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ABSTRACT

Scaling Parallel Dielectrophoresis of Carbon Nanotubes: an Enabling Geometry

Brian Scott Davis
Department of Physics and Astronomy

Master of Science

Dielectrophoresis has been used as a technique for the parallel localization and alignment of
both semiconducting and metallic carbon nanotubes (CNTs) at junctions between electrodes. A
variation of this technique known as Floating Potential Dielectrophoresis (FPD) allows for a self-
limiting number of CNTs to be localized at each junction, on a massively parallel scale. However,
the smallest FPD geometries to date are restricted to conductive substrates and have a lower limit
on floating electrode size. We present a geometry which eliminates this lower limit and enables
FPD to be performed on non-conducting substrates. We also discuss experiments clarifying the
self-limiting mechanism of CNT localization and how it can be used advantageously as devices
are scaled downward to smaller sizes.
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Chapter 1

Introduction

1.1 Carbon Nanotubes

Carbon nanotubes (CNTs) can be viewed as derivatives of graphene, which is a one-atom-thick

sheet of carbon atoms arranged in a hexagonal lattice. Graphene’s lattice structure allows the

carbon atoms to form sp2 hybridized orbitals, which leaves a pair of pi electrons per carbon atom

free to conduct. While graphene thus exhibits metallic behavior, rolling graphene sheets into CNTs

imposes periodic boundary conditions on the lattice, creating the possibility of a band gap. In short,

CNTs can range from metals to semiconductors, depending on the direction the graphene is rolled

up. The "twistiness" of the CNT is more formally defined as its chirality, and so the electrical

properties of CNTs are said to be highly chirality-dependent.

While illustrations of rolled graphene help us to understand the electrical properties of CNTs,

nanotubes aren’t really created by rolling graphene up. A Japanese physicist named Sumio Iijima

is usually credited as the first to develop a controllable method of fabricating CNTs, using arc-

discharge evaporation [1]. Additionally, CNTs can be grown from metal catalysts using chemical

vapor deposition (CVD) [2] or blasted from hunks of graphite using high-energy laser pulses in a

1



2 Chapter 1 Introduction

Figure 1.1 A single-walled carbon nanotube. Rendered in Mathematica from coordinate
data produced with TubeVBS.

technique known as laser ablation [3]. In all three of these methods the CNTs come as a random

mixture of chiralities, and thus a mix of semiconducting and metallic behavior. This fact was first

predicted theoretically in 1992 by John Mintmire’s group at the Naval Research Laboratory [4]

and experimentally confirmed in the labs of Cees Dekker [5] and Charles Lieber [6] in 1998 by

correlating atomically-resolved STM images of tubes to transport properties.

Regardless of their electronic type, however, CNTs are good conductors. Metallic tubes have

higher conductivity than copper and silver, the best bulk conductors we know of to date. Semicon-

ducting tubes have electron mobilities [7] more than an order of magnitude better than silicon and

when configured as transistors have extremely high on-off state current ratios (≥ 108) [8]. Due

to these excellent electronic properties, single-walled CNTs have been used to make molecular-

scale field effect transistors (FET) [9], which in turn have been used to fabricate circuits [10, 11],

chemical sensors [12], and even a transistor radio [13].

However, a common characteristic of these initial electrical studies was that the CNT devices

were made with "brute force" fabrication methods: CNTs randomly dispersed or transferred onto

a substrate were located in relation to alignment marks using microscopy techniques and subse-

quently wired up to create an ad-hoc device [14]. Such methods enabled data to be taken to confirm

theoretical understanding of CNT electrical properties, but at the steep cost of many man-hours per

device [15]. Other methods have been developed that are less time-intensive [16], but in all cases
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these methods are not scalable to studies involving many-CNT devices or commercial operations.

In general, the challenge of controlled alignment and precise placement, as well as the confirmed

fact that as-grown CNTs come as a mixture of semiconducting and metallic tubes, has prevented

the use of CNTs in large-scale electronics.

1.2 Dielectrophoresis

Dielectrophoresis (DEP), first developed in 1951 [17], offers a possible solution to these chal-

lenges. A concatenation of the word "dipole" with the word "electrophoresis," dielectrophoresis

is defined as the translational motion of neutral matter caused by polarization effects in a nonuni-

form electric field. Similar to electrophoresis, where matter moves through a viscous gel at a rate

dependent on its charge and the applied DC electric field, in dielectrophoresis, dipoles are induced

in matter by an AC electric field, which causes movement at a rate dependent on relative polariz-

ability. One can view DEP transport as a phenomenon similar to shaking a bowl full of sand and

marbles, but with polarizability density rather than mass density being the agent for one species

giving way to the other.

DEP was first applied to CNT localization in 1998 [18]. Because DEP is a solution-based

localization technique, it can be used in conjunction with other solution-based techniques that

purify CNTs to a single electronic type after growth [19, 20]. While this alone makes DEP a good

candidate for electronic CNT device applications, dielectrophoretically placed CNTs are able to

survive standard process steps used in photolithography [21], the primary micro- and nanoscale

fabrication technique used today, and have already been successfully incorporated as interconnect

wires into GHz resonators [22]. Much work in developing DEP has been done with this intent in

mind [23, 24].

However, the first few attempts of performing DEP by directly driving the electrodes did not
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produce pristine results [18, 23, 25–28]. Many carbon particles and other solution impurities were

localized with the CNTs, and a random number of CNTs were localized between each pair of

electrodes. While it was soon found that localized contamination could be partially avoided by im-

proved solution preparation and the use of high-frequency AC driving signals [25], many potential

applications of CNT devices require a large array of electrode pairs with a controlled number of

CNTs at each junction.

One method exhibiting self-limiting localization is to put a large resistor in series with the

driving signal that effectively shuts off the voltage once a tube is localized [23, 28, 29]. In the

words of those who first pioneered the technique, "the series resistance is expected to act as a

voltage divider and current limiter. As soon as a contact is formed between the electrodes via a

nanotube and the resulting resistance is smaller than the series resistance, the applied voltage will

mainly drop along the latter. Hence the field between the electrodes will collapse and the trapping

of additional tubes will be automatically prevented." [29] Three years later an important extension

of this work was performed by Banerjee et al. in which the number of captured CNTs was studied

as a function of the magnitude of the series resistor [28]. When very large resistors were used,

devices attracted single tubes, and as resistors of less magnitude were used larger numbers of

CNTs were localized. In spite of the precision and control that has been developed using this

method, there is an obvious challenge in scaling due to the necessity for DEP to be performed

serially on each junction.

