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ABSTRACT

Impact of a Finite-Temperature Equation of State on Neutron Stars

Christian D. Draper
Department of Physics and Astronomy

Master of Science

In this research, we study how a finite-temperature nuclear equation of state suitable for astro-
physical simulations impacts the oscillation modes of neutron stars. We chose the Shen equation
of state (EOS) because it accurately describes both stable and unstable nuclei as well as nuclear
incompressibilities [1]. I modified the existing MHD code at BYU, the HAD code, to call a look-
up table for the Shen EOS for use at run time, and added a Newton-Raphson method algorithm
to convert conserved variables to primitive variables. The algorithm was tested and verified by
evolving a stable neutron star for several dynamical times and evolving the same star at different
resolutions. The normal mode frequency of the neutron star with the Shen EOS was measured and
compared to those for neutron stars with an ideal gas EOS found by Font et. al. [2]. We found that
the fundamental mode of the neutron star using the Shen EOS was slightly larger than that of the
ideal gas EOS. This difference is due to the Shen EOS producing stars that are stiffer, increasing
the sound speed.

Keywords: neutron star, equation of state, numerical relativity, finite-temperature
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Chapter 1

Introduction

1.1 Introduction

The life of a star is determined by the battle between the crush of gravity trying to collapse the star

and the force of pressure trying to explode the star. At the end of a star’s life, the nuclear fuel is

spent and the outward pressure from fusion drops, which leads to the core shrinking. For a star

like the Sun the collapse will stop due to the quantum mechanical effects of electron pressure. This

type of stellar remnant is known as a white dwarf. White dwarfs are about the size of Earth, but

can contain up to one and a half times the Sun’s mass. In a more massive star, the force of the

electron pressure will not be enough to stop the compression of gravity. When this happens the

protons and electrons are combined, creating neutrons through the process of inverse beta-decay.

As this happens an object about the size of Earth is crushed to the size of a city in just a few tenths

of a second. The outer layers of the star will then fall into the vacuum left by the core’s sudden

contraction, reaching speeds close to 75% the speed of light. When these layers strike the super

dense remains of the core they are reflected back out into space, causing a supernova explosion.

The remnant after this explosion is a neutron star. A neutron star is a stellar remnant that has a

1



1.1 Introduction 2

mass of about two times our Sun and a radius of just 10 to 20 km.

While neutron stars have been studied for about 80 years many questions about these objects

remain unanswered, such as: What is the structure of a neutron star? What is the relationship

between its mass and radius? Do more exotic forms of matter appear under the incredible pressure

at the center of the neutron star? What is the maximum mass of a neutron star? Many of these

questions could be answered if we knew the equation of state of the neutron star. The equation

of state (EOS) describes how the density, pressure and temperature of an object are related. The

neutron star’s structure and stiffness are a direct result of its EOS.

Although neutron stars have been observed for 50 years, these objects are too small and too

distant to be resolved. Many neutron stars we have detected have been seen in the form of pulsars.

Pulsars are neutron stars whose magnetic fields cause beams of radiation to flow from its magnetic

poles. The rotational axis and the magnetic axis may not line up so these beams of light can sweep

around, similar to the rotating lamp of a lighthouse. If the beam points toward Earth we see the

light, and when it points away we don’t, causing a pulsing effect. Though detections of pulsars

have helped us determine an approximate radius and spin for neutron stars there are still many

properties that remain a mystery.

Another visual approach to determining information about neutron stars is to look at x-ray

binary systems. In these systems, a giant or supergiant star is losing mass to a compact companion,

such as a neutron star or black hole. Due to the extreme acceleration of the matter as it falls onto the

compact object it is superheated and begins to emit x-rays. These systems allow us to determine

the masses of the compact object. Most of the neutron stars found so far have around 1.4Msolar

as has been predicted. However, the x-ray binary Vela X-1 has a neutron star with a mas of 2.27

Msolar [3].

