
ROUGHNESS CORRECTION MODEL FOR REFLECTION FROM

PERFECTLY CONDUCTING SCATTERERS

by

W. Todd Doughty

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

August 2008

Copyright c© 2008 W. Todd Doughty

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

W. Todd Doughty

This thesis has been reviewed by the research advisor, research coordinator,
and department chair and has been found to be satisfactory.

Date R. Steven Turley, Advisor

Date Eric G. Hintz, Research Coordinator

Date Ross L. Spencer, Chair

ABSTRACT

ROUGHNESS CORRECTION MODEL FOR REFLECTION FROM

PERFECTLY CONDUCTING SCATTERERS

W. Todd Doughty

Department of Physics and Astronomy

Bachelor of Science

I modeled the reflectance from rough conductive surfaces for tranverse mag-

netic (TM) and tranverse electric (TE) polarization. The Nyström technique

was applied in order to solve the Electric Field Integral Equation (EFIE) in

the TM case and the Magnetic Field Integral Equation (MFIE) in the TE

case. We studied 2.4 million sample surfaces with varied roughness heights

and frequencies from various incident angles and compared the results to the

predictions of the Debye-Waller Factor (DWF). As predicted, the attenuation

is directly correlated with the qh factor, but differs from the DWF in both

form and magnitude. There was also a significant dependance on both spatial

frequency and polarization. We developed our own model by fitting the results

to a cubic correction function. In addition to the predicted quadratic term,

our simulations showed significant linear and cubic terms in the roughness

correction function.

ACKNOWLEDGMENTS

I would like to thank R. Steven Turley who spent many hours with me

helping me to accomplish this project and Jed Johnson for his work on the

algorithms that have made my project possible. Also, I would especially like

to thank the NASA Rocky Mountain Space Grant Consortium, BYU Office

of Research and Creative Activities, and the BYU Department of Physics and

Astronomy for providing funding in support of this research.

Contents

Table of Contents xi

List of Figures xiii

1 Introduction 1
1.1 Significance . 1
1.2 Roughness . 3
1.3 Previous Work . 6

2 Procedure 9
2.1 Problem Setup . 9
2.2 Surface Setup . 10
2.3 Validation . 14

2.3.1 Flat Plate . 14
2.3.2 Cylinder Conductor . 16

2.4 Sample Field . 18
2.5 Computation . 23

3 Results 25
3.1 Attenuation Function . 25
3.2 Correction Coefficients . 27

Bibliography 33

A Program Results 37

B Fortran Code 43
B.1 ECS.f90 . 43
B.2 RoughTE.f90 . 47
B.3 fullsurface.f90 . 57

C Matlab Code 65

Index 70

xi

List of Figures

1.1 Effects of Low Frequency Roughness 4
1.2 Effects of High Frequency Roughness 5

2.1 Example Flat Surface . 11
2.2 Example Power Spectrum . 12
2.3 Example Full Surface . 13
2.4 Diagram for Physical Optics Derivation 15
2.5 Comparison to physical optics - 90◦ 17
2.6 Comparison to physical optics - 60◦ 18
2.7 Comparison to physical optics - 30◦ 19
2.8 Comparison to perfect cylinder conductor - radius=1λ 20
2.9 Comparison to perfect cylinder conductor - radius=5λ 20
2.10 Comparison to perfect cylinder conductor - radius=10λ 21
2.11 Example of a Random Rough Surface 21
2.12 Example of a Calculated Scattered Field 22

3.1 Attenuation Function(9λ) . 26
3.2 Attenuation Function(1.5λ) . 27
3.3 Quadratic Coefficient TE . 29
3.4 Quadratic Coefficient TM . 30
3.5 Cubic Coefficient TE . 30
3.6 Cubic Coefficient TM . 31
3.7 Linear Coefficient TE . 31
3.8 Linear Coefficient TM . 32

A.1 Attenuation Function(2λ) . 38
A.2 Attenuation Function(4λ) . 38
A.3 Attenuation Function(6λ) . 39
A.4 Attenuation Function(8λ) . 39
A.5 Attenuation Function(10λ) . 40
A.6 Attenuation Function(12λ) . 40
A.7 Attenuation Function(14λ) . 41
A.8 Attenuation Function(16λ) . 41
A.9 Attenuation Function(18λ) . 42

xiii

xiv LIST OF FIGURES

A.10 Attenuation Function(20λ) . 42

Chapter 1

Introduction

1.1 Significance

Light provides a powerful tool for probing the physical world, however the Extreme

Ultraviolet (EUV) portion of the spectrum is one of the most difficult regions with

which to work. Approximately spanning from 20-100 eV, EUV light is absorbed

in air. All work done with these wavelengths must be done under vacuum, adding

great difficulty to the work. Because of this difficulty, applications of EUV have

only recently become a focus of attention. While there are many applications of EUV

technology, two of the most important are in astronomy and computer manufacturing.

EUV astronomy is a relatively new field that will be able to probe unique features

of the universe. The blackbody spectrum of the solar corona peaks in the EUV,

so this region is the best suited to study that important feature of the sun. The

solar and heliospheric observatory (SOHO) takes advantage of the EUV to image the

heliosphere. Closer to home, the earth’s magnetosphere traps many charged particles

including ionized helium. The Lyman-α spectral line (304 Å) for ionized helium is

in the EUV. Ionized helium can provide a beacon with which to study the nature

1

2 Chapter 1 Introduction

of the magnetosphere provided it can be isolated from the dominant light at 584 Å,

the Lyman-α line for neutral helium [1]. Each of these applications requires precise

mirror design.

Computers are constantly improving in speed and performance but are currently

approaching a maximum limit for current production techniques. This limit stems

from the size of the circuits which in turn are limited by the resolution of the pro-

duction method: lithography. One method of decreasing the resolution size of optical

lithography is to use wavelengths of light in the EUV [2]. In order to utilize these

short wavelengths, new optical tools must be designed that can direct and control the

high energy light of the EUV [3].

In order to reflect light in the EUV, each of these applications requires precisely

engineered mirrors. The best approach is a series of alternating levels of thin films

with correct thicknesses [4]. This approach exploits the wave nature of light by

using constructive interference to amplify the reflected light. However, in order to

correctly design the mirrors, the optical properties for the material must be known.

One method for determining the index of refraction for a material is to measure the

reflected light of various frequencies off of a surface from various incident angles [5].

The Fresnel equations (1.1,1.2) relate the reflected field to the index of refraction,

n [6].