Self-limiting CNT localization has also been observed in experiments involving a technique

called Floating Potential Dielectrophoresis (FPD), in which CNTs are localized between elec-

trode(s) left at floating potential rather than electrodes that are directly driven [27, 30]. In contrast

to the limiting resistor method just discussed, FPD has recently been demonstrated as a paralleliz-

able technique capable of yields greater than 90% and high device densities [24]. Two main FPD

geometries have been developed in the literature and are described in detail in figure 1.2.
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Figure 1.2 FPD geometries reported in the literature. A) This geometry biases a very
large surface electrode against the underlying substrate; the CNTs are captured between
a capactively coupled row of electrically floating electrodes [30]. B) This geometry uses
four surface-patterned electrodes; two are biased and two are floating [27]. The gap
between the directly driven electrodes is used to catch nanotube aggregates and solution
impurities, while the other two gaps are intended for primary use.

Several mechanisms have been proposed to explain the observed self-limiting behavior. For ge-

ometry A it was assumed that localized CNTs shorted the floating electrode to the driving electrode

and thus eliminated the field necessary to localize more CNTs. For geometry B, a large number

of CNTs and impurities were localized in region I, less in region II, and only one or a few CNTs

in region III. It was assumed that since the voltage drop across the region I electrodes was greater

than that of the region II electrodes, and the drop across region III less than either of the others,

that the number of CNTs was simply proportional to the voltage drop in the region. Consequently,

the self-limiting behavior of geometry B was assumed to be only a function of electrode potential.

A third mechanism was suggested in a report by Vijayaraghavan et al. due to measurements

of geometry A indicating that CNTs did not short the electrodes. This mechanism was based on

computational results showing that "once a CNT is localized between electrodes the local electric

potential distribution (and thus the dielectrophoretic force-field) changes incisively and the region

at and around the nanotube develops strong repulsive forces which prevent further CNT localiza-
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Figure 1.3 Most recent model for self-limiting FPD shutoff, from [24]. Top view: panes
a) and b); side view: panes c) and d). Panes a) and c) are before localization occurs and b)
and d) represent after a nanotube (purple) is localized. The arrows represent the direction
of the DEP force and the color represents its magnitude. The boundary conditions on the
electrodes were set to equal and opposite electric potentials, and since the resistance of the
CNT is dominated by contact resistance, the CNT assumes a constant electric potential at
the midpoint of the two electrodes.

tion" (see figure 1.3) [24]. This gradient-reversal model relies on the nanotube-electrode junction

having a large contact resistance such that the voltage across the length of the tube is relatively

constant compared to the drop at the electrode contact.
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1.3 Motivation and Key Results

Interestingly, the boundary conditions used in the simulations introducing the gradient reversal

model are compatible with directly driven DEP as well as FPD. However, it has been clearly ob-

served that directly driven DEP does not always result in a limited number of localized CNTs (such

as the inital studies of DEP using nanotubes, or even in region I of FPD geometry B). These ap-

parent inconsistencies invite further investigation into the mechanism responsible for self-limiting

localization of CNTs using DEP.

Furthermore, there are serious limitations imposed by the current FPD geometries. While a

high device density has been achieved using geometry A, the necessity to couple each floating

electrodes to the substrate imposes a ∼10 µm2 lower limit on floating electrode area [24] and

restricts the technique to conductive substrates. While geometry B can be used on non-conducting

substrates, it has not yet been demonstrated on a massive scale.

We report a geometry (figure 1.4) that allowed FPD to be performed using floating electrode

areas more than an order of magnitude smaller than the limit of geometry A and which enables

parallel FPD to be performed on non-conducting substrates on a massive scale. We also present

computational results demonstrating that FPD using this geometry can be further scaled than what

we experimentally demonstrated. By performing a series of experiments varying the duration

of DEP, as well as experiments in which DEP was repeated on the same set of electrodes, we

demonstrate that localized CNTs do prevent others from depositing, but only in their immediate

vicinity. Our results clarify how the repulsive force behaves across length scales, and we discuss

how scaling electrode width can be used to control the number of localized CNTs as devices

continue to be scaled downward to smaller sizes.
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Figure 1.4 A cartoon image of the setup used in FPD experiments. The AC driving signal
localizes nanotubes between the floating electrodes at the center of the image. Just like
the cereal box, the CNTs are enlarged to show texture.
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Experimental Methods

2.1 Fabrication

The basic design of the FPD electrodes has an array of paired floating electrodes (FEs) in between

two driving electrodes (DEs), as illustrated in figure 2.1. The DEs were 50-100 µm wide and

scaled in length to match the length of the FE array. The FEs and DEs were separated by a gap of

1-10 µm. The FEs consisted of a 10-20 µm x 0.1-1 µm "finger" jutting away from a square pad

which varied in area from 0 - 104 µm2. Between each set of FE fingers was a 200-500 nm gap

where the CNTs were intended to be localized, a region we refer to as the trap. Figure 2.2 is a flow

diagram describing how the electrodes were fabricated.

2.2 CNT Purification

CNT suspensions were purified by isopycnic centrifugation (which separates CNTs by density,

and thus chirality), following Arnold et al. [19]. Briefly, suspensions were prepared by sonicat-

ing 3-5 mg carbon nanotube soot (SouthWest NanoTechnologies SG76) in a solution of 2% (w/v)

sodium cholate in water. The suspension was ultracentrifuged to remove large bundles of CNTs

9
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D1

D2

F1

F2

E1

S

10

0.5

A2

E2

A1

Geometry # D1 D2 F1 F2 E1 E2 S A1 A2

1 100 1820 100 100 20 1 20 0 0

2 100 1820 100 100 20 1 20 20 105

3 100 270 5 5 20 1 20 0 0

4 100 270 5 5 20 0.1 20 0 0

5 105 270 1 1 20 1 20 0 0

6 105 270 1 1 20 1 20 13 14

7 105 270 0 0 20 0.1 20 0 0

8 115 270 0 0 10 0.1 10 0 0

9 115 270 0 0 10 0.1 10 13 5

Figure 2.1 Cartoon layout of FPD geometries used in this work. Orange represents the
electrodes and blue represents alumina. Units in the table are in microns.
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Si p++ SiO2 ZEP electron beam resist Cr/Au or Ti/Pd Al2O3

