103 Ω/□ for single-walled nanotubes. When multiplied by the film 

thickness this gives a bulk resistivity on the order of about 1.4 Ω·cm. This falls well within the 

range of semiconductor resistivities (about 10-4 for heavily doped to 106 for intrinsic)23.  

Vertical conductivity was measured by spraying nanotubes and infiltrating polymer on 

conductive substrates (initially copper, then indium-tin oxide on glass) and then dabbing silver 

epoxy on the top of the film (see Figure 17). The resistance was then measured between the 

bottom conductive layer and the top silver epoxy layer.  
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Figure 17: Silver epoxy dabbed on a 
polyimide/nanotube film on ITO glass 

 

Resistance varied based on the film, but the resistance was generally very high, as would be 

expected for a thin film of nonconducting polymer. This was because the polymer completely 

covered the nanotube film beneath (see Figure 14). These results were consistent even for very 

thick nanotube films with very thin polymer films spun on them.  

To make the films conductive from top to bottom, they were placed in a Harrick plasma cleaner 

(model PDC-001) on high power to etch back the top layer of polyimide precursor. (This was 

done before curing the polyimide.)  

The etch rate was determined experimentally by spinning  a 150 nm layer of polyimide onto a 

wafer, cleaving the wafer in half, and then placing one half of the wafer in the plasma cleaner for 

5 minute increments. 

The color of each film depended on its thickness according to the thin-film-interference equation 

2𝑛𝑑 = 𝑚𝜆, where n is the index of refraction in of the film, d is the thickness, λ is the 

wavelength of light, and m is an integer. Each film was matched to a standard color chart for 
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silicon dioxide, and the resulting thicknesses were multiplied by a constant to account for the 

difference between the indexes of refraction for SiO2 and polyimide. The constant was 

determined by dividing the initial polyimide thickness (150 nm) by the thickness of yellowish 

gold silicon dioxide (200 nm). A plot of the film thickness vs. etch time is shown in Figure 18 h). 

The etch rate was determined to be approximately 3.2 nm/min.  

 

Figure 18: a–g) A silicon wafer with 150 nm of polyimide spun on was split in half and the left side was repeatedly 
etched for 5 minute increments, while the right side was saved for comparison.  h) The resulting film thickness 
plotted as a function of etch time. 

For a given film the appropriate etch time could be determined by subtracting the nanotube film 

thickness (before polyimide was spun on) from the total film thickness after polyimide was spun 

on. Plasma etch times were adjusted so as to barely etch into the nanotube layer.  

Resistance measurements were performed again between the top and bottom of the film, and the 

resistance was much lower after the film had been etched and the nanotubes exposed. Figure 19 

shows a collection of I-V curves obtained from a 450 nm nanotube film sprayed onto a thin 

copper foil, coated with approximate 150 nm of polyimide precursor and then etched for 

32 minutes. Results from a film sprayed on ITO are shown in Figure 20.  
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Figure 19: Current-voltage curves showing vertical conductivity in composite 
films, taken between the underlying copper substrate and a dab of silver epoxy 
on top. Ordered from least conductive to most conductive are: a) a 450 nm of 
(6,5) nanotubes with 150 nm of polyimide spun on; b) the same film after 
etching 40 nm from the top of the film; c) the same film after etching a total of 
100 nm from the topof the film; d) the nanotube film before any polyimide 
was spun on; e) silver epoxy on copper with no film inbetween; f) straight 
copper with no silver epoxy.  

Etched samples were imaged by SEM to verify that nanotubes were being exposed. Resolution 

between nanotubes and polymer is generally low, but Figure 21 shows bright specks scattered 

across the surface of the polyimide film. These specks are believed to be the sharp points of 

nanotubes poking through the surface of the etched polyimide film, suggesting that the 

nanotubes, as well as the polyimide, were etched by the plasma. In fact, when a film was 

accidentally left in the plasma etcher for too long, only debris showed up on the SEM.  
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Figure 20: a) Resistance between silver epoxy and ITO 
before etching back the polyimide  b) Resistance after 
etching back the polyimide 

 

 

Figure 21: SEM image of nanotube/polyimide 
film that has been etched back to expose the 
nanotubes. 

 

5. Discussion 

5.1. Nanotube films 

Spraying nanotubes suspended in organic solvents eliminates the need for surfactant or polymer 

wrapping, and produces thin films of randomly oriented nanotubes. An advantage to this method 
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is that it doesn’t require a surfactant-removal bath, during which the film is sensitive to 

disturbances that can damage the film. Also, in the case of CMC-suspended tubes, it avoids the 

nitric acid step.   Drawbacks would in some cases include spraying at high temperatures of >180 

°C, and longer spray times because of low nanotube concentration. The resulting films can 

readily be infiltrated with polyimide, producing freestanding conductive polymer films, with 

strength comparable to the original polyimide. The technique is compatible with single walled 

nanotubes, multiwall nanotubes, and multiwall functionalized nanotubes. 

