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ABSTRACT

Electron screening and disorder-induced heating in ultracold neutral plasmas

Mary E. Lyon
Department of Physics and Astronomy

Master of Science

Disorder-induced heating (DIH) is a nonequilibrium, ultrafast relaxation process that occurs
when laser-cooled atoms are photoionized to make an ultracold plasma. Its effects dominate the
ion motion during the first 100 ns of the plasma evolution. Using tools of atomic physics we study
DIH with ns time resolution for different plasma densities and temperatures. By changing the
frequency of the laser beam we use to probe the ions, we map out the time evolution of the velocity
distribution. We can compare this to a fluorescence simulation in order to more clearly determine
the relationship between the fluorescence signal and the velocity distribution. In this study we
observe and characterize effects due to electron screening on the ions during the equilibration
process.

Keywords: ultracold plasma, disorder-induced heating, electron screening, strong coupling, strongly
coupled plasmas, atomic physics
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Chapter 1

Introduction

Studies of ultracold plasmas are motivated in part by the insight they can provide into similar

plasma systems. Due to their large electrical potential energies and comparatively small kinetic

energies, ultracold plasmas fall into a regime of plasma systems which are called "strongly cou-

pled." Other strongly coupled plasmas include laser-produced fusion plasmas [1], laser-cooled ion

crystals [2], dusty plasmas [3], and a variety of astrophysical systems [4]. Experiments with ultra-

cold plasmas allow us to probe strongly coupled Coulomb systems under a wide range of tunable

initial conditions using a table-top apparatus and optical detection techniques. This is because

plasma evolution occurs on the time scale of the inverse plasma frequency ω−1
p where the ion

plasma frequency is ωp = (ne2/miε0)
1/2 [5–8], and n is the density, e is the fundamental charge,

mi is the ion mass, and ε0 is the permittivity of free space. For high-density plasmas, this time scale

is on the order of femto- or attoseconds. The relatively less dense ultracold plasmas evolve on the

nanosecond time scale, which makes it possible to study the plasma characteristics and evolution

directly using commonly employed techniques of atomic physics.

Strong coupling is characterized by the ratio Γ of the electrical potential energy to the kinetic

1



2

energy

Γ =
e2

4πε0aws

1
kBTi

. (1.1)

This ratio is called the strong coupling parameter, where aws ≡ (3/4πn)1/3 is the Wigner-Seitz

radius or the average distance between ions, kB is Boltzman’s constant, and Ti is the ion tem-

perature. Initially this strong coupling parameter is large in ultracold plasmas because the ions

retain the low temperature of the laser-cooled atoms, which are at about 1 mK. However the equi-

librium strong coupling is limited by the relaxation of the ions due to nearest-neighbor interac-

tions [5, 9–12]. Ultracold plasmas are generally created by photoionizing atoms in a magneto-

optical trap (MOT) [13–17]. When the plasma is created, the random distribution of atoms in the

MOT gives rise to spatially uncorrelated ions. Even though the ions have essentially zero kinetic

energy, they have a great deal of electrical potential energy. The ions move to minimize the ex-

cess electrical potential energy, increasing their kinetic energy. This heating mechanism is called

"disorder-induced heating" (DIH) [5,10–12,18] and it raises the ion temperature to the correlation

temperature

Tc =
2
3

e2

4πε0awskB
. (1.2)

On the timescale of the inverse plasma frequency ω−1
p , motion of the ions after the plasma is

created is dominated by nearest-neighbor interactions. The ions oscillate in a local potential that is

determined by neighboring ions and free electrons as they seek to minimize their excess electrical

potential energy.

The goal of this project is to understand the time scale over which DIH occurs and the influence

of electron screening on the DIH process. We map out the velocity distribution of the ions as the

plasma evolves for a range of initial electron temperatures and plasma densities. Experimental

data is compared with simulations of the plasma evolution, which help us better understand the

relationship between DIH and the time evolving velocity distribution. By exploring the plasma

dynamics during this DIH phase we hope to find a way to minimize its effects and increase the
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strong coupling parameter in our ultracold plasmas.

1.1 Plasma characteristics

Plasmas comprise the vast majority of the known universe. These plasmas exist over a wide range

of temperatures Te and densities n. In the low-temperature, low-density regime that ultracold

plasmas occupy, we are concerned with initial electron temperatures as low as 0.5 K and densities

on the order of 1010 ions per cm3, or 1016 per m3. The initial density profile of ultracold plasmas

typically reflect the nearly Gaussian densities of the trapped atoms in the MOT, which density is

given by

n(r) = n0 exp[−r2/2w2] (1.3)

where r is the plasma radius and w is the Gaussian width of the plasma.

After the atoms in the MOT are ionized, the resulting plasma is not confined. As the plasma

expands, the density changes. The time-dependent density profile is given by

n(r, t) = n0 exp[−r2/2w2(t)][w0/w(t)]3, (1.4)

where n0 is the peak density in the plasma, w0 is the initial plasma size, and w(t) =
√

w2
0 − vexpt2

is the Gaussian radius. The expansion velocity vexp ≡
√

kBTe/mi depends on the initial electron

temperature Te, which is controlled by the wavelength of the ionizing laser [14]. It was shown in

Ref. [19] and Ref. [20] that if the initial electron strong coupling parameter is not too high (Γe ≪ 1),

and the plasma density is sufficiently low that the expansion velocity is the rate at which the plasma

expands radially outward in a self-similar (Gaussian) manner. This expansion is driven by the

electron pressure, which is a term used to describe the effect of electrons trying to leave the plasma

and exerting a force on the ions as they try to do so. When the plasma is first created, some of the

electrons have enough kinetic energy to escape the Coulomb potential of the ions. However, with
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the loss of these electrons the Coulomb potential well deepens and traps the remaining electrons,

leaving the plasma largely neutral [21].

An important length scale used in plasma physics is the Debye length, λD = (kBTeε0/ne2)1/2.

Debye shielding, or electron screening, happens when charges are able to redistribute themselves

to screen electric fields and occurs on the length scale of the Debye screening length. When the

Debye length is comparable to the distance aws between ions electron screening reduces the ion-

ion potential energy. The influence of electron screening is seen as a slowing of the ion motion

during the DIH phase and a reduction of the equilibrium temperature [5].

1.2 Theoretical models

Previous work with ultracold plasma simulations showed that ion motion during the DIH phase ap-

peared to be more or less unchanged with increased electron screening [6]. This past work showed

that the nominal ion plasma frequency set the time scale for DIH and that this time scale was es-

sentially unaffected by electron screening. The following sections give the theoretical background

for the relationship between electron screening and the ion plasma frequency.