Figure 2.2 A process flow diagram describing the fabrication of our FPD electrodes. In
clockwise order: 1) ZEP 520A electron-beam resist was spun on a highly doped silicon
wafer (Boron-doped, resistivity 0.002-0.005 Ω-cm) with up to 400 nm of SiO2. 2) The
resist was exposed and developed to create the electrode pattern. 3) Cr/Au or Ti/Pd was
deposited on the substrate via electron-beam evaporation. 4) Microposit Remover 1165
was used for liftoff. 5) A new layer of resist was spun on the surface, and second pattern
created with lithography aligned to the metal layer. 6) Aluminum oxide (alumina) was
evaporated and liftoff performed as before.

and the growth catalyst. The supernatant was harvested and the tubes were concentrated by ultra-

centrifugation. The concentrated tubes were put into a density gradient of 2% (w/v) sodium cholate

(Sigma) in Optiprep Density Gradient Medium (Sigma) and ultracentrifuged again, resulting in the

formation of distinct bands. The top two bands (which were pink and green, indicative of a high

proportion of semiconducting CNTs) were harvested using a commercial fractionator (BioComp

Gradient Station) and were used in this study.

We also dispersed CNTs in 1-cyclohexyl-2-pyrrolidone (CHP), a nonconducting solvent. This

was done by sonicating 3-5 mg of the previously mentioned CNT soot in ∼10 mL CHP for 2 hr.

The resulting dispersion was diluted in CHP or water for use in DEP experiments.

2.3 Dielectrophoresis

A signal of amplitude 1-20 Vpp (Volts peak-to-peak) and frequency 50 kHz was generated using

either an HP 3311A signal generator or an SRS 830 lock-in amplifier and electrically connected
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F E
A E FA

G1

D1

G2

D2

Figure 2.3 Geometries used for direct DEP experiments and for experiments to determine
how the resistance between FEs (left) and between an FE and a DE (right) scaled as
dimension F was varied between 0.5 - 100 µm. Dimensions G1, G2, E, D1, and D2 were
0.5, 10, 20, 100, and 1820 µm, respectively. The magnitude of A+E+F was held at 1 mm.
The width of the long A and E electrodes was 1 µm. The configuration on the left, with
F = 100 µm, was used for direct DEP experiments.

to the DEs with micromanipulators. Two methods were used to perform DEP. In the first, the

die containing the electrodes was covered in deionized water and a 2 µL drop of the previously

described suspension added directly above the trap. In the second method, the CNT suspension

was diluted in water and a ∼30 µL drop was added to the dry FPD microelectrodes. In both

methods, the micromanipulator probes were removed after 60 s and rinsed in deionized water (for

water-based suspensions) or N-methyl-pyrrolidone (NMP) and isopropanol (IPA) (for CHP-based

suspensions). For water-based CNT solutions, deionized water was added to the dish containing

the sample to flush the CNT solution out, and the sample was then rinsed briefly in a stream of

deionized water and dried. For CHP-based solutions, the sample was taken from the dish and was

rinsed in IPA.

DEP was also performed by directly driving electrodes of size and shape similar to the FEs used

in our FPD experiments. To avoid displacing a large volume of solution by inserting a probe im-

mediately above the electrodes, we fabricated insulated leads connecting the electrodes to bonding

pads as shown in figure 2.3.

For both FPD and direct DEP, captured CNTs were imaged with a Dimension V AFM (Bruker)
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A B

Figure 2.4 A) Needles were pressed into a stand made of aluminum foil and the nail polish
brush lowered directly through the needle apex. B) The brush was removed horizontally.
The sharpness of the needle apex caused the polish to wick away, leaving a very small
region of the apex uncoated.

in tapping mode. Height, phase, and amplitude data were taken.

2.4 Electrical Measurements

2.4.1 Probe Modification

Micromanipulator probes used in electrical measurements were modified by coating them in an

electrically insulating fingernail varnish (Orly International) as described in figure 2.4. The varnish

was allowed to dry for several hours and the coating procedure repeated until the exposed apex

measured less than 50 µm via SEM (see figure 2.5). If the apex was over-coated with a thin layer,

probes were inserted into the micromanipulator and rubbed against the sample surfaces until they

became electrically conductive. If the apex was over-coated in a thick layer it was cleaned in

acetone and dried, and the coating procedure was repeated.
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Top View

Side View

Figure 2.5 Left: Cartoon image showing how the needles were mounted to position and
stabilize them for SEM imaging. The aluminum foil basket both served as a carrying case
as well as conductive medium to ground the needles during imaging for high contrast.
In this way the exposed conductive region of the needle could be easily seen through the
insulating nail varnish. Right: SEM micrograph of a micromanipulator probe insulated at
all but the apex.
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2.4.2 Impedance Measurements

Impedance measurements were taking using an HP4192A impedance analyzer and programs writ-

ten in LabVIEW, which are included in Appendix A.1.

To measure the impedance between the various electrodes for use with our lumped element

analysis model (which is discussed in Section 4.3.1), a variation of geometry 1 described in Sec-

tion 2.1 was fabricated (see figure 2.6). A polydimethylsiloxane (PDMS) and insulated leads con-

necting the FEs to large bonding pads were employed for to: 1) avoid directly inserting the probes

above the FEs (which would displace a large volume of solution), and 2) avoid coupling the probes

on the FEs to the solution itself (as then the measurement would be dominated by the resistance

between the probes through the solution rather than measuring the impedance from electrode to

electrode).

To determine how the resistance between electrodes scaled with FE size, impedance measure-

ments were taken using the electrode geometries in figure 2.3. This geometry was specifically

needed for measurements involving FE sizes smaller than ∼ 30 µm, because the probe was larger

than the FE and could not be contacted accurately.

