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ABSTRACT

Generalized Acoustic Energy Density and Its Applications

Buye Xu

Department of Physics and Astronomy

Doctor of Philosophy

The properties of acoustic kinetic energy density and total energy density of sound fields
in lightly damped enclosures have been explored thoroughly in the literature. Their increased
spatial uniformity makes them more favorable measurement quantities for various applica-
tions than acoustic potential energy density (or squared pressure), which is most often used.
In this dissertation, a new acoustic energy quantity, the generalized acoustic energy density
(GED), will be introduced. It is defined by introducing weighting factors, α and 1 − α, in
the formulation of total acoustic energy density. With the additional degree of freedom,
the GED can conform to the traditional acoustic energy density quantities, or be optimized
for different applications. The properties and applications of the GED are explored in this
dissertation. For enclosed sound fields, it was found that GED with α = 1/4 is spatially
more uniform than the acoustic potential energy density, acoustic kinetic energy density, and
the total acoustic energy density, which makes it a more favorable measurement quantity
than those traditional acoustic energy density quantities for many indoor measurement ap-
plications. For some other applications, such as active noise control in diffuse field, different
values of α may be considered superior.

The numerical verifications in this research are mainly based on a hybrid modal expan-
sion developed for this work, which combines the free field Green’s function and a modal
expansion. The enclosed sound field is separated into the direct field and reverberant field,
which have been treated together in traditional modal analysis. Studies on a point source
in rectangular enclosures show that the hybrid modal expansion converges notably faster
than the traditional modal expansions, especially in the region near the source, and intro-
duces much smaller errors with a limited number of modes. The hybrid modal expansion
can be easily applied to complex sound sources if the free field responses of the sources are
known. Damped boundaries are also considered in this dissertation, and a set of modified
modal functions is introduced, which is shown to be suitable for many damped boundary
conditions.
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Chapter 1

Introduction

1.1 Background

Acoustic pressure, p, and acoustic particle velocity, u, are two basic physical quantities de-

scribing sound waves in a fluid. In linear acoustics, these two quantities underlie two different

forms of energy stored in acoustic waves: potential energy and kinetic energy. Energy per

unit volume at a point in space is defined as the energy density. Since the pioneering work

by W. C. Sabine,1 localized measurements based on acoustic pressure, squared pressure, or

acoustic potential energy density have become a primary focus for room acoustics. However

several researchers have explored the benefits of the kinetic energy density and total energy

density.

In the early 1930’s, Wolff and Massa experimentally studied the kinetic energy density

as well as total energy density in a room with the use of pressure gradient microphones.2,3

His results showed a better spatial uniformity for both the kinetic energy density and total

energy density over the potential energy density.

In 1974, a preliminary experimental study by Sepmeyer, et al.4 showed that for a pure-

tone diffuse sound field, the potential energy density has a relative spatial variance of one,

1
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which is consistent with the theoretical results by Waterhouse5 and Lyon.6 In addition, they

also found that the variance of potential energy density is approximately twice that of the

total energy density. In the same year, Cook, et al. showed that the spatial variance of total

energy density is smaller than that of the squared pressure for standing waves.7

Following Waterhouse’s free-wave concept,8,9 Jacobsen studied the statistics of acoustic

energy density quantities from a stochastic point of view.10 Moryl, et al.11,12 experimentally

investigated the relative spatial standard deviation of acoustic energy densities in a pure

tone reverberant field with a four-microphone probe. Their results are in fair agreement

with Jacobsen’s prediction.

Jacobsen, together with Molares, revised his 1979 results10 by applying the weak An-

derson localization arguments,13 and they were able to extend the free-wave model to low

frequencies.14,15 The new formulas for sound power radiation variance and ensemble variance

of pure-tone excitations are very similar to those derived from the modal model6,16,17 but

with a simpler derivation. The same authors then investigated the statistical properties of

kinetic energy density and total acoustic energy density in the low-frequency range.18

The pressure microphone gradient technique for measuring acoustic energy quantities has

been studied and improved over time.3,4, 11,19–22 Recently, a novel particle velocity measure-

ment device, the “Microflown” sensor, has been made available to acousticians,23,24 which

expanded the methods available to measure acoustic energy density quantities. With the

improvement of the particle velocity measurement techniques, more and more attention is

being devoted to energy density quantities. By recognizing the increased uniformity of the

total energy density field, Parkins, et al. implemented active noise control (ANC) by mini-

mizing the total energy density in enclosures. Significant global attenuation was achieved at

low frequencies.25,26 In 2007, Nutter, et al. investigated acoustic energy density quantities

for several key applications in reverberation chambers and explored the benefits introduced
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by the uniformity of both kinetic energy density and total acoustic energy density.27

Most studies of kinetic energy density and total energy density have focused on their

improved uniformity in reverberant sound fields. A new energy density quantity, the gen-

eralized acoustic energy density (GED), will be introduced in this research and shown to

potentially be more uniform than all other commonly used acoustic energy density quanti-

ties. In addition, with an additional degree of freedom, GED can be optimized for different

applications. GED also requires no more effort to obtain than the total energy density.

1.2 Definition of the Classical Acoustic Energy Densi-

ties

1.2.1 Time Domain Definition

In linear acoustics, Euler’s equation is one of the fundamental equations that describe the

wave dynamics in a fluid:

ρ0
∂u

∂t
= −∇p, (1.1)

where ρ0 is the ambient fluid density. Both u and p are functions with respect to time as

well as space. Multiplying both sides of Eq. (1.1) by u leads to

ρ0u ·
∂u

∂t
= −u · ∇p. (1.2)

On the other hand, by taking the divergence of both sides of Eq. (1.1), we have

ρ0∇ ·
∂u

∂t
= −∇2p. (1.3)

Considering the linear wave equation

∇2p− 1

c2
∂2p

∂t2
= 0, (1.4)
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Eq. (1.3) becomes

ρ0∇ ·
∂u

∂t
= − 1

c2
∂2p

∂t2

⇒ ρ0∇ · u = − 1

c2
∂p

∂t

⇒ 1

ρ0c2
p
∂p

∂t
= −p∇ · u. (1.5)

Adding Eq. (1.2) to Eq. (1.5) leads to

ρ0u ·
∂u

∂t
+

1

ρ0c2
p
∂p

∂t
= −u∇p− p∇ · u

⇒ ∂

∂t

(
1

2

p2

ρ0c2
+

1

2
ρ0u · u

)
= −∇ · (pu), (1.6)

which is often called the equation of conservation of energy. The right-hand side of Eq. (1.6)

represents the net energy flowing into (or out of) an infinitesimal volume, which should be

equal to the change of the acoustic energy stored in the volume. Therefore, 1
2ρ0c2

p2 + 1
2
ρ0u ·u

on the left-hand side of Eq. (1.6) must represent the total acoustic energy density ET , where

1
2
ρ0u ·u represents the kinetic energy density EK and 1

2ρ0c2
p2 represents the potential energy

density EP .

For time harmonic sound fields, the time-averaged total acoustic energy density can be

calculated as

ET =
1

τ

∫ τ0+τ

τ0

ET dt

=
1

τ

∫ τ0+τ

τ0

EP dt+
1

τ

∫ τ0+τ

τ0

EK dt

=
1

4ρ0c2
p̃2 +

1

4
ρ0ũ

2, (1.7)

where p̃ and ũ represent the peak amplitude of the pressure and particle velocity respectively.

This expression is usually seen in the standard acoustics textbooks, and has been widely used

by acousticians. However, it emphasized here that Eq. (1.7) is a time-domain expression and

the corresponding frequency-domain expression will be studied in the next section.
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1.2.2 Frequency Domain Definition

The corresponding frequency-domain quantities of acoustic pressure and particle velocity are

usually defined as the Fourier transforms of them, meaning

p̂(ω) =
1√
2π

∫ ∞
−∞

p(t)e−iwt dt, (1.8)

û(ω) =
1√
2π

∫ ∞
−∞

u(t)e−iwt dt, (1.9)

and

p(t) =
1√
2π

∫ ∞
−∞

p̂(ω)eiwt dt, (1.10)

u(t) =
1√
2π

∫ ∞
−∞

û(ω)eiwt dt. (1.11)

However, the acoustic energy quantities are not usually developed with these expressions in

the frequency domain because of the frequency shift caused by the squaring operations that

are involved in obtaining the time-domain acoustic energy quantities. Instead, Parseval’s

theorem28 is often used to derive the frequency-domain energy quantities from the time-

averaged quantities so that they can match the correct energy values at each frequency. As

an example, the frequency-domain total acoustic energy density is derived here based on the

development of Parseval’s theorem:∫ ∞
−∞
ET dt =

∫ ∞
−∞

(
1

2

p2

ρ0c2
+

1

2
ρ0u · u

)
dt (1.12)

=
1

4πρ0c2

∫ ∞
−∞

(

∫ +∞

−∞
p̂ · eiω1t dω1)(

∫ +∞

−∞
p̂∗ · e−iω2t dω2) dt

+
ρ0
4π

∫ ∞
−∞

(

∫ +∞

−∞
û · eiω1t dω1) · (

∫ +∞

−∞
û∗ · e−iω2t dω2) dt

=
1

2ρ0c2

∫ +∞

−∞
p̂p̂∗ dω +

ρ0
2

∫ +∞

−∞
û · û∗ dω

=

∫ ∞
−∞

(
1

2ρ0c2
p̂p̂∗ +

ρ0
2

û · û∗
)
dω. (1.13)
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Comparison of Eq. (1.12) with Eq. (1.13) suggests that the total energy density in the

frequency domain and the time domain can be matched if the frequency-domain total acoustic

energy density is defined as

ET =
1

2ρ0c2
p̂p̂∗ +

ρ0
2

û · û∗. (1.14)

Similarly, for the potential energy density,

EP =
1

2ρ0c2
p̂p̂∗, (1.15)

and for the kinetic energy density,

EK =
ρ0
2

û · û∗. (1.16)

In order to demonstrate that these quantities represent the correct energy values in the

frequency domain, a special example is considered here for the potential energy density.

Assuming a sinusoidal signal, the acoustic pressure can be written as

p(t) = Acos(ω0t), (1.17)

where A is the peak amplitude and w0 is the angular frequency. The integration of the

potential energy density time signal from −∞ to ∞ can be calculated as∫ ∞
−∞

1

2

p2

ρ0c2
dt =

A2

4ρ0c2

∫ ∞
−∞

[
cos2(ω0t) + sin2(ω0t)

]
dt

=
A2

4ρ0c2

∫ ∞
−∞

1 dt, (1.18)

which is infinity. In the frequency domain, we have

p̂(ω) =
A
√

2π

2
[δ(ω + ω0) + δ(ω − ω0)] , (1.19)
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where δ represents the Dirac delta function. Substituting Eq. (1.19) into Eq. (1.15) and

integrating within infinitesimal regions centered at ±ω0 yields∫ −ω0+

−ω0−
EP dω +

∫ ω0+

ω0−
EP dω =

∫ ∞
−∞

πA2

4ρ0c2
[δ(ω + ω0) + δ(ω − ω0)]

2 dω

=
πA2

4ρ0c2

∫ ∞
−∞

δ2(ω + ω0) + δ2(ω − ω0) dω

=
πA2

2ρ0c2

∫ ∞
−∞

δ2(ω − ω0) dω

=
πA2

2ρ0c2

∫ ∞
−∞

δ(ω − ω0)
1

2π

∫ ∞
−∞

eiωte−iω0t dt dω

=
A2

4ρ0c2

∫ ∞
−∞

e−iω0t

∫ ∞
−∞

δ(ω − ω0)e
iωt dω dt

=
A2

4ρ0c2

∫ ∞
−∞

1 dt, (1.20)

which is consistent with Eq. (1.18).

In practice, Fourier series are used to study infinite periodic signals in the frequency

domain to avoid the Dirac delta function. The pressure signal in Eq. (1.19) can be written

in terms of the complex Fourier series as

p(t) =
A

2
e−iω0t +

A

2
eiωt

= p̂(−ω0)e
−iω0t + p̂(ω0)e

iωt. (1.21)

By implementing Eq. (1.15), the total energy at the frequencies ±ω0 can be calculated as

EP (−ω0) + EP (ω0) =
1

2ρ0c2
[p̂2(−ω0) + p̂2(ω0)]

=
A2

4ρ0c2
, (1.22)

which is same as the time-averaged potential energy density EP .

The frequency-domain expressions developed in this section [Eqs. (1.14) through (1.16)]

differ from the widely used time-domain expressions by a factor of 1/2. Since the major-

ity of the acoustic signals consist of an infinite number of frequency components and are
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analyzed using Fourier transforms, it is more appropriate to utilize these frequency-domain

expressions in practice. It needs to be noted, however, that the expressions developed in

this section are based on the Fourier transform given by Eqs. (1.9) through (1.11), where the

normalization factor 1/
√

2π is used for both forward and inverse transform. If other formu-

las are utilized, the frequency-domain expressions for the acoustic energy density quantities

should be modified accordingly.

1.3 Enclosed Sound Fields

Several different theories have been developed by acousticians to study the sound fields inside

rooms under different conditions.29 Geometrical acoustics, for example, is widely used to

study the high-frequency sound fields in large chambers. Statistical room acoustics is a

very powerful tool to obtain the global information of the diffuse sound field, while wave

(or modal) analysis, which is theoretically universal, is more suitable for low frequencies or

small rooms.

1.3.1 Sound Field Prediction

Based on these theories, many methods for predicting the sound pressure field in rooms

have been developed, including statistical energy analysis (SEA), classical modal analy-

sis (CMA),30,31 asymptotic modal analysis (AMA),32 ray tracing techniques, finite element

method (FEM), and so on. SEA and AMA are particularly well-suited for systems which

have high modal density and light damping. Ray tracing techniques are powerful for large

rooms at high frequencies. The other methods are typically applicable in the low-frequency

range.

A perturbation theory was developed to treat the effects of damping33 and has been
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successfully applied to the low-frequency range.34 CMA also has the capability of computing

the acoustic field in damped enclosures, but the extensive computations required restrict it

to a very low frequency range.35

Thus far, no method has been shown to be excel in the mid-frequency range, especially

for highly damped enclosures. In addition, the accuracy of applying current methods to

predict particle velocity has not been carefully studied.

1.3.2 Statistical Room Acoustics

The diffuse sound field can be considered as the superposition of many elementary waves

coherently interfering with random phases. The maxima and minima of the field form a

random pattern referred to as a speckle pattern. Schroeder intensively studied the statis-

tical properties, resulting in rooms which resulted in the wave statistical theory of room

acoustics.36

1.4 Research Objectives and Dissertation Outline

The main objective of this research is to develop the concept of generalized acoustic energy

density (GED). The properties and applications of the GED are explored for enclosed sound

fields in both low and high-frequency ranges. Analytical, numerical and experimental studies

are carried out.