1.2.1 Nearest-neighbor model

One can imagine two ions fixed on the x−axis at a distance ±a from the origin (see Fig. 1.1). If

a third ion, a test particle, constrained to move only along the x-axis, is placed a small distance x

from the origin and released, it will execute an oscillatory motion. The force on the test particle

can be written and expanded for x ≪ a. The leading non-vanishing term is linear in x, similar to a

harmonic oscillator. From this expression we can extract the oscillation frequency.

If the screening length is λD, the force on the test particle is

F =− e2

2πε0a3
ws

(
1+κ +

κ2

2

)
exp(−κ)x, (1.5)
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Figure 1.1 A one dimensional representation of the nearest neighbor model. The dis-
placed test particle will oscillate about the origin. If the displacement is much smaller
than a, the force on the test particle is linear in x, and can be modeled as a harmonic
oscillator.

where e is the ion charge and κ = aws/λD is the inverse scaled screening length. This force is

linear in x when x ≪ a. If we recognize this as a simple harmonic oscillator, we can write the ion

oscillation frequency as

ω = ωp f (κ), (1.6)

where f 2(κ) = (2/3)(1+κ +κ2/2)exp(−κ) and ωp = (ne2/4πε0)
1/2. Expanding this expression

to the first non-vanishing correction in κ gives

ω ≈ 0.82ωp

(
1− κ3

12

)
, (1.7)

showing that the oscillation frequency in this overly simple one-dimensional model goes down as

κ increases, but that this dependence is very weak.

1.2.2 Molecular dynamic model

A detailed treatment of the initial ion motion in ultracold plasmas is given in Ref. [6]. The early-

time evolution of the velocity distribution is described by Eq. (3) in that paper,

T (t) = T (0)+(t/τ2)
2 +(t/τ4)

4 + · · · , (1.8)
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where T is the effective ion temperature in units of e2/4πε0awskB and t is the time in units of the

plasma period. If we write the effective ion temperature in SI units as T = miv
2
rms/kB and take the

initial ion temperature T (0) = 0, then this equation can be rewritten as

v2
rms =

(
e2

4πε0miaws

)(
ne2

miε0

)(
t2

τ2
2

)
, (1.9)

where we have kept only the leading term in the series. From the simulation, the parameter τ2 =

3/(33−4κ +0.1κ2)1/2. We solve Eq. (1.9) for vrms and find

vrms = 1.1055awsω2
p
(
1−0.1212κ +0.0030κ2)1/2 t

≈ 1.1055awsω2
p(1−0.0606κ −0.0003κ2)t. (1.10)

The inverse scaled screening length scales with electron temperature and density as κ ∝ T−1/2
e n1/6

0 .

In the context of this thesis, the important result of these two models is that the initial acceleration

due to DIH has an extremely weak dependence on κ , meaning that the density dependence of the

DIH process is predicted to be extremely weak, since κ ∝ n1/6
0 .

The previous work outlined in Sec 4.1 of this thesis and described in detail by us in Ref. [22]

indicates that the acceleration of the ions due to DIH depends more strongly on the density and

temperature than predicted by these models. The primary objective of the research for this thesis is

to verify and better understand the results of this previous study. My contribution includes changes

to the experimental setup and the taking and analysis of new data subsequent to our initial publi-

cation [22]. This new data was taken for different initial electron temperatures, which correspond

to different values of κ , and at different detunings of the laser used to probe the ions. The data

was then analyzed to find the rms velocity of the ions as they undergo DIH. We map out the rms

velocity distribution in order to see how the motion of the ions changes for different values of κ

and to see the effect that electron screening has on the acceleration of the ions during the DIH

phase.



Chapter 2

Experimental Setup

2.1 Plasma formation

The process of plasma formation begins in a MOT, where 2× 107 40Ca atoms are laser-cooled

and trapped. We then photoionize the trapped calcium using a two-photon ionization process.

We use absorption and fluorescence spectroscopy to make measurements of the plasma. We have

chosen calcium because the energy level transitions required for trapping, ionization, and detection

correspond to laser wavelengths that are readily attainable (see Fig. 2.1). Calcium is an alkaline-

earth metal, which means that it retains one valence electron after ionization. This allows us to use

optical spectroscopy techniques to measure density and temperature. A basic explanation of the

processes of laser cooling and trapping, ionization, and plasma detection will be provided as well

as details regarding our experimental apparatus.

2.1.1 Laser cooling and trapping

Atom trapping in a MOT is a two-fold process that requires individual but closely related mech-

anisms for cooling and trapping atoms. A velocity-dependent force is produced by means of the

7
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Figure 2.1 Partial energy level diagram for Ca (left) and Ca+ (right). Atoms are cooled
and trapped in the MOT using the 423 nm transition. A repump laser at 672 nm pumps
atoms that fall into the metastable 4s3d 1D2 state back the ground state. The MOT atoms
are ionized using a resonant two-step process at 423 and 390 nm. The electron tem-
perature depends on the amount by which the 390 nm laser photon energy exceeds the
ionization potential. Spectroscopy of the plasma ions uses the 397 nm resonance transi-
tion. Resonantly scattered photons are detected by a fast photomultiplier tube. The Ca+
2P1/2 state (τ = 7.2 ns) has a ∼ 7% decay branch to the 2D3/2 dark state.
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z

y

x

polarized MOT beams
anti-Helmholtz coils

trapped atoms

Figure 2.2 Magneto-optical trap (MOT). Six orthogonal beams, tuned to the 4s2 1S0 →
4s4p 1Po

1 transition in calcium at 423 nm, converge at a point at the center of the trap,
where the magnetic field produced by the anti-Helmholtz coils is zero. The six beams
provide a damping force in all three spatial directions.

Doppler shift. The use of a spatially varying magnetic field produces a position-dependent restor-

ing force via the Zeeman shift. A MOT consists of six orthogonal, counter propagating beams

that are slightly detuned below the atomic resonance frequency, as depicted in Fig. 2.2. In our

experiment, the trapping laser is tuned one atomic linewidth (approximately 35 MHz) below the

4s2 1S0 → 4s4p 1Po
1 transition in calcium at 423 nm. Atoms moving anti-parallel to the laser beam

see the laser Doppler shifted into resonance. The absorption of photons causes the atoms to recoil,

due to conservation of momentum, and effectively pushes the atoms back towards the center of the

trap.