To measure fluid conductivity, 2-point measurements were taken using an HP4192A impedance

analyzer with a driving signal of 1 Vrms at a frequency of 50 kHz. The analyzer was connected to

a pair of 1 mm diameter nickel wires inserted into opposite ends of a 1.1 mm diameter heparinized

glass capillary tube (Chase Scientific Glass) as shown in figure 2.7. The wires were pushed in the

tube until ∼1 mm apart, and the tube was suspended slightly in the air by hanging the connecting

wires such that there was a slight downward tilt. A micropipette was touched to the top of the

tube and ∼30 µL of the fluid to be measured was slowly inserted until the fluid flowed past the

junction between the two wires. The wires were pulled apart in 1 mm intervals and the impedance

measured at each distance. The conductivity was then extracted by modeling the measurement as

a cylindrical volume of fluid contacted at both end by the metallic contacts.
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Figure 2.6 Cartoon image of the PDMS dam configuration used in impedance and voltage
measurements. Leads were drawn from the top two FEs of the array to bonding pads
located approximately 1 mm away from the device and covered in alumina to insulate
them from the surrounding solution. A 5 mm x 0.1 mm x 1 mm dam was carved out of
a sheet of PDMS using a razor blade and inserted over the leads to keep the probes from
contacting the solution. A series of 2-point measurements were made between various
electrodes to determine the lumped parameters (for example, the resistance between a DE
and an FE was measured by connecting the impedance analyzer to the probe on one of
the DEs and the probe behind the dam connected to the closest FE).
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Measurement region

Glass capillary tube

Lead to impedance analyzer

Lead to impedance analyzer

Bent nickel wires

Fluid inserted 
here

Figure 2.7 Cartoon image of apparatus to measure fluid conductivity.
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Figure 2.8 Schematic for high input impedance AC potentiometer.

2.4.3 Voltage Measurements

I custom-built a potentiometer to accurately measure the AC voltage drop between electrodes with-

out loading the FPD circuit. To realize this, an IC instrumentation amplifier with a large common-

mode rejection ratio (INA111AP-ND, Burr-Brown) was utilized for accurate measurements. To

yield low parasitic input capacitance even at high frequencies, a voltage divider constructed from

hand-matched carbon-composition resistors was used as a buffer, and the circuit was mounted

inside of a rigid nonmetallic box. A schematic is shown as figure 2.8. After construction, the mea-

sured input capacitance was less than 0.3 pF. Measurements were performed on electrodes with

insulated leads and a PDMS dam as described in Section 2.4.2. The LabVIEW program used to

read data from the meter is included in Appendix A.1.



Chapter 3

Results

3.1 Geometry and Voltage Dependence

We initially expored our new FPD geometry by varing the voltage applied to the DEs to determine

how the number of CNTs localized in each trap changed as a function of applied voltage. Figure

3.1 shows that a minimum voltage of ∼8 Vpp applied to the DEs was necessary to localize CNTs

in FPD experiments. We also performed experiments in which the FEs were directly driven (as dis-

cussed in section) to compare with experiments from the literature. Figure 3.2 shows that slightly

larger than 3 Vpp was necessary for CNTs to be localized in these experiments. In both cases, be-

yond this threshold voltage, the average number of localized CNTs increased with applied voltage,

though it can be seen that the slope of this increase was dependent on which method was used to

insert the CNT solution. When the CNT solution was added to the dish of water (see Section 2.3),

the slope was highly dependent on the size of the FEs, but FE size had little or no effect on the

slope when the "premixed solution" was dropped onto dry electrodes.

Varying the size of the "fingers" between FEs (see figure 2.1) also changed the number of

localized CNTs. Figure 3.3 shows traps of geometry 8, where the FE finger linewidth was 0.1 µm

19
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Figure 3.1 Comparison of the two methods of FPD used in this study: when the CNT
suspension was added to the die in a dish of water, and when the suspension was diluted
in water and added to dry electrodes. Each data point represents an average of ∼ 10
devices. Error bars have been ommitted for clarity.

Figure 3.2 Results of experiments applying a voltage directly to 100 µm square FEs,
using the geometry of figure 2.3. This behavior is very similar to the results of FPD on
these FEs (see figure 3.1), but the voltage threshold was much lower and the slope nearly
three times steeper.
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Figure 3.3 SEM (A) and AFM height images (B-C) of geometry 8 devices. These devices
captured only 2-3 CNTs between each pair of electrodes, in contrast to the larger devices
shown in figure 3.4.

Figure 3.4 AFM phase images of geometry 5 devices with 1 µm wide FE fingers. While
the devices with smaller FE fingers shown in figure 3.3 captured at most 4 CNTs, these
larger devices often captured many more CNTs. Depending on the voltage and FE size,
anywhere from 0 to 33 CNTs were observed captured in these larger devices. Images are
2 µm wide on a side. Irregularities in electrode shape were due to writing glitches during
electron-beam lithography exposure.

wide. In over 100 devices of this size, there were never more than ∼ 4 CNTs bridging the gap.

In contrast, figure 3.4 shows several traps of geometry 5, where the FE finger linewidth was 1 µm

wide. The larger devices captured up to 33 CNTs.
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3.2 Time Dependence

After performing DEP and imaging to count CNTs, DEP was performed again on the same devices

to determine whether more CNTs could be localized. On over twenty geometry 1 devices, traps

with large numbers of tubes captured few, if any, more (figure 3.5 A-B), while traps with few tubes

captured many more (figure 3.5 C-F).

To then determine whether CNT localization was a function of the duration of the driving

signal, we performed DEP for varying amounts of time rather than the usual 60 s. For geometry

1 devices, the number of localized CNTs increased with time, but the rate at which CNTs were

captured diminished with time (see figure 3.6 A, E).

To investigate whether the rate diminished due to a local absence in concentration, diffusion

effects were calculated as follows. At room temperature, for CNTs of length L = 1µm and diameter

d = 1 nm, and fluid viscosity η = 1 mPa-s, the diffusion coefficient [31] is:

D =
kBT ln(L/d)

4πηL
≈ 2.3 µm2/s. (3.1)

Using this diffusion constant, the characteristic length over which CNTs can diffuse during the

60 s time scales of our experiments is therefore 2
√

Dt ≈ 23.5µm. From optical absorbance data,

we can estimate that our nanotube density is on the order of 109/µL, or 1/µm3. At this density, a

hemispherical region of radius equal to the diffusion length contains greater than three orders of

magnitude more CNTs than were ever trapped in our devices. We conclude from this calculation

that the decrease in the CNT localization rate is not diffusion limited.