 

5.2. Polyimide composites 

Instead of growing and rolling nanotube films as described by Pei et al., I have used the methods 

in Section 3.1 to spray carbon nanotube films. I then followed a procedure similar to that 

described by Pei et al. to infiltrate the films with a polyimide precursor, cure the polyimide, and 

release it from the substrate. These thin conductive films showed improved mechanical 

properties compared to the rolled nanotube films, and were comparable with films made of 

straight polyimide.  

6. Future work 

 The field of organic photovoltaic devices (OPVs) has expanded rapidly over the past 20 years 

and several efficiency records have recently been broken by polymer-fullerene devices.24 Figure 

22 shows exponential growth in the number of publications per year contributing to the subject 

of “polymer solar cell(s).” While OPVs offer promising alternatives to traditional Silicon solar 

cells, efficiencies of current devices are still too low (<10%) to compete economically.  
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Figure 22: Number of publications per year contributing to the subject of 

“polymer solar cell(s)” 

Carbon nanotubes have already been used in organic photovoltaics, both as a transparent 

conducting layer and as an additive to improve performance. The methods I have presented for 

spraying carbon nanotubes and infiltrating polymer are applicable to use in photovoltaics, and in 

Appendix 3 I present some preliminary work toward building a photovoltaic device using carbon 

nanotubes.  
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8. Appendix 1: Bulge testing equation 

Starting with the bulge testing equation,  

𝑌
1−𝑣

= �𝑃 ∗ 𝑟2

4𝑑ℎ
− 𝜎� ∗ 3𝑟2

2ℎ2
, 

we solve for the pressure P as a function of h, to yield a 3rd order polynomial of the form  

𝑃(ℎ) = 𝐴1ℎ + 𝐴2ℎ3. 

A1 and A2 are determined by fitting the experimental data for P and h, and then the unknowns 

Y/(1-v) and σ can be determined by  

𝜎 = 𝐴1
𝑟2

4𝑑
;          𝑌

1−𝑣
= 𝐴2

3𝑟4

8
. 
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9. Appendix 2: Matlab fitting program 

clear;  close all; 
Filename='300nmSWNTcompositeMoxtek38mm(2).csv'; %Enter filename here 
  
d=300e-9;           %Fill in the measured thickness of film (m) 
r=(3.8e-3)/2;       %Fill in the Radius of washer (m) 
N=10                %Fill in the number of data points to drop  
                    %from the end of the fit 
  
                    %Program begins here 
  
rawData1=csvread(Filename);      %Reading data file 
x=rawData1(:,2); 
x=(x-x(1))*1e-6;                 %Converting from microns to meters 
y1=rawData1(:,1); ymax=max(y1) 
y1=y1*6894.76;                   %Converting pressure from PSI to Pascals 
  
x=x(1:(length(x)-N)); 
y1=y1(1:(length(y1)-N)); 
  
a1=[0,1e9,0];                    %Educated guess at constants  
xmin=min(x);                     %[sigma, Y, zero offset] 
xmax=max(x); 
npts=1001; 
dx=(xmax-xmin)/(npts-1); 
xplot=xmin:dx:xmax; 
  
option=optimset('TolX',1e-5);  
a1=fminsearch(@leastsq,a1,option,x,y1);      
                                 %Perform the fit 
                                 %The form of the equation you're fitting  
                                 %is in the file called funcfit.m 
  
format ShortE; 
a1 
sigma=a1(1)*r^2/4/d              %Solve for sigma and Y 
Y=a1(2)*3*r^4/8/d 
zero=a1(3) 
  
  
string1=char(...                 %Create a label for the graph 
    ['Filename = ' Filename],... 
    ['Y/(1-v)=' num2str(Y, '%10.2e') ' Pa'],... 
    ['Sigma = ' num2str(sigma, '%10.2e') ' Pa'],... 
    ['Points discarded at end = ' num2str(N)],... 
    ['Highest pressure = ' num2str(ymax) ' PSI'],... 
    ['Zero offset = ' num2str(zero*1e6) ' um']... 
    ) 
  
yplot1=funcfit(a1,xplot);        %Graphing (note: switching x and y axis) 
plot(y1/6894.76,x*1e6,'b.',yplot1/6894.76,xplot*1e6,'r-'); 
ylabel('deflection (um)'); 
xlabel('Pressure (PSI)'); 
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title('Pressure data with best fit'); 
text(max(yplot1/2/6894.76),max(xplot/2*1e6),string1,... 
     'HorizontalAlignment','left') 
  
 
  
%%% The least squares .m file called by the fitting program 
function s=leastsq(a,x,y) 
s=sum((y-funcfit(a,x)).^2); 
 
 

%%%The funcfit .m file called by the fitting program 
function f=funcfit(a,x) 
f=a(1).*(x-a(3))+a(2)*(x-a(3)).^3;  
  
% f=a*(x-b)+c*(x-b)^3 
% b is an offset to account for initial slack in the film 
 

  