In Chapter 2, a hybrid modal expansion that combines the free field Green’s function

and a modal expansion will be presented, based on a review and an extension of the existing

modal analysis theories for the sound fields in enclosures. Damped boundaries will also

be considered, and a set of modified modal functions will be introduced and shown to be

suitable for many damped boundary conditions. The hybrid modal expansion will be utilized
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throughout this dissertation as an important numerical simulation tool. The concept and

properties of the GED will be introduced in Chapter 3. Its behavior will be explored for

room modes, for sound fields below the Schroeder frequency, and for diffuse fields. Computer

simulation results will be presented to validate some of the GED properties. In Chapter 4,

methods for measuring the GED will be introduced, and two GED-based reverberation

chamber measurement techniques will be studied. The active noise control of enclosed sound

fields will be studied in Chapter 5. Again, the GED-based techniques will be explored in

both the low and high-frequency ranges. Conclusions and suggestions for future research are

found in Chapter 6.

1.5 Significance of the Dissertation

The generalized acoustic energy density (GED) is introduced and systematically studied for

the first time in this dissertation. The GED is defined by introducing weighting factors in

the formulation of total acoustic energy density. It effectively incorporates different tra-

ditional acoustic energy density quantities (EP , EK and ET ) within a single quantity by

proper choice of the weighting factors. The related theories thus become more complete and

general. Although the GED itself is not a fixed physical quantity, its study and use can help

acousticians better understand the physics behind various acoustic phenomena.

With an additional degree of freedom, the GED can not only conform to the traditional

acoustic energy density quantities, but more importantly, it can be optimized for different

applications. Results in this dissertation show that by choosing appropriate weighting fac-

tors, one can utilize the GED to improve existing indoor acoustic measurement techniques

and active noise control techniques. In addition, the GED and the ideas behind it have the

potential to be utilized in a much wider range of applications.

To carry out this research, there was a great need for a computational tool to compute
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enclosed sound fields at both low frequencies and high frequencies. A hybrid modal expansion

that combines the free-field Green’s function and a modal expansion has been developed and

shown to have dramatically improved performance over the widely used classical modal

expansions, especially in the spatial region near the source or in situations where damped

boundaries exist.



Chapter 2

A Hybrid Modal Analysis

2.1 Introduction

Modal analysis (MA) has been widely used to study the low frequency response in enclosed

sound fields. The fundamental idea of modal analysis is to express an acoustic field quantity

as the summation of a complete set of properly weighted modal functions. The weighting

factors are often called the modal amplitudes. The summation usually has an infinite number

of terms; therefore MA is generally not a closed form solution. However, given that this

infinite series converges, one can in practice truncate it to a finite summation and still reach

the desired accuracy in the low frequency range. For high frequencies, where a very large

number of modal functions must be included to achieve an acceptable accuracy, MA is less

applicable.

Normal mode analysis (NMA)37 is probably the simplest and most widely used modal

analysis in the literature. It is, however, only suitable for enclosures with rigid or very lightly

damped boundaries. Dowell, et al. developed a more comprehensive modal analysis theory,

the so-called classical modal analysis (CMA), which is based on the Green’s divergence the-

orem.31 It is capable of computing sound fields in damped enclosures but, as a consequence,

12
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the modal functions are coupled and the convergence speed is usually very slow.35 Both

NMA and CMA use the same set of eigenfunctions solved from an eigenvalue problem as the

modal functions, but have different mechanisms to generate the modal amplitudes. These

eigenfunctions are called the “normal modes” in this chapter to distinguish from other sets

of modal functions discussed later. The normal modes and their linear combination only sat-

isfy rigid boundary conditions; therefore, large errors are often observed in the regions near

damped boundaries. This issue can be understood in terms of the Gibb’s phenomenon.38

The eigenfunctions that satisfy the same boundary conditions as the enclosure can be

solved numerically from an exact eigenvalue problem39,40 and are called “exact modes” in

this chapter. They are uncoupled and automatically match the boundary conditions, which

make them very good candidates for the modal functions of modal analysis.40 However,

there are several negative properties associated with them. First of all, the completeness of

this set of functions is always assumed without being proven. Second, the “orthogonality”

relationship among these functions is abnormal, which may cause inconvenience for many

applications. Finally, solving the exact eigenvalue problem involves numerical root searching

in the complex domain which is complicated and time consuming. Because of these disad-

vantages, MA using the exact modes (exact modal analysis or EMA) is not utilized much in

the literature.

In this chapter, a new set of modal functions (modified modes), which partially satisfy

the boundary conditions, will be introduced. Compared to the normal modes, modified

modes are also coupled, but can be easily simplified in many cases. Modal analysis based on

the modified modes (MMA) also introduces errors on boundaries but performs better than

CMA. Unlike the exact modes, modified modes are orthogonal and complete. Although a

numerical root search is still required, only real values need to be considered, which greatly

simplifies the searching algorithm.
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In the literature related to modal analysis, distributed sources on boundaries, such as a

piston source mounted on the inside surface of a room, are often considered. Point sources,

though more fundamental and very important for many applications such as sound power

prediction for sources inside rooms, active noise control, and so on, are not sufficiently

studied, partially due to the very slow convergence rate of MA in the near field. Maa

proposed a method of introducing the free-field Green’s function (FFGF) in addition to the

MA solution for sound fields, which essentially divides the sound field into a direct field and

a reverberant field.41,42 Although his development was based on a faulty assumption that

the classical modes are not complete, the idea of dividing the enclosure’s sound field into a

direct field and a reverberant field has merit.

In this chapter, a hybrid model that combines the free-field Green’s function and a modal

expansion will be presented based on a rigorous mathematical derivation. Examples shown

later confirm that this hybrid method not only greatly improves the convergence rate, but

also provides a better way to study the physical properties of enclosed sound fields. For a

complex source, the hybrid method can be easily modified by replacing the FFGF with the

free-field response of the source. A simple example will be given in Section 2.4.3.

This chapter is organized as follows. In Section 2.2, the general theory of modal expansion

will be reviewed; a modified modal expansion and a hybrid model will also be introduced.

In Section 2.3, results of different modal expansion models will be compared and discussed

for both one dimensional and three dimensional cases. Further examples of implementing

the hybrid modal expansion will be discussed in Section 2.4.
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2.2 Theoretical Derivation

Inside an enclosure, the sound pressure field excited by a point source satisfies the wave

equation

∇2p− 1

c2
∂2p

∂t2
= −Q0 (t) δ(r − ro), (2.1)

where p is the sound pressure, c represents the speed of sound, and Q0 (t) δ(r−ro) represents

the point source. Taking the Fourier transform of both sides yields the inhomogeneous

Helmholtz equation:

∇2p̂+ k2o p̂ = −Q̂0 (ω0) δ (r − ro) , (2.2)

where ·̂ indicates a complex frequency-domain quantity, ω0 is the excitation frequency, and

k0 is the acoustic wave number.

The boundary condition is usually assumed to be locally reacting and given as follows:

∂p̂

∂n

/
p̂

∣∣∣∣
S

= β = −ik0
ρ0c

z
, (2.3)

where ρ0 is the ambient air density, z is the specific acoustic impedance of the boundary,

and β is the normalized specific acoustic admittance. Note that this β differs from the

standard definition of the specific acoustic admittance by the constant −ik0ρ0c, which is a

pure imaginary number.

The solution, p̂, can be expressed as a linear combination of modal functions, ψn,

p̂ =
N∑
n=1

qnψn, (2.4)

where the modal amplitude, qn, can be complex and N is the total number of modal func-

tions. [These modal functions are spatially dependent, i.e. ψn = ψn(~r), but for notational

simplicity, the spatial dependence is omitted here.] From Euler’s equation, one can easily

obtain the modal expression for particle velocity (assuming eiωt time dependence),

û = − 1

iωρ0

N∑
n=1

qn∇ψn. (2.5)
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A frequent choice for ψn is the set of eigenfunctions for the following eigenvalue problem:

∇2ψn = λnψn = −k2nψn, (2.6a)

∂ψn
∂n

/ψn

∣∣∣∣
S

= β′, (2.6b)

where λn denotes the eigenvalue. Different values of β′ are used to generate different modal

functions. For example, zero is used for the classical modes while β is used for the exact

modes. Literally, β′ could be any value of choice. However, if it is real the eigenvalues

are real and the resulting modal functions are guaranteed to be complete and orthogonal.38

Orthogonality implies Cmn =
∫∫∫
V

ψ∗mψn d
3x = Λmnδmn, where δmn is the Kronecker delta

function, and Λmn is a normalization constant. The eigenvalues are often assumed nonpos-

itive, and thus written as −k2n as shown in Eq. (2.6a), but they could be positive if β′ < 0

for some or all of the boundary.

To solve for qn, the Green’s theorem can be applied as follows:∫∫∫
V

(
ψ∗m∇2p̂− p̂∇2ψ∗m

)
d3x =

∮
S

(
ψ∗m

∂p̂

∂n
− p̂∂ψ

∗
m

∂n

)
da, (2.7)

where the volume integral covers the entire volume inside the enclosure, and the surface inte-

gral is evaluated on the entire inside surface of the enclosure. Substitution of Eqs. (2.2), (2.3)

and (2.6) into Eq. (2.7) gives∫∫∫
V

[
−Q̂0δ (r − r0)ψ

∗
m − k2o p̂ ψ∗m + k2mp̂ ψ

∗
m

]
d3x =

∮
S

(β − β′) p̂ ψ∗m da

⇒
∫∫∫
V

(
k20 − k2m

)
p̂ ψ∗m d

3x+

∮
S

(β − β′) p̂ ψ∗m da = −Q̂0ψ
∗
m(ro)

⇒
∑
n

(
k20 − k2m

)
Cmnqn +

∑
n

Dmnqn = −Q̂0ψ
∗
m(ro)

⇒
∑
n

[(
k20 − k2m

)
Cmn +Dmn

]
qn = −Q̂0ψ

∗
m(ro), (2.8)
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where Dmn =
∮
S

(β − β′)ψ∗mψn da. Thus, qn can be solved from this linear equation group,

which can also be written in matrix form as
(k20 − k21)C11 +D11 D12 · · ·

D21 (k20 − k22)C22 +D22 · · ·
...

...
. . .

 ·

q1

q2
...

 =


−Q̂0ψ

∗
1(ro)

−Q̂0ψ
∗
2(ro)

...

 , (2.9)

or

A ·Q = B, (2.10)

where Amn = (k20 − k2m)Cmn +Dmn, Qn = qn, and Bm = −Q̂0ψ
∗
m(ro).

As mentioned at the beginning of this chapter, the number N of modal functions is in

principle infinite. Moreover, the matrix A is, while often sparse and Hermitian, nondiagonal.

Therefore, the qn’s are coupled and it is impossible to obtain an exact solution. In practice,

however, if qn goes to zero quickly enough as n goes to infinity, it is possible to keep only a

finite number of ψn’s as well as qn’s and obtain a desired level of accuracy.

Results that have been developed can be applied to enclosures of any shape. However,

this chapter will only focus on rectangular shapes. In particular, the dimensions of the

rectangular enclosure are Lx × Ly × Lz and one of the corners sits at the origin with the

three adjoining edges lying along the positive directions of the x, y and z axes. In addition,

it is assumed that the specific acoustic admittance, β, is constant for each of the boundaries,

and denoted by βx0, βxL, βy0, βyL, βz0 and βzL, where βx0 stands for β at x = 0, βxL stands

for β at x = Lx, and so forth.
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2.2.1 Classical Modal Analysis

For classical modal analysis, β′ in Eq. (2.6b) is set to zero. Therefore, the eigenfunctions

(normal modes) and eigenvalues can be solved easily for rectangular enclosures:

ψn = ψlmo = cos(kxlx) cos(kymy) cos(kzoz); (2.11a)

kxl =
lπ

Lx
, kym =

mπ

Ly
, kzo =

oπ

Lz
,

k2n = k2xl + k2ym + k2zo, (2.11b)

where l, m, and o are nonnegative integers.

This set of normal modes is complete and orthogonal because β′ is real, but it is always

infinite and usually coupled for non-rigid boundaries. The hope here is that qn converges to

zero quickly so that truncations can be made. Moreover, if the damping is small, or more

precisely if β − β′ � 1, Amn can be “uncoupled” by setting non-zero off-diagonal terms to

zero to simplify the computation.31 Studies on one-dimensional (1-D) sound fields in ducts

show that when damping is added to the system, the coupled model has to be considered

and many more iterations are needed.35,43 Pan also points out that even if a large number

of terms are included, the coupled model still converges poorly for the acoustic intensity.43

The classical modal analysis converges slowly not only for the acoustic intensity but also

for sound pressure as well as particle velocity, especially in the spatial region close to the

boundaries. All these disadvantages are largely due to the fact that the classical modes only

satisfy the rigid boundary condition (β′ = 0) which could be greatly different from the true

physical boundary conditions β and result in large off-diagonal terms in matrix A.

2.2.2 Modified Modal Function

As mentioned earlier, the choice of the boundary conditions for the modal functions (β′)

could be arbitrary. The exact modal analysis sets β′ = β, which matches the true physical
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boundary and, in turn, automatically diagonalizes the matrix A. However, since the value

of β is usually complex, the completeness and orthogonality of the exact modes are not

mathematically solid. In order to reduce the effects of off-diagonal terms in the matrix A of

Eq. (2.10), while keeping β′ real, a good choice for β′ is to set it equal to the real part of β.

The modified modes can thus be solved for from Eq. (2.6) and have the form

ψn = ψlmo =

[
cos(kxlx)− β′x0

kxl
sin(kxlx)

]
·
[
cos(kymy)−

β′y0
kym

sin(kymy)

]
·
[
cos(kzoz)− β′z0

kzo
sin(kzoz)

]
, (2.12)

where kxl, kym, and kzo can be solved from the following equations:

tan (kxl · Lx) =
(β′x0 + β′xL)kxl
β′x0 · β′xL − k2xl

,

tan (kym · Ly) =
(β′y0 + β′yL)kym

β′y0 · β′ym − k2ym
,

tan (kzo · Lz) =
(β′z0 + β′zL)kzo
β′z0 · β′zL − k2zo

. (2.13)

The general derivation carried out at the beginning of Section 2.2 [Eqs. 2.4 through 2.10] is

also applicable for modal analysis based on this new set of modal functions.

Generally, the values of kxl, kym, and kzo in Eqs. (2.13) cannot be solved analytically, and

thus a numerical method is needed. Because β′ is real, these modified modes are complete

and orthogonal. The eigenvalues, λn = −k2n, are real, but they could be positive for stiffness-

like boundary conditions. Therefore, kxl, kym, and kzo could be pure imaginary numbers.

The matrix A is still not diagonal, since Dmn 6= 0. However, unlike normal modes, this

new set of modal functions do not reach maxima on the boundary and, in addition, the value

of β′ reduces the value of β−β′, which can be found in the expression for Dmn, which implies

a reduced effect of the off-diagonal terms, Dmn, in A. Because the boundary condition is
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partially satisfied, the modified modal analysis is expected to perform better than normal

modal analysis.

2.2.3 Hybrid Modal Analysis

Due to the singular nature of a point source, all the modal models discussed earlier converge

very slowly at field points close to a point source. In order to overcome this problem, a

free-field Green’s function is introduced to the solution of Eq. (2.2):

p̂(r) = G(r|ro) + F (r), (2.14)

where G(r|ro) represents the pressure field associated with the free-field Green’s function

that satisfies Eq. (2.2) by itself, and F (r) is a solution of the homogenous Helmholtz equation.