3.3 Impedance Results

Figure 3.7 is a plot of impedance data taken on geometry 1 devices before and after dielectrophore-

sis, both with and without CNT solution. Contrary to the report of Vijayaraghavan et al., which
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Figure 3.5 AFM height data; images are∼2 µm on a side. A,C,E: After the first iteration
of FPD. B,D,F: After performing FPD on A,C, and E, again, respectively. These images
are representative of experiments performed on over twenty electrodes. Irregularities in
electrode shape were due to writing glitches during electron-beam lithography exposure.
For these experiments, where the purpose was to determine whether CNTs could be lo-
calized on devices after DEP had already been performed once, this did not appear to
compromise results.

showed an insignificant change in trap impedance before and after dielectrophoresis, our measure-

ments showed a significant decrease (∼30%) in impedance upon CNT localization. In making

these measurements, we observed that standard probe station probes compromised measurement

results in fluid. Specifically, it was essential to modify the probes with insulating material every-
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Figure 3.6 Results of experiments in which the duration of DEP was varied on geometry
1 devices. The rates in E-F were obtained by dividing the average number of captured
tubes by the duration of DEP. As discussed in Section 4.1, the outliers referred to are
those devices which erratically captured far fewer tubes than average. While there is
significant variation in all FPD experiments, it is clear from comparing the two sets of
data in this figure that removing these outliers produces reliable counting statistics. From
the agreement shown in figure 3.6 D of standard deviation to the square root of CNT
number, we infer that CNTs are randomly distributed from trap to trap as they are pulled
from solution.
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Figure 3.7 Impedance across the trap region of geometry 1 devices, as measured with
probes electrically insulated everywhere but the apex. Red: in the absence of CNT sus-
pension, the FEs are only capactively coupled. Green: after CNT suspension was put on
the surface, but before DEP was performed, resistive coupling dominates the impedance
between the FEs. Cyan: CNT localization caused trap impedance to drop (approximately
30% at 50 kHz). Blue: when the trap was dried, the blue curve shows a purely resistive
CNT impedance of approximately 300 kΩ. Purple: a measurement in surfactant solution
with standard (e.g., not coated) probes is also shown for reference. While the particular
trap this measurement was performed on was not imaged, other traps that were run under
the same conditions captured ∼4 tubes.

where but at the apex. Coated probes gave trap impedances of ∼125 kΩ at 50 kHz, whereas bare

probes produced only ∼16 kΩ.

Figure 3.8 is a measurement of the impedance between electrodes as FE size was scaled down-

ward. The geometries sketched in figure 2.3 were used in these measurements. As FE area de-
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Figure 3.8 Measured resistance between an FE and a DE (left) and between FEs (right) as
a function of FE area. The geometry of figure 2.3 was used for these measurements. This
data indicates that as FE area decreases, the resistance between the various electrodes
increases.

creases, the resistance increases as would be expected from a spreading resistance model. For

a given CNT resistance, this implies that localizing a CNT would cause a greater change in

impedance upon localization for smaller FEs.

3.4 Spatial distribution of CNT localization

AFM data showed that CNTs were localized primarily in the trap region between the FEs, including

tubes that both partially and completely bridged the gap. CNTs also were also observed on the FE

surface with a density that decreased with distance away from the gap. Localized CNTs were

observed in the DE to FE gap when the gap was 4 µm or smaller, and occasionally near sharp

areas such as narrow electrodes or corners of bonding pads.

Depositing aluminum oxide (alumina) was sufficient to prevent CNTs from attaching in un-

wanted areas. For example, when we deposited an alumina strip over the gap between the DEs

and the FEs, CNTs were prevented from making electrical connection and "shorting" the FEs to

the DEs. When alumina was deposited to partially cover the FEs for the experiments described in
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1 µm Alumina SiO2

CNTs

Figure 3.9 Composite AFM amplitude image of region near the trap. A large portion of
the region is covered in alumina (left). Bare areas of the FEs (which run left and right
through the center of the image) can be seen in the immediate vicinity of the trap. A
large mat of CNTs has been localized on all of the other parts of the FEs not covered in
alumina.

Section 4.3.2, CNTs were only localized on the exposed portion of the FE, as shown in figure 3.9.
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Chapter 4

Discussion

4.1 Elucidating the Shutoff Mechanism

I will now discuss our experimental results and their implications for furthering parallel dielec-

trophoretic localization of CNTs. At first glance, the raw data in figure 3.6 A shows standard

deviations nearly as large as the average number of CNTs. However, the results of the experiments

presented in figure 3.5 indicate that some devices capture far fewer tubes than expected from the

average (for example, the device in figure 3.5 E). Figure 4.1 shows a histogram of the number

of captured tubes in devices where DEP was performed for 540 s. While there is a fairly even

distribution centered around the average of 22 CNTs, there are two devices which erratically cap-

tured very few tubes. These devices may be the result of large contamination particles localized

to the trap or bubbles formed in the trap due to hydrolysis; such phenomenon would prevent CNT

deposition during DEP, but would be removed during the rinse step.

In addition to the fact that these devices lie far outside the normal distribution of tubes, remov-

ing these outliers from the data can further justified by examining the number of captured CNTs vs

standard deviation. When the outliers are removed from this data, the standard deviation goes very

29
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Figure 4.1 Histogram of data showing the number of CNTs localized in each trap when
DEP was performed for 540 s, the average of which forms one of the data points in figure
3.6 A. The data is distributed fairly evenly around the average of 22 localized CNTs,
except for the two devices which captured an unusually low number of CNTs at the left.

closely as the square root of tube number (compare figure 3.5 C and D). This relationship would

be expected if CNTs were randomly distributed from trap to trap. From this examination we can

infer that removing devices with unusually low numbers of CNTs produces reliable data, even for

these small sample sizes. For reference, figure 3.6 B and F show the average tube number vs. time

and the rate vs. time replotted with these outliers removed.