31 
 

10. Appendix 3: Work towards an organic photovoltaic device 

Typical organic photovoltaic devices are currently made by blending a pi-conjugated 

photosensitive polymer such as poly-3(hexylthiophene) or P3HT with a functionalized fullerene 

derivative, PCBM.25   

When conjugated polymers such as P3HT absorb light, an electron is excited from the lowest 

unoccupied molecular orbital (LUMO) into the highest unoccupied molecular orbital (HOMO) 

(See Figure 23). This excited state, or bound electron-hole pair, is called an exciton, and 

generally has a diffusion length between 5-20 nm in the P3HT. If an electron acceptor (such as 

PCBM) is distributed throughout the polymer, electrons can be transferred into the LUMO of 

acceptor molecules, and then be carried through conductive networks to an electrode. It is 

therefore important that the LUMO of the acceptor molecule be lower than the LUMO of the 

donor (polymer) as shown in Figure 23. An ideal acceptor LUMO should be about 0.3 eV below 

the LUMO level of the donor molecules.26 The open circuit voltage of a solar cell is typically 

correlated to the difference between the HOMO of the donor material and the LUMO of the 

acceptor.26 

So far, only derivatives of C60 and C70 have been reported to give highly efficient bulk 

heterojunction devices, despite the fact that the position of the HOMO and LUMO levels and 

optical absorption are not ideal.24 Several molecules have been tried  but so far none have 

matched the efficiency of fullerene devices.25  

Carbon nanotubes have been used as acceptor molecules with varying results. Small-diameter 

single wall nanotubes have a high electron mobility and a favorable band gap.24  
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Figure 23: Schematic showing energy levels of 
photoactive polymer and carbon nanotube 

PCPDTBT (or Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-

b:3,4-b']dithiophene-2,6-diyl]]) has been shown to be a promising narrow-bandgap photoactive 

polymer.27 PCPDTBT has a nearly optimal bandgap of 1.46, and when combined with PCBM 

and a small amount of alkanedithiols to modify the morphology, it has shown efficiencies of 

5.5%.28 While carbon nanotubes have been combined with other photoactive polymers, to our 

knowledge carbon nanotubes have not been combined with PCPDTBT to make a photovoltaic 

device.  

Valence band (HOMO)

Conduction band (LUMO)

Carbon Nanotube
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Figure 24: Proposed device using PCPDTBT and (6,5) carbon nanotubes. The energy 
levels of  ITO and PCPDTBT in this figure are from Kim et al.,29 while values for the 
(6,5) carbon nanotubes are an average of McDonald et al.30 and Tanaka et al.31 
 

10.1. Structure for photovoltaic device 

One of my long term goals was to build a 3 layer device with a photon absorbing, electron 

donating polymer top layer, a middle insulating layer with nanotubes passing through it, and an 

electron accepting nanotube bottom layer. A device like this is shown in Figure 25 a, which in 

theory could be prepared by spinning a photosensitive polymer onto commercially available 

indium-tin oxide glass, spraying nanotubes onto the polymer, spinning on polyimide, etching 

back the polyimide to expose nanotubes, then finally evaporating aluminum to form the back 

contact. Several problems were encountered with building this proposed structure. It was found 

that PCPDTBT was soluble enough in NMP that spraying NMP-suspended nanotubes onto a 

neat film of PCPDTBT destroyed the film, and the PCPDTBT reflowed, forming miniature 

hillocks (shown in Figure 26). 
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Figure 25:  a) Proposed structure for 3 layer device  b) Device without 
middle insulating layer 
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Figure 26: a) SEM image of nanotubes sprayed on a thin film of 
PCPDTBT  b)  Zoomed in to show structure of nanotube region  c) 
Zoomed in to show structure of a hillock 

I also tried creating the structure in Figure 25 b by spinning PCPDTBT onto a film of nanotubes, 

etching the film back slightly, as in Figure 21, and then evaporating aluminum contacts. The 

contacts had a dull appearance compared to aluminum evaporated elsewhere and the films did 

not produce a detectable voltage when exposed to light. I suspect there may have been problems 

with the aluminum contact reacting with the PCPDTBT beneath. 

 

 

 

 


	Brigham Young University
	BYU ScholarsArchive
	2012-12-10

	Thin Films of Carbon Nanotubes and Nanotube/Polymer Composites
	Anthony D. Willey
	BYU ScholarsArchive Citation


	Title page
	Abstract
	Acknowledgments
	Table of Contents
	1. Introduction
	1.1. Overview

	2. Background
	2.1. Spraying carbon nanotubes
	2.2.  Thin nanotube/polyimide composite films
	2.3. Characterization techniques

	3. Methods
	3.1.  Thin films of carbon nanotubes
	3.2. Carbon nanotube/polymer composites

	4. Results
	4.1.  Characterization of nanotube films
	4.2. Characterization of CNT/Polyimide composite films
	4.2.1. Electrical characterization


	5. Discussion
	5.1. Nanotube films
	5.2. Polyimide composites

	6. Future work
	7. References
	8. Appendix 1: Bulge testing equation
	9. Appendix 2: Matlab fitting program
	10. Appendix 3: Work towards an organic photovoltaic device
	10.1. Structure for photovoltaic device