Rs =

(
ni cos(θi)− nt cos(θt)

ni cos(θi) + nt cos(θt)

)2

(1.1)

Rp =

(
ni cos(θt)− nt cos(θi)

ni cos(θt) + nt cos(θi)

)2

(1.2)

These equations, however, assume an ideal interface between the two layers (i.e.

a perfectly flat surface). Any real surface has roughness that causes a decrease in

reflectance. This in turn leads to errors in calculating the optical constants used in

1.2 Roughness 3

designing mirrors. In order to correct this problem, the loss of light, or attenuation,

due to roughness must be correctly understood and accounted for.

1.2 Roughness

As improvements continue in extreme-ultraviolet (EUV) optics, surface roughness

remains one of the main obstacles to be overcome. Roughness causes an increase in

scattering which in turn can cause a decrease in reflectivity [4,7]. Overall, the effect of

roughness on a surface decreases the reflected field. For low frequency surface features

(i.e. those larger than a wavelength), there can be specular scattering. Under this

circumstance, the large features can act as angled facets reflected the incident wave

away from the reflected angle predicted by Snell’s Law (see Figure 1.1). For high

frequencies, the effect of roughness stems from the randomization of the phase of the

reflected wave. This leads to speckling and other effects due to the interference of the

wavefronts (see Figure 1.2).

A common method for dealing with roughness is the use of the Debye-Waller

correction factor (DWF) to correct for the attenuation [8]. Originally developed

through the study of light scattering due to thermal vibration in crystals, Debye

determined that the scattering of light by the crystals was based on the product of

the momentum of the incident light and the amplitude of the vibrating atoms in the

crystal lattice [9]. This product represents an uncertainty factor that can predict

the attenuation. In reflection from scatterers, roughness acts in a way analogous to

the thermal vibrations [8,10]. Surface roughness accounts for the positional variation

in a relation similar to the vibrational amplitude, while the momentum of the light

remains the same. Previous work has postulated that the factor used in calculating

the attenuation due to scattering in vibrating crystals can accomplish the same role

4 Chapter 1 Introduction

Figure 1.1 For low frequency roughness, the reflected field can be considered
using Snell’s Law reflection. The incident beams (blue) reflect at different
locations on the surface (red) which have different orientations. The different
slopes the surface lead to a diffuse spread of the light beams (green) and an
overall decrease in reflection.

in scattering due to surface roughness [10]. This scalar correction factor can be

calculated using a simple formula (1.3).

R = exp(−2(qh)2) (1.3)

R is the attenuation, the ratio of the intensity of the field reflected by the rough

scatterer with the theoretical maximum intensity of a perfectly flat mirror. The pa-

rameter, q, is the momentum of the light perpendicular to the surface of the scatterer;

it is calculated using q = 2π sin θ/λ. Finally, h is the rms surface roughness height.

The qh factor is one important determinant in scattering because it represents a

phase difference in the light. The momentum transfer, q, is the component of the

1.2 Roughness 5

Figure 1.2 For high frequency roughness, the incident wave (blue) reflects
from the surface (red) at different times leading to a randomization of the
phases for the reflected field. This leads to decrease in specular reflectance
as the reflected wave (green) interferes with itself.

wave vector, k, perpendicular to the surface. The ratio, qh, represents the number

of wavelengths of light that the roughness represents and determines the form of the

phase difference of the light scattered at different locations. This phase difference,

in turn, determines interference effects on the surface that lead to attenuation. This

means that the ratio represented by qh is important to a roughness correction.

The DWF assumes a gaussian distribution of vibrational motion to determine the

the correction factor (1.3). While this is a good approximation for thermal vibration,

it is ultimately non-physical for describing a rough surface. A gaussian distribution

for roughness removes any correlation between atoms on a surface. Any two adjacent

atoms would have no physical connection. In reality, there is physical correlation

between atoms on a surface, so the DWF breaks down for calculations of scattering

6 Chapter 1 Introduction

due to roughness. The purpose of this paper is to determine the accuracy of the DWF

and to develop a more accurate correction factor which accounts for the surface atom

correlation using a form(1.4) motivated by the DWF (1.3).

R = exp(f(θ, h, σ)) (1.4)

1.3 Previous Work

Our approach to determining the accuracy was to calculate the scattering from a

2.4 million rough surfaces with varying roughness heights and frequencies. Many

methods exist for determining the scattering of light off of a surface. A common,

simple approach based from principles taught introductory physics classes is the use

of geometric optics, or ray tracing. This method is frequently utilized for similar

problems [11–14]. At every point on a surface, the direction of the reflected ray is

determined by the incident ray and the slope of the surface tangent using the law of

reflection, θi = θr. Each of these rays represents and energy bundle that changes with

the density of the rays. This approach is a simple, fast method for approximating the

reflected field, however, it cannot predict wave phenomena of light such as diffusion.

A more accurate model for calculating scattering is physical optics, also referred

to as the Kirchhoff Approximation or Tangent Plane Approximation [13, 14]. This

method involves computing the reflected field by calculating the current induced at

the surface at every point by assuming an infinite tangent plane at every point. While

this approach is more accurate than geometric optics, it still ignores the secondary

effects due to currents induced by the fields reflected at nearby points. In addition,

the Physical Optics doesn’t include the effects of diffraction at edges and surface

discontinuities.

1.3 Previous Work 7

In order to avoid the errors caused by the inaccuracies for either of these two

methods, we will use the Field Integral Equations (FIE). The FIE are derived from

Maxwell’s equations using the boundary conditions for a scattering system. Much

recent work has been done developing different methods to solve the FIE for random

surfaces [15–18]. Many of these approaches have used the method of moments, which

approximates the surface currents J and K with linear basis functions. For any

discretization scheme, a linear approximation will be less accurate than a higher

order approximation. In order to minimize calculation time and maximize accuracy

while maintaining stability, we used a higher order discretization scheme, the Nyström

method [19,20], to solve for the reflected field.

There has been a lot of previous work in our research group to better understand

the effects of roughness on reflectance. Jed Johnson, in his master’s thesis [21], de-

veloped the algorithms used to calculate the reflectance for rough two-dimensional

surfaces. Using Jed’s derivations, Elise Martin, in a preliminary study of the re-

flectance of TM polarized light from rough surfaces, found the attenuation to be a

function of qh, as predicted by DWF [22]. Continuing this study, this paper will

discuss the effects of TE polarization in combination with a further study of the TM

in order to develop a roughness correction function for the scattered field with arbi-

trarily polarized incident light. This paper will first discuss the setup for a perfect

conductor, including the development of a physically realistic two-dimensional sur-

face. Next, the results for test cases (i.e. a flat surface and a cylinder) are compared

with the analytical results. Finally, the paper will show and discuss the results of the

attenuation for both the TE and TM polarizations (see Chapter 3).