The results presented in Section 3.2 indicate that if given enough time, CNTs will continue

to deposit until the trap region is generally covered with a rough layer of tubes. This behavior is

consistent with the self-limiting mechanism postulated by Vijayaraghavan in 2007 [24]. However,

contrary to their assertions, our data indicates that junctions which capture multiple tubes are not

always the result of simultaneous deposition. Furthermore, the data indicates that the DEP shutoff

mechanism is not always binary, meaning that a device is not completely "on" or completely "off"

after the first CNT is localized. Rather, the repulsive force generated upon CNT localization is

only local in its effects, and CNTs can continue to deposit preferentially on areas not immediately

occupied by other CNTs. Figure 4.2 is a finite element analysis simulation illustrating that in
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Figure 4.2 Finite element analysis simulation results representing the direction (not mag-
nitude) of the DEP force when CNTs are partially covering a wide aspect ratio electrode.
In this y-z slice cut taken at the midpoint of the trap, six CNTs (represented by the small
black squares at points B, D, and F) point into the plane of the page and sit on top of a
1 µm wide electrode (whose extent is represented by the white rectangle) at the bottom
of the image. Arrows pointing up and down represent a repulsive and attractive force, re-
spectively. Immediately above points B, D, and F the nanotubes cause a repulsive force,
with the extent of the repulsion at D larger than at B and F because there are four CNTs
at D. At points A, E, and G the force is attractive toward the bare region of the electrode.
Though there is a bare region at point C, the CNTs at B and D are close enough that the
force is repulsive, illustrating that more CNTs can continue to deposit preferentially on
areas not immediately occupied by other CNTs.

regions of high CNT density the DEP force is repulsive but in regions of lower CNT density an

attractive force is still present.

The local nature of the repulsive force suggests that trap width is the determining factor for the

maximum number of CNTs that can be localized at each junction. Comparing the results in figures

3.3 and 3.4 shows that far fewer CNTs were localized in the 0.1 µm wide devices than in the 1 µm

wide devices. In fact, the wider geometry 6 devices captured an average of 7.7 ± 2.9 CNTs, while

the narrower geometry 9 devices captured 2.8 ±1.3 CNTs. These observations are consistent with
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the observations of Vijayaraghavan et al. in which no more than ∼4 CNTs were localized on their

0.1 µm wide electrodes.

This fact that narrow trap electrodes capture few tubes can also be seen from the data taken on

geometry 4 devices in figure 3.1. The data shows that these devices, which have 0.1 µm "fingers"

at the trap region, captured very few CNts even for very large applied voltages. Furthermore,

while the other data in the figure show a linearly increasing trend, it appears that the trend for the

geometry 4 devices begins to "cap out" at large applied voltages. This may be an indication that

if narrow devices are only capable of capturing few tubes, this maximum is asymptotically being

reached as voltage increases.

4.2 Scaling to Smaller Sizes

In the geometry we present in this work, the coupling between the DEs and the FEs is dominated by

fluid conductivity (figure 3.7), which circumvents the requirement of previous geometries to have

FE area large enough to achieve capacitive coupling to the substrate. This allowed us to fabricate

FEs smaller than the minimum limit previously achieved in the literature (as discussed in section

1.3). Additionally, our lower limit was only due to lithographic limitations, and we fully expect

that single- or few-CNT devices can continue to be obtained as this geometry is scaled downward.

In fact, fininte element analysis simulations using our geometries showed that as electrode dimen-

sions were reduced, the magnitude of the DEP force increased, implying that less voltage may be

sufficient to achieve the same results.

While most of the geometries employed for CNT-counting purposes consisted of ∼15 traps

per set of DEs and covered less than 1 mm2, we have also fabricated a geometry that was used

to capture CNTs on a greater-than 1 cm2 scale. These devices consisted of sets of 5 x 1 µm FEs

arranged between interdigitated 10 µm wide DEs, separated by a 2.5 µm gap with 3 µm spacing
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Figure 4.3 A zoomed in portion of the data presented in figure 3.7. The X’s mark calcu-
lated data points of adding the dry measurement of CNTs in parallel with the measurement
of electrodes in solution without CNTs. The agreement of this calculation with the mea-
sured data indicates that these measurements are valid and that the CNTs can cause large
changes in impedance bewteen the FEs as they are localized.

between FEs. This corresponds to a device density of ∼1 million devices per cm2, illustrating that

not only can this geometry be used to scale individual CNT devices smaller, but can maintain high

device density over large surface areas.

4.3 The Search for an Additional Shutoff Mechanism

Figure 4.3 highlights a portion of the impedance spectroscopy data from figure 3.7. From a concep-

tual standpoint, adding the measured impedance of the electrodes with solution added but without

localized CNTs "in parallel" with the measured impedance of the dry localized CNTs should be

equivalent to the measurement of the electrodes in solution with CNTs. Figure 4.3 shows this

calculated data overlaid on the measurement. The agreement is quite accurate, indicating that the

measurements are a valid representation of the system we are measuring.
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While not enough experimental details were provided to reproduce the impedance spectroscopy

measurements of Vijayaraghavan et al., which implied that CNT localization produces an insignif-

icant change in impedance, our measurements with coated probes in figure 3.7 show that CNT

impedance is quite significant in our system. This is likely due to our use of coated probes, which

decrease the contact area between the probe and the fluid by several orders of magnitude.

This discussion indicates that in addition to the gradient reversal observed and discussed earlier,

an additional shutoff mechanism may be possible: if localized CNTs significantly change the

impedance, it is possible that in certain regimes localized CNTs could cause a reduction in voltage

on the FEs large enough to "turn off" the DEP force. This is especially relevant considering the

results of figure 3.1, which shows that a reduction in voltage will lower the number of captured

CNTs and, in fact, could entirely shut off the device if the voltage drops below the threshold

required for localization. Thus, while our measurements show that it is not likely that the large

contact resistance between the localized CNTs and the electrodes would entirely short the FEs, a

binary shutoff may still be possible if a CNT localization causes a change in potential enough to

dip below the threshold. This would essentially be a way to enable the superb results of the limiting

resistor experiments discussed in Section 1.2 to be used on a massively parallel scale.

This prospective mechanism is even more interesting considering our measurements of the

resistance between electrodes as a function of FE area, presented as figure 3.8. As earlier noted in

figure 3.7, the localization of ∼300 kΩ of CNTs caused a ∼30% change in impedance for large

FE area. Figure 3.8 shows that as the FEs are scaled to smaller sizes, the resistance between the

electrodes increases, implying that nanotube localization will cause a greater change in impedance

and have a greater chance to reduce FE voltage below the threshold, causing binary shutoff.
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Figure 4.4 Circuit representation of an FPD device. To model CNT localization we noted
that the dielectrophoretic force is proportional to the voltage across the FEs, which we
calculated using lumped element analysis. The gaps and fluid between electrodes were
treated as capacitors and resistors, respectively. Subscripts abbreviate electrodes: D is
driving, F is floating, and S is substrate; for example, CFS is the capacitance between
an FE and the substrate. Rtrap denotes the variable resistance of the carbon nanotube(s)
captured in the trap.