G(r|ro) can be expressed as

G(r|r0) =
Q̂0 (ωo)

4π |r − ro|
e−iko·(r−ro), (2.15)

where ro designates the location of the point source.

From the point of view of room acoustics, the sound field is then divided into a direct

field, G(r|r0), and a reverberant field, F (r). For the near field, the direct field dominates;

at large distances, the direct field decays at a rate proportional to 1
|r−ro| , and eventually,

beyond a certain distance, the reverberant field becomes stronger than the direct field. Note

that neither G(r|ro) nor F (r) satisfies the boundary condition represented by Eq. (2.3), but

together they can potentially be constructed to do so.

The solution F (r) can be solved in terms of modal expansions, and any modal functions

can be used. However, on one hand, because the reverberant field often dominates on the

boundaries, a modal function set that can better match the boundary condition is desired;

on the other hand, the exact modes may not be the best candidates since, in addition to

the issue of completeness and orthogonality, F (r) should not satisfy the boundary condition
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by itself, i.e., without the addition of G(r|r0). Therefore, the modified modes are expected

to be desirable candidates. The mode amplitudes, qn, can be solved by means very similar

to those shown previously. The only difference is that the right hand side of Eq. (2.8) is

modified and the new equation reads

∑
n

[(
k20 − k2m

)
Cmn +Dmn

]
qn = −

∮
S

ψ∗m

(
βG− ∂G

∂n

)
da. (2.16)

Consequently, the B matrix in Eq. (2.10) is modified to Bm = −
∮
S
ψ∗m
(
βG− ∂G

∂n

)
da. Note

that Bm now involves a surface integral which may not be easy to evaluate analytically, but

a numerical evaluation is generally straightforward. By recognizing the spherical spreading

nature of G and ∂G/∂n one can mesh the surface S accordingly to make the computation

more efficient.

2.3 Comparisons

2.3.1 Normal Modes vs. Modified Modes in One-dimensional (1-

D) Cases

The sound wave inside a 1-D plane wave duct has been covered extensively by many au-

thors.28,44,45 The exact closed-form solution for this problem provides a benchmark with

which modal analysis results can be compared.35,43,46

Assume that the 1-D duct has a length, L, and that, for simplicity, two terminations

are made of the same material with the specific acoustic impedance, z. A plane monopole

source driven at frequency f0 is located inside the duct at xo. The governing equation for

this problem is

d2p̂

dx2
+ k20 p̂ = −Q̂0δ(x− x0). (2.17)
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The exact plane wave solution for the sound pressure can be written as

p̂exact = −Q̂0(A cos k0x+B sin k0x), (2.18)

where

A =


k0 cos[k0(L−x0)]−β sin[k0(L−x0)]
2k0β cos k0L+(k20−β2) sin k0L

if x < x0

(k0−β tan k0L)(k0 cos k0x0−β sin k0x0)

k0[2k0β+(k20−β2) tan k0L]
if x > x0

,

B =


−A · β

k0
if x < x0

A · β cos(k0L)+k0 sin(k0L)
k0 cos(k0L)−β sin(k0L)

if x > x0

,

and β can be found in Eq. (2.3). The exact solution for the particle velocity can be solved

from Euler’s equation:

v̂exact =
−iQ̂0

ρ0c
(A sin k0x−B cos k0x) . (2.19)

The modal expansion solution of Eq. (2.17) can be solved for from Eqs. (2.4) though

(2.10) and reads

p̂modal =
N∑
n=1

qnψn. (2.20)

For modal function sets studied in Section 2.2, kn can be solved from Eq. (2.13), which can

be simplified to the following equations for the 1-D plane wave duct

kn · tan(
knL

2
) = −β′, (2.21a)

kn · cot(
knL

2
) = β′. (2.21b)

Note that each equation above by itself only provides half of the solution set for kn, but

the latter equation, Eq. (2.21b), is found missing in some of the literature.37,40,44 The roots

of these two equations could be imaginary numbers if the boundaries are represented by a
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Table 2.1 1-D Ducts for Comparing Modal Models.

z/ρoc αn

Lightly Damped Duct 50 + 50i 0.04

Damped Duct 1 7− 4.8i 0.32

Damped Duct 2 2 + 4i 0.32

stiffness. However, for this case there should be no more than one imaginary root for each

of these equations. For these roots, one can simply replace the trigonometric functions in

Eqs. (2.21) by the corresponding hyperbolic functions to maintain the root search in the real

domain.

The error associated with modal expansion solutions can be indicated by a single value:

Errorp =

√√√√∫ L0 |p̂modal − p̂exact|2 dx∫ L
0
|p̂exact|2 dx

, (2.22)

Although only the sound pressure is shown in Eq. (2.22), errors for other quantities, e.g.,

particle velocity, acoustic intensity, squared pressure and so forth, can also be calculated in

a similar fashion.

Three specific examples will be discussed here to compare modal expansion results. In

these examples, L, x0, and f0 are unchanged and have values of 2 m, 0.6 m and 500 Hz

respectively. The specific acoustic impedance z of the duct ends, however, varies as shown

in Table. 2.1. Damped duct 1 and 2 have the same normal-incidence absorption coefficient

αn but different phase angles for z.

Figure 2.1 compares coupled CMA and MMA. Both models work very well and converge

to the exact solutions quickly. As the damping increases, especially when the phase angle of

the specific acoustic impedance is greater than π/4, MMA starts to exhibit a notably faster

convergence speed for sound pressure, and is thus more accurate with a smaller number of
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(a) Lightly damped duct. (b) Damped duct 1. (c) Damped duct 2.

Figure 2.1 Accuracy test for the coupled modal expansions in 1-D ducts at 500 Hz
[(a) lightly damped duct, (b) damped duct 1, and (c) damped duct 2]. The errors
in predicting the complex pressure field and the complex particle velocity field are
plotted as functions of the number of modes. Equation (2.22) is evaluated, but
regions within 0.1 m from the point source and 0.005 m from the boundaries are
excluded when evaluating the integrals. “−−”: MMA; “−−”: CMA.
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(a) Lightly damped duct. (b) Damped duct 1. (c) Damped duct 2.

Figure 2.2 Accuracy test for the “uncoupled” modal expansions in 1-D ducts at
500 Hz [(a) lightly damped duct, (b) damped duct 1, and (c) damped duct 2]. The
errors in predicting the squared pressure field and the squared particle velocity field
are plotted as functions of the number of modes. Equation (2.22) is evaluated, but
regions within 0.1 m from the point source and 0.005 m from the boundaries are
excluded when evaluating the integrals. “−−”: MMA; “−−”: CMA.

modes. For particle velocity, MMA is only slightly better than CMA in terms of prediction

errors. Additional studies show that the convergence speed of both MMA and CMA is slow

at the source location. Moreover, errors cannot be eliminated for the particle velocity on the

boundaries, but MMA has constantly much less error than CMA.

To compare the “uncoupled” models [the off diagonal terms of matrix A in Eq. (2.10)

are simply set to zero], errors for squared moduli of pressure and squared particle velocity

are computed instead of complex quantities because both models tend to introduce large

errors in phase. As shown in Fig. 2.2, MMA is up to ten times more accurate than CMA

for both squared quantities. It needs to be pointed out that, unlike the coupled models,
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the “uncoupled” models do not converge to the exact solution even in terms of amplitude,

but instead reach an error level that cannot be reduced with additional modes, although the

error using MMA is likely to be acceptable on a logarithmic scale. Figure 2.3 compares the

“uncoupled” model predictions for the sound pressure level and particle velocity level to the

exact solutions. For the case of damped duct 2, errors introduced by “uncoupled” MMA

are generally acceptably small (within 0.2 decibels except for the nodal points and source

location) while large errors are observed with the “uncoupled” CMA. Although MMA dose

not predict the correct value at nodal points, it does predict the locations of nodes correctly.

Both “uncoupled” models, however, have large errors when computing the acoustic intensity

(not shown here), which is the result of significant phase errors for both “uncoupled” models.

Finally, it is worthwhile to take a look at the values of β for the three boundary conditions

and the corresponding values of β′ used in MMA. At 500 Hz, β can be calculated using

Eq. (2.3). The values are −0.09 − 0.09i, 0.61 − 0.89i and −1.83 − 0.92i for the lightly

damped duct, damped duct 1 and damped duct 2, respectively. MMA uses the real part of

β for β′ and CMA always uses zero. For the coupled models, both CMA and MMA perform

well for the lightly damped duct because the value of β is small, which leads to a small

difference between β and β′ for both modal models. As the modulus of β increases, CMA

tends to converge more slowly. The convergence rate of MMA, however, depends not only on

the modulus of β but also on the phase. For example, β for the damped duct 2 is larger than

that for the damped duct 1; therefore CMA performs worse for the damped duct 2. However,

that is not the case for MMA, which is due to the fact that the real part of β is larger than

the imaginary part for the damped duct 2, while the opposite is true for the damped duct 1.

When it comes to the “uncoupled” models, a similar trend can be observed, except that the

difference between MMA and CMA is more clear. Even for the lightly damped duct, there

is a notable difference between the results of CMA and MMA.
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(a) Sound Pressure Level

(b) Particle velocity Level

Figure 2.3 (a) Sound pressure level (re 20 µPa) and (b) particle velocity level (re
20 µPa/(ρ0c)) computed by “uncoupled” modal expansion models compared with
the exact solution at 500 Hz in the damped duct 2 (z = 2 + 4i). Here, 200 modes
are included in each model. In each plot, curves above the dash dot line represent
sound pressure level or particle velocity level. Curves below the dash dot line plot
the differences between the sound levels computed by two modal models and the
exact solutions. “−−”: exact solution; “·· × ··”: MMA; “−−”: CMA.
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Table 2.2 Rectangular Enclosures Used for Convergence Test.

z/ρ0c αs Schroeder Frequency (Hz)

Lightly Damped 200 + 340i 0.01 1290

Damped Enclosure 1 10 + 5.5i 0.4 190

Damped Enclosure 2 1 + 2.9i 0.4 190

2.3.2 Comparisons in Three-Dimensional cases

For three-dimensional (3-D) enclosed sound fields, the closed form solution usually does not

exist, so there is not a simple benchmark to compare with. However, since both classical

modes and modified modes are complete and the coupled modal expansions should converge

absolutely for the entire enclosed volume except at boundaries and source locations, a coupled

modal expansion result can be accurate enough to be the benchmark if enough modes are

included.

Convergence tests were carried out to compare four coupled models: CMA, MMA, GCMA

and GMMA, where GCMA refers to the hybrid model using CMA and GMMA refers to

the hybrid model using MMA. Sound fields in three different rectangular enclosures were

computed and compared. The enclosures have the same dimensions (2.7 m× 3.1 m× 2 m)

but, as shown in Table 2.2, different specific impedances for the boundaries. A point source

was randomly chosen to be located at (1.09 m, 1.20 m, 0.7 m), and the driving frequency is

400 Hz.

Figure 2.4 compares the values of
∑N

n=0 |qn|2 and
∑N

n=0 |qnkn|2/k20 that are computed from

four “coupled” models. The hybrid models converge notably faster than pure modal models.

MMA and GMMA converge faster than CMA and GCMA respectively. The difference in

terms of the limit values between the hybrid model results and pure modal model results is

due to the fact that hybrid models treat the direct sound field and reverberant field separately
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(a) Lightly damped enclosure. (b) Damped enclosure 1. (c) Damped enclosure 2.

Figure 2.4 Convergence speed of the coupled modal expansion models for enclo-
sures with different boundary conditions [(a) lightly damped, (b) damped 1, and (c)
damped 2] at 400 Hz. “−�−”: CMA; “−©−”: GCMA; “−4−”: MMA; “−−”:
GMMA.
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(a) Lightly damped. (b) Damped 1. (c) Damped 2.

Figure 2.5 Accuracy test for the coupled modal expansion models in enclosures
[(a) lightly damped, (b) damped 1, and (c) damped 2] at 400 Hz. The errors
in predicting the squared pressure field and the squared particle velocity field are
plotted as functions of N, the number of modes. “−�−” : CMA; “−©−”: GCMA;
“−4−”: MMA; “−−”: GMMA.

but the pure modal models consider them together.

Since the GMMA model shows the fastest convergence speed in all the cases, the results

computed by this model (2× 104 modes included) will be considered as the benchmarks to

which other models can be compared. The errors of models can be calculated by Eq. (2.22)

with p̂exact being replaced by the benchmark value and the linear integrals being replaced

by volume integrals that cover the whole interior of an enclosure. Figure 2.5 plots the errors

for squared pressure and squared particle velocity versus the number of modes included in

the coupled models. In general, the errors decrease as the number of modes increases for

all the coupled models. However, the hybrid models converge much faster and thus have

much less error than the pure modal models with a limited number of modes. In addition,
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(a) Lightly damped. (b) Damped 1. (c) Damped 2.

Figure 2.6 Errors of the coupled models when the near-field region is excluded. The
errors for the squared pressure field and the squared particle velocity field in three
enclosures [(a) lightly damped, (b) damped 1, and (c) damped 2] are calculated as
functions of the number of modes at 400 Hz. “−�−”: CMA; “−©−”: GCMA;
“−4−”: MMA; “−−”: GMMA.

GMMA shows obvious advantages over GCMA for the damped boundary conditions where

the specific acoustic impedance of the boundary has a large phase angle.

The slow convergence speed of the pure modal models, especially for the particle velocity,

is largely due to the singularity at the point source location. Averaged errors in the region

that is at least 0.3 m away from the point source have also been computed. The convergence

speed and accuracy of the pure modal models improve greatly, but are still notably worse

than that of the hybrid models (Fig. 2.6).

Figure 2.7 compares the errors for the “uncoupled” models. Again the hybrid models work

much better than the pure modal models. However, unlike the coupled models, “uncoupled”

GMMA and GCMA reach an error level quickly and tend to stay at that level. Errors of
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(a) Lightly damped. (b) Damped 1. (c) Damped 2.

Figure 2.7 Accuracy test for the “uncoupled” modal expansion models in enclosures
[(a) lightly damped, (b) damped 1, and (c) damped 2] at 400 Hz. The errors
in predicting the squared pressure field and the squared particle velocity field are
plotted as functions of N, the number of modes. “−�−” : CMA; “−©−”: GCMA;
“−4−”: MMA; “−−”: GMMA.
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the pure modal models decrease very slowly as the number of modes increases. GMMA

exhibits notably better accuracy than other models. For the damped enclosures (αs = 0.4),

the averaged error is around 10 percent.

Above all, the coupled hybrid models converge notably faster and have much better

accuracy than the other models when a limited number of modes are included. The difference

between the GMMA and GCMA models can be either minor (“lightly damped” and “damped

1”) or relatively large (“damped 2”) depending on the boundary conditions, but given that

GMMA usually requires more computational resources (CPU time and memory), GCMA is

probably more desirable in practice. For “uncoupled” models, the pure modal models can

introduce significant errors even if the enclosure is lightly damped, but the hybrid models

can improve the accuracy greatly. Since there is no notable difference between “uncoupled”

GMMA and GCMA in terms of computational resource requirements, GMMA is always

preferred due to the better accuracy.