A pair of coils in an anti-Helmholtz configuration creates a quadrupole magnetic field that is

zero at the trap’s geometric center and increases linearly in magnitude in the region of the trap’s
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+ - + 
- 

m = 1

m = 1

m = 1

m = -1

m = -1
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+ - 
0 

Figure 2.3 A one-dimensional representation of Zeeman shifting and quantum selection
rules in a MOT for a two-level atom. To the right of the zero of the magnetic field the
magnetic sublevels of the excited state are shifted so that the m = − 1 state is on reso-
nance with the laser beam. A transition from the ground state to the m = − 1 excited
state is induced by the left circularly polarized photons impinging from the right. The op-
posite is true for atoms to the left, where the right circularly polarized laser only excites
atoms to the m = + 1 state, which has been shifted by the magnetic field so that it is
on resonance with the laser beam. Thus the photon scattering rates are regulated and the
result is a position-dependent restoring force that pushes the atoms towards the center of
the trap, where the magnetic field equals zero.

center. The magnetic field Zeeman shifts the magnetic sublevels of the 4s4p 1Po
1 state. Left and

right circularly polarized light is used to regulate the absorption of photons via quantum mechanical

selection rules (see Fig. 2.3) The end result is a neutral calcium atom trap that cools the atoms to

about 1 mK and confines them to a roughly spherical region less than 1 mm in diameter.

The calcium atoms are produced by a temperature controlled oven that heats bulk calcium into

an atomic vapor. The atoms leave the oven through a 1 mm diameter, 10 mm long nozzle, which

creates an atomic beam of neutral calcium. A laser beam directed opposite the atomic beam slows
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the atoms down and increases the loading rate of the MOT. We detune this "slowing" laser beam

several linewidths (about 145 MHz) below the 423 nm atomic resonance. A 672 nm "repump"

laser pumps atoms that fall into the metastable 4s3d 1D2 state back into the ground state via the

highly excited 4s5p 1P1 state (see Fig. 2.1). With the slowing laser beam and repump laser this

experiment typically achieves peak MOT densities on the order of 1010 cm−3.

The 423 nm trapping laser beam is generated by amplifying and frequency doubling an 846 nm

diode laser. We use saturated absorption spectroscopy to lock the trapping laser to the appropriate

resonance transition.

2.1.2 Plasma creation

Once the calcium atoms are trapped, we photoionize them using a two-photon ionization process.

This ionization is achieved using two counter-propagating 3 ns pulse lasers at 423 nm and 390 nm

(see Fig. 2.1). These lasers drive the 4s2 1S0 → 4s4p 1Po
1 and the 4s4p 1Po

1 →continuum transi-

tions, respectively. The 390 nm pulse is generated from a tunable dye laser, pumped by a 355 nm

pulsed Nd:YAG laser. By adjusting the wavelength of the 390 nm laser (which drives the tran-

sition into the continuum), we can vary the initial energy of the electrons in the plasma, because

the excess photon energy above the ionization limit is carried away by the electrons. The mini-

mum temperature of electrons in plasmas ionized right at threshold is determined by the 0.5 cm−1

bandwidth of the ionizing laser to about 0.5 K.

2.2 Plasma detection and density measurements

A variety of methods have been used to measure ion dynamics in ultracold plasmas. Some of

the earliest ultracold plasmas at NIST in Maryland were probed using rf techniques [14]. An

rf signal of known frequency is applied to an expanding plasma. When the plasma frequency,
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which depends on density, matches the frequency of the rf signal, the plasma electrons begin to

oscillate and are ejected from the plasma. These electrons are then measured by a channeltron.

Changing the rf frequency and measuring the electron count for different times allows one to map

out the average density of the plasma. This technique provides averaged measurements, but has

poor temporal resolution and no spatial resolution. Later, other techniques, such as absorption

imaging [10] and fluorescence spectroscopy [11], were developed which provided much better

temporal and spatial resolution.

2.2.1 Optical absorption

Optical absorption detection uses a probe laser beam tuned to a resonance transition in the ions.

The plasma is illuminated by the probe beam, and the laser intensity is measured by a CCD cam-

era with and without the plasma. Absorption of the probe laser beam is given by Beer’s Law,

I = I0exp[OD], where OD is the optical depth. Taking the ratio of the measurements made with

the CCD camera allows us to calculate the optical depth. The transmission signal, T = 1−A, is

used to calculate the optical depth:

OD(x,y,z) = −ln[Tbackground/Tplasma]

= α(ν)
∫ ∞

−∞
dz ni(x,y,z),

=
√

2πwzα(ν)n0i exp
[
−x2 + y2

2w2

]
, (2.1)

where n0i is the peak ion density and α(ν) is the absorption cross section [10]. Absorption imaging

is a significant improvement over the rf techniques used to probe the first ultracold plasmas. It

provides information about the spatial resolution and has much better temporal resolution, but is

still limited by the time response of the CCD camera to about 25 ns.
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2.2.2 Fluorescence spectroscopy

Studies of early plasma dynamics on the nanosecond time scale require even finer temporal reso-

lution. This can be accomplished using fluorescence spectroscopy on the plasma ions. A cw probe

laser beam, tuned to the 2S1/2 → 2P1/2 transition at 397 nm (see Fig. 2.1), is directed through

the plasma and is absorbed. The ions are excited to the 2P1/2 state, then emit photons in all di-

rections as they spontaneously decay. Ions can also be optically pumped into the 2D3/2 dark state,

also shown in Fig. 2.1. The branching fraction into the dark state is about 7%. The intensity of

the probe laser beam at the plasma is typically about s0 = I/Isat = 2. The natural linewidth γN

of the 397 nm transition equals 1/2πτ or 22 MHz. Fluorescence at 397 nm is collected using

a lens, isolated using an optical band-pass interference filter, detected using a 1-GHz bandwidth

photo-multiplier tube (PMT), and recorded using a 1-GHz bandwidth digital oscilloscope.

Fluorescence and absorption spectroscopy are effective detection tools because they are sen-

sitive to ion motion and plasma dynamics through the Doppler shift. Ions at nearly zero velocity

scatter photons from a resonant probe laser beam, producing a fluorescence signal. As the ions

accelerate, their velocity (or temperature) increases and they are Doppler-shifted out of resonance

with the probe beam. Ions that are no longer resonant with the probe beam are less likely to scatter

photons, corresponding to a drop in the fluorescence signal. Thus the signal is roughly proportional

to the number of ions Doppler shifted into resonance with the probe. The detuning of the probe

laser beam depends on the ions’ motion due to DIH, the plasma expansion, and the initial detuning

of the probe laser from the ion resonance frequency. Changing the initial offset of the probe laser

allows us to probe ions of different velocity classes and to subsequently map out the time evolution

of the (non-equilibrium) velocity distribution. In our experiment, the 397 nm laser is locked to the

ion transition using saturated absorption (rf modulation transfer) spectroscopy. A portion of the

397 nm laser beam is split off and frequency-shifted by an acousto-optic modulator (AOM) before

being sent through the plasma. Using an AOM we detune the probe laser beam by -40, -70, -105,
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-140, and -200 MHz.