8 Chapter 1 Introduction

Chapter 2

Procedure

2.1 Problem Setup

A common approach to the scattering problem is the use of the FIE. Derived from the

Helmholtz equation in the presence of sources, the FIE relates the scattered field, Es,

to the surface currents J and K. This outline follows the more complete derivation

laid out by Peterson [23].

Es = −∇(∇ ·A) + k2A

iωε0
−∇× F (2.1)

Hs = −∇(∇ · F) + k2F

iωµ0

−∇×A (2.2)

where A and F are found by applying the Green’s function to the surface currents.

A(x) =

∫
S

J(x′)G(x− x′)d2x′ (2.3)

F(x) =

∫
S

K(x′)G(x− x′)d2x′ (2.4)

9

10 Chapter 2 Procedure

The Green’s function for the Helmholtz equation in two dimensions free space is

shown below.

G(x− x′) =
i

4
H

(1)
0 (k|x− x′|) (2.5)

The scattered field can be calculated by solving the total field on the boundary

using suitable boundary conditions for a perfect conductor. The total field is the

superposition of the incident electric field, Einc, and the scattered field.

E = Einc + Es (2.6)

Applying the boundary conditions for the case of a perfect conductor greatly

simplifies the problem. For the TM polarization, the EFIE reduces to (2.7), while the

TE polarization reduces to (2.8).

Einc
z = −ikηAz (2.7)

Hinc
z = −1

2
Jt −

[
∂Ay
∂x
− ∂Ax

∂y

]
(2.8)

2.2 Surface Setup

In order to provide a useful simulation basis, the model surfaces require an overall

random distribution to account for the deposition procedure, but also a correlation

between atoms that represents the physical association between atoms on a surface.

We used a two-dimensional surface, in order to make the computation feasible. How-

ever, because of the polarized nature of light the results can be generalized to three-

dimensions. We used a gaussian distribution to setup a random array of points. This

led to a surface with roughness at the large scale. These points were then interpolated

2.2 Surface Setup 11

with a cubic spline to create the full surface, satisfying both conditions for a realistic

surface.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5
Sample Surface

Figure 2.1 An example flat surface similar to those used to calculate the
TM polarization. The surface parameters are length 100λ, height .1λ, and
knot separation 2λ.

The surface generated by this method can be characterized by a cutoff frequency

which is inversely related to the knot spacing, σ. The power spectrum (Figure 2.2) for

the surface shown in Figure 2.1 shows this relationship. When using this correction

method, the surface cutoff frequency and roughness height can be determined through

various means, including atomic force microscopy.

The surface shown in Figure 2.1 is sufficient to solve for the reflected field of the

TM polarized light. However, the calculation will break down for the TE polarization

because of the form of the MFIE. The solution of the scattered field from the MFIE

requires the derivative of the surface current to be known at all points of the surface.

This form of the surface leads to singularities at the endpoints. In order to overcome

12 Chapter 2 Procedure

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

λ−1

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Surface Power Spectrum

Figure 2.2 The power spectrum for the surface shown in Figure 2.1. The
power spectrum shows a clear frequency cutoff that is related to the knot
separation.

2.2 Surface Setup 13

this problem, we chose to close the surface as shown in Figure 2.3. The endpoints of

the surface were connected using hemispherical caps and a flat bottom surface. Both

a continuous surface and a continuous slope are required in order to calculate the

scattered field with the MFIE (Equation 2.8). Each of these conditions was incorpo-

rated into the interpolating spline used to complete the surface. While the setup of

this surface adds a significant degree of difficulty to the solution of the problem, it

will continue to apply in future studies and lend itself easily to the multilayer film

problem common in EUV optics.

0 20 40 60 80 100

−10

−8

−6

−4

−2

0

Sample Full Surface

Figure 2.3 The same surface as shown in Figure 2.1 now shown using round
end caps. This type of surface was used in calculating the TE reflected field.
The scatterer thickness is 10λ.

14 Chapter 2 Procedure

2.3 Validation

The program has already been validated for the TM polarized light. For the results of

this validation see Johnson’s thesis [21]. For the TE polarization, we will compare the

computed results for a cylinder and a flat plate to the expected analytical solution.

These solutions represent relatively simple analytical calculations that can be used

to check the more general algorithms used in this program.

2.3.1 Flat Plate

First we will compare the results of simulations with the field predicted by physical

optics on a flat plate. The derivation for this section closely follows the derivation

for TM polarization found in Johnson’s thesis [21]. Applying the boundary condition

that the Electric Field is zero on the surface, the MFIE is expressed

Hs
z =

ei(kρ+
π
4)

2
√

2πkρ

{
−ik

∫
c

[cos(θ′)sin(φ)− sin(θ′)cos(φ)] Jt(x
′, y′)e−ik(cos(φ)x′+sin(φ)y′)ds′

}
(2.9)

The surface is a long smooth surface oriented along the x̂ with a normal in the

ŷ (Figure 2.4). The symmetry axis of the situation is the ẑ. We can solve for the

current J using its definition.

J = n̂×H (2.10)

= ŷ ×Hinc + Hs (2.11)

Jt =
(
Hinc +Hs

)
x̂ (2.12)

=
(
eip·x + eiq·x

)
x̂ (2.13)

=
[
ei(pxx+pyy) + ei(qxx+qyy)

]
x̂. (2.14)

2.3 Validation 15

Figure 2.4 A diagram representing the reflection of a flat reflective plate.
Both the incident and scattered Magnetic fields are polarized in the z di-
rection (blue vector). A surface current (green) is induced on the surface
(red).

Using the Law of Reflection, θi = θr, we can simplify this form by recognizing the

relationship between p and q.

px = k cos (θ) = qx (2.15)

py = k sin(θ) = −qy (2.16)

For a flat plate, y′ → 0 and θ′ → 0. Once these results are applied to 2.9, the field

becomes possible to evaluate analytically.

16 Chapter 2 Procedure

Hs
z =

ei(kρ+
π
4)

2
√

2πkρ

{
−iksin(φ)

∫
c

[
ei(kcos(θ)x+ksin(θ)y) + ei(kcos(θ)x−ksin(θ)yy)

]
·
[
e−ikcos(φ)x′

]
ds′
}

(2.17)

=
ei(kρ+

π
4)

2
√

2πkρ

{
−2iksin(φ)

∫ L/2

−L/2
eik(cos(θ)−cos(φ))x′dx′

}
(2.18)

=
eikρ

2
√

2πkρ

{
e
−π
4

4sin(φ)sin(kδL
2

)

δ

}
. (2.19)

where δ = cos(θ)− cos(φ).