4.3.1 Lumped Element Analysis Modeling

We modeled the system impedances using lumped element analysis as shown in figure 4.4. The

dielectrophoretic force is proportional to the gradient of the electric field intensity as shown in

equation 4.1 [17].

F =
α

2
∇|E|2 (4.1)

The term α in this equation is the polarizability of a carbon nanotube in an electric field.

The driving electric field can be approximated as a dipolar field that is proportional to the

voltage difference across the FEs (i.e., across the trap). By approximating the trap as a dipole

of length d with charge +Q on one FE and -Q on the other, the capacitance between the FEs

is expressed as CFF=Q/Vtrap, where Vtrap is the voltage difference across the FEs. The dipole

moment is then expressed as ~p = Q~d = (CFFVtrap)~d. The gradient of the electric field intensity for
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this dipole can then be calculated (see Appendix A.2), and equation 1 becomes:

F =
αC2

FFV 2
trap

16π2ε2
0

∇

∣∣∣∣∣3r̂(~d · r̂)− ~d
|~r|3

∣∣∣∣∣
2

(4.2)

Here r is the distance between the center of the trap and the carbon nanotube, and r̂ is the unit

vector of r.

This short range force is proportional to |Vtrap|2, which we calculated using lumped element

analysis. The gaps and fluid between the various metal electrodes were treated as capacitors and

resistors, respectively, and the carbon nanotube was treated as a variable resistor. A schematic of

this simple circuit is shown in figure 4.4B. The voltage difference across the FEs was calculated in

terms of these parameters (see Appendix A.2):

|Vtrap|2 =
β V 2

app

(2/Rtrap +ζ )2 +ξ 2 (4.3)

where Vapp sinωt is the voltage applied to the DEs, the reactance terms Xi = 1/(ωCi), and

β =
1

R2
DF

+
1

X2
DF

, ζ =
1

RDF
+

2
RFF

, and ξ =
1

XDF
+

2
XFF

+
1

XFS
(4.4)

are geometrical constants. The other variables are identified in figure 4.4B.

We have compared this model with several aspects of our experimental results. Figure 3.1

indicates that no CNTs were captured below Vapp = ∼8 Vpp. Equation 4.3 implies that if there is

a threshold in Vapp then there is also a threshold in Vtrap. Using resistance and capacitance values

directly measured on the modified geometry 1 devices of figure 2.6, we calculate Vtrap,threshold =

3.5± 0.17 Vpp. We tested this threshold by applying a driving voltage directly to the FEs, and

observed a threshold onset at slightly larger than 3 Vpp (see figure 3.2). This is in good agreement

with the calculation.

Our observation of a voltage threshold (figures 3.1-3.2) is similar to a recent report of a min-

imum electric field necessary to localize CNTs [32]. However, dividing the voltage threshold of
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Figure 4.5 Plot of equation 4.3 with respect to Rtrap capacitance and resistance values
measured using the geometry of figure 2.6. As a device localizes CNTs Rtrap decreases.
Once Rtrap is sufficiently low |Vtrap|2 (proportional to the dielectrophoretic force) is small
and the device no longer attracts tubes.

∼3 Vpp for directly driven FEs by the gap size of the trap (∼500 nm) to calculate an electric field

strength gives a magnitude approximately 6 times larger than reported value in the literature.

Equation 4.3 shows how Vtrap changes as CNTs are captured in FPD, which we plot as a

function of Rtrap in figure 4.5. Before we start dielectrophoresis, Rtrap is infinite. As CNTs are

localized, Rtrap decreases, consequently reducing |Vtrap|2. When Vtrap drops below the threshold,

no more tubes are captured.

Using resistance and reactance values measured on geometry 1 devices, equation 4.3 predicts

an expected change in voltage of∼20% upon CNT localization. However, monitoring trap voltage

during DEP produced no observable change in voltage during DEP (figure 4.6). As the data of

figure 3.6 suggests that CNTs are continuously localized for several minutes after DEP begins, it

is not possible that all CNT localization took place as the solution was added. Despite the ∼30%

change in impedance, the expected voltage change was not observed.
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Figure 4.6 Plot of measured voltage on the FEs during DEP. The voltage on the DEs was
14 Vpp. Despite millisecond temporal resolution no voltage changes larger than a few mV
were detected, though the lumped element analysis model predicted changes on the order
of 500 mV.

4.3.2 Finite Element Analysis Modeling

While the lumped element analysis model predicted some things very well, we did not observe

one of its key predictions. We conducted finite element analysis simulations using Comsol Multi-

physics (included in Appendix A.2). From initial simulations it became clear that we were missing

a significant piece in our lumped element analysis: the fluid potential above the electrodes was

dominated by a gradient between the micromanipulator probes used to drive the system, as shown

in figure 4.7. Because the fluid potential varies continuously across the region between the driving

electrodes, lumped element analysis may have been conceptually valuable but was not well-suited

to quantitative analysis of this problem.

The fact that there is a gradient between driving electrodes also explains why we did not ob-

serve a voltage change on the FEs upon CNT localization. The potential on the FEs indeed is

affected in part by the coupling due to CNT localization, but it is also governed by the large sur-
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Figure 4.7 Finite Element Analysis simulation of the potential surrounding the geometry
1 system. It is clear to see the gradient in fluid potential between the driving electrodes
and that the potential on the FEs is held by a sort of "weighted average" of the fluid
potential immediately above them.
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face area of metal in contact with the fluid. When no CNTs are present in the simulation, the

voltage on the FEs was essentially a "weighted average" of the fluid potential immediately above

them. Unless the CNT resistance was remarkably low, FE potential was essentially fixed by the

high conductivity of the fluid.

These simulations sparked a new direction in our search for an additional shutoff mechanism.

As earlier noted, a group of CNTs with impedance 300 kΩ caused a ∼30% change in impedance

for geometry 1 devices (figure 3.7. Our simulations showed that if the fluid conductivity were

lowered, 300 kΩ of CNT resistance would cause a very large reduction in Vtrap. Alternatively, if

the geometry were altered such that coupling of the FEs to the fluid was greatly diminished, the

coupling to each other through the CNTs would become much more important.