We can take a more detailed approach to understanding the relationship between the fluores-

cence signal and the ion dynamics if we use a Voigt profile to extract the effective ion temperature.

The Voigt profile is a mathematical representation of the absorption cross section per atom. It is

the convolution of a Lorentzian (L) and a Gaussian (G) lineshape

V ( f ′) =
∫ ∞

−∞
L( f − f ′)G( f )d f

=
∫ ∞

−∞

γ/2π
( f − f ′)2 + γ2/4

· 1√
2πν

exp[− f 2/2ν2]d f , (2.2)

where f is the frequency of the transition, f ′ is the detuning from resonance, γ is the natural

linewidth of the atom (the FWHM of the Lorentzian line shape), and ν is the rms Doppler width.

Integrating Eq. (2.2) for f ′ = 0 gives

V (0) =
1√
2πν

exp
(

γ2

8ν2

)
erfc

(
γ√
8ν

)
, (2.3)

where erfc is the complementary error function. Using the Doppler shift we can map the ion

velocity onto the frequency by making the substitution γ = vn/λ and ν = vth/λ , where vn is

the velocity that corresponds to the Doppler shift equal to the natural linewidth and vth is the rms

thermal velocity,
√

kBTi/mi. Making this substitution into Eq. (2.3) gives

V (0) =
λ√

2πvth
exp

(
v2

n

8v2
th

)
erfc

(
vn√
8vth

)
. (2.4)

For calcium vn = γλ = 8.7 m/s. In Sec. 4.3 we describe how we fit the fluorescence signal at

different detunings to a similar profile to extract the rms velocity width.

2.2.3 Density measurements

The density of the plasma is determined using a variation of the absorption imaging technique de-

scribed in Sec. 2.2.1. We measure the density of the atoms in the MOT before and after ionization,
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and the change in the MOT density gives us the plasma density. A 423 nm probe beam, resonant

with the 4s2 1S0 → 4s4p 1Po
1 transition in neutral calcium, is focused through the center of the

MOT before and after ionization. The transmitted light is detected using a PMT. The transmission

signal is used to calculated the optical depth, which is related to the density by Eq. (2.1). From

Beer’s Law and Eq. (2.1) we get

T = exp
[
−α(ν)

∫
dz n(z)

]
(2.5)

for the transmission. The optical depth is

− ln(T ) = α(ν)
∫

dz n(z). (2.6)

For these measurements, the probe laser beam is directed along the z-axis through the geometric

center of the plasma and focused at x = y = 0, which means that these equations, as well as

Eq. (1.1) and Eq. (1.3), depend only on z. Additionally, since we measure the density of the neutral

calcium, we can use Eq. (1.3) to find n(z), which does not depend on the plasma expansion. The

difference in optical depth is therefore

ln(Ta)− ln(Tb) = −α(ν)
∫

n0a exp(−z2/2w2)dz + α(ν)
∫

n0b exp(−z2/2w2)dz

= (n0b −n0a)α(ν)
∫

exp(−z2/2w2)dz. (2.7)

Measurements are taken before and after ionization, as denoted by the subscripts b and a,

respectively. When the plasma is created, the atoms which are ionized no longer interact with the

423 nm probe beam. This accounts for the change in the measured intensity signal, shown in the

sample absorption data in Fig. 2.4. Therefore the peak plasma density n0i is equal to the change in

the MOT density

n0i = n0b −n0a =
ln(Tb/Ta)

α(ν)
∫

exp(−z2/2w2)dz
. (2.8)

With the 423 nm probe beam exactly on resonance, the absorption cross section is α(0) = 3λ 2/2π .
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Figure 2.4 Sample absorption data. The transmission of the 423 nm probe laser beam is
measured as a function of time.

We can now simplify the denominator of Eq. (2.8) to

α(ν)
∫

exp(−z2/2w2)dz =
3λ 2w√

2π
. (2.9)

The calculated initial plasma density is therefore

n0i =

√
2π ln(Tb/Ta)

3λ 2w
. (2.10)



Chapter 3

Simulation

In order to better understand our experimental results and to test our data analysis, which are de-

scribed in Chapter 4, we use a computer simulation that integrates the optical Bloch equations to

give us a simulated fluorescence signal. The computer simulation allows us to connect our experi-

mental data to information about the plasma evolution that would be difficult to obtain otherwise,

such as the velocity distribution and ion temperature at early times. The simulations were carried

out by our colleague F. Robicheaux, and are described here for completeness.

3.1 Ion motion and the Yukawa potential

In neutral plasmas, electrons shield ion interactions. If the electron temperature is not too low, the

ion-ion potential can be modeled as a Yukawa potential [23]

V (r) =
e2

4πε0

e−r/λD

r
. (3.1)

In the computer simulation we use, ions interact via the Yukawa potential. We assume an isother-

mal electron distribution, where Γe < 1. Plasma ions are randomly distributed over a cubic cell

of approximate dimensions L = w/10. The cell dimensions are smaller than the rms size of the

17
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plasma but larger than the Debye screening length. The density is constant across the cell, and we

use wrapped boundary conditions to maintain a constant number of ions in the cell. We find the x,

y, and z components of the force on each ion due to the screened interactions of all the other ions

by taking the gradient of Eq. (3.1). From the calculated force we find the acceleration of each ion.

We move the ions in time using a fourth-order Runge-Kutta stepper.

Ions move within the cell and experience a Doppler shift of the probe laser beam frequency,

given by

∆ω =
2π f

c
v (3.2)

where f is the atomic resonance frequency in the rest frame of the atom, c is the speed of light,

and v is the component of the atomic velocity along the direction of the laser beam propagation.

Another shift of the probe beam frequency comes from the radial acceleration of the plasma as the

plasma expands. At early times, the plasma expansion can be approximated as

vexp(r, t) = r
2kBTe

miw
t (3.3)

where r is the radial coordinate and t is the time. This model also assumes an isothermal electron

distribution. The temperature of the electrons changes in time due to plasma expansion, evapora-

tion, electron-ion recombination, and electron-Rydberg collisions, however these changes in the

electron temperature can be neglected at early enough times. Similarly, at these early times the

plasma ions accelerate, but the density profile of the plasma does not change. Thus we can say that

this model is valid for early times, when the electron temperature is not too low.