The program has only considered the angular dependance of the reflection, so the

analytical solution for the reflection of a flat plate is

f (θ) = 4e
−iπ
4
sin(φ)sin(kδL

2
)

δ
(2.20)

The comparisons between the analytical and the computed intensity for three

different incident angles are shown in Figures 2.5, 2.6, and 2.7. The computed value

is very accurate for reflected light near normal incidence. However, at 30◦ incidence,

the difference becomes noticeable. At low incident angles, the effect of the circular

endcaps begins to cause a greater effect on the system; this is likely the cause of the

minor discrepancy. The agreement between the analytical and computed values for a

flat plate is an important check on the accuracy of the program.

2.3.2 Cylinder Conductor

A second important validation for the code is the other extreme condition: a perfectly

conducting cylinder. The circular end caps were added in order to correct for the

derivatives in the MFIE. In order to ensure that the end caps have the correct effect

on the field, the cylinder should give the expected result. When the length of the

2.3 Validation 17

87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5
0

2

4

6

8

10

12

14

16

18
x 10

5

Observation Angle (°)

R
ef

le
ct

ed
 In

te
ns

ity

Physical Optics on a Flat Plate at 90°

Computed Intensity
Analytical Solution

Figure 2.5 The scattered field calculated by the program for a flat surface
with 90◦ incident light using the analytic solution (Equation 2.20).

scatterer is reduced to zero, the scatterer becomes a circle in two dimensions and

projects as a cylinder in three. The intensity of the scattered field from a perfectly

conducting infinite cylinder can be solved analytically and is represented using the

Mie series. For the TE polarization, the angular dependance of the scattered field

can be found using

f(φ) = −4
∞∑
n=0

εn(−1)n
J ′n(ka)

H
(1)′
n (ka)

cos(nφ) (2.21)

where εn = 1 if n = 0, otherwise εn = 2 [24].

To test the accuracy of the program, the length of the scatterer and the incident

angle were set to zero and the intensity of the scattered field was sampled for all 360 ◦.

The results are shown in Figures 2.8, 2.9, and 2.10. The results for the TE polarization

were calculated with a scatterer thickness of 10λ, so it is essential that the effects due

18 Chapter 2 Procedure

57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5
0

2

4

6

8

10

12

14
x 10

5

Observation Angle (°)

R
ef

le
ct

ed
 In

te
ns

ity

Physical Optics on a Flat Plate at 60°

Computed Intensity
Analytical Solution

Figure 2.6 The scattered field calculated by the program for a flat surface
with 60◦ incident light using the analytic solution (Equation 2.20).

to the circular endcaps match the expected value. For all three sample thicknesses,

the calculated intensity very closely matches the analytical values predicted by the

Mie series (Equation 2.21).

2.4 Sample Field

With the program matching the expected results for a cylinder and qualitative agree-

ment with the scattered field expected for a flat surface, roughness can be added to

the system to see its effects. Figure 2.11 shows a sample surface of length of 100λ,

rms roughness height of 0.1λ, and surface knot separation of 10λ. Figure 2.12 shows

the reflected field for this surface and the field from a smooth surface of the same size.

A comparison of the two fields highlights some of the possible effects that roughness

can have on reflected light. Most importantly the reflected light is diminished. The

2.4 Sample Field 19

27.5 28 28.5 29 29.5 30 30.5 31 31.5 32 32.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Observation Angle (°)

R
ef

le
ct

ed
 In

te
ns

ity

Physical Optics on a Flat Plate at 30°

Computed Intensity
Analytical Solution

Figure 2.7 The scattered field calculated by the program for a flat surface
with 30◦ incident light using the analytic solution (Equation 2.20).

primary maximum of the smooth field represents the light reflected at the incident

angle. For a rough surface, the central peak is smaller because much of that light is

scattered away from the central angle. This scattered light leads to secondary peaks

much greater than those caused by diffraction. In addition, roughness can cause the

central peak to shift away from the incident angle as shown below.

Because of the difference effects of roughness on the scattered field, there were

many possible methods to define the attenuation. The approach we chose was to use

the ratio of the maximum of the rough scattered field with respect to the maximum

of the scattered field calculated from an equally sized smooth surface. This definition

is both simple and realistic for the purpose of our application. In characterizing

the indices of refraction for materials, only the light measured by the detector is

considered. In our simulation, the light incident on the detector is the center of the

20 Chapter 2 Procedure

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

observation angle (degrees)

in
te

ns
ity

intensity
analytic solution TE cylinder conductor)

Figure 2.8 The scattered field calculated by the program and using the
analytic solution for a cylinder of radius 1λ.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

observation angle (degrees)

in
te

ns
ity

intensity
analytic solution TE cylinder conductor)

Figure 2.9 The scattered field calculated by the program and using the
analytic solution for a cylinder of radius 5λ.

2.4 Sample Field 21

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

observation angle (degrees)

in
te

ns
ity

intensity
analytic solution TE cylinder conductor)

Figure 2.10 The scattered field calculated by the program and using the
analytic solution for a cylinder of radius 10λ.

−20 0 20 40 60 80 100 120
−10

−8

−6

−4

−2

0

2
Sample Surface

Figure 2.11 A randomly generated surface with length 100λ, thickness 10λ,
spacing 10λ, and height 0.1λ.

22 Chapter 2 Procedure

55 60 65
0

2

4

6

8

10

12

14
x 10

5

Reflected Angle (°)

R
ef

le
ct

ed
 In

te
ns

ity

Intensity of the Reflected Field (60° Incidence)

Flat Surface
Rough Surface

Figure 2.12 The intensity of the field scattered from the rough surface
shown above with an incident angle of 30◦. The field was calculated with 200
patches on the flat surface and 40 tpatches for the round endcaps.

2.5 Computation 23

primary peak along with 5◦ on either side. Calculating the ratio of the light in this

region is similar to the method of measuring light in most experiments.

2.5 Computation

A useful correction model applies over a wide range of angles and roughness values.