2.4 Examples of Using the Hybrid Modal Analysis

2.4.1 Sound Power

The sound power for a source inside an enclosure can be computed by integrating the acoustic

intensity over a Gaussian surface inside the enclosure, where a Gaussian surface is defined as

a closed three-dimensional surface through which a flux of the field is to be calculated. In this

example, a rectangular enclosure [dimensions: 2.7 m× 3.1 m× 4 m, z = (0.5 + 1i)ρ0c, αs =

0.76] will be considered, and the point source arbitrarily located at (1.09 m, 1.04 m, 1.12 m)

is driven at 495 Hz. The Gaussian surfaces are rectangular shapes with each side being

parallel and equidistant, d, to the nearest boundary of the enclosure. Figure 2.8 compares

the sound power results computed by the coupled GMMA and CMA methods (1400 modes
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Figure 2.8 Sound power of an enclosed sound field computed by the coupled GMMA
and CMA methods at 495 Hz. The enclosed sound field is excited by a pure-
tone point source in a damped rectangular enclosure. The sound power results
were obtained by integrating the acoustic intensity over multiple Gaussian surfaces
which are rectangular shapes with each side being parallel and equal distance (d)
to the nearest boundary of the enclosure. “−−”: GMMA prediction; “−−”: CMA
prediction; “− ·−”: free-field source power.
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are used). The x axis represents the distance between the Gaussian surface and the enclosure

boundary. When d > 1.04 the Gaussian surface begins to exclude the point source; therefore,

the sound power is expected to be zero. GMMA captures this sharp change very well. In

addition, since the driving frequency is above the Schroeder frequency of the enclosure (111

Hz), the sound power emitted from the point source in the enclosure should be approximately

equal to its free-field power radiation. GMMA is able to predict the level of the sound power

accurately everywhere while CMA fails.

2.4.2 Direct Field and Reverberant Field

The concepts of the direct field and the reverberant field have long been accepted by acous-

ticians. An expression for the time-averaged sound pressure in terms of the direct sound

pressure and the reverberant sound pressure has been obtained based on the energy diffu-

sion equation as47

p2 = Πρ0c

[
1

4πr2d
+

4(1− αe)
Sαe

]
, (2.23)

where Π is the source power, S is the inner surface area of the room, rd represents the distance

from the point source to the field point, and αe is the effective absorption coefficient. The

first term on the right hand side of Eq. (2.23) corresponds to the direct field and the second

term corresponds to the reverberant field. The critical distance is defined as the distance

from the source at which the direct sound pressure equals the reverberant sound pressure

and can be computed by the following formula:

Rc =

√
Sαe

16π(1− αe)
. (2.24)

There has been much discussion on how to best compute the effective absorption co-

efficient, αe.
1,48–53 Here, the effective absorption coefficient of a room will be computed

numerically based on GMMA and compared to the results of some existing formulas. The
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Figure 2.9 Effective absorption coefficient as a function of Sabine’s absorption
coefficient calculated in a rectangular room for the 630 Hz one-third octave band.
“−−”: GMMA prediction; “−−”: Sabine’s formula; “− ·−”: Eyring’s formula.

dimensions of the room under test are 3.9 m× 3.1 m× 5.0 m. The different boundary con-

ditions are implemented and the Sabine absorption coefficient varies from 0.05 to 0.8. The

Schroeder frequency for these conditions varies from 447 Hz to 100 Hz. Five frequencies in

the 630 Hz one-third octave band were chosen to drive a point source. The sound fields are

computed ten times at each frequency with the source location randomly chosen each time.

The critical distances calculated directly from the direct field and reverberant field results

are averaged and used to calculate the effective absorption coefficient using Eq. (2.24). Fig-

ure 2.9 compares the numerical results with Sabine’s formula and Eyring’s formula. The

GMMA results (with around 1500 modes) generally fall between them, which is very similar

to the results of Joyce49 (see the curve “s = 7/9” in his Fig. 4) and Jing et al.53
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2.4.3 Complex Sources

In practice, sound sources are often complex extended sources, rather than point sources

(monopoles). For a distributed source placed inside an enclosure, computation may be very

difficult and time consuming with pure modal models; however, a simple modification of

the hybrid modal expansion method can solve this problem easily for cases where the size

of the source is small compared to the dimensions of the enclosure. If, for example, the

free-field directivity pattern, D(r, φ, θ), of a distributed source is known, one can simply

replace the free-field Green’s function (G) in Eqs. 2.14 and 2.16 with D(r, φ, θ) and compute

the sound field without much additional computation required. Figure 2.10 compares the

pressure fields of two different sources placed in the “Damped enclosure 2” (see Table 2.2)

using the GMMA model with around 2000 modes. Two small sources are located at the

center of the enclosure and both are driven at a frequency of 400 Hz. However, they have

different free-field directivity patterns: (1) an omnidirectional source [D(r, φ, θ) = 1], (2) a

complex source [D(r, φ, θ) =
√

2 cos(θ/2)]. Pressure fields on the x-y, y-z and x-z planes that

include the source are plotted. Effects of the source directivity are clearly represented by

the GMMA model.

The closed form expression of the free-field response of a source is usually not avail-

able, but if the multipole expansion is known, the hybrid modal expansion can be certainly

implemented straightforwardly and Eqs. 2.14 and 2.16 can be modified to

p̂(r) = p̂0 + F (r), (2.25)

and

∑
n

[(
k20 − k2m

)
Cmn +Dmn

]
qn = −

∮
S

ψ∗m

(
βp̂0 −

∂p̂0
∂n

)
da

= −
M∑
m=1

Am

∮
S

ψ∗m

(
βΦm −

∂Φm

∂n

)
da, (2.26)
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(a)

(b)

(c)

Figure 2.10 Sound pressure level computed by GMMA for (a) a monopole source
and (b) a small complex source in a rectangular room (damped room 2) at 400 Hz.
Both sources are placed at the center of the room. Pressure fields on the x-y, y-z
and x-z planes that include the source are plotted with the white dots representing
the location of the sources. The directivity pattern of the small complex source is
shown in (c).
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where p̂0 =
∑M

m=1AmΦm, the multipole expansion for the free-field sound pressure of a

complex source, and Φm represents the expression of the mth multipole and Am stands for

the amplitude of that multipole.

2.5 Conclusions

Different modal expansion methods have been studied here. A set of modified modes are

introduced to deal with damped enclosures. A free-field Green’s function is integrated to the

solution of the inhomogeneous Helmholtz equation to improve both convergence rate and

accuracy of modal expansions.

Like the normal modes, the modified modes are complete and orthogonal. For damped

boundary conditions, the modified modes are mutually coupled, which causes the compu-

tation time to increase significantly, as is the case for the normal modes. However, by

partially satisfying the boundary conditions, MMA not only performs better than CMA

in the region near boundaries but also is more accurate globally with even fewer modes

used. In addition, the “uncoupled” MMA can predict sound pressure level and particle ve-

locity level fairly accurately for many damped boundary conditions, while the “uncoupled”

CMA usually introduces large errors. Usually, MMA requires numerically searching for the

eigenvalues. This process is fairly straightforward and fast. Utilizing the univariate inter-

val Newton/generalized bisection method,40 it took less than one second to calculate 20000

eigenvalues for any of the rooms listed in Table 2.2 on a computer with a 2.1 GHz CPU.

The enclosed sound field can be separated into the direct field and reverberant field, but

these two are treated together in the traditional modal analysis. The weaknesses include

slow convergence rate (especially in the near field of a point source) and difficulty in dealing

with complicated sources inside an enclosure. The hybrid modal expansion introduced in

this chapter successfully addresses these problems. Studies on a point source in rectangular



2.5 Conclusions 40

enclosures show that the hybrid modal expansions converge notably faster than the regular

modal expansions and the hybrid “uncoupled” modal expansions introduce much smaller

errors than the regular “uncoupled” expansions. The hybrid modal expansion can be easily

applied to complex sound sources if the free-field responses of the sources are known.



Chapter 3

Generalized Energy Density

3.1 Introduction

This chapter will be organized as follows. The GED and some of its general properties will

be introduced in Section 3.2. In Section 3.3, its behavior will be explored for room modes.

Its properties in a diffuse field will be investigated in Section 3.4, with a focus on single-tone

excitation, and some characteristics of narrow-band excitation. In Section 3.5, its spatial

variance will be studied for frequencies below the Schroeder frequency of a room. Computer

simulation results will be presented in Section 5.5 to validate some of the GED properties

introduced in the chapter.

3.2 Generalized Energy Density

The total acoustic energy density is defined as the acoustic energy per unit volume at a point

in a sound field. The time-averaged total acoustic energy density can be expressed in the

41
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frequency domain as

ET = EP + EK

=
1

2

p̂p̂∗

ρ0c2
+

1

2
ρ0û · û∗, (3.1)

where p̂ and û represent the complex acoustic pressure and particle velocity respectively in

the frequency domain, ρ0 is the ambient fluid density, and c is the speed of sound. On the

right-hand side of this expression, the first term represents the time-averaged potential energy

density (EP ) and the second term represents the time-averaged kinetic energy density (EK).

The time-averaged kinetic energy density can be written as the sum of three orthogonal

components as

EK = EKx + EKy + EKz

=
1

2
ρ0ûxû

∗
x +

1

2
ρ0ûyû

∗
y +

1

2
ρ0ûzû

∗
z. (3.2)

The Generalized Energy Density (GED) is defined as follows:

EG(α) = αEP + (1− α)EK , (3.3)

where α is a real variable. By forcing the sum of the weighting factors of EP and EK to

be one, one can cause the GED to represent the traditional energy density quantities by

introducing only one additional degree of freedom. In other words, EP = EG(1), EK = EG(0)

and ET = 2EG(1/2). Although, in theory, α could be any real number, the range of zero

to one is mainly focused on here because it turns out to be the range that contains all the

special values of α that make GED favorable for the applications studied in this dissertation.

The theoretical derivations presented in this dissertation, however, are general enough so

that the results can be implemented directly to the entire domain of real numbers.
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The spatial mean of GED for a sound field can be calculated as

µG = E[EG] = E[αEP + (1− α)EK ]

= αµP + (1− α)µK (3.4)

where E[·] represents the expectation operator and µG, µP , and µK represent the spatial

mean value of EG, EP , and EK , respectively. Given that µP = µK for most enclosed sound

fields, one can conclude from Eq. (3.4) that µG does not vary due to α, and µG = µP = µK ,

which is another major benefit of defining GED as given in Eq. 3.3.

The relative spatial variance of GED can similarly be calculated as

ε2G =
σ2 [EG]

E2 [EG]
=
E[E2

G]− E2[EG]

E2[EG]

=
α2E[E2

P ] + 2α(1− α)E[EPEK ] + (1− α)2E[E2
K ]− µ2

G

µ2
G

=
α2(E[E2

P ]− µ2
P )

µ2
P

+
(1− α)2(E[E2

K ]− µ2
K)

µ2
K

+
2α(1− α)(E[EPEK ]− µPµK)

µPµK

= α2ε2P + (1− α)2ε2K + 2α(1− α)ε2PK (3.5a)

= α2(ε2P + ε2K − 2ε2PK) + 2α(ε2PK − ε2K) + ε2K (3.5b)

where σ2 [·] represents the spatial variance, ε2G, ε2P , and ε2K represent the relative spatial

variances of EG, EP , and EK respectively, and ε2PK stands for the relative spatial co-variance

of EP and EK . In the derivation of the equations above, the relations of µG = αµP+(1−α)µK

and µG = µP = µK are utilized. Equation (3.5b) shows that the relative variance of GED is

a quadratic function of α. In addition, recognizing that ε2P + ε2K > 2ε2PK , one can conclude

that ε2G has a global minimum,

min{ε2G} =
ε2P ε

2
K − ε4PK

(ε2P + ε2K − 2ε2PK)
, (3.6)

when

α =
(ε2K − ε2PK)

(ε2P + ε2K − 2ε2PK)
. (3.7)
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In the future discussion, it will be shown that the kinetic energy density and total energy

density may not be the most spatially uniform quantities.

3.3 Modal Analysis

Below the Schroeder frequency, room modes often dominate the reverberant sound field. For

a hard-walled rectangular room with dimensions Lx × Ly × Lz, if a single mode dominates

the response at a resonance frequency, ignoring any constants, EP and EK can be expressed

approximately as

EP = cos2(kxx)cos2(kyy)cos2(kzz), (3.8a)

EK =
k2xsin

2(kxx)cos2(kyy)cos2(kzz)

k2

+
k2ycos

2(kxx)sin2(kyy)cos2(kzz)

k2

+
k2zcos

2(kxx)cos2(kyy)sin2(kzz)

k2
, (3.8b)

where kx, ky and kz are eigenvalues and k2 = k2x + k2y + k2z .

For an axial mode, where two of the three eigenvalues vanish (assumed here in the y-

and z- directions)

EG = αcos2(kx) + (1− α)sin2(kx),

ε2G =
1

2
(2α− 1)2. (3.9)

With no surprise, the relative variance reaches its minimum value of zero when α = 1/2.

This is because the total acoustic energy density is uniform for an axial mode.

For a tangential mode (only one eigenvalue equals zero), the expression for the relative

variance is not as simple as that for an axial mode. It depends on both α and the ratio

γ = ky/kx (assuming kz = 0), as shown in Table 3.1. Some examples of the spatial variance
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Table 3.1 Relative Variance of Single Modes.

Mode Mean ε2P ε2G

Axial 1/2 1/2 (2α−1)2
2

Tangential 1/4 5/4
5−6γ2+5γ4−4(3−2γ2+3γ4)α+4(3+2γ2+3γ4)α2

4(1+γ2)2

Oblique 1/8 19/8
19−10γ2xy(1+γ2yz)+γ4xy(19−10γ2yz+19γ4yz)

8(1+γ2xy+γ2xyr22)
2

− [3−2γ2xy(1+γ2yz)+γ4xy(3−2γ2yz+3γ4yz)]α

2(1+γ2xy+γ2xyr22)
2

+
[3+2γ2xy(1+γ

2
yz)+γ

4
xy(3+2γ2yz+3γ4yz)]α

2

2(1+γ2xy+γ2xyr22)
2

for different γ values are shown in Fig. 3.1 (a). By assuming kx ≤ ky, it is not hard to prove

that ε2G increases with γ for all α values less than one, and as γ tends to infinity, ε2G converges

to

ε2G
∣∣
γ→∞ =

5

4
− 3α + 3α2. (3.10)

The optimized value of α, which minimizes the relative variance, ranges between 1/4, when

γ = 1 and 1/2, when γ → ∞. With the optimal α value, the relative variance can become

a tenth that of EP and half that of ET .

For an oblique mode, the relative variance depends on α as well as all the eigenvalues.