Using the components of the force derived from the Yukawa potential, we calculate the po-

sition and velocity of each ion for every time step. Information about the ion velocity, which

includes the contribution of the overall plasma expansion, is used to find the ion’s frequency shift

ω = ωo − ωlaser. This detuning is necessary for solving the optical Bloch equations to find the

evolution of the Bloch vector and the excited-state fraction, which gives the simulated fluorescence

signal.



3.2 Optical Bloch equations 19

3.2 Optical Bloch equations

Since the fluorescence signal is proportional to the excited-state fraction, care must be taken to

simulate the evolution of the internal state of the ions. This is accomplished by solving the optical

Bloch equations at each time step for each ion in the cell. The ions are approximated as two-level

atoms dressed by a light field. The Hamiltonian of this system is

H = Hatom +Hlaser (3.4)

where Hatom is the Hamiltonian of the atom and Hlaser is the Hamiltonian of the light field. Using

the rotating wave approximation (RWA) we can write the total Hamiltonian as

H = h̄ωσ−σ++
h̄Ω
2
(σ−+σ+), (3.5)

where ω is the detuning, Ω is the Rabi frequency, and the raising and lowering matrices are

σ+ =

0 1

0 0

 σ− =

0 0

1 0

 . (3.6)

Written in terms of matrices, the Hamiltonian is

H =

0 0

0 −h̄ω

+

 0 h̄ω
2

h̄ω
2 0

 . (3.7)

The equation for the density matrix is given by the Liouville-Bloch equation with decay, found in

Eq. (1) of Ref. [24]

ρ̇ =− i
h̄
[H(t),ρ]−Γ(t)ρ. (3.8)

The density matrix ρ and its time derivative ρ̇ are

ρ =

ρee ρeg

ρge ρgg


ρ̇ =

ρ̇ee ρ̇eg

ρ̇ge ρ̇gg

 . (3.9)
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The term Γ(t)ρ is the decay term, given by Eq. (3) of Ref. [24],

Γρ =
Γ
2
(σ+σ−ρ + ρσ+σ−)−Γσ−ρσ+ (3.10)

Written in terms of our Hamiltonian and the raising and lowering operators, the equation we get

for the density matrix is

ρ̇ = −iω(σ+σ−ρ − ρσ+σ−) − i
Ω
2
[(σ++σ−)ρ − ρ(σ++σ−)]

+
Γ
2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−). (3.11)

If we insert Eq. (3.6) and Eq. (3.9) into this equation for the density matrix we getρ̇ee ρ̇eg

ρ̇ge ρ̇gg

= − iω

 0 ρeg

−ρge 0

 − iΩ
2

ρge −ρeg ρgg −ρee

ρee −ρgg ρeg −ρge

− Γ
2

2ρee ρeg

ρge −2ρee


(3.12)

In a 2-level system, the components of the Bloch vector are expressed by the Pauli matrices:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 . (3.13)

If we remember that the expectation value of an operator is the trace of the operator times the

density matrix, we can show that

⟨σx⟩= Tr(σxρ) = (ρge +ρeg)⟨
σy
⟩
= Tr(σyρ) = i(ρeg −ρge)

⟨σz⟩= Tr(σzρ) = (ρee −ρgg). (3.14)

We are concerned with how the internal state of the atom changes with time. We therefore want

to find the time derivative of the expectation values of σx, σy, and σz, which are components of
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the Bloch vector. Finding how they change in time tells us how the Bloch vector changes in time.

Taking the derivative of Eq. (3.14) we get

d ⟨σx⟩
dt

= (ρ̇ge + ρ̇eg)

d
⟨
σy
⟩

dt
= i(ρ̇eg − ρ̇ge)

d ⟨σz⟩
dt

= (ρ̇ee − ρ̇gg) (3.15)

From Eq. (3.12) we have

ρ̇ee = − iΩ
2
(ρge −ρeg)−Γρee

ρ̇eg = −iωρeg −
iΩ
2
(ρgg −ρee)−

Γ
2

ρeg

ρ̇ge = iωρge −
iΩ
2
(ρee −ρgg)−

Γ
2

ρge

ρ̇gg = − iΩ
2
(ρeg −ρge)+Γρee. (3.16)

Putting it all together, the equations of motion, written in terms of Pauli matrices, are

d ⟨σz⟩
dt

= Ω
⟨
σy
⟩
− γ(1+ ⟨σz⟩)

d
⟨
σy
⟩

dt
= ω ⟨σx⟩−Ω⟨σz⟩−

γ
2
⟨
σy
⟩
,

d ⟨σx⟩
dt

= − ω
⟨
σy
⟩
− γ

2
⟨σx⟩ . (3.17)

The fluorescence signal f (t) depends on time as

f (t) =
1
2
[1+ ⟨σz(t)⟩]. (3.18)

We simulate decay from the excited state to the metastable dark 3d state by multiplying the

total fluorescence rate by the branching ratio. This gives us the decay rate into the optically dark

3d 2D3/2 state. We multiply this decay rate by the time step dt to find the probability that the ion



3.3 Comparison of simulated and experimental fluorescence data 22

0 50 100 150 200 250

0

0.4

0.8

time (ns)

re
la

tiv
e 

flu
or

es
ce

nc
e 

si
gn

al

 

 

simulation
measurement

Figure 3.1 A comparison of the simulated fluorescence data (thick gray line) and the
experimentally measured fluorescence (thin black line). Similar features are seen in both
data sets, such as a heavily damped Rabi oscillation at early times, the DIH shoulder
peak, and the broad background due to the plasma expansion. The density for these plots
is n0 = 5(3)×1010 cm−3.

has made a transition to this state. This probability is compared to a random number between 0

and 1. If the probability of decay is greater than this random number, the simulated ion transitions

to the dark state and no longer fluoresces.

3.3 Comparison of simulated and experimental fluorescence data

Comparing the results of the simulation for a range of densities with experimental data shows

good agreement, as seen in Fig. 3.1. Similar features in both signals are clearly distinguishable,

such as a heavily damped Rabi oscillation at early times and the DIH shoulder, which will be

discussed in greater detail in Sec. 4.1. Differences in the height of the signal can be attributed to

inhomogeneities in the experimental setup. Since the simulated and experimental data agree well,

we can use the simulation to obtain information about the plasma that would otherwise be difficult
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to measure. Since we solve for the ion velocity at each time step we are able to extract the ion

velocity distribution, which also allows us to find the time-evolving ion temperature at early times

in the plasma evolution.