From earlier data taken in our group, only 2 CNTs (of 23 measured) had resistance larger than

1 GΩ. We therefore investigated geometries in which changes in Vtrap were larger than 40% even

for contact resistances up to 100 MΩ, with a larger change for CNTs with less contact resistance.

Because a ∼20% change in Vtrap would be more than sufficient to cause shutoff to occur, in these

regimes no more than a few CNTs should ever be localized before statistics would indicate that

one well connected CNT would shut the device off.

These geometries were created by depositing alumina across the middle of the FEs, leaving

small regions of the FE uncovered near the DE-FE gap and the trap (see geometries 2, 6, and 9 of

figure 2.1). It was noted that for FE areas less than∼10 µm2, alumina was not necessary for voltage

changes upon CNT localization, though it did increase the magnitude of the change and improved

the drop for CNTs with high contact resistances. Despite the results of our modeling, however,

figure 4.8 A is one device representative of many that captured very many CNTs, indicating that

the expected shutoff mechanism was not present.

Another approach we investigated was adding the insulating solvent CHP to our solutions, as

described in Section 2.2. Simulations showed three regimes as solution conductivity dropped: the
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Figure 4.8 AFM phase data showing many localized CNTs. A) Using geometry 6 to
decouple the FE from the fluid in an attempt to more closely couple the FEs together after
CNT deposition. B) Using highly resistive fluid to have a more dramatic effect upon CNT
deposition. These results were typical of many devices, indicating that binary shutoff was
not operative under the tested conditions.

first was that in highly conductive solution the FE voltage did not change at all, as previously

discussed; the second is that there would be a large voltage change as we were expecting to find;

and as the conductivity dropped low enough the electrodes were no longer resistively coupled

and the FE voltage was no longer above the voltage threshold in the absence of localized CNTs.

A series of dilutions was used to make the solution less conductive, including CNTs dispersed

directly in CHP, which had a measured conductivity less than 5 µS/m. Though this conductivity

was so low that the experiments should have been in the third regime, figure 4.8 B shows that

many CNTs were localized. The voltage drop across the FEs must have been above the threshold

voltage, but apparently there was not a change in voltage large enough to cause shutoff behavior,

even in incredibly resistive solution.

While these results don’t detract from our conclusion that electrode width is the determining

factor for the number of CNTs that are localized, the discrepancy between the experiments and our

computational results is too striking to ignore. Either a significant factor has been neglected in our
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modeling, or else something else is responsible for the behavior we have observed. For example,

there could be mobile ions in solution that raise the conductivity very near the surface, or perhaps

plasmon effects from the gold surfaces could be interfering with DEP. These results invite further

investigation in the study of dielectrophoresis.
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Conclusion

I have here presented results demonstrating that the number of localized CNTs has a nonlinear de-

pendence on applied voltage, the length of time DEP is performed, and trap electrode width. These

results, made possible using a geometry that allows further scaling of massively parallel FPD, elu-

cidate the local and non-binary nature of the self-limiting mechanism governing the maximum

number of localized CNTs. With recent discoveries about carbon nanotube purifications [20], this

work enables the fabrication of densely packed few- or many-CNT devices of only one electronic

type, on both non-conducting or conducting substrates.

We have investigated an alternative shutoff mechanism based on our data regarding impedance

changes upon CNT localization. Our modeling indicated that significant impedance changes would

cause shifts in trap voltage low enough that devices would no longer attract CNTs. Finite element

analysis modeling showed that in the geometries we explored, these changes would be greater for

lower solution conductivity. While much has gone into this investigation of an alternative shutoff

mechanism, our results are definitive: the number of CNTs is no more limited in non- or weakly

conductive solution than in highly conductive solution. It is apparent that an effect not included

in our modeling is operative and perhaps dominant, which prevented the voltage on the FEs from

changing dramatically as CNTs were localized.

43
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Appendix A

LabVIEW Progams and Modeling Code

I will here include brief descriptions and images of the labVIEW software and modeling code used

for this research. Digital copies can be found at http://dl.dropbox.com/u/4938827/Modeling.html.

A.1 LabVIEW Programs

• Fastsweep is based on the National Instruments provided instrument drivers that controls the

HP4192A impedance analyzer. It allows you to measure impedance while either frequency

or voltage is swept, with a variety of options. The data is then saved to a spreadsheet.

• Realtime Impedance is software that reads output from the HP4192A impedance analyzer as

a function of time and records the data to a spreadsheet. The program formats the raw data

in an intelligible format according to the type of information read from the instrument.

• Realtime Voltage is software that reads output from the potentiometer (detailed in Section

2.4.3) via a NI-DAQ card.

Because impedance sweeps are limited by instrument’s measuring capabilities at low frequen-

cies, Fastsweep was only mildly optimized optimized for speed. However, because the temporal
45

http://dl.dropbox.com/u/4938827/Modeling.html


46 Chapter A LabVIEW Progams and Modeling Code

resolution of the voltage measurement provided information about the physical aspects of DEP, the

two pieces of "realtime" software were highly optimized for speed.

A.2 Modeling Code

• DEP_equations is a Maple worksheet in which we derived some of the equations governing

the DEP fields and their consequent force, discussed in section 4.3.1.

• Kirchoff is a Maple worksheet that solves Kirchoff’s Loop and Junction laws for the trap

voltage in our lumped element analysis model, using the circuit in figure 4.4.

• Sliding Curves is a Mathematica notebook that allows prediction of the number of CNTs

using the voltage equations from Kirchoff.

• Comsol Multiphysics model files are included in a zip package available for download.

• CNT_diffusion_spherical is a Matlab script that solves the diffusion equation in spherical

coordinates. While not used in this work, it provides a visual representation for how fast

diffusion occurs on the relevant length scales in our geometries.
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Figure A.1 The front panel setup for running Fastsweep. This program allows you to
control impedance or voltage sweeps taken using the HP4192 with a variety of options.
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Figure A.2 This program plots data taken with the impedance spectrometer as a function
of time and saves it to a spreadsheet.
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Figure A.3 This program plots data taken with the voltage measuring circuit of figure 2.8
via the lock-in amplifier feed into the NI-DAQ card. The signal is scaled by a calibration
factor to compensate for the gain of the meter.



50 Chapter A LabVIEW Progams and Modeling Code

Figure A.4 Mathematica’s capability of manipulating variables real-time was used to
determine how the various lumped parameters changed the trap voltage.
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