For this project, the surface was fixed at an 100λ length and a 10λ thickness. The

incident angle varied from 15◦-90◦ using 30 separate values. The roughness height

varied from 0.05λ to 0.1λ with 20 different values. Finally, the knot separation varied

from 0.5λ to 20λ using 40 values. Each combination of these three parameters was

repeated for 100 random surfaces to provide a statistically significant sample size

for a total of 2.4 million data points. In order to be computationally feasible, the

program was run using the parallel processing capabilities of Marylou4. This is the

supercomputer maintained by BYU. It is Dell 1955 Linux cluster composed of 630

nodes each with two 2.6 GHz dual-core processors. For more information, please see

the support website (http://www.marylou.edu). The TM polarization sample took

approximately 24 hours on 96 processors while the TE simulation took approximately

20 hours on 192 processors.

24 Chapter 2 Procedure

Chapter 3

Results

3.1 Attenuation Function

Originally applied due to an apparent similarity between two types of scattering, the

DWF predicts that the attenuation due to roughness is a function of the qh factor.

Because of this analogy, the form of our fitting model is motivated by (1.4). Isolating

the correction function, f , in terms of the calculated attenuation yields

f(qh) = −ln(R) (3.1)

The correction function f , was plotted with respect to qh for each value of the

roughness knot separation. Figure 3.1 shows the results for a knot separation of 9λ as

an example. The plot shows a clear correlation between the correction function and

qh for both polarizations of light. There appears to be a similar relationship for both

polarizations with this knot separation, but the actual value predicted by the DWF

(shown in red) is inaccurate. The correlation implies that concept used in order to

apply the DWF to roughness scattering is accurate. However, the inaccuracy shows

that the exact form used by the DWF is not appropriate. This is likely due to the

25

26 Chapter 3 Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 9λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure 3.1 The attenuation function shows a clear correlation with the
qh factor for both TE(green) and TM(blue). The function shows approxi-
mately the same form for both polarizations. For comparison, the DWF(red)
prediction is also shown.

surface correlation between atoms on the surface that causes the gaussian distribution

to break down.

A second issue with the DWF is that it does not take into consideration the knot

separation of the surface. Our simulations showed a clear and significant relationship

between the attenuation of the light and spatial frequency of the surface. In order to

provide an accurate correction factor, this effect must be accounted for. One example

of this is found at high spatial frequency roughness for TE. Corresponding to small

knot separation, the size of the roughness approaches the wavelength of the incident

light. To calculate the reflection of TE polarized light, we used the MFIE (2.8),

which includes a derivative in the calculation. As the roughness frequency increases,

the effect of this derivative begins to dominate and the correlation found at lower

roughness frequencies becomes less obvious (see Figure 3.2). The plots for many of

3.2 Correction Coefficients 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 1.5λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure 3.2 The attenuation function for high spatial frequency
roughness(1.5λ knot separation). While the TM(blue) still shows a strong
correlation with qh, the TE(green) polarized light’s correlation is much less
clear. Again the DWF(red) is shown for comparison.

the other knot separations are displayed in Appendix A.

3.2 Correction Coefficients

The original DWF predicts a quadratic correction function, but this form is unable

to correctly model the attenuation. Due to the symmetry of the situation of the

scattering problem, the constant term is expected to be zero. The correction function,

f , was fit to a cubic polynomial form (3.2) with the constant set to zero.

f = α(qh)3 + β(qh)2 + γ(qh) (3.2)

In addition, the first two points in each data set were ignored in the fit. This

is due to the effect of high frequency roughness on the correlation function. While

both polarizations show a similar correlation with qh, there is a definite distinction

28 Chapter 3 Results

between the two. For TM polarization, the coefficients so a significant change in

behavior in this regime. On the other hand, the TE polarization function has low

correlation in this regime. As the roughness frequency increases, the derivative terms

in the function become much more significant and the clear correlation breaks down.

The DWF predicts that the only significant term in the correction function in

quadratic and that the coefficient is two. This stems from an approximation that

the surface roughness is gaussian in distribution. Both TE and TM polarized light

show a significant quadratic term that is nearly two. This implies that the underlying

assumptions are fairly accurate. The large error bars in the high frequency results of

the TE quadratic term (see Figure 3.3) is mainly due to the greater error inherent in

derivatives at high frequencies and the error in the coefficient drops as the frequency

decrease. The TM quadratic term (Figure 3.4), without the derivative, has strong

correlation for all frequencies.

The cubic (Figures 3.5 and 3.6) and linear (Figures 3.7 and 3.8) terms are ex-

pected to be zero in the DWF. While the cubic term for the TE polarization was

consistent with zero (zero is entirely within the confidence bounds), both terms for

TM polarization and the linear TE term are significant. Because the surface can not

be fully described with a gaussian distribution, the DWF is incorrect. The functional

forms for correction coefficients that account for the true nature of surfaces must take

into account not only the surface roughness heights and incident angles, as DWF

does, but also the spatial frequency and polarization of the light. For the correction

coefficients see the following table.

3.2 Correction Coefficients 29

Correction Coefficient Functions

TE Polarization TM Polarization

α(σ) (−0.084± 0.003)σ + 0.21± 0.01

β(σ) (−0.025± 0.007)σ + 1.82± 0.09 (0.027± 0.001)σ + 1.50± .02

γ(σ) (0.007± 0.002)σ − (0.20± 0.02) (−0.011± 0.001)σ − 0.08± 0.01

0 5 10 15 20
0.5

1

1.5

2

2.5

3

Knot Separation (λ)

C
oe

ffi
ci

en
t

Quadratic Term (TE)

 Coefficient Fit
 95% Confidence
 Quadratic (TE)

Figure 3.3 The quadratic coefficient for the correction function, f , with
TE polarization.

30 Chapter 3 Results

0 5 10 15 20
0.5

1

1.5

2

2.5

Knot Separation (λ)

C
oe

ffi
ci

en
t

Quadratic Term (TM)

 Coefficient Fit
 95% Confidence
 Quadratic (TM)

Figure 3.4 The quadratic coefficient for the correction function, f , with
TM polarization.

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Knot Separation (λ)

C
oe

ffi
ci

en
t

Cubic Term (TE)

 Coefficient Fit
 95% Confidence
 Cubic (TE)

Figure 3.5 The cubic coefficient for the correction function, f , with TE
polarization.

3.2 Correction Coefficients 31

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

Knot Separation (λ)

C
oe

ffi
ci

en
t

Cubic Term (TM)

 Coefficient Fit
 95% Confidence
 Cubic (TM)

Figure 3.6 The cubic coefficient for the correction function, f , with TM
polarization.

0 5 10 15 20
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Knot Separation (λ)

C
oe

ffi
ci

en
t

Linear Term (TE)

 Coefficient Fit
 95% Confidence
 Linear (TE)

Figure 3.7 The linear coefficient for the correction function, f , with TE
polarization.

32 Chapter 3 Results

0 5 10 15 20
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Knot Separation (λ)

C
oe

ffi
ci

en
t

Linear Term (TM)

 Coefficient Fit
 95% Confidence
 Linear (TM)

Figure 3.8 The linear coefficient for the correction function, f , with TM
polarization.

Bibliography

[1] D. D. Allred, R. S. Turley, and M. B. Squires, “Dual-function EUV multilayer

mirrors for the IMAGE mission,” In EUV, X-Ray, and Neutron Optics and

Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer,

and S. P. Vernon, eds.,3767, 280–287 (Bellingham, WA, 1999).

[2] T. E. Jewell, J. M. Rodgers, and K. P. Thompson, “Reflective systems design

study for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 8, 1519–1523

(1990).

[3] A. M. Hawryluk and L. G. Seppala, “Soft x-ray projection lithography using an

x-ray reduction camera,” J. Vac. Sci. Technol. B 6, 2162–2166 (1988).

[4] D. G. Stearns, “X-ray scattering from interfacial roughness in multilayer struc-

tures,” J. Appl. Phys. 71, 4286–4298 (1992).

[5] N. Farnsworth, “Thorium-based Mirrors in the Extreme-Ultraviolet,”, 2005.

[6] E. Hecht, Optics, 3 ed. (Addison-Wesley, Reading, MA, 1998).

[7] D. G. Stearns and E. M. Gullikson, “Nonspecular scattering from extreme ultra-

violet multilayer coatings,” Physica B 283, 84–91 (2000).

[8] D. E. Savage and et al., “Determination of roughness correlations in multilayer

films for x-ray mirrors,” J. Appl. Phys. 69, 1411–1424 (1991).

33

34 BIBLIOGRAPHY

[9] P. Debye, “Interference of Rontgen Rays and Heat Motion,” J. Appl. Phys. 15

(1913).

[10] V. Holy, J. Kubena, and I. Ohlidal, “X-ray reflection from rough layered sys-

tems,” Phys. Rev. B 47, 896–903 (1993).

[11] N. C. Bruce, “Scattering of light from surfaces with one-dimensional structure

calculated by the ray-tracing method,” J. Opt. Soc. Am. A 14, 1850–1858 (1997).

[12] K. F. Warnick and D. V. Arnold, “Generalization of the geometrical-optics scat-

tering limit for a rough conducting surface,” J. Opt. Soc. Am. A 15, 2355–2361

(1998).

[13] I. Sassi and M. S. Sifaoui, “Comparison of geometric optics approximation and

integral method for reflection and transmission from microgeometrical dielectric

surfaces,” J. Opt. Soc. Am. A 24, 451–462 (2007).

[14] N. Pinel and C. Bourlier, “Scattering from very rough layers under the geometric

optics approximation: further investigation,” J. Opt. Soc. Am. A 25, 1293–1306

(2008).

[15] X. Nie, L. W. Li, and N. Yuan, “Precorrected-FFT Algorithm for Solving Com-

bined Field Integral Equations in Electromagnetic Scattering,” J. Electromagn.

Waves Appl. 16, 1171–1187 (2002).

[16] R. J. Adams, “Combined Field Integral Equation Formulations for Electromag-

netic Scattering from Convex Geometries,” IEEE Trans. Antennas Propag. 52,

1294–1303 (2004).

BIBLIOGRAPHY 35

[17] R. J. Adams and N. J. Champagne, “A Numerical Implementation of a Modified

Form of the Electric Field Integral Equation,” IEEE Trans. Antennas Propag.

52, 2262–2266 (2004).

[18] A. Colliander and P. Yla-Oijala, “Electromagnetic Scattering from Rough Sur-

faces Using Single Integral Equation and Adaptive Integral Method,” IEEE

Trans. Antennas Propag. 55, 3639–3646 (2007).

[19] L. F. Canino and et al., “Numerical Solution of the Helmholtz Equation in 2D

and 3D Using a High-Order Nystrom Discretization,” J. Comp. Phys. 146, 627–

663 (1998).

[20] A. A. Nosich and et al., “Numerical analysis and synthesis of 2D quasi-optical

reflectors and beam waveguides based on an integral-equation approach with

Nystroms discretization,” J. Opt. Soc. Am. A 24, 2831–2836 (2007).

[21] J. Johnson, Master’s thesis, Brigham Young University, 2006.

[22] E. Martin, “Surface-Roughness Corrections to Extreme Ultraviolet Thin-Film

Reflectance Measurements,”, 2007.

[23] A. F. Peterson and et al., Computational Methods for Electromagnetics (IEEE

Press, New York, 1998).

[24] J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic

Scattering by Simple Shapes (North-Holland Publishing Co., Amsterdam, 1969).

36 BIBLIOGRAPHY

Appendix A

Program Results

This appendix contains the attenuation functions f = −ln(R) for all the different

spatial frequency roughness parameters tested. The higher frequency (small knot

separation) samples show very little correlation with qh for TE polarized light while

TM shows a clear correlation. This is likely due to the derivative found in solving

the MFIE. For high spatial frequency roughness, this effect becomes more pronounced

and the results are more unpredictable. However, for lower frequency roughness (large

knot separation) the correlation for qh is clear for both polarizations. The TE has a

clearer correlation for this regime.

37

38 Chapter A Program Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 2λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 4λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.2

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 6λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 8λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.4

40 Chapter A Program Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 10λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 12λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.6

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 14λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 16λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.8

42 Chapter A Program Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 18λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

qh

ln
(R

)

Attenuation at 20λ knot separation

Debye Waller Calculation
Reflectance(TM)
Reflectance(TE)

Figure A.10

Appendix B

Fortran Code

B.1 ECS.f90

This is the master slave process that uses RoughTE.f90 to calculate the scattered

field for a wide range of incident parameters. The reflection from a flat surface is first

calculated and the attenuation, R, is the ratio of the maximum of the ideal scattered

field to the maximum of the rough scattered field.

!**

!

! PROGRAM: ecs

!

! PURPOSE: Entry point for perfect conductor p-pol scattering program

! AUTHOR: Todd Doughty

! DATE: June 30, 2007

!

!**

program ecs

use mpi

use quad, only: qd_init,qd_free

use params, only: init, k2, knots, angles, heights, samples, pprint

implicit none

43

44 Chapter B Fortran Code

integer::err, rank, size, i, j, k, proc

integer::status(MPI_Status_size), count

real,allocatable::data(:),rdata(:,:,:,:)

integer, parameter::dtag=55, ctag=56, dest=0

character(len=9)::fname

integer, allocatable::seed(:)

integer,parameter::pDataSize=3

real::pData(pDataSize)

call MPI_Init(err)

if(err /= MPI_Success)then

write(6,’("Error initializing MPI")’)

stop

end if

call init ! initialize parameters

allocate(data(samples+3))

call MPI_Comm_Rank(MPI_Comm_World, rank, err)

if(rank == 0) then

! master process

write(6,’(a/)’) ’Computing reflection from perfect conductor (TM)’

call pprint ! print the parameters

call MPI_Comm_Size(MPI_Comm_World, size, err)

write(fname,’("ecs",i2.2,".txt")’)size

! I’ll assume that I have enough to do to keep every processor

! busy. On marylou4, there is about a 1.3 ms time for interprocess

! control communication.

allocate(rdata(knots,angles,heights,samples))

proc=1

do i=1,knots

pData(1)=i;

do j=1,angles

pData(2)=j

do k=1,heights

pData(3)=k

if(proc<size)then

! more initial processors are still available

call MPI_Send (pData, pDataSize, MPI_Real, proc, ctag,&

MPI_Comm_World, err)

proc=proc+1

B.1 ECS.f90 45

else

! Wait for a processor to finish and use it again

call MPI_Recv(data, samples+3, MPI_Real, MPI_Any_source,&

dtag, MPI_Comm_World, status, err)

rdata(data(1), data(2), data(3), :)=data(4:)

call MPI_Send (pData, pDataSize, MPI_Real,&

status(MPI_Source), ctag, MPI_Comm_World, err)

end if

end do

end do

end do

! Terminate slave processes

pData(1)=-1.0

do i=1,proc-1

call MPI_Recv(data, samples+3, MPI_Real, MPI_Any_source,&

dtag, MPI_Comm_World, status, err)

rdata(data(1), data(2), data(3), :)=data(4:)

call MPI_Send (pData, pDataSize, MPI_Real, i, ctag,&

MPI_Comm_World, err)

end do

! Save the data in a file

open(unit=7,name=fname,status=’replace’)

write(7,fmt=’(f12.8)’)rdata(:,:,:,:)

close(unit=7)

deallocate(rdata)

else

! slave process

! Init random number for this process

call random_seed(size=k)

allocate(seed(k))

call random_seed(get=seed)

if(k.GT.1)then

! Create a random seed related to the clock time

call system_clock(seed(1))

seed(2)=rank*123

else

call system_clock(seed(1))

seed(1)=seed(1)+123*rank

end if

46 Chapter B Fortran Code

call random_seed(put=seed)

deallocate(seed)

! One time initialization calls

call qd_init

! Multiple computations as driven by master processor

do

! Get the call parameters from master process

call MPI_Recv(pData, pDataSize, MPI_Real, MPI_Any_source,&

ctag, MPI_Comm_World, status, err)

if(pData(1)==-1.0)exit ! termination signal

call refl(pData(1), pData(2), pData(3), data(4:))

! copy call parameters to output

data(1:3)=pData

! send back the data

call MPI_Send (data,samples+3,MPI_Real,dest,dtag,MPI_Comm_World,err)

end do

call qd_free

end if

deallocate(data)

call MPI_Finalize(err)

contains

subroutine refl(isep, iiangle, iheight, data)

use RoughTE, only: Efield, NyFill, NyClean

use params, only: k2, thpoints

use timer, only:tm_mark, tm_summary

implicit none

real,intent(in)::isep,iiangle,iheight

real(kind=k2)::sep, iangle, height

real(kind=k2),allocatable::oangles(:)

complex(kind=k2),allocatable::field(:)

integer::seed1, seed2, i, j, k, element

real(kind=k2):: peak, speak

real(kind=k2)::xbar,xsqbar

real(kind=k2)::stdev, sigma

B.2 RoughTE.f90 47

real,intent(out)::data(:)

sep=isep*(20.0/knots) !knot separation

iangle=15.0+(iiangle-1)*(75.0/(angles-1)) !incident angle

height=iheight*(0.1/heights)

write(6,*)’sep=’,sep

write(6,*)’iangle=’,iangle

write(6,*)’height=’,height

allocate(field(thpoints),oangles(thpoints))

sigma=0.0

call tm_mark(’start’)

call NyFill(sigma, sep)

call Efield(iangle, field, oangles)

call NyClean

speak=maxval(abs(field))

call tm_mark(’end’)

call tm_summary

do i=1,samples

! Use a different surface at each angle. This is

! undoubtedly slower, but it will offer better statistics

call NyFill(height, sep)

call Efield(iangle, field, oangles)

call NyClean

peak=maxval(abs(field))

data(i)=peak/speak

end do ! loop over samples

deallocate(field, oangles)

end subroutine refl

end program ecs

B.2 RoughTE.f90

The main work of the program is done in this module. The subroutine NyFill fills

the Nystrom matrix which uses the MFIE to relate the incident field to the surface

48 Chapter B Fortran Code

currents. In subroutine Efield, the matrix is inverted to solve for the surface currents

for a given incident field. Those currents are than used to solve for the scattered field.

Module RoughTE

use params, only:k2

implicit none

private

public NyFill, Efield, NyClean

complex(kind=k2),allocatable::A(:,:)

contains

subroutine NyClean

use fullsurface, only:surf_clean

implicit none

if(allocated(A)) deallocate(A)

call surf_clean

end subroutine NyClean

subroutine NyFill(sigma, spacing)

use params, only:k2, patches, tpatches, pi, i, zero, len

use fullsurface, only:surf_setup, ct, cb, xp, pl, dx, dtheta, r, x, tl, theta

use bessel, only: h11

use timer, only: tm_mark

implicit none

real(kind=k2), intent(in):: sigma, spacing

real(kind=k2)::singpt,offset

integer::j,l,pv,pvl,m,pvn,pvm,n

complex(kind=k2)::W0,W1,W2,W3

real(kind=k2)::C1,C2,C1t,C2t

call surf_setup(sigma,spacing)

call tm_mark(’surface setup’)

C1 = 13*dx/12

C2 = 11*dx/12

C1t = 13*dtheta*r/12

C2t = 11*dtheta*r/12

B.2 RoughTE.f90 49

allocate(A((patches+tpatches)*8,(patches+tpatches)*8))

! Bottom Surface

if (len /= 0) then

do j = 1,2*(patches+tpatches)

pv = 4*(j-1)

do l = 1,patches

pvl = 4*(l-1)

offset = (l-1)*pl

if(j==l) then

do m = 1,4

pvm = pv + m

singpt = x(m)

W0 = cartTE(zero,pl,singpt,0,cb,offset,xp);

W1 = cartTE(zero,pl,singpt,1,cb,offset,xp)/dx;

W2 = cartTE(zero,pl,singpt,2,cb,offset,xp)/dx**2;

W3 = cartTE(zero,pl,singpt,3,cb,offset,xp)/dx**3;

A(pvm,pv+1) = (13.125*W0-17.75*W1+7.5*W2-W3)/6;

A(pvm,pv+2) = (-4.375*W0+11.75*W1-6.5*W2+W3)/2;

A(pvm,pv+3) = (2.625*W0-7.75*W1+5.5*W2-W3)/2;

A(pvm,pv+4) = (-1.875*W0+5.75*W1-4.5*W2+W3)/6;

A(pvm,pvm) = A(pvm,pvm)-0.5

end do !m

else

do n=1,4

pvn = pv+n

A(pvn,pvl+1) = C1*flatdiff(pvn,pvl+1)

A(pvn,pvl+2) = C2*flatdiff(pvn,pvl+2)

A(pvn,pvl+3) = C2*flatdiff(pvn,pvl+3)

A(pvn,pvl+4) = C1*flatdiff(pvn,pvl+4)

end do !n

end if

end do !l

end do !j

end if

! Right Surface

do j = 1,2*(patches+tpatches)

50 Chapter B Fortran Code

pv = 4*(j-1)

do l = patches+1,patches+tpatches

pvl = 4*(l-1)

offset = (l-patches-1)*tl-pi/2;

if(j==l) then

do m = 1,4

pvm = pv + m

singpt = theta(4*patches+m)+pi/2

W0 = polTE(zero,tl,singpt,0,r)

W1 = polTE(zero,tl,singpt,1,r)/dtheta

W2 = polTE(zero,tl,singpt,2,r)/dtheta**2

W3 = polTE(zero,tl,singpt,3,r)/dtheta**3

A(pvm,pv+1) = -(13.125*W0-17.75*W1+7.5*W2-W3)/6

A(pvm,pv+2) = -(-4.375*W0+11.75*W1-6.5*W2+W3)/2

A(pvm,pv+3) = -(2.625*W0-7.75*W1+5.5*W2-W3)/2

A(pvm,pv+4) = -(-1.875*W0+5.75*W1-4.5*W2+W3)/6

A(pvm,pvm) = A(pvm,pvm)-0.5

end do !m

else

do n = 1,4

pvn = pv + n

A(pvn,pvl+1) = C1t*rounddiff(pvn,pvl+1)

A(pvn,pvl+2) = C2t*rounddiff(pvn,pvl+2)

A(pvn,pvl+3) = C2t*rounddiff(pvn,pvl+3)

A(pvn,pvl+4) = C1t*rounddiff(pvn,pvl+4)

end do !n

end if

end do !l

end do !j

! Top Surface

if (len /= 0) then

do j = 1,2*(patches+tpatches)

pv = 4*(j-1)

do l = patches+tpatches+1,2*patches+tpatches

pvl = 4*(l-1)

offset = (2*patches+tpatches-l)*pl

if(j==l) then

do m = 1,4

B.2 RoughTE.f90 51

pvm = pv + m

singpt = x(5-m)

W0 = cartTE(zero,pl,singpt,0,ct,offset,xp)

W1 = cartTE(zero,pl,singpt,1,ct,offset,xp)/dx

W2 = cartTE(zero,pl,singpt,2,ct,offset,xp)/dx**2

W3 = cartTE(zero,pl,singpt,3,ct,offset,xp)/dx**3

A(pvm,pv+1) = (13.125*W0-17.75*W1+7.5*W2-W3)/6

A(pvm,pv+2) = (-4.375*W0+11.75*W1-6.5*W2+W3)/2

A(pvm,pv+3) = (2.625*W0-7.75*W1+5.5*W2-W3)/2

A(pvm,pv+4) = (-1.875*W0+5.75*W1-4.5*W2+W3)/6

A(pvm,pvm) = A(pvm,pvm)-0.5

end do

else

do n = 1,4

pvn = pv + n

A(pvn,pvl+1) =-C1*flatdiff(pvn,pvl+1)

A(pvn,pvl+2) =-C2*flatdiff(pvn,pvl+2)

A(pvn,pvl+3) =-C2*flatdiff(pvn,pvl+3)

A(pvn,pvl+4) =-C1*flatdiff(pvn,pvl+4)

end do !n

end if

end do !l

end do !j

end if

! Left Surface

do j = 1,2*(patches+tpatches)

pv = 4*(j-1)

do l = 2*patches+tpatches+1,2*(patches+tpatches)

pvl = 4*(l-1)

offset = (l-2*patches-tpatches-1)*tl+pi/2

if(j==l) then

do m = 1,4

pvm = pv + m

singpt = theta(4*patches+m)+pi/2

W0 = polTE(zero,tl,singpt,0,r)

W1 = polTE(zero,tl,singpt,1,r)/dtheta;

W2 = polTE(zero,tl,singpt,2,r)/dtheta**2;

W3 = polTE(zero,tl,singpt,3,r)/dtheta**3;

52 Chapter B Fortran Code

A(pvm,pv+1) = -(13.125*W0-17.75*W1+7.5*W2-W3)/6;

A(pvm,pv+2) = -(-4.375*W0+11.75*W1-6.5*W2+W3)/2;

A(pvm,pv+3) = -(2.625*W0-7.75*W1+5.5*W2-W3)/2;

A(pvm,pv+4) = -(-1.875*W0+5.75*W1-4.5*W2+W3)/6;

A(pvm,pvm) = A(pvm,pvm)-0.5

end do !m

else

do n = 1,4

pvn = pv + n

A(pvn,pvl+1) = C1t*rounddiff(pvn,pvl+1)

A(pvn,pvl+2) = C2t*rounddiff(pvn,pvl+2)

A(pvn,pvl+3) = C2t*rounddiff(pvn,pvl+3)

A(pvn,pvl+4) = C1t*rounddiff(pvn,pvl+4)

end do !n

end if

end do !l

end do !j

end subroutine NyFill

function flatdiff(a,b)

use params, only:k2,pi,i

use fullsurface, only:sterm,y,x,dy,dx

use bessel, only:h11

implicit none

complex(kind=k2)::flatdiff

integer,intent(in)::a,b

flatdiff = -sterm(b)*i*pi/2*h11(2*pi*sqrt((x