Chapter 4

Data and Discussion

The models described in Sec. 1.2.1 and Sec. 1.2.2 suggest that the time scale for DIH is insensitive

to electron screening. If this were the case, we would expect the heating time to be the same across

a range of electron temperatures. We can test this by going to colder electron temperatures and

higher densities, which gives a smaller Debye length, corresponding to greater electron screening.

The following sections detail a study of electron screening for a wider range of κ than previously

studied.

4.1 Density and temperature scaling

Fluorescence measurements were made during the DIH phase to determine the time scale on which

DIH occurred for a range of plasma densities and initial electron temperatures. Sample fluores-

cence data are shown in Fig. 4.1 for Te = 20 K, n0 = 5 × 1016 m3, and a probe laser beam

detuning of 90 MHz. At time t = 0 the plasma is generated, and the ground-state ions begin to

interact with the probe laser beam and scatter photons. The sharp peak around 7 ns is a strongly

damped Rabi oscillation. The second shoulder peak in the fluorescence signal, seen at about 70 ns,

is the feature that we will refer to as the DIH peak, i.e. the time at which the fluorescence signal

24
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Figure 4.1 Typical fluorescence signal and analysis at Te = 20 K, n0 = 5×1016 m−3,
s0 = 1.7, and probe laser beam detuning of -90 MHz. A heavily damped Rabi oscillation
appears at 7 ns. The shoulder peak at 70 ns is due to DIH broadening of the velocity
distribution. The much broader peak near 600 ns is due to the accelerated expansion of
the plasma. The dashed line is a linear fit to the background expansion. The inset shows
the DIH peak with the background expansion subtracted. The background subtracted DIH
peak is fit to a parabola, indicated by the heavy solid line, and the maximum of this fit is
the characteristic DIH time t0.

peaks due to DIH. This peak arises as the velocity distribution of the ions broadens due to DIH.

Previous work has shown that, in the absence of electron screening, the DIH time is proportional to

the inverse plasma frequency. A much broader peak occurs later, when the ion velocity distribution

is further broadened by the outward radial acceleration of the expanding plasma and more ions are

Doppler-shifted into resonance with the probe laser beam. The inset of Fig. 4.1 shows the DIH

peak with the slope of the background expansion of the plasma subtracted off. The DIH peak is fit

to a parabola, and the maximum of this parabolic fit is called t0.

Data showing the temperature and density dependence of the DIH time t0 is plotted in Fig. 4.2.

As previously mentioned, past studies have shown that t0 ∝ n−1/2 through the DIH time’s rela-
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Figure 4.2 Experimental data. (Top) The time at which the DIH fluorescence peak oc-
curs. The gray dashed line shows the expected time in the absence of screening effects.
(Bottom) Scaled DIH peak time (data from the top panel) with t0 corrected by ∆t ). Open
symbols are from the simulation. This data would all fall on a flat line if there was no
screening.

tionship to the inverse plasma frequency. The expected DIH time of this density dependence, in the

absence of the electron screening, is plotted as the gray dashed line in the top panel of Fig. 4.2. We

see that at low densities and electron temperatures much greater than the correlation temperature

Tc (see Eq. (1.2)) that the t0 ∝ n−1/2 relationship holds. However, as we decrease the screening

length λD by increasing the density and bringing the electron temperature closer to Tc, we see that

the time t0 departs from the expected n−1/2 scaling. The bottom panel of Fig. 4.2 shows the same

effect more clearly, where the time has been scaled by the plasma frequency ωp. In the absence of

screening, we would expect all of the data to fall on the same horizontal line.

Comparing the experimental data with the simulation allows us to connect the DIH time found

from our fluorescence measurements to the velocity distribution. We would expect t0 to occur
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at the same time that the rms velocity distribution reaches its first maximum. We find, however,

that there is a small difference, ∆t, that depends most strongly on density. We have applied this

correction, which is ≤ 15%, in the bottom panel of Fig. 4.2. The data clearly shows in both panels

that the DIH time deviates from the expected n−1/2 dependence as the temperature decreases and

the density increases. Further research was needed to determine whether this deviation was an

effect of electron screening on the ion motion during DIH, or whether it was related to ∆t. We

also found a factor of 2 discrepancy between the experimental and simulated densities. As of yet

we are not sure why this discrepancy arises, though we suspect it may have to do with how we

measure the density experimentally. In the comparisons between experimental and simulated data,

the densities of the experimental data have been multiplied by this factor of 2.

4.2 Detuning dependence of the fluorescence signal

In order to better understand the results outlined in Sec. 4.1 we made measurements of the flu-

orescence signal at different electron temperatures and at different probe laser beam detunings.

Changing the frequency of the probe laser beam allows us to map out the velocity distribution, as

explained in Sec. 2.2.2. Figure 4.3 shows fluorescence measurements from an ultracold plasma

when the probe laser beam is detuned by 0, -70, and -140 MHz (0, -3.2, and -6.4 times the natural

linewidth). As seen previously, plasma ions, initially all in the ground state, begin to scatter light

from the 397 nm probe laser beam when the plasma is created (time t = 0), and the fluorescence

signal rapidly rises during the first several ns. The ions are accelerated due to DIH, which broadens

the velocity distribution. Depending on the probe laser beam detuning, this broadening affects the

fluorescence signal differently.

When the probe laser beam is on resonance (black line in Fig. 4.3), the fluorescence signal falls

rapidly between 25 and 100 ns. The DIH process is the dominant mechanism for broadening the
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Figure 4.3 Fluorescence signals from an ultracold neutral calcium plasma. The density
is n0 = 1× 1010 cm−3, the intensity is s0 = 1.4, and the probe laser beam frequency
detunings are 0, -70, and -140 MHz. The -70 and -140 MHz data have been multiplied
by 2 and 6 for clarity. Ground state ions begin to scatter light from the 397 nm probe
laser beam and the signal rapidly increases during the first few ns. At non-zero probe
laser beam detunings, a heavily damped Rabi oscillation appears in the signal. As the ion
velocity distribution broadens due to DIH and plasma expansion, the fluorescence signals
change. The fluorescence signal is a measure of the number of ions in the plasma that are
Doppler shifted into resonance with the probe laser beam.
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velocity distribution during this time. The signal level falls because fewer ions remain near zero

velocity as time goes on. At later times, the plasma expansion becomes important. The plasma

is not trapped in the MOT. Electron pressure that arises from the non-zero electron temperature

accelerates the radial expansion and broadens the velocity distribution. The much slower decrease

in fluorescence after 100 ns is due primarily to this radial acceleration of the plasma.