One promising observational approach to learning some of the interior properties of neutron

stars is to use gravitational waves. Gravitational waves are ripples in the fabric of spacetime caused
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by masses moving in non-uniform ways, such as orbits of planets around a star, or asymmetric

supernova explosions. One difficulty with detecting these waves is that they interact very weakly

with matter. Due to the extremely small coupling between gravitational waves and matter, it is

very difficult to directly detect them. Observers have indirect evidence of their existence in the

PSR B1913+16 binary system, which shows a decay in orbit that matches perfectly with energy

radiated by gravitational waves as predicted by general relativity [4]. In this case, as the two

neutron stars orbit each other they generate gravitational radiation. This carries energy and angular

momentum away from the neutron stars, causing them to slowly move closer together. These

neutron stars in PSR B1913+16 are predicted to collide and merge in about 300 million years.

Gravitational waves couple weakly to matter, so intervening objects do not distort or scatter

the waves and the information we receive comes pristinely from the source. Gravitational waves

should allow us to constrain the nuclear EOS. The EOS determines how strongly a neutron star is

bound together (which indicates when it will disrupt) , whether or not it will form an accretion disk

in a merger with a compact object, and whether a merger of two neutron stars will immediately

produce a black hole. If an object has a soft equation of state, it will be pulled apart some distance

away from the other object, but if it is stiff it will hold together until it is much closer. When the

neutron star finally disrupts, the gravitational wave signal will suddenly drop below a detectable

level, which will carry information about how close its orbit was before it finally broke apart, and

about how it merged with the other object.

Many exciting advancements are being made in building and improving gravitational wave

detectors so that we will be able to observe gravitational waves directly. Currently, the most sensi-

tive detector is the Laser Interferometer Gravitational-Wave Observatory, or LIGO project. LIGO

hopes to have direct evidence of gravitational waves within the next couple of years. LIGO uses

interferometric techniques to detect passing gravitational waves. The two LIGO facilities are lo-

cated in Washington and Louisiana about 3000 km apart. Each of the facilities are set up in an L



1.1 Introduction 4

shape with 4 kilometer arms which house a Michelson interferometer with Fabry-Perot arms. With

coincident detections at both sites, the position of the source can be determined within a band in

the sky. [5]

While a simple detection of gravitational waves will be important, a greater achievement will

be learning how to use these signals to advance the study of physics and our understanding of the

universe. The best method we have right now for detecting signals is through matched filtering, in

which we create theoretical models of gravitational wave sources and extract the waveform they

produce. Once the waves are detected, we will be able to compare our theoretical waves with those

we actually detect to understand what is happening.

The Einstein equations that describe the geometry of space time are a set of coupled, nonlin-

ear, partial differential equations. For astrophysical sources in strong-field gravity, there are no

known analytical solutions, and the equations must be solved numerically. Thus, the calculation of

theoretical waveforms requires the use of computers to model and simulate astrophysical systems.

To simulate neutron stars we need to choose an equation of state for the neutron star. A first

step in modeling a neutron star is to use the ideal gas law for the EOS. Though this gives us some

qualitative understanding of neutron star properties, this EOS does not adequately model nuclear

matter. For more quantitative results we need to use a physical equation of state. Cold nuclear

EOSs, which assume the matter is in a low energy (T=0) state, have been used in simulations to

study isolated neutron stars and binary neutron stars before merger. The merger of the neutron

stars, however, releases large amounts of gravitational and nuclear energy, significantly heating the

material. Thus, a finite temperature EOS is required to model the binary through and after merger.

There are currently two good candidates for a finite temperature nuclear EOS that is applicable

to astrophysical temperatures and pressures. First is the EOS proposed by Lattimire and Swesty.

This EOS is based on the Lattimire, Lamb, Pethic, and Ravenhall compressible liquid drop model

of nuclei [6]. Another good candidate is the EOS of hot dense matter suggested by Shen et. al. [1],
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which is based on relativistic mean field theory [7]. Ott has used the Shen EOS to create an EOS

table for a wide variety of astrophysical processes. Ott added electron pressure, and extended the

table to lower densities using the Timmes EOS [8]. Ott’s EOS table has been used in a few studies

of neutron star and black hole mergers by Duez [9].

For my research, I modified the HAD evolution code for the full field equations in use at BYU

and implemented the Shen EOS. To do this I adapted the initialization program to load values that

are required for the new EOS, specifically the temperature, the electron fraction, and the density.

I also adapted the evolution routine to use the new EOS by making a solver to determine new

physical values at each step in the routine. Then, I produced initial data using the Shen EOS. To

do this I used the LORENE code [10]. Once initial data was obtained I simulated a single neutron

star, allowing it to evolve in time, to ensure that the code was working properly.