With ratios γxy = ky/kx and γyz = kz/ky, one can derive the expression for ε2G shown in

Table 3.1. When γxy approaches infinity while γyz remains finite, the behavior of ε2G is very

similar to that of the tangential modes. As a limiting case, when γxy →∞ and γyz = 1, ε2G

converges to

ε2G
∣∣
γxy→∞,γyz=1

=
7

8
− 3α

2
+ 3α2, (3.11)

which is very similar to the tangential mode with γ = 1, and the optimal α value is also 1/4.

As the value γyz approaches infinity, ε2G converges to

ε2G
∣∣
γyz→∞

=
19

8
− 9α

2
+

9α2

2
, (3.12)



3.3 Modal Analysis 46

(a) (b)

(c)

Figure 3.1 Relative spatial variance of GED for (a) a tangential mode, and (b) an
oblique mode. The contour plot(c) shows the optimal values of α2 that minimize
εG for the oblique modes. In (a), “· · 4 · ·”: γ = 1; “· ·+ · ·”: γ = 2; “· · © · ·”:
γ = 8; “−−”: γ →∞ [Eq. (3.10)]. In (b), “· · × · ·”: γxy = 1.0, γyz = 1.0; “− ·−”:
γxy = 1.2, γyz = 1.5; “· ·© · ·”: γxy = 9.0, γyz = 1.0; “· ·4 · ·”: γxy = 2.0, γyz = 3.0;
“· · + · ·”: γxy = 9.0, γyz = 9.0; “−−”: γxy → ∞, γyz = 1 [Eq. (3.11)]; “−−”:
γxy →∞, γyz →∞ [Eq. (3.12)].

.
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regardless of the value of γxy [see Fig. 3.1(b)]. The optimal α value varies from 1/10 to 1/2

depending on the values of γxy and γyz. However, as can be observed from Fig. 3.1(c), if

γyz < 2 the optimal α value is generally in the range of 0.1 to 0.35. With the optimal α

value, the relative variance can become a factor of 6.8 smaller than that of EP and half that

of ET . It is interesting to note that for all possible values of γ, γxy and γyz, EP has the

highest relative variance, which is a constant for each type of mode.

3.4 GED in Diffuse Fields

The free-wave model5 has been successfully used to study the statistical properties of diffuse

sound fields. It assumes that the sound field at any arbitrary point is composed of a large

number of plane waves with random phases and directions. For a single-tone field, the

complex acoustic pressure amplitude for a given frequency can thus be written as

p̂ =
∑
m

Ame
i(knm·r+φm), (3.13)

where Am is a random real number representing the peak amplitude of the mth wave, and

the unit vector nm and phase φm are uniformly distributed in their spans.

It can be shown, based on the central limit theorem, that the rms value of squared

pressure has an exponential distribution,5,10 and the probability density function (PDF) of

Ep is

fEP (x) =
1

µG
e−x/µG ; x ≥ 0. (3.14)

The mean and variance are µG and µ2
G, respectively, for the exponentially distributed EP ,

so the relative variance is one.

Using a similar argument, Jacobsen was able to show that the three components of kinetic

energy density (EKx, EKy and EKz) are independent and follow an exponential distribution.
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Therefore, the kinetic energy density is distributed as a gamma distribution.10 Thus, EK is

distributed as Gamma(3, µG/3), and the PDF is

fEK (x) =
27x2e−3x/µG

2µ3
G

; x > 0. (3.15)

The mean and variance for this distribution are µG and µ2
G/3 respectively, and the relative

variance is 1/3, which is significantly less than that of the potential energy density.

Because EP and EK are independent,10 one can compute the cumulative distribution

function (CDF) and PDF for the GED with the following equations:

FEG(x) =

∫ x
α

0

fEP (y)

∫ x−αy
1−α

0

fEK (z) dz dy, (3.16)

fEG(x) =
dFEG(x)

dx
. (3.17)

The calculation is rather involved, so only the final result for the PDF will be shown here:

fEG(x) =
27α2

(
e

−3x
µG(1−α) − e

−x
µGα

)
µG(1− 4α)3

+
27x [x(1− 4α)− 2µGα(1− α)] e

−3x
µG(1−α)

2µ3
G(1− α)2(1− 4α)2

. (3.18)

With the use of Eq. (3.18) [or Eq. (3.5a)], one can obtain the relative spatial variance

ε2G =
1

3
(4α2 − 2α + 1), (3.19)

as plotted in Fig. 3.2. The minimum relative variance is 1/4 when α = 1/4. At this optimal

α value, the distribution of the GED turns out to be simply Gamma(4, µG/4), which should

not be surprising if it is rewritten as

EG(1/4) =
1

4
EP +

3

4
EK

=
1

4
EP +

3

4
(EKx + EKy + EKz)

=
3

4
(EP/3 + EKx + EKy + EKz), (3.20)
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Figure 3.2 Relative spatial variance of GED in a diffuse field. The minimum
variance is reached at α = 1/4.
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which is essentially the sum of four independent Gamma(1, µG/3) random variables multi-

plied by a shape factor of 3/4.

For narrow-band excitation, the relative spatial variance of the GED is approximately

equal to the relative spatial variance for the single-tone excitation multiplied by (1 +BT60/6.9)−1,

where B is the bandwidth and T60 represents the reverberation time.54

The spatial correlation between pressures at two separated field points in a single-tone

diffuse field was first studied by Cook and Waterhouse.55 At any arbitrary time t, the spatial

correlation coefficient between p1 = p(r1, t) and p2 = p(r2, t) can be calculated as

ρp(r) =
Cov [p1, p2]

σ[p1]σ[p2]

=
sin(kr)

kr
, (3.21)

where σ[·] represents standard deviation, k is the wave number, and r = |r2 − r1|. Lubman56

obtained a formula for the squared pressures and EP :

ρEP = ρp2 =

[
sin(kr)

kr

]2
. (3.22)

Jacobsen10 later derived the formulae for squared particle velocity components, as well as

squared velocity and squared pressure. These formulae can be applied to EK and EP directly

as

ρEK = ρu2

=
3 (6 + 2k2r2 + k4r4)

2k6r6

+
3 [4kr (−3 + k2r2) sin(2kr)− (6− 10k2r2 + k4r4) cos(2kr)]

2k6r6
, (3.23)

ρEP ,EK = ρp2,u2 =
√

3

[
sin(kr)− kr cos(kr)

(kr)2

]2
. (3.24)

The spatial correlation coefficient for the GED at two field points can then be calculated as

ρEG =
1

ε2G

[
α2ε2PρEP + α(1− α)εP εKρEP ,EK + (1− α)2ε2KρEK

]
, (3.25)
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Figure 3.3 Spatial correlation coefficient ρ of different GED quantities in a diffuse
field. “· · © · ·”: EG(1) (EP ); “−−”: EG(0) (EK); “−.−”: EG(1/2) (ET ); “−−”:
EG(1/4).

where ε2P = 1 and ε2K = 1/3, as indicated earlier. Note that ρEG , as ρEP and ρEK , is also

a function of r, although it is not shown explicitly in Eq. (3.25). There is not a concise

expression for ρEG , and some examples for different values of α are plotted in Fig. 3.3. It is

well accepted that the spatial correlation can be neglected for the potential energy density if

the distance between two field points is greater than half a wavelength (0.5λ).10 In order to

achieve a similarly low level of correlation (roughly ρ ≤ 0.05), the separation distance needs

to be greater than approximately 0.8λ for EK , ET and EG(1/4), which may not be favorable

for some applications, such as sound power measurement in a reverberant chamber, because

statistically independent sampling is required. It is, in some sense, a trade off for achieving

better uniformity. However, for other applications, i.e., active noise control in diffuse fields,57

a slowly decaying spatial correlation function may be beneficial.
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As one approaches the regions close to boundaries, it is hard to claim a truly diffuse

field even if the frequency is well above the Schroeder frequency in a reverberation chamber.

Because of the strong reflections, one would expect some kind of interference effects. Water-

house obtained expressions for the mean-squared pressure, mean-squared velocity and mean

total energy density as functions of the distance from the boundaries.58 His results can be

directly applied to EP and EK . For a sound field close to a flat rigid boundary, one has

〈EP 〉 /µG = 1 +
sin(2kx)

2kx
, (3.26)

〈EK〉 /µG = 1− sin(2kx)

2kx
+

sin(2kx)− 2kx cos(2kx)

2(kx)3
, (3.27)

and thus,

〈EG〉 /µG = 〈αEP + (1− α)EK〉 /µG

= α

[
1 +

sin(2kx)

2kx

]
+ (1− α)

[
1− sin(2kx)

2kx
+

sin(2kx)− 2kx cos(2kx)

2(kx)3

]
= 1 +

2kx(−1 + α) cos(2kx) + [1− α− k2x2(1− 2α)] sin(2kx)

2k3x3
, (3.28)

where x represents the distance from the boundary, < · > represents a spatial average on

the surface that is x away from the boundary and µG refers to the mean of GED in the

region that is far away from all boundaries. As shown in Fig. 3.4, all the GED quantities

have higher mean values at the boundary, and as the distance increases, the mean values

converge to µG fairly quickly after half a wave length.

Jacobsen re-derived these results from the stochastic perspective, and found that both

the potential energy density and all the components of kinetic energy density (either per-

pendicular or parallel to the boundary) near a boundary are independently distributed with

the exponential distribution.10 Therefore, the relative variance of GED near a boundary can

be shown to be

ε2EG(x) =
α2σ2

EP
(x) + (1− α)2σ2

EK
(x)

〈EG〉2
, (3.29)
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Figure 3.4 Mean values of different GED quantities as a function of the distance,
x, from a flat rigid boundary in a diffuse field. “ · ·©· ·”: EG(1) (EP ); “−−”: EG(0)

(EK); “−.−”: EG(1/2) (ET ); “−−”: EG(1/4).

where

σ2
EP

(x) = 〈EP 〉2 , (3.30)

σ2
EK

(x) = 〈EK⊥〉
2 + 2

〈
EK‖

〉2
=

[
1

3
+
−2kx cos(2kx) + sin(2kx)

8k3x3

]2
+

[
1

3
− 4kx cos(2kx)− 2 sin(2kx) + 4k2x2 sin(2kx)

8k3x3

]2
, (3.31)

where EK⊥ represents the component of EK that is perpendicular to the boundary, and EK‖

represents the component that is parallel to the boundary.10 Right next to the boundary

(x→ 0), Eq. (3.29) can be simplified to

ε2EG(0) =
2− 4α + 11α2

(2 + α)2
(3.32)

which has a minimum value of 1/3 at α = 1/4. Figure 3.5 plots Eqs. (3.29) and (3.32).

It is apparent that EG(1/4) is more uniform than EP , EK , and ET everywhere, both near
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the boundary and in the region away from the boundary where a diffuse sound field can be

claimed.

3.5 Ensemble Variance

In a recent publication, Jacobsen obtained the ensemble variance for the potential, kinetic

and total energy densities by introducing an independent normally distributed random vari-

able W to the diffuse field models discussed previously. The variable W has zero mean and

a variance of 2/Ms, and is meant to represent the relative variance of the point source sound

power emission associated with the statistical modal overlap (Ms).
15 Following his approach,

the relative ensemble variance of GED can be derived as

ε2EG =
E [[αEP + (1− α)(EKx + EKy + EKz)]

2(1 +W )2]

E2 [[αEP + (1− α)(EKx + EKy + EKz)](1 +W )]
− 1

=
3(1− α)2 (E [E2

Kx] + 2E2 [EKx]) + α2E [E2
P ] + 6α(1− α)E [EP ]E [EKx]

µ2
G

(
1 + E

[
W 2
])
− 1

=

[
4

3
(1− α)2 + 2α2 + 2α(1− α)

]
(1 +

2

Ms

)− 1

=
8 +Ms − 2(2 +Ms)α + 4(2 +Ms)α

2

3Ms

. (3.33)

It is interesting to note that the optimal α value is again 1/4, and the minimum variance is

1
4

+ 5
2Ms

, compared to 1 + 4
Ms

for EP and 1
3

+ 8
3Ms

for both EK and ET .

The modal overlap can be calculated according to

Ms =
12πln(10)V f 2

T60c3
, (3.34)

where V is the volume of the room and T60 is the reverberation time.14 Figure 3.6 plots

Eq. (3.33) for a room with volume 136.6 m3 and a T60 of 6.2 s that is constant over frequency.
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(a)

(b)

Figure 3.5 Relative spatial variance of GED close to a flat rigid boundary in a
diffuse field. Plot (a) compares the relative variance for different GED quantities as
a function of the distance x from the boundary. Plot (b) shows the relative variance
of GED as a function of α at the boundary (x→ 0). In (a), “· ·© · ·”: EG(1) (EP );
“−−”: EG(0) (EK); “−.−”: EG(1/2) (ET ); “−−”: EG(1/4).
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Figure 3.6 Ensemble variance of different GED quantities for a reverberation cham-
ber with V = 136.6 m2 and uniform T60 = 6.2 s . “· · © · ·”: EG(1) (EP ); “−−”:
EG(0) (EK); “−.−”: EG(1/2) (ET ); “−−”: EG(1/4).
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3.6 Numerical Verification

The hybrid modal expansion model was applied to compute the internal sound field (both

complex pressure and complex particle velocity) of a rectangular room with dimensions

5.4 m × 6.3 m × 4 m. The room is very lightly damped with a uniform wall impedance

z = (50 + 100i)ρ0c and a Schroeder frequency of 347.6 Hz. Both the complex pressure and

complex particle velocity fields are computed over the bandwidth of 200 Hz to 800 Hz with 1

Hz increment. Because of the fast convergence rate of the hybrid model, only about 3× 104

modes were required for even the highest frequency. The source location was randomly

selected for each frequency.

The relative variance of EG with different α values is estimated by calculating the relative

variance for EG at 100 randomly selected receiver locations inside the room. The receiver

locations are chosen to be at least a half wavelength away from the source as well as the

boundary. The relative variance for 100 samples is then averaged over ten frequency bins to

simulate the ensemble variance.15,18 As shown in Fig.3.7, the simulation results match the

theoretical predictions reasonably well (see Fig. 3.6).

The spatial correlation coefficient was estimated at 800 Hz using 11, 000 pairs of field

points randomly sampled with the constraint that the separation distance between any two

points of a pair is less than one and a half wavelengths. In addition, the sampling process

was carefully designed so there were about 500 pairs falling into each of 22 intervals that

equally divided one and a half wavelengths. The spatial correlation coefficient was calculated

for each interval based on the samples. The results are shown in Fig. 3.8, which is in fairly

good agreement with the theoretical predictions shown in Fig. 3.3.
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Figure 3.7 Numerical simulation results for the ensemble variance of different GED
quantities for a lightly damped room. “· · © · ·”: EG(1) (EP ); “−−”: EG(0) (EK);
“−.−”: EG(1/2) (ET ); “−−”: EG(1/4).
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Figure 3.8 Numerical simulation results for the spatial correlation coefficient of
GED in a diffuse field. “· ·© · ·”: EG(1) (EP ); “−−”: EG(0) (EK); “−.−”: EG(1/2)

(ET ); “−−”: EG(1/4).
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3.7 Conclusions

Generalized acoustic energy density has been introduced in this chapter. Averaging over

the volume of an enclosure, the GED has the same mean value as the acoustic total energy

density and can revert to the traditional energy density quantities, such as acoustic potential

energy density, acoustic kinetic energy density, and acoustic total energy density. By varying

the weighting factors for the combination of acoustic potential energy density and acoustic

kinetic energy density, an additional degree of freedom is added to the summed energy

density quantity so that it can be optimized for different applications. Properties for GED

with different values of α have been studied for individual room modes, the diffuse sound

field, and the sound field below the Schroeder frequency.