If we change the detuning of the probe laser beam, the fluorescence signal changes signifi-

cantly. The medium gray line in Fig. 4.3 shows fluorescence measurements with the probe laser

beam detuned -70 MHz (-3.2 linewidths). The first few ns of the fluorescence signals now show a

heavily damped Rabi oscillation. The oscillation is damped out due to the spontaneous decay of

the excited state and also by ion acceleration during the DIH phase. Ions with different velocities

experience different Doppler-shifted detunings of the probe laser beam. This means that the Rabi

oscillation frequency is different for ions with different velocities. The average of these different

Rabi oscillation frequencies produces the narrower initial fluorescence peak near 10 ns.

When the probe laser beam is detuned from resonance, DIH-broadening and plasma expansion

Doppler-shift ions into resonance with the probe laser beam. Initially there are no ions in resonance

with the detuned probe laser beam. However DIH broadens the distribution causing a correspond-

ing increase in the fluorescence signal. Notice that the -70 MHz data reaches a maximum around

100 ns, approximately equal to the time at which the slope in the 0 MHz detuning data changes.

After this time, the -70 MHz signal decreases as the accelerated expansion continues to broaden

the distribution so that the width exceeds the 70 MHz detuning and the fluorescence signal falls.

The light gray line in Fig. 4.3 shows the fluorescence signal when the probe laser beam is

detuned by -140 MHz. The Rabi oscillations are still heavily damped. A few complete oscillation

cycles can be seen at early times. The DIH broadening produces a small broad shoulder on the

fluorescence data near 90 ns. The fluorescence signal continues to increase after this and reaches a

maximum when the accelerated expansion has sufficiently broadened the velocity distribution. For
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our plasma conditions at this detuning this occurs at 1.4 µs.

4.3 Extracting the rms velocity width

From fluorescence signals like the one shown in Fig. 4.3 we can extract the rms width of the

velocity distribution as a function of time. As discussed in Ref. [5] the fluorescence lineshape is a

Voigt profile. However, when the Gaussian width significantly exceeds the Lorentzian width, the

lineshape is almost perfectly Gaussian. When the ion temperature equals Tc, the thermal velocity

is
√

kBTc/mi = 28 m/s. The natural width of the Ca+ transition is 22 MHz. The ion velocity

that produces a Doppler shift equal to this width is 8.7 m/s. Fitting the velocity distribution to a

Gaussian instead of a Voigt profile somewhat overestimates the real ion temperature. However,

changes in the width of the distribution can be readily measured.

As a model, we take the velocity distribution to be Gaussian of the form

F(v) = Fv
0 exp(−v2/2v2

rms), (4.1)

where vrms =
√

kBTi/mi is the rms thermal velocity and Fv
0 is a normalization constant for the

distribution. We don’t have access directly to the velocity distribution. However the velocity

and the frequency are related to each other through the Doppler shift, with v = λ f where λ

is the transition wavelength in vacuum and f is the transition frequency. Therefore the velocity

distribution can be mapped into a transition frequency distribution as

F( f ) = F f
0 exp(− f 2/2 f 2

rms), (4.2)

where frms = vrms/λ .

We can look at our fluorescence data measurements at different detunings at one particular time

ti. These data form a set,

yi( f , ti) = c1(ti)exp(− f 2/2c2
2(ti)), (4.3)
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where c1(ti) and c2(ti) are parameters that describe the frequency (and hence velocity) distribution.

The logarithm of Eq. (4.3) is written

ln[yi( f , ti)] = ln[c1(ti)]−
f 2

2c2
2(ti)

. (4.4)

This gives a quadratic relation between the log of the fluorescence signal and the width of the

frequency distribution. In our analysis we fit the log of the fluorescence signal vs. frequency to the

equation

ln[yi( f , ti)] = a1(ti)−a2(ti) f 2 (4.5)

using a least-squares method. The fit parameter 2a2(ti) = [c2(ti)]
−2 is used to extract c2(ti),

the time-evolving rms width of the frequency distribution. The frequency width is then used to

determine the rms velocity width, vrms(ti) = λc2(ti). The results of this analysis are shown in

Fig. 4.4 for two different initial electron temperatures.

During the first 15 ns of the fluorescence signals, Rabi oscillations make it difficult to extract a

meaningful velocity width. After these oscillations damp out, the rms velocity appears to be more

reliable. We can verify that the minimum width of the distribution corresponds to the correlation

temperature, Eq. (1.2). The rms velocity at the correlation temperature is 28 m/s at our density of

n0 = 1.0×1010 cm−3. The minimum width of our extracted velocity distribution of approximately

20 m/s agrees with this number.

At late times in the plasma expansion, the radial acceleration approaches zero and the expansion

velocity approaches a constant value. In our measurements of the Te = 60 K plasma, the width of

the velocity distribution asymptotically approaches the value of 115 m/s. This is a close match to

the expected value of
√

kBTe/mi = 111 m/s.

The velocity distribution shows a small oscillation at early times. This oscillation is shown

in Fig. 4.5 and is similar to what has been reported in the literature (for example [5, 6]). The

oscillation occurs because the ions are initially at rest and all begin to move at the same time. They
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Figure 4.4 The rms width of the ion velocity distribution as a function of time in an
ultracold calcium plasma. This data is extracted using a Gaussian fit as described in the
text. At early times this fit overestimates the width. However it reproduces changes in the
distribution and that is the main objective in this graph.



4.3 Extracting the rms velocity width 33

0 50 100 150 200 250 300
−1

0

1

2

time (ns)

rm
s 

ve
lo

ci
ty

 (
m

/s
)

−
 b

ac
kg

ro
un

d

       
20

22

24

26

28

30

rm
s 

ve
lo

ci
ty

 (
m

/s
)

 

 

T
e
 = 60 K

T
e
 = 20 K

Figure 4.5 Top (panel): Velocity distribution at early times. Data for this plot was
extracted from a subset of the fluorescence data, with probe laser detunings of 140 MHz
and smaller, for initial electron temperatures Te = 20 K and Te = 60 K, and an initial
plasma density of n0 = 1.0 × 1010 cm−3. An oscillation in the velocity distribution is
visible above the background expansion, represented by the dotted line. Bottom (panel):
The data in the top panel with the background expansion subtracted off. A third-order
polynomial fit to the early time data is shown by the smooth solid black line. The maxima
of these polynomial fits are shown by the vertical dashed lines. The Te = 60 K data is
offset vertically for clarity. As the electron temperature decreases, the DIH peak broadens
and moves to later times.

move to minimize their electric potential energy. Each ion finds itself in a local potential well and

the shape of that well depends on the positions of neighboring ions and electrons. Variations in

these local potential wells cause the ion motion, which starts coherently, to dephase as the plasma

relaxes. This dephasing time is comparable to the oscillation period [18], and only a partial cycle

is observed in our data.