In chapter 2, I will provide the theoretical background for neutron stars including the fluid

equations and the equation of state. Chapter 3 discusses the numerical techniques used at BYU to

simulate neutron stars. Chapter 4 will describe the tests and results of the simulation.

1.2 Literature Review

I have discussed the importance of the EOS on the gravitational wave signature of a merging binary.

Another important question is how can gravitational wave detection help us constrain the myriad

proposed EOS’s? Above, I mentioned the two best candidates for finite temperature EOS’s for

astrophysical objects; however, there are many cold, or T=0, EOS’s. To date we do not have a

complete model for many-bodied nuclear matter. Though we have many models, we do not have a

cohesive theory that describes nuclei in atoms that can also be extended to large amounts of nuclear

matter, such as neutron stars. To be able to determine the correct model we must have experimental

constraints.
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Shibata et. al. [11] did the first work in examining EOS effects in binary neutron star mergers

in general relativity, looking at the Innermost Stable Circular Orbit. As two neutron stars orbit one

another, they emit gravitational waves which carry away energy and angular momentum, causing

the orbit of the neutron stars to shrink. As they spiral toward each other they will begin to orbit

each other more quickly, causing the frequency of the emitted gravitational waves to increase.

Once the two neutron stars are close enough they will tidally disrupt and the signal will suddenly

diminish. The compactness of the neutron stars will determine at what frequency the signal will cut

off. Shibata found that neutron stars that have a softer EOS, which are less compact, will disrupt

at larger distances leading to higher frequencies. One interesting point is that using this technique

Shibata was able to show effects from the stiffness of the core on the wave signature [12]

Though Shibata et. al.’s work examined the physical characteristics of merging binary neutron

stars, they have not looked closely at ways to constrain the EOS. Read et. al. [13] has pioneered

an approach which allows us to constrain the EOS from the detected gravitational wave. In this

approach they compare the waveform from the inspiral of two point particles to that of extended

objects, especially when they are close to the last stable orbit and the disruption. In this way they

are able to constrain several parameters helping to narrow the set of possible cold EOS’s. As the

extended neutron stars begin to get closer their shapes elongate, changing the wave form from that

of point particles. When the merger happens the disruption will also be significantly different from

that of the point particles at the same orbital difference. By comparing the wave forms of many

different EOSs with different characteristics to the point particle wave forms, Read has shown that

it is possible to constrain the EOS and also determine the radius of the neutron star to about 1 km.

The work described above used cold nuclear EOS’s. In the case of Read three different poly-

tropes are stitched together to simulate different layers in the neutron star. A cold nuclear EOS can

be written in polytropic form, but at finite temperatures different nuclear processes are available,

and the EOS cannot be written in such a simple form. As mentioned previously, the two best candi-
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dates for an astrophysical finite temperature EOS are the Lattimer-Swesty liquid drop model EOS

and the Shen mean field model. A significant amount of work has been done modeling neutron

stars and neutron star collisions in the post-Newtonian regime. In these models an approximation

is made to the Einstein field equations instead of the full field equations. These approximations

ignore the emission of gravitational waves and are good when the neutron stars are far apart and

spacetime isn’t changing dramatically. However, as the neutron stars draw near to each other, the

dynamical spacetime can have significant effects on the motion of the neutron stars [14].

Recently Duez et. al. has modeled neutron star-black hole mergers using the full Einstein field

equations comparing the polytropic EOS with the Shen EOS. They found that the Shen EOS caused

the neutron star to fall into the black hole faster with less matter being pulled into a tidal tail and

accretion disk. Though this is a start there is still much work to be done using the Shen EOS in

astrophysical simulations [9].



Chapter 2

Magneto-hydrodynamic Equations

2.1 Geometry and Fluid Equations

In general relativity spacetime geometry is described by a manifold with a metric, gµν . The Ein-

stein equations couple the curvature of spacetime, represented here by the Einstein tensor as G, to

the mass and energy distribution of matter, represented by the stress-energy tensor, T,

G = 8πT, (2.1)

in units where G = 1 and c = 1. The Einstein tensor also satisfies the contracted Bianchi identities

∇ ·G = 0; (2.2)

and the conservation of energy requires

∇ ·T = 0. (2.3)

The last equation describes the equations of motion for matter, as well as the local conservation of

energy and momentum.

8
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The Einstein equations are a set of 10 coupled, second-order partial differential equations for

the metric gµν . These equations are not all independent due to the Bianchi identities which are

∂0G0ν =−∂iGiν −Γ
µ

λ µ
Gλν −Γλ µGµλ . (2.4)

The Einstein tensor G contains second order derivatives of the metric. The right hand side of the

Bianchi identities therefore contain time derivatives of at most order 2. Thus, G0µ can contain only

time derivatives of first order. The four equations

G0µ = 8πT0µ (2.5)

are four constraint equations, and the other 6 equations

Gi j = 8πTi j (2.6)

are evolution equations.

Simulations of astrophysical systems in general relativity usually require solving a Cauchy

problem, where data are set for an initial time and then evolved forward in time to obtain the sys-

tem’s evolution. Solving a Cauchy problem requires a separation between space and time, which

are linked in general relativity. Arnowitt, Deser, and Misner (ADM) created a 3+1 formulation of

the Einstein equations which separates spacetime into spacelike foliations pieced together along a

timelike vector. The hypersurfaces are parametrized by a global time parameter and are connected

to each other by a lapse function α and a shift vector β i. The ADM metric is

ds2 =−(α2−βiβ
i)dt2 +2βidtdxi +hi jdxidx j, (2.7)

where the lapse, α describes the proper time between the two hypersurfaces normal to the surface.

The shift, β i, describes how the coordinate xi changes from hypersurface to hypersurface. The

3-metric hi j is defined as the projection of the metric gµν onto each spacelike hypersurface. The

extrinsic curvature tensor Ki j, describes the curvature of each individual hypersurface. In our

simulations, we will not evolve the spacetime.
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We model neutron stars as perfect fluids with a finite-temperature nuclear EOS. A perfect fluid

is a fluid with an isotropic pressure and no viscosity or heat conduction. The stress-energy tensor

for the perfect fluid is

Tab = heuaub +Pgab. (2.8)

In this equation ua is the four velocity of the fluid, he is the enthalpy, and P is the pressure. We

define the enthalpy as

he = ρ0 +ρ0ε +P, (2.9)

where ρ0 is the rest energy density and ε is the specific internal energy.

We define the Lorentz factor, W = −naua, between the fluid frame and the fiducial ADM

observers, and then vi = 1
W hi

ju
j is the fluid velocity in the frame of the ADM observers. The

variables ρ0, vi, and P, are known as the primitive variables, to distinguish them from the conserved

variables defined below.

Numerical methods for compressible fluids with shocks are based on the work of Godunov [15],

using the integral conservation laws for the fluid. To write the fluid equations in conservation form,

we introduce the conserved variables, D, Si and τ which are defined as

D = Wρ0, (2.10)

Si = heW 2vi, (2.11)

τ = heW 2−P−D. (2.12)

These variables correspond to baryon density, momentum and the kinetic energy in the classical

limit. In general spacetimes, it is convenient to introduce the densitized variables

D̃ =
√

hD (2.13)

S̃i =
√

hSi (2.14)

τ̃ =
√

hτ. (2.15)
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This allows us to write the fluid equations in balanced law form [16], as seen in equation 2.3 above,

∂tD̃+∂t [αD̃(vi− β i

α
] = 0 (2.16)

∂t S̃ j +∂t [α(S j(vi− β i

α
)+
√

hPhi
j)] (2.17)

= α
3
Γ

i
jk(S̃ivk +

√
hPhi

k)+ S̃a∂ jβ
a−∂ jα(τ̃ + D̃)

∂ τ̃ +∂i[α(S̃i− β i

α
τ̃− viD̃)] = α[Ki jS̃iv j +

√
hKP− 1

α
S̃a∂aα] (2.18)

where 3Γi
jk is the Christoffel symbol associated with the 3-metric hi j defined on each of the ADM

hypersurfaces, and K is the trace of the extrinsic curvature, K =Ki
i. To close the system we choose

an equation of state.

2.2 Equations of State

As mentioned in Chapter 1, the ideal gas law equation of state is used most often due to its sim-

plicity. In this EOS the pressure, P, is directly proportional to the internal energy, ε ,

P = ρ0ε(Γ−1), (2.19)

where Γ is the adiabatic constant and ρ0 is the density. Under isentropic conditions this law reduces

to polytropic form with κ being the dimensional constant

P = κρ0
Γ. (2.20)

The simplicity of this EOS allows the primitive variables to be determined quickly, making it com-

putationally inexpensive to evaluate during the evolution [17]. However, this EOS naturally has

limitations in modeling dense nuclear matter. Although the ideal gas EOS can give us a qualitative

picture of the neutron star dynamics, it will not give us a detailed picture of the neutron stars’

structure or include effects of nuclear interactions during the merger.
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The next step to more realistically model nuclear matter is to use a hybrid EOS. In a hybrid

EOS we start with a cold nuclear EOS in polytropic form and add an ideal gas component to

account for shock heating. The pressure in the hybrid model is split into two pieces, the cold and

the thermal pressures

P = Pcold +Pth (2.21)

with the cold part being piecewise polytropic. The cold EOS can be split into many different

pieces. As an example the EOS can be divided between ρ0 < ρnuclear with the adiabatic exponent

Γ1 and ρ0 > ρnuclear with adiabatic exponent Γ2. The two pieces are made smooth at the boundary

causing the dimensional constant κ2 to be a function of Γ1,Γ2,κ1 and ρnuclear [18]. Though this

EOS mimics shock heating it does not take into account the different nuclear processes. To take

this into account we use a finite temperature nuclear EOS appropriate for astrophysical objects.

The two leading candidates for a finite temperature nuclear EOS for astrophysics are the

Lattimer-Swesty EOS and the Shen EOS. Both of these take into account the formation and change

of atomic nuclei depending on the pressure, temperature, and other physical quantities, though they

are based on different models.

The Lattimer Swesty model is based on the compressible liquid drop model. In this model, the

phase of matter is determined by treating nuclei as a compressible liquid drop and then minimiz-

ing the Helmholtz free energy associated with each drop and a free nucleon gas around it. This

approach has given some interesting results of different phases of nuclei as we transition from in-

dividual nuclei to a bulk mass near nuclear densities. Many studies have been done using this EOS

with success [6].

I chose to use the Shen EOS [1] because it has been successful at describing many properties

of nuclei. This EOS is based on the relativistic mean field theory. The relativistic mean field theory

agrees with both stable and unstable nuclei of all sizes, as well as agreeing with spin properties

and incompressiblities. The Shen EOS extends these ideas to uniform matter, with no heavy nu-
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clei, and nonuniform matter, with heavy nuclei, under a wide range of temperatures (T ), densities

(ρ0) and electron fractions (Ye). The EOS is extended to lower densities using the Thomas-Fermi

approximation. One of the interesting findings from the Shen EOS is the formation of heavy nu-

clei under certain conditions. At low densities the protons and neutrons form a homogeneous gas.

As the density increases, heavy nuclei begin to form to minimize the free energy. As the density

continues to climb, we again reach a point of uniform matter [7].

The Shen EOS is too complicated to be calculated during run time so it must be put into a

table, and the software uses the table to calculate a given state using interpolation. The Shen

et. al. table is too coarse to be used in on the fly interpolation for precise analysis. We have

chosen to use the table refined and extended by Ott et. al. [18] To refine the table Ott used the

cubic Hermite interpolation function provided by Timmes and Swesty [8] and modified to have

monotonic interpolation behavior as suggested by Steffen [19]. This refines the table giving 18

points per decade in ρ , 41 points per decade in T and 50 points in Ye. The values below T = 0.1

MeV and above T = 100 MeV were extrapolated linearly keeping the composition constant. At

densities below 107g/cm3 the Timmes EOS is used with the assumption of an ideal gas [18].



Chapter 3

Numerical Implementation

Many differential equations that arise in astrophysical systems are difficult to solve analytically,

and this has spurred the need to find approximate solutions. In finite difference methods differ-

ential operators are replaced with algebraic operators, reducing differential equations to algebraic

equations. This section discusses numerical techniques used to evolve the perfect fluid equations.

3.1 Evolution Code

The HAD code that evolves the perfect fluid equations is a high resolution shock capturing scheme

based on the PPM reconstructions and HLLE numerical flux. The fluid equations are written in

balance law form with u as a state vector, fk as flux functions and s as source terms we have

∂tu+∂kfk(u) = s(u) (3.1)

The fluid equations are discretized using finite differences as required. I have shown in chapter 2

that the densitized conserved variables have been placed in this form.

To discretize the balance law equations we use the method of lines, discretizing space and time

14
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separately. The one dimensional discretized form is

dut
dt

=−
f̂t+ 1

2
− f̂t− 1

2

∆x
+ s(ut) (3.2)

where f̂ is the consistent numerical flux. The HAD code uses the HLLE flux.

fHLLE =
λ+

r f(ul)−λ
−
l f(ur)+λ+

r λ
−
l (ur−ul)

λ
+
r −λ

−
l

, (3.3)

where

λ
−
l = min(0,λl) (3.4)

λ
+
r = max(0,λr). (3.5)

The HLLE flux [20] is a central-upwind flux using the maximum characteristic velocities for both

left- and right-moving waves. The characteristic velocities for the relativistic perfect fluid in the

x-direction are [17]

λ0 = αvx−β
x (3.6)

λ± =
α

1− v2cs2

{
vx(1− cs

2)± (3.7)

cs

√
(1− v2)[hxx(1− v2cs2)− vxvx(1− cs2)]

}
−β

x

Both λ ’s are functions of the sound speed, cs, which must be taken from the EOS. In our case it is

supplied by the EOS table, though we need to convert to relativistic speed of sound. To do this we

divide cs from the table by hρ0 the relativistic enthalpy. The point valued fluxes are then converted

into numerical fluxes. The PPM is used to calculate the numerical fluxes and has been found to

be less dissipative than the CENO scheme, and seems to give superior reconstruction of the stellar

interior.
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3.2 Conserved to Primitive Reconstruction

Using the method of lines we are able to evolve the conserved variables from initial data at time

t to the advanced time t +∆t. However, we are then left to calculate the primitive variables at

the advanced time. While the conserved variables are simple algebraic functions of the primitive

variables, the inverse transformation is transcendental, and we must employ an iterative root finding

technique. We chose to use the Newton-Raphson method to iterate an equation for the pressure

which works for EOS’s of the type P = P(ρ0,ε,Ye) [21]. This is the form of the table of the Shen

EOS provided by Ott.

We use the Newton-Raphson method to find a solution to the transcendental equation,

f = P̄−P(ρ̄0, ε̄,Ye). (3.8)

by varying a guess for the pressure, P̄. The initial guess for the Newton-Raphson solver is the

pressure from the previous time step. Using the guess for P̄, we calculate

W̄ =
τ + P̄+D√

(τ + P̄+D)2−S2
, (3.9)

where S2 = SiSi. We then calculate Ye, ρ0 and ε as

Ye = (DYe)/D, (3.10)

ρ̄0 =
D

τ + P̄+D

√
(τ + P̄+D)2−S2, (3.11)

ε̄ = D−1(
√
(τ + P̄+D)2−S2− P̄W̄ −D). (3.12)

The barred variables are all based on the guess for the pressure, P̄.

The Newton-Raphson solver requires the derivative of f with respect to P̄ which is given by

f ′ = 1− ∂P
∂ρ0

∣∣∣∣
ε

∂ρ0

∂ P̄
− ∂P

∂ε

∣∣∣∣
ρ0

∂ε

∂ P̄
. (3.13)
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In this equation, the terms ∂P
∂ρ0

∣∣∣
ε

and ∂P
∂ε

∣∣∣
ρ0

must be supplied by the EOS, and

∂ρ0

∂ P̄
=

DS2√
(τ + P̄+D)2−S2(τ + P̄+D)2

(3.14)

∂ε

∂ P̄
=

P̄S2

ρ((τ + P̄+D)2−S2)(τ + P̄+D)
. (3.15)

If the determined P is not within tolerance then it is set as the guess for the next iteration of the

solver. When the root has been found within tolerance the solver stops and returns values for P, ρ0

and ε . Once a value of P has been determined the other primitive variables may also be determined

ρ0 =
W
D

(3.16)

vi =
Si

heW 2 (3.17)

where he is given by equation 2.8 [21].

3.3 Physical Constraints

A physical solution for the primitive variables must satisfy certain constraints, namely ρ0 > 0,

P > 0 and v2 < 1. Unfortunately, numerical error in the evolution algorithm can sometimes result

in states at the advanced time that are unphysical. These unphysical states often cause the primitive

variable solver described above to fail. To help alleviate these problems, we apply a floor to the

conservative variables D and τ such that D > δ and τ > δ , for a vacuum level δ . The value of δ is

typically 10−8 for the variables done here, and it is chosen to be small enough that its value does

not affect the evolution.

After P has been determined through the Newton-Raphson routine, we check for physicality be

testing if P > 0 and W≥1. If either of these checks fail, we flag the point and determine a physical

solution by interpolation from points around it. As long as there are few errors, the code will

be able to continue. If too many points fail, there may be no physical solution so the simulation

terminates.



Chapter 4

Tests and Data

This section describes the initial tests of the MHD code using the Shen EOS. These tests involved

evolutions of neutron stars on a fixed background geometry. Fixing the geometry is also known as

the Cowling approximation.

4.1 Tests

The neutron star initial data was generated using the Nrotstar package in LORENE, a C++ library

used for solving initial value problems in numerical relativity. The equation of state information is

put into a table of values in number density, ρ0(1+ ε/c2 (the total density), and pressure [10]. To

generate this table, we fixed the temperature of the neutron star to be T = 1.16x109K and set the

electron fraction to be Ye = 0.1. We then extracted a line of data (fixed in T and Ye) from the Shen

table. The neutron star we simulated had a target mass of 1.4 Msolar, an enthalpy of 0.84 m2/s2

and no rotation. The neutron star solution from LORENE had a baryonic mass of 1.377 Msolar a

radius of 12.245 km, a compactness of m/r = 0.11, and no rotation.

After producing neutron star initial data, we began tests to ensure the robustness, accuracy, and

convergence of the new primitive solver for the Shen EOS. To test the robustness of the solver,

18
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we first lowered the temperature in a small region at the center of the neutron star to the vacuum

levels. This method checked the effects of abrupt density changes as well as the ability of the

new routines to handle shocks and speeds approaching the speed of light. As expected, the fluid

flow at the middle of the neutron star reached speeds close to the speed of light. The solver could

determine physical solutions during the entire simulation, which confirms that the code is able to

handle shocks and other abrupt phenomena.

To test the accuracy of the code, we evolved a single neutron star for many dynamical times

to ensure that the neutron star was stable and that the average density did not increase or decrease

in time. A dynamical time is the time it takes for information at the surface of the neutron star

to reach the center of the neutron star and back, and can be measured from the oscillations of the

density at the center of the neutron star. The evolution progressed to 9500 time steps or 3.657 ms.

The simulation used 100 points across the neutron star. The average computational time for one

time steps was 4.5 min. We ran the simulation on 64 processors at the Fulton Supercomputing Lab

at BYU. The neutron star showed regular pulsations without significantly increasing or decreasing

its average maximum density. We note that these data were treated inconsistently, as discussed

below.

The final test examined the convergence at different resolutions (see fig. 4.1). In addition to

the neutron star with 100 points across the neutron star mentioned above, we evolved a second

neutron star with 200 points. This evolution was evolved for 2600 steps on 96 processors. The

central density of the neutron star is also plotted in fig. 4.1. As seen in the figure there was a

large change in density of the fine-grid neutron star. This was unexpected, as the density variations

on a finer resolution should be smaller than on a coarse resolution. As we looked into this, we

found that there is a problem in the code in converting units from the LORENE initial data to

the geometric units used in HAD. In particular the unit transformation from LORENE units to

HAD’s geometric units was not consistent with the transformation from geometric units to cgs
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Figure 4.1 The fluctuations of the central density of two neutron star simulations. The
red line is for a neutron star on a coarse grid with 100 points across the neutron star. Blue
is for the finer resolution with 200 points across the neutron star. The axes are time, t, in
and density, ρ0. We see a lot of noise at the start of the simulation. This is due to a unit
conversion problem that we found in the code that causes significant perturbations of the
neutron stars. After about 2 ms the red signal stabilizes. The blue curve appears to be
converging toward the solution found in the red, but has not had enough time to do so.

units used in the evolution code. It appears that large changes in density of the simulated neutron

star occur as the neutron star transitions from the equilibrium state described by the initial data to

an equilibrium that agrees with the units as they appear in HAD. After about 2 ms the code has

found a new equilibrium and continues to evolve as it should. The fine grid neutron star simulation

lasted for only 1 ms and so did not reach the new equilibrium. However, it appears that the large

jumps in the density were becoming less and likely would have led to a new stable solution which

converged with the coarse grid neutron star. In any case, these evolutions are not of equilibrium

neutron stars but neutron stars with significant perturbations. This explains the apparent lack of

convergence shown in figure 4.1.
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4.2 Data

We were interested in how the central density of the neutron star changed over time. As mentioned

above, initially there was a fair amount of noise, as the neutron star transitioned to an equilibrium

position due to the unit conversion problem. This problem with units exited radial pulsations in

the neutron star, related to the radial modes. If the pulsations are driven only be truncation error,

then they should diminish with increasing resolution, which shows that the amplitude of these

oscillations carry no physical information. However, the frequencies of the modes excited by these

perturbations are a physical property of neutron stars, which can then be compared to different

models. Using Fourier analysis we were able to determine the modes of the oscillations (see fig.

4.2). We found that the simulated neutron star has a fundamental frequency of 3.4 kHz, the first

harmonic of 6.0 kHz, and the second harmonic of about 9.7 kHz. Given the short evolution time,

the higher frequencies have large uncertainties.

Font et. al. used the ideal gas EOS with a polytropic index n = 1 with Γ = 2, in the Cowling

approximation. This led to a neutron star with a compactness of m/r = 0.15 [2]. The radial modes

from Font, 2.7 kHz, 4.5 kHz, and 6.3 kHz (see table 4.1) are slightly lower than those found using

the Shen EOS. The Shen EOS produces neutron stars that are stiffer, with our neutron star having

a compactness of m/r = 0.11. This leads to a neutron star that is bound together more strongly,

increasing the speed of sound in the neutron star, leading to higher frequencies.
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Figure 4.2 The power spectrum of the density oscillations of the coarser of the two
neutron star simulations. We see peaks corresponding to oscillation frequencies at 3.4
kHz, 6.0 kHz, and 9.7 kHz. Given the limited data the uncertainty in the higher modes is
large.

Font Shen

Mode (kHz) (kHz)

F 2.7 3.4

H1 4.5 6.0

H2 6.3 9.7

Table 4.1 Comparison of the frequencies of radial pulsations of two simulated neutron
stars on a fixed spactime. One using the polytropic EOS with polytropic index Γ= 2 taken
from [2], the other from our simulations using then Shen EOS. We show the fundamental,
F, and the first and second harmonic, H1 and H2 respectively.



Chapter 5

Conclusion

I have implemented the Shen EOS into the HAD code at BYU. I wrote a conserved variable to prim-

itive variable solver which uses the Newton-Raphson method to solve the transcendental equations.

I also modified the program to do a table look-up for the Shen EOS since it is too complicated to

be determined at run time.

After implementing the new routines we tested the program for robustness, accuracy, and con-

vergence. During the test for convergence we determined that the unit conversion between the

initial data, the HAD code, and the EOS table was inconsistent. This inconsistency was small, and

was not noticed in the initial simulations. While this error was found after the runs for this thesis

were completed, it demonstrates the importance of convergence testing to find subtle errors many

different errors in the code.

From the simulations we produced, we find that the Shen EOS produces stiff neutron stars with

a compactness of m/r = 0.11. We calculated the frequencies of radial oscillations of the neutron

star by taking the Fourier transform of the central density as a function of time. The frequencies

of the modes of a neutron star with the Shen EOS are slightly higher than those of a star with the

ideal gas EOS. This was expected as the Shen EOS star is stiffer than neutron stars produced using

the ideal gas EOS.

23
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After correcting the unit conversion for the initial data, we can then begin looking at mergers

of two neutron stars using the Shen EOS, to see how these mergers differ from those of neutron

stars with other EOSs. We will also simulate neutron star-black hole mergers to see if there is a

difference in the formation of an accretion disk around the black hole after the merger. We will

also extract the gravitational wave signature to see how the cut-off frequency changes due to the

change in the EOS.
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