The uniformity of a measured sound field often plays an important role in many appli-

cations. This work has shown that optimal weighting factors based on a single parameter α

can minimize the spatial variance of the GED. For a single room mode, the optimal value of

α may vary from 1/10 to 1/2, depending on the specific mode shape. For a diffuse field, the

optimal value is 1/4 for both single frequency and narrow-band frequency excitations, and

even for the region close to a rigid reflecting surface. For a diffuse field excited by a single

tone source, EG(1/4) follows the distribution of Gamma(4, µ0/4) and has a relative spatial

variance of 1/4, compared to 1/3 for EK and ET . Below the Schroeder frequency of a room,

a smaller ensemble variance can also be reached when α = 1/4.



Chapter 4

GED-Based Measurement Techniques

4.1 Introduction

In this chapter, some preliminary studies will be reported to demonstrate the utilization of

GED in applications of acoustic measurements in reverberation chambers.

4.2 Measuring GED

The techniques for measuring GED are essentially the same as those for measuring the total

acoustic energy density. Obtaining the GED information involves measuring the sound pres-

sure as well as the particle velocity at the same field point. The particle velocity estimation

is usually where the difficulties lie.

The pressure microphone gradient technique for measuring the particle velocity has been

studied and improved over time.3,4, 11,19–22 Although there are several approaches to imple-

ment the microphone gradient technique, they are all based on the same basic methodology

which estimates the particle velocity from the spatial gradient of the sound pressure field.

The spatial gradient of the sound pressure field is approximated from the difference between

61
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the signals of closely spaced microphones. There is much discussion about this technique

in the literature;19–22 therefore the technical details will not be discussed here. The GED

probe used in this research consisted of three pairs of phase-matched 1/2-inch microphones

manufactured by G.R.A.S. (see Fig. 4.1). The microphone pairs were mounted perpendicular

to each other, so three orthogonal particle velocity components could be estimated based

on the pressure gradients. The spacing between microphones in each pair was 5 cm, which

allowed good accuracy below 1000 Hz. The acoustic pressure was estimated by averaging

the pressure signals from all six microphones in the probe.

Recently, a novel particle velocity measurement device, the “Microflown” sensor, has

been made available to acousticians,23,24 which expanded the methods available to measure

acoustic energy density quantities. A typical Microflown sensor uses two or more very thin

platinum wires that are heated electrically to detect the micro air flow (acoustic particle

velocity) around the wires. After signal conditioning, the sensor is generally sensitive in

the audio frequency range but with an imperfect frequency response. Multiple Microflown

sensors can be mounted together with microphones to serve as a stand alone GED probe

(see Fig. 4.2). However, the Microflown probe has not been used in this dissertation.

4.3 Reverberation Time Estimation

In the paper by Nutter, et al.,27 the procedure of reverberation time (T60) estimation based

on the total acoustic energy density is investigated in detail. In that paper, impulse responses

of multiple source-receiver locations were obtained for both acoustic pressure and particle

velocity, from which an impulse response associated with the total energy density, hET , could

be computed as

hET (t) =
1

2ρ0c2
h2p(t) +

ρ0
2
h2u(t), (4.1)
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Figure 4.1 The microphone gradient GED probe.
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Figure 4.2 The Ultimate Sound Probe (USP). A USP probe consists of three
orthogonal particle velocity components (the Micoflown sensors) and one pressure
component (a microphone).

where hp and hu represent the impulse responses of acoustic pressure and particle velocity,

respectively. The filtered impulse response for each frequency band of interest was then

backward integrated to reduce the estimation variance.59 After averaging the backward

integrated curves for all source-receiver combinations, T60 values could be estimated from

the slopes of the averaged curves. To utilize GED, the procedure is very much the same,

except that the impulse response associated with GED, instead of the total energy density,

is calculated by simply changing the coefficients in Eq. (4.1) from 1/2 to α and 1−α for the

first and second terms, respectively.

Reverberation times were thus obtained for a reverberation chamber based on GED

with different values of α. The reverberation chamber dimensions were 4.96 m × 5.89 m ×

6.98 m, giving a volume of 204 m3. The chamber also incorporated stationary diffusers. The

Schroeder frequency for this chamber was 410 Hz without added low-frequency absorption. A
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dodecahedron loudspeaker driven by white noise was placed sequentially at two locations in

the chamber. Again, the acoustic pressure and particle velocity fields were sampled with the

pressure microphone gradient probe at six locations for each source location. The acoustic

pressure was estimated by averaging the pressure signals from all six microphones in the

probe. The impulse responses were computed by taking the inverse Fourier transform of the

frequency responses between the acoustic pressure or particle velocity signal and the white

noise signal input to the source. Technically, these impulse responses represent responses

of both the chamber and the dodecahedron loudspeaker. However, the impulse response

of the loudspeaker was too short to appreciably influence the T60 estimations. The impulse

responses were filtered with one-third-octave band filters and backward integrated to estimate

the T60 values within the bands.

Figure 4.3(a) compares the averaged T60 estimation based on GED with different α values.

The various GED quantities result in almost identical reverberation times in most one-third-

octave bands. However, the variance due to source-receiver locations differs, especially in the

low frequency range. As shown in Fig. 4.3(b), the estimations based on EK , ET and EG(1/4)

have notably less variance than EP . Less variance implies a smaller number of measurements

or better accuracy. Although the improvement over EK and ET is not large, the variance is

the smallest for EG(1/4). Considering that there is essentially no additional effort added for

measuring EG comparing to EK and ET , EG(1/4) is recommended.

4.4 Sound Power Measurement in a Reverberation Cham-

ber

Sound power measurement based on the use of kinetic energy density or total energy density

was also investigated by Nutter, et al.27 The procedure is relatively simple and very similar
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Figure 4.3 Reverberant time measurements using GED. (a) The averaged T60 es-
timation based on different GED quantities for a reverberation chamber. (b) Com-
parison of the variances of the T60 estimations due to the different source-receiver
locations. “· ·© · ·”: EG(1) (EP ); “−−”: EG(0) (EK); “−.−”: EG(1/2) (ET ); “−−”:
EG(1/4).
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to that based on the squared pressure described in the ISO 3741 standard. The spatially

averaged sound level is the key parameter in the sound power estimation. In general, the

more spatially uniform the sound field is, the fewer measurements are required to estimate

the averaged sound level. The sound power measurement based on GED was investigated

experimentally with the same equipment and in the same reverberation chamber described

in the previous section. With the source being placed close to a corner in the reverberation

chamber (the source was about 1.5 m away from the floor and walls), the GED field was

sampled with the microphone gradient probe at six well separated locations (at least 1.5 m

apart). The locations were randomly chosen with the constraint of being at least 1.5 m from

the source and the walls.

Figure 4.4(a) shows the averaged GED levels, which can be calculated as LG = 10log(EG/EGref ),

where

EGref = α
p2ref

2ρ0c2
+ (1− α)

ρ0
2
v2ref

= α
p2ref

2ρ0c2
+ (1− α)

ρ0
2

p2ref
ρ20c

2

=
p2ref

2ρ0c2

=
(20 µPa)2

2ρ0c2
. (4.2)

The agreement among different α values is good below the 1 kHz one-third-octave band.

Above that frequency, the estimations diverge, likely due to the increased errors caused

by the pressure gradient technique. The large difference at 100 Hz is caused by the large

variance for the sound level of EP . This can be seen in Fig. 4.4(b), which shows the standard

deviation of the sound level for different measurement locations and different GED α values.

Again, less variance for GED with α < 1 can be observed, especially in the low-frequency

range. In general, the sound level of EG(1/4) has the smallest standard deviation, but the

improvement is not too dramatic when compared to EK and ET . However, again, EG(1/4) is
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Figure 4.4 Sound level data for sound power measurements using GED. (a) Spa-
tially averaged sound levels for different GED quantities in a reverberation chamber
where the source under test is placed in a corner and 1.5 m away from the floor
and walls. (b) Standard deviation of sound levels for the different source-receiver
locations. “· ·© · ·”: EG(1) (EP ); “−−”: EG(0) (EK); “−.−”: EG(1/2) (ET ); “−−”:
EG(1/4).

recommended due to its improved uniformity with a measurement effort similar to those of

ET and EK .
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4.5 Conclusion

The techniques of measuring GED have been introduced in this chapter. In general, the

approach used for measuring the total acoustic energy density can be easily modified for

GED measurements.

Benefits of total-energy-density-based techniques have been shown in the past. Experi-

mental studies of GED-based reverberation time and sound power measurements in a rever-

beration chamber confirm the improved uniformity of EG(1/4), especially in the low-frequency

region. They indicate that more reliable results may be obtained using EG(1/4) for those mea-

surements.

In general, EG(1/4)-based techniques do result in improvements compared to ET -and EP -

based techniques. The degree of the improvements was not large compared to the ET -

based techniques. However, since EG(1/4) requires no additional effort to implement in most

applications, and it is very simple to modify existing ET -based techniques, the EG(1/4)-based

techniques may be considered to be superior.



Chapter 5

GED-Based Active Noise Control

5.1 Introduction

Active noise control (ANC) of enclosed sound fields was first studied systematically by Nel-

son, et al. more than twenty years ago.60–62 In the low frequency range (below the Schroeder

frequency), it has been shown that control of the global potential energy can be achieved for

resonance frequencies of an enclosure by minimizing the squared pressure response at one or

multiple field locations with one or more remotely placed secondary sources. Because of the

relatively large spatial fluctuations in the enclosed squared pressure field, research has been

carried out to determine the optimal location for the error sensors as well as the secondary

source locations.41,61,63

For a diffuse sound field (above the Schroeder frequency) global control is usually not

feasible with remotely placed secondary sources,60 and only local “quiet zones” can be

achieved.57,64,65 The average 10 dB zone of quiet, which is defined to be the region around

the error sensor where the attenuation is at least 10dB, is reported to be a sphere with a

diameter of about one-tenth of a wavelength for one error sensor and one remote secondary

source ANC system.57 Effort has been carried out to increase this 10 dB quiet zone by

70
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placing the error sensor in the near-field of the secondary source.64

Instead of minimizing squared pressure, the use of total acoustic energy density (ED)

as the minimization quantity has been demonstrated to yield improved performance in low

modal density acoustic fields, often resulting in improved global attenuation due to the fact

that ED is more spatially uniform than squared pressure and therefore provides more global

information.25,26

In this chapter, the GED-based active noise control of the enclosed sound field will be

studied in both the low and high frequency ranges. It will be shown that GED-based active

noise control can improve the results of ED-based ANC in the low frequency range. In

addition, GED will be optimized to control noise in a diffuse sound field.

This chapter will be organized as follows. An expression for the secondary source strength

to minimize the GED response will be derived in Section 5.2. GED-based global control in

the low frequency range will be studied numerically in Section 5.3. In Section 5.4, the zone of

quiet for GED-based ANC will be studied analytically for diffuse fields. Then, the analytical

results will be verified by a numerical simulation in Section 5.5. In Section 5.6, a modified

filtered-x algorithm will be introduced for GED-based ANC. finally, an experimental study

will be presented in Section 5.7.

5.2 GED-based ANC

For active noise control inside an enclosure, the usual approach taken is to minimize the

squared pressure response at an error sensor location by adjusting the complex source

strength (both amplitude and phase) of the secondary source. In this section, a mathe-

matical derivation is carried out to find the optimal complex source strength if the GED

response is minimized.

Suppose the noise field in an enclosure is excited by a single-tone primary noise source.
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The acoustic pressure and three particle velocity components are known and denoted as

p̂p(r), v̂p1(r), v̂p2(r) and v̂p3(r), respectively. The subscript p represents the primary sound

field. If a secondary source is introduced in the enclosure, then the superposed GED field

can be calculated as

EG(α)(r0) =
α

2ρ0c2
(p̂p(r0) + p̂s(r0))(p̂p(r0) + p̂s(r0))∗

+
1− α

2
ρ0

3∑
l=1

(v̂pl(r0) + v̂sl(r0))(v̂pl(r0) + v̂sl(r0))∗, (5.1)

where p̂s(r0) and v̂sl(r0) represent the pressure and the three components of the particle

velocity fields due to the secondary source only. The subscript s represents the secondary

sound field.

The secondary sound pressure and particle velocity fields are usually not known before

the control system is turned on. However, the spatial transfer functions are often known and

Eq. (5.1) can be modified to

EG(α)(r0) =
α

2ρ0c2
[p̂p(r0) + (Q̂sr + iQ̂si)Ẑps(r0))(p̂p(r0) + (Q̂sr + iQ̂si)Ẑps(r0))∗

+
1− α

2
ρ0

3∑
l=1

[v̂pl(r0) + (Q̂sr + iQ̂si)Ẑvsl(r0)][v̂pl(r0) + (Q̂sr + iQ̂si)Ẑvsl(r0)]∗,

where Q̂sr and Q̂si represent the real and the imaginary parts of the complex secondary

source strength Q̂s, and Ẑps and Ẑvsl represent the transfer functions of the pressure and the

different components of the particle velocity for the secondary sound field.

If one is trying to minimize the GED response at location r0, the optimal Q̂s value can

be solved for from 
∂EG(α)(r0)

∂Q̂sr
= 0,

∂EG(α)(r0)

∂Q̂si
= 0,

(5.2)
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and the solution is

Q̂s = Q̂sr + iQ̂si

= −
αp̂p(r0)Ẑp∗s(r0) + (1− α)ρ20c

2
[∑3

l=1 v̂pl(r0)Ẑv∗sl(r0)
]

αẐps(r0)Ẑp∗s(r0) + (1− α)ρ20c
2
[∑3

l=1 Ẑvsl(r0)Ẑv∗sl(r0)
] . (5.3)

If the primary sound field is also expressed in terms of the primary source strength, Q̂p,

and the spatial transfer functions for pressure and particle velocity components, Ẑpp and

Ẑvpl, then Eq. (5.3) becomes

Q̂s = −Q̂p

αẐpp(r0)Ẑp∗s(r0) + (1− α)ρ20c
2
[∑3

l=1 Ẑvpl(r0)Ẑv∗sl(r0)
]

αẐps(r0)Ẑp∗s(r0) + (1− α)ρ20c
2
[∑3

l=1 Ẑvsl(r0)Ẑv∗sl(r0)
] . (5.4)

5.3 Global Active Noise Control in the Low-Frequency

Range of an Enclosure

In a lightly damped enclosure, the total acoustic potential energy can be reduced at reso-

nance frequencies below the Schroeder frequency by actively minimizing the squared acoustic

pressure at error sensor locations using one or more secondary sources.63 However, for given

primary and secondary source locations, the global attenuation may vary over a large range

for different error sensor placements. At off-resonance frequencies, negative attenuation can

often be observed. There is an upper-bound limit for the attenuation that can be achieved

by minimizing the global acoustic potential energy. However, in principle, this requires an

infinite number of error sensors placed in the enclosure. If, instead of squared pressure, the

total acoustic energy density is minimized at discrete locations, the undesirable effects of

the error sensor positions can be reduced.19,26 With the same number of error sensors, the

global attenuation of the total-energy-density-based ANC is generally closer to the upper

bound limit than the squared-pressure-based ANC.
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Table 5.1 Room Modes of a Lightly Damped Enclosure (dimensions: 2.7 m ×
3 m× 3.1 m).

Mode (0,0,1) (1,2,0) (0,0,2) (2,0,1) (1,2,1) (1,1,2)

Modal Frequency (Hz) 54.59 126.10 126.18 126.70 138.45 138.53

In this section, the active noise cancellation based on GED in a lightly damped enclosure

will be simulated numerically. The dimensions of the enclosure are 2.7 m× 3 m× 3.1 m and

a few of the normal modes are listed in Table 5.1. One of the corners of the enclosure sits at

the origin with the three adjoining edges lying along the positive direction of the x, y and

z axes. One primary source is located close to a corner at (0.27 m, 0.3 m, 0.31 m), and one

secondary source is located at (2.2 m, 2.0 m, 0.94 m). One error sensor is randomly placed

in the enclosure with the only constraint being that it is at least one wavelength away from

both sources. One hundred tests were performed, with the secondary source strength being

adjusted each time to minimize GED at the randomly chosen error sensor location. The

bandwidth of 40 Hz to 180 Hz was studied, with 1 Hz increments. The average attenuation

over the tests of the total potential acoustic energy in the enclosure was compared for the

various control schemes. As shown in Fig. 5.1(a), the ET -based ANC is notably better

than the EK or EP -based ANC. The EP (or squared pressure) based ANC can result in

large boosts for off-resonance frequencies, while the EK and ET -based ANC result in much

smaller boosts. Figure 5.1(b) compares GED-based ANC for the α values of 0.1, 1/4, and

1/2(ET ), along with the upper bound limit. These three ANC results are very similar. The

EG(1/4)-based ANC tends to achieve a slightly better attenuation than the other two. The

difference, however, is small except for the frequencies around 154 Hz. It can also be observed

that the EG(1/4)-based ANC generally has less variance than the other schemes (Fig. 5.2).
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Figure 5.1 Averaged global attenuation using GED-based active noise cancellation
in an enclosure with random error sensor locations. (a) Average attenuation based
on EG(1) (EP ,“−©−”), EG(0) (EK , “−−”) and EG(1/2) (ET , “−.−”). (b) Average
attenuation based on EG(1/2) (“−.−”), EG(1/4) (“−−”) and EG(1/10) (“·+ ·”) with
the total potential energy upper-bound limit(“−−”). The attenuation based on
total potential energy is considered optimal.
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Figure 5.2 Variance of the attenuation. (a) Variance of the attenuation for EG(1)

(EP ,“· ·© · ·”), EG(0) (EK), “−−”) and EG(1/2) (ET , “−.−”). (b) Variance of the
attenuation for EG(1/2) (“−.−”), EG(1/4) (“−−”) and EG(1/10) (“· ·+ · ·”).
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5.4 Zone of Quiet in A Diffuse Sound Field

For a diffuse sound field excited by a single-tone noise source, global active noise control

cannot be achieved unless the control source is placed within half a wavelength from the

primary source.60 When the control source and the primary source are far away from each

other, only local attenuation can be obtained. If the pressure response is minimized at the

location r0, which is in the far-field of both sources, an expression for the spatially averaged

squared pressure field around r0 has been derived by Elliot, et al.57 The derivation begins

by treating the instantaneous sound pressure at r0 + ∆r in the diffuse field excited by the

primary source as the sum of two components,

pp(r0 + ∆r) = ppc(r0 + ∆r) + ppu(r0 + ∆r), (5.5)

where ppc(r0 + ∆r) = sinc(k∆r)pp(r0), in which k is the wavelength and ∆r = |∆r|. ppc

is fully correlated to sinc(k∆r)pp(r0), while it will be shown later that ppu is absolutely

uncorrelated to sinc(k∆r)pp(r0).

For the pressure at two points in a diffuse field that are ∆r apart, the time averaged

spatial cross-correlation function can be written as55

〈p(r)p(r + ∆r)〉 = µ2sinc(k∆r), (5.6)

where · · · · denotes the time average, < · > denotes the spatial average with respect to r,

and µ2 = 〈p2(r)〉 is the spatially averaged mean square pressure. Utilizing Eq. (5.6), one can

derive that

〈pp(r0)pp(r0 + ∆r)〉 = 〈pp(r0)ppc(r0 + ∆r)〉+ 〈pp(r0)ppu(r0 + ∆r)〉

= µ2
psinc(k∆r) + 〈pp(r0)ppu(r0 + ∆r)〉

= µ2
psinc(k∆r). (5.7)
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Comparing to Eq. (5.6), Eq. (5.7) leads to 〈pp(r0)ppu(r0 + ∆r)〉 = 0 as well as 〈ppcppu〉 = 0.

Therefore ppu(r0 + ∆r) is uncorrelated to both pp(r0) and ppc(r0 + ∆r). With the use of the

correlation relationship, the spatially averaged squared pressure can be calculated as

< p2p(r0 + ∆r) > = < [ppc(r0 + ∆r) + ppu(r0 + ∆r)]2 >

= sinc2(k∆r)< p2p(r0) >+< p2pu(r0 + ∆r) >. (5.8)

Given that < p2p(r0 + ∆r) > = < p2p(r0) > = µ2
p, < p2pu(r0 + ∆r) > can be solved for from

Eq. (5.8):

< p2p(r0 + ∆r0) > = sinc2(k∆r)< p2p(r0) >+< p2pu(r0 + ∆r) >

⇒ µ2
p = sinc2(k∆r)µ2

p +< p2pu(r0 + ∆r) >

⇒ < p2pu(r0 + ∆r) > = [1− sinc2(k∆r)]µ2
p. (5.9)

Similarly, for the diffuse field excited by the secondary source, we have

ps(r0 + ∆r) = psc(r0 + ∆r) + psu(r0 + ∆r), (5.10)

where psc(r0 + ∆r) = sinc(k∆r)ps(r0), and

< p2su(r0 + ∆r) > = [1− sinc2(k∆r)]µ2
s. (5.11)

For both the primary and secondary source operating together, the total pressure field

around the error sensor location can be written as

p(r0 + ∆r) = pp(r0 + ∆r) + ps(r0 + ∆r). (5.12)

The ensemble average of the mean square value can be calculated using Eqs. (5.9) and (5.11):

< p2(r0 + ∆r) > = < [pp(r0 + ∆r) + ps(r0 + ∆r)]2 >

= < [ppc(r0 + ∆r) + psc(r0 + ∆r)]2 >

+< p2pu(r0 + ∆r) >+< p2su(r0 + ∆r) >

= sinc2(k∆r)< p2(r0) >+ [1− sinc2(k∆r)][µ2
p+ < µ2

s >]. (5.13)
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Here, µ2
s is treated as a random variable because it varies according to the primary field

as well as the error sensor and secondary source locations [See Eq. (5.4)]. Equation (5.13)

shows that the squared pressure around the error sensor is influenced by both the pressure at

the error sensor < p2(r0) > and the sum of the averaged primary pressure and the averaged

secondary pressure µ2
p+ < µ2

s >. When ∆r � 1, sinc2(k∆r) ≈ 1 and the first term on the

right hand-side of Eq. (5.13) dominates. Thus in the near-field of the error sensor, one has

< p2(r0 + ∆r) > ≈ sinc2(k∆r)< p2(r0) >. (5.14)

On the other hand, in the far-field of the error sensor (∆r > 1/2λ), one has

< p2(r0 + ∆r) > ≈ µ2
p+ < µ2

s >, (5.15)

which is greater than or equal to the averaged primary pressure field, µ2
p.

If the spatially averaged mean square pressure quantities are normalized by the averaged

mean squared primary pressure, Eq. (5.13) becomes

< p2(r0 + ∆r) >

µ2
p

= sinc2(k∆r)
< p2(r0) >

µ2
p

+ [1− sinc2(k∆r)](1 +
< µ2

s >

µ2
p

). (5.16)

The fraction in the first term of the right-hand side of Eq. (5.16) represents the normalized

mean squared pressure at the error sensor location. If the pressure response is minimized at

location r0, then ideally < p2(r0) > vanishes, and Eq. (5.13) becomes

< p2(r0 + ∆r) >

µ2
p

= [1− sinc2(k∆r)](1 +
< µ2

s >

µ2
p

) (5.17)

which was originally derived by Elliot, et al..57 If GED is minimized instead, the normalized

pressure at r0 is not zero anymore, and can be calculated in the frequency domain as

< p2(r0) >

µ2
p

=
< [p̂p(r0) + p̂s(r0)][p̂p(r0) + p̂s(r0)]∗ >

< p̂pp̂∗p >

=
< [Q̂pẐpp(r0) + Q̂sẐps(r0)][Q̂pẐpp(r0) + Q̂sẐps(r0)]∗ >

< Q̂pẐppQ̂∗pẐp
∗
p >

=
< [Ẑpp(r0) + (Q̂s/Q̂p)Ẑps(r0)][Ẑpp(r0) + (Q̂s/Q̂p)Ẑps(r0)]∗ >

< ẐppẐp∗p >
, (5.18)
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where Qs can be found in Eq. (5.4). The substitution of Eq. (5.4) into Eq. (5.18) makes

the expression rather complicated. However, given that Ẑpp, Ẑps, Ẑvpl and Ẑvsl are all

mutually independent variables with mean values being equal to zero, and < ẐvplẐv
∗
pl > / <

ẐppẐp
∗
p >= 1/3,10 the expression can be simplified to

< p2(r0) >

µ2
p

=
(1− α)2

3

〈
EPZsEKZs + 3E2

KZs

[αEPZs + (1− α)EKZs]
2

〉
, (5.19)

where EPZs = ẐpsẐp
∗
s and EKZs = ρ20c

2
∑3

i=1 ẐvslẐv
∗
sl. EPZs and EKZs are independent

random variables and have the same mean value, < EPZs >=< EKZs >= µZ . In addition,

EPZs/µZ is distributed as Gamma(1, 1), and EKZs/µZ is distributed as Gamma(3, 1/3).

Therefore, Eq. (5.19) can be expressed as

< p2(r0) >

µ2
p

=
(1− α)2

3

〈
EPZsEKZs + 3E2

KZs

[αEPZs + (1− α)EKZs]
2

〉
=

(1− α)2

3

〈
EPZsEKZs/µ

2
Z + 3E2

KZs/µ
2
Z

[αEPZs/µZ + (1− α)EKZs/µZ ]2

〉
=

(1− α)2

3

∫ ∞
0

∫ ∞
0

xy + 3y2

[αx+ (1− α)y]2
· e−x · 27y2e−3y

2
dx dy. (5.20)

The integration in Eq. (5.20) is still involved. However, it is possible to obtain some impor-

tant properties of < p2(r0) >/µ2
p fairly easily. First,< p2(r0) >/µ2

p is monotonically decreas-

ing in the domain of 0 ≤ α ≤ 1, which can be proven by showing that the derivative with

respect to α is always negative. When α is equal to one, GED reverts to the potential energy

density (or squared pressure). Therefore it is not surprising that the squared pressure at the

error sensor location reaches its minimum value, zero, when squared pressure is minimized.

When α = 0, which is equivalent to minimizing the squared particle velocity, Eq. (5.20)

is relatively easier to evaluate and becomes

< p2(r0) >

µ2
p

∣∣∣∣∣
α=0

=
1

3

∫ ∞
0

∫ ∞
0

x+ 3y

y
· e−x · 27y2e−3y

2
dx dy =

3

2
, (5.21)

which indicates an amplified pressure field at the error sensor location. Another easily
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Figure 5.3 Averaged mean square pressure at the error sensor location when GED
is minimized. Eq. (5.20) is evaluated numerically and 10log(< p2(r0) >/< p2p >)) is
plotted. “−−”: analytical results; “· · © · ·”: numerical simulation.

integrated case is when α = 1/4, resulting in

< p2(r0) >

µ2
p

∣∣∣∣∣
α=0

=
3

64

∫ ∞
0

∫ ∞
0

y

x+ 3y
· e−x · 27y2e−3y

2
dx dy =

3

4
. (5.22)

A numerical evaluation of Eq. (5.20) for 0 ≤ α ≤ 1 is plotted in Fig. 5.3 on a logarithmic

scale. In order to reduce the squared pressure at the error sensor location to at least 10 dB

lower than the averaged primary squared pressure, α needs to be greater than about 0.9.

When α is around 0.6, only about 5 dB reduction can be achieved.

In a similar manner, the term, < µ2
s >, in Eq. (5.13) and Eq. (5.16) can be calculated as
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follows.

< µ2
s > = < Q̂s(r0)Ẑps(r)Q̂∗s(r0)Ẑp∗s(r) >

= < Q̂sQ̂
∗
s >< ẐpsẐp

∗
s > (5.23)

For the frequency range well above the Schroeder frequency,
〈
ẐpsẐp

∗
s

〉
is equal to< ẐppẐp

∗
p >;

therefore

< Q̂sQ̂
∗
s >< ẐpsẐp

∗
s > =

< Q̂sQ̂
∗
s >

Q̂pQ̂∗p
· Q̂pQ̂

∗
p < ẐppẐp

∗
p >

=

〈
Q̂s

Q̂p

Q̂∗s

Q̂∗p

〉
µ2
p (5.24)

By substituting Eq. (5.4) and following the considerations to derive Eq. (5.20), the averaged

ratio of secondary source strength to the primary source strength can be calculated as〈
Q̂s

Q̂p

Q̂∗s

Q̂∗p

〉
=

〈
3α2EPZs + (1− α)2EKZs
3[αEPZs + (1− α)EKZs]2

〉
=

∫ ∞
0

∫ ∞
0

3α2x+ (1− α)2y

3 [αx+ (1− α)y]2
· e−x · 27y2e−3y

2
dx dy, (5.25)

Substituting Eqs. (5.24) and (5.25) into Eq. (5.23) leads to

< µ2
s >

µ2
p

=

〈
Q̂s

Q̂p

Q̂∗s

Q̂∗p

〉

=

∫ ∞
0

∫ ∞
0

3α2x+ (1− α)2y

3 [αx+ (1− α)y]2
· e−x · 27y2e−3y

2
dx dy. (5.26)

It can be shown that the source strength ratio has a minimum value of 1/3 when α = 1/4. In

addition, the ratio approaches infinity when α = 0, which was originally derived theoretically

by Elliott, et al.57 In that reference, Elliott, et al. assigned a value of 3 for this situation

based on a numerical study due to the consideration that the secondary source power may

not reach infinity in reality. Those authors, however, noticed the lack of repeatability in the

numerical simulation results. As is found later in this chapter, it was found numerically and
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Figure 5.4 Averaged mean squared pressure at the remote location from the error
sensor when GED is minimized. Eq. (5.26) is evaluated numerically and 10log(1+ <
µ2
s > /µ2

p) is plotted.“−−”: analytical results; “· · © · ·”: numerical simulation.

experimentally that the averaged sound power ratio can be very high and cause an increase

of more than 12 dB in the far-field of the error sensor when α→ 1. Combining Eqs. (5.23)-

(5.26), the far-field squared pressure value µ2
p+ < µ2

s > can be evaluated numerically and is

plotted in Fig. (5.4).

The value of α has a different impact on the near-field and the far-field regions of the

sound pressure after ANC is implemented. To maximize the noise reduction at the error

sensor location, α needs to be equal to one. On the other hand, however, the value of

α = 1 should be avoided due to the possible extremely high secondary source strength

and significant amplification introduced in the far-field. The averaged sound pressure level

around the error sensor is plotted in Fig. (5.5) for values of α being 0.999999, 0.95, 0.85 and



5.5 Numerical Simulation for the Zone of Quiet 84

0.25. Because of the divergent nature of minimizing squared pressure, the value 0.999999

is used instead of one. One can observe from the plot that the 10 dB “quiet zone” for

minimizing pressure is notably smaller than the generally reported volume - a sphere with

diameter being one-tenth of the wavelength. This size, however, can be reached by setting

α = 0.95. If a controlled volume of 5 dB reduction is desired, a value of α in the range

of approximately 0.85 to 0.95 can provide a “quiet zone” with the diameter being around

one-fifth of the wavelength. In the far-field, greater than about half a wavelength away from

the error sensor, the averaged pressure field is much lower for α < 0.95 than for α ≈ 1. The

theoretical minimum average far-field pressure can be achieved when α = 0.25. However,

for this case the largest noise reduction is only around 2 dB. In addition, the general “quiet

zone”, defined as the region where the noise is reduced, has a diameter of around two-fifths

of the wavelength for α < 0.95, which is notably larger than for α ≈ 1.

5.5 Numerical Simulation for the Zone of Quiet

Computer simulations were carried out to verify the theoretical derivations in Section 5.4.

Inside a lightly damped room (dimensions: 2e m×2π m×6 m), the GED field of the primary

point source is minimized at an error sensor location by one remotely placed secondary point

source. The room has a uniform wall impedance, z = (50 + 100i)ρ0c, with the Schroeder

frequency being 310 Hz. The error sensor is placed at 3/8 of the length along one diagonal

line of the room. The primary and secondary source locations are randomly chosen within

the region that is at least two wavelengths from the error sensor and the boundaries. Sound

fields for a point source at 200 such selected random locations are computed with the hybrid

modal expansion model at 800 Hz, which is well above the Schroeder frequency of the room

to meet the diffuse field condition. Based on these 200 source locations, a search was carried

out to look for two sources that are at least ten wavelengths away from each other. More than
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Figure 5.5 Averaged mean square pressure in the near-field of the error
sensor when GED is minimized. Eq. (5.16) is evaluated numerically and
10log(< p2(r0 + ∆r) >/< p2p >)) is plotted.“· · © · ·”: EG(1) (EP ); “−−”: EG(0.95);
“−−”: EG(0.85); “−.−”: EG(1/4).
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Figure 5.6 Averaged mean square pressure in the near-field of the error sensor
when GED is minimized. This is a computer simulation result. “· · © · ·”: EG(1)

(EP ); “−−”: EG(0.95); “−−”: EG(0.85); “−.−”: EG(1/4).

4000 such pairs were found, and with each pair, one source was randomly selected to serve as

the primary source while the other one was used as the secondary source. Since the complex

source strengths are unity, the pressure and particle velocity fields computed correspond to

the spatial transfer functions. Therefore, the secondary source strength required to minimize

the GED response at the error sensor location can be calculated using Eq. (5.4). The

controlled sound field is then computed by superposing the primary and secondary fields.

The averaged squared pressure (over 4000 trials) at the error sensor location and at a remote

region have been plotted in Figs. 5.3 and 5.4, to be compared with the analytical predictions.

The averaged near-field results are plotted in Fig. 5.6 to verify the analytical results shown

in Fig. 5.5. All the numerical simulations agree well with theoretical results.
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Figure 5.7 Block diagram of the energy-based filtered-x algorithm.

5.6 A Filtered-X Algorithm for GED

The ANC algorithm utilized in this study is based on a version of the widely used adaptive

filtered-x algorithm, which has been modified for the minimization of the acoustic energy-

based quantities.66 A block diagram representing the ANC algorithm is shown in Fig. 5.7.

In this figure, pp(n), vp(n), ps(n) and vs(n) represent the pressure and particle velocity at

the error sensor due to the primary and secondary source, respectively. Here, n denotes a

discrete-time index. Wn in the diagram represents the adaptive active control filter, while Hvi

and Hp denote the transfer functions representing the secondary path for the particle velocity

and pressure, respectively. The functions J {p,v} in the figure represents a procedure of

computing the squareroot of GED, and the output e(n) can be calculated as

e(n) = |EG(n)|1/2

=

[
α

2ρ0c2
p2(n) +

(1− α)ρ0
2

v(n) · v(n)

]1/2
. (5.27)
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Here, p(n) and v(n) represent the pressure and particle velocity at the error sensor, which

can be calculated using matrix notation as

p(n) = pp(n) + ps(n)

= pp(n) + wT (n)X(n)hp(n), (5.28a)

vi(n) = vpi(n) + vsi(n)

= vpi(n) + wT (n)X(n)hvi(n), i = 1, 2, 3, (5.28b)

where w(n), hp(n) and hvi(n) denote the coefficient vectors for the finite impulse response

(FIR) filters representing Wn(z), Hp(z) and Hvi(z), respectively, and X(n) represents the

reference signal matrix. These vector and matrix quantities can be written as follows:

w(n) = [w0(n) w1(n) · · · wJ−1(n)]T ,

hp(n) = [hp,0(n) hp,1(n) · · · hp,I−1(n)]T ,

hvi(n) = [hvi,0(n) hvi,1(n) · · · hvi,I−1(n)]T ,

and

X(n) =



x(n) x(n− 1) · · · x(n− I + 1)

x(n− 1) x(n− 2) · · · x(n− I)

...
...

...
...

x(n− J + 1) x(n− J) · · · x(n− I − J + 2)



T

,

where I and J represent the length of the FIR filters Wn and H. In addition, the “filtered-x”

signals are defined as follows

rp(n) = X(n)hp(n), (5.29a)

rvi(n) = X(n)hvi(n). (5.29b)
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With the substitution of Eqs. 5.28 and 5.29, one can obtain the gradient of the squared error

signal as

∂e2(n)

∂w
=

α

ρ0c2
p(n)rp + (1− α)ρ0

3∑
l=1

vi(n)rvi. (5.30)

Thus, the control filter update equation can be written as

w(n+ 1) = w(n)− µX

[
α

ρ0c2
p(n)rp + (1− α)ρ0

3∑
l=1

vi(n)rvi

]
, (5.31)

where µX is the convergence parameter. With no surprise, this expression can revert to the

active control filter update equations for minimizing the squared pressure, squared velocity

or total acoustic energy density by choosing the appropriate corresponding value for α. Of

note is the fact that an existing ANC system based on minimizing ET can be very easily

modified to minimize EG instead.

5.7 Experimental Study of ANC in a Diffuse Field

An experimental study was carried out in a reverberation chamber which has dimensions

of 4.96 m × 5.89 m × 6.98 m (a volume of 204 m3) and is incorporated with stationary

diffusers. The Schroeder frequency for this chamber is 410 Hz. The pressure microphone

gradient probe served as the error sensor One loudspeaker driven by a 650 Hz pure-tone signal

served as the primary source while another identical loudspeaker was used as the secondary

source to minimize the EG response at the error sensor. Twenty tests were carried out. The

error sensor was located near the center of the chamber and the location remained constant.

The locations of the two sources were chosen randomly for each test, but the sources were

at least two wavelengths from the boundaries and the error sensor. The distance between

the two sources was at least 5 wavelengths away from each other. The sound pressure

fields both without and with control were sampled at different distances from the error
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Figure 5.8 Experimental results for averaged mean square pressure in the near-field
of the error sensor when GED is minimized. “· ·© · ·”: EG(1) (EP ); “−−”: EG(0.95);
“−−”: EG(0.85); “−.−”: EG(1/4).

sensor. The averaged difference between the sound pressure fields with control on and off

are calculated and plotted in Fig. 5.8 with respect to the distance from the error sensor for

some specific values of α. Simultaneously, the far-field pressure field was sampled with six

far-field microphones. The difference between the averaged far-field squared pressure values

for control on and off are plotted in Fig. 5.9 as a function of α. The experimental results

agree with the theoretical and computer simulation results fairly well.

5.8 Conclusions

GED-based active noise control is studied in this chapter. Global active noise control in

a lightly damped enclosure has been studied through computer simulation. The results
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Figure 5.9 Experimental results for averaged mean squared pressure at the remote
location from the error sensor when GED is minimized.
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demonstrated that when α ≤ 1/2, the average global attenuation is not particularly sensitive

to the specific value of α, but EG(1/4) introduces less variance for the attenuation than other

quantities. For diffuse sound fields, the averaged zone of quiet in the near-field of the

error sensor was derived theoretically and verified by a numerical simulation. Compared to

minimizing squared pressure response, by varying the value of α of GED, one can increase

the general zone of quiet by as much as 3 times. As a trade off, the maximum attenuation

may decrease to around 1.25 dB. By choosing appropriate values of α, one can maximize the

volume of the quite zone and at the same time obtain the desired attenuation. For example,

if 10 dB zone of quiet is required, a value of 0.95 may be assigned to α. When the attenuation

of 5 dB is desired, a value of 0.85 should be assigned to α. In the far-field of the error sensor,

there is usually a boost for the squared pressure. However, it was shown in this work that

by minimizing the GED response with α < 1, the boost in the far-field can be dramatically

reduced.

A modified filtered-x adaptive algorithm was developed in this paper for GED-based

ANC. The algorithm is very similar to that for minimizing the total acoustic energy density

that was developed previously in the literature, and, in practice, very limited effort is needed

to modifying a existing ED-based ANC system to a GED-based ANC system.

The experimental study conducted in a reverberation chamber largely confirmed the

theoretical results derived in the paper.



Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions

Different modal expansion methods have been studied in this dissertation. A set of new room

modes are introduced to deal with damped enclosures. Moreover, a free field Green’s func-

tion is integrated into the solution of the non-homogeneous Helmholtz equation to improve

both the convergence rate and the accuracy of modal expansions. For damped boundary

conditions, by partially satisfying the boundary conditions, the modified modal analysis

(MMA) not only performs better than the classical modal analysis (CMA) in the region

near boundaries but also is more accurate globally with fewer modes used in the expansion.

In addition, the “uncoupled” MMA can predict sound pressure level and particle velocity

level fairly accurately for many damped boundary conditions, while the “uncoupled” CMA

usually introduces large errors. Generally, MMA requires numerical searching for the eigen-

values. However, this process is fairly straightforward and fast. The enclosed sound field can
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be separated into the direct field and reverberant field, but these two are treated together

in the traditional modal analysis. The weaknesses include slow convergence rate (especially

in the near field of a point source) and difficulty in dealing with complex sources inside an

enclosure. The hybrid modal expansion introduced in Chapter 2 successfully addresses these

problems. Studies using a point source in rectangular enclosures show that it converges no-

tably faster than the regular modal expansion and the hybrid “uncoupled” modal expansion

introduces much smaller errors than the regular “uncoupled” expansion. The hybrid expan-

sion can be easily applied to complex sound sources if the free field responses of the sources

are known.

Generalized acoustic energy density (GED) has been introduced in this dissertation.

Averaging over the volume of an enclosure, the GED has the same mean value as the acoustic

total energy density and can revert to the traditional energy density quantities, such as

acoustic potential energy density, acoustic kinetic energy density, and acoustic total energy

density. By varying the weighting factors for the combination of acoustic potential energy

density and acoustic kinetic energy density, an additional degree of freedom is added to

the summed energy density quantity so that it can be optimized for different applications.

Properties for GED with different values of the weighting factor, α, have been studied for

individual room modes, for the diffuse sound field, and for the sound field below the Schroeder

frequency.

The uniformity of a measured sound field often plays an important role in many applica-

tions. This work has shown that optimal weighting factors based on the single parameter α

can minimize the spatial variance of the GED. For a single room mode, the optimal value of

α may vary from 1/10 to 1/2, depending on the specific mode shape. For a diffuse field, the

optimal value is 1/4 for both single frequency and narrow-band frequency excitations, even

for the region close to a rigid reflecting surface. For a diffuse field excited by a single tone
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source, this EG(1/4) follows the distribution of Gamma(4, µ0/4) and has a relative spatial

variance of 1/4, compared to 1/3 for EK and ET . Below the Schroeder frequency of a room,

a smaller ensemble variance can also be reached when α = 1/4.

Benefits of total-energy-density-based techniques have been shown in the past. Experi-

mental studies of GED-based reverberation time and sound power measurements in a rever-

beration chamber confirm the improved uniformity of EG(1/4), especially in the low-frequency

region. They indicate that more reliable results may be obtained using EG(1/4) for those mea-

surements. Global active noise control in a lightly damped enclosure has also been studied

through computer simulation. The results demonstrated that when α ≤ 1/2, the average

global attenuation is not particularly sensitive to the specific value of α, but EG(1/4) intro-

duces less variance for the attenuation than other quantities. For diffuse fields, the zone of

quiet is usually very small around a pressure error sensor for active noise control. GED-based

active noise control can not only increase the size of the quiet zone, but also dramatically

decrease the boost in the far field caused by the secondary source.

In general, GED-based techniques result in significant improvements compared to poten-

tial energy density-based techniques. Utilizing EG can often yield favorable results compared

to ET . However, the degree of the improvements may not be large. Nonetheless, since EG

requires no additional effort to implement in most applications, and it is very simple to

modify existing ET -based techniques, the GED-based techniques may be considered to be

superior. In addition, because of the additional degree of freedom, the GED can be utilized

in broader applications.

6.2 Suggestions for Future Research

Studies have been carried out for some GED-based applications such as acoustic measurement

techniques in a reverberation chamber and active noise control of enclosed sound fields.
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There are broad areas that GED can be applied to. Applications such as sound equalization,

acoustic source power measurement in standard non-ideal rooms, and so on could possibly

benefit from the improved uniformity properties of GED.

The generalized energy density weights the potential energy density and the kinetic energy

density differently to introduce an additional degree of freedom. There is a potential to

extend this idea even further. One possibility is to weight the orthogonal components of

the kinetic energy density differently. A preliminary study on active noise control in a

diffuse field showed that by choosing different weighting factors for the kinetic energy density

components, a similar volume of the zone of quiet can be achieved compared to the GED

based techniques, which suggests the possibility of reducing the number of channels for the

error sensor. In addition, the shape of the zone of quiet may not remain spherical. Thus, by

choosing appropriate weighting factors, one may be able to adjust the shape and orientation

of the zone of quiet.
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