The top panel of Fig. 4.5 shows the width of the velocity distribution at early times. As men-



4.3 Extracting the rms velocity width 34

tioned previously, the width determined from the first 15 ns of fluorescence signal oscillates wildly

because of Rabi oscillations in the data. Therefore Fig. 4.5 shows data only from 15 to 300 ns. The

dotted line in the top panel of Fig. 4.5 is a fit that represents the plasma expansion.

The bottom panel of Fig. 4.5 shows the width of the velocity distribution with the background

expansion subtracted off. A vertical offset is included to distinguish between the data sets at the

two different initial electron temperatures. A third-order polynomial is fit to the data near 100 ns.

From the fits we are able to extract the time at which the DIH process broadens the distribution

to its maximum value, which is equivalent to what we have previously called the DIH peak. The

times at which the DIH peaks occur are indicated by the dashed vertical lines. For an initial electron

temperature of Te = 60 K this DIH peak occurs at 88 ns. For an initial electron temperature of

Te = 20 K the peak occurs at 98 ns. For the lower temperature plasma the DIH peak is also broader,

indicating that the equilibration rate is slower. These two effects are due to electron screening.

The effects of electron screening described by Eq. (1.10) should appear in the data plotted in

the bottom panel of Fig. 4.5. As the initial electron temperature decreases from 60 K to 20 K, the

value of κ increases from 0.54 to 0.93. This reduces the initial acceleration in Eq. (1.10) by 2.5%.

In the bottom panel of Fig. 4.5 the characteristic DIH time, the time at which vrms reaches its local

maximum due to DIH, increases by [(98ns/88ns)−1]×100 = 11%. This indicates a reduction

in the average acceleration by approximately the same amount.

It is perhaps not surprising that the observed acceleration is smaller than in Eq. (1.10) because

we have truncated the original expression for the ion temperature. The scaled time at 88 ns is

1.8, suggesting that higher order terms in Eq. (1.8) are important. In particular we note that the

coefficient of the t4 term is negative [6]. This would reduce the ion acceleration as the plasma

evolves. A more detailed study of this effect is needed.

When κ = 0.93, the number of particles per Debye sphere is nλ 3
D = 3/4πκ3 = 0.3. In

this limit the concept of Debye shielding is perhaps questionable, although it has been pointed
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out that the electrons move rapidly on the time scale of the ion motion and this may make Debye

shielding a reasonable concept in this regime. We also note that recombination and electron-

Rydberg scattering can increase the electron temperature and give a smaller value of κ . However

these effects are not expected to be important at a density of n0 = 1010 cm−3 and an initial

Te = 20 K on the 100 ns time scale.



Chapter 5

Conclusions and future work

Initial data shows that electron screening plays a more significant role in the equilibration process

of ions in ultracold neutral plasmas than previously measured or calculated. We observed that at

higher densities and lower electron temperatures, which correspond to smaller Debye lengths and

therefore greater electron screening, the characteristic DIH time was extended and that the rate

of equilibration slowed. We would also expect to see a lower ion equilibration temperature as a

result of electron screening, however the data quality was such that we did not observe these effects.

Efforts are underway to improve the data quality, which would allow us to use a Voigt profile rather

than a Gaussian fit to extract the rms velocity width. Fitting the frequency distribution described in

Sec. 4.3 to a Voigt profile will give us a more accurate representation of the ion velocity distribution

and therefore the ion temperature as well.

As the number of particles per Debye sphere decreases and approaches values less than one,

the models we use to describe electron screening are called into question. Since Debye shielding

occurs on the length scale of the Debye length, when we shorten the Debye length we also reduce

the probability of finding a charge within a volume λ 3
D. The physics used to describe interactions

between ions in plasmas is not valid if we must take into consideration the strong, short-range

interactions that become important when nλ 3
D ≤ 1 [25]. We can explore this regime by looking at

36
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high-density and very low-temperature plasmas. In this regime we must also consider a possible

lowest limit on the electron screening length due to electron heating. Similar to ions, electrons go

through an equilibration process at early times. Strong coupling of electrons is limited by DIH

of the electrons to Γe ∼ 1 and by other heating mechanisms, such as three-body recombination

and electron-Rydberg scattering, to Γe ≤ 0.2. At lower initial electron temperatures, these heat-

ing mechanisms become important at early times as well as later. Future studies include explor-

ing electron screening, DIH, and other equilibration processes in systems in which these heating

mechanisms are important at early times and in systems in which both the electrons and the ions

are strongly coupled.

Although the data shows that electron screening extends the DIH time and we expect that it

should also reduce the ion equilibration temperature, it is not clear that electron screening will

allows us to achieve a higher Γ. This is because electron screening softens the Coulomb potential

between ions. Since Γ is directly proportional to the nearest-neighbor Coulomb energy, decreasing

this potential via electron screening also reduces Γ.

Efforts are underway that will allow us to achieve higher values of Γ by promoting the plasma

ions to higher ionization states at the conclusion of the DIH phase. Such an experiment was

proposed and simulations were carried out in Ref. [26]. Previously measured ion strong coupling

parameter values have been on the order of of Γ ∼ 4 in our Ca+ plasmas. If these ions are ionized

again to form Ca2+, higher values of Γ could be achieved. Three-body recombination, electron-

Rydberg scattering, collisional heating could then be studied in a neutral system where Γ is in a

new range of values.

By varying the time at which the Ca+ → Ca2+ transition occurs, a wide range of Γ values

could be realized, as suggested in Ref. [26]. For example if the transition to the second ionization

stage occurs coincident with the first ionization, DIH will limit Γ to values near 1. However if the

transition to the second ionization stage occurs at 100 ns, for example, after the DIH associated
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with the first ionization has damped out, simulations suggest that Γ will increase perhaps by a

factor of 4. It is therefore advantageous for us to continue to investigate the time scale over which

DIH occurs and the effects of electron screening on the characteristic DIH time, as characterizing

these effects will allow us to more effectively explore this new realm of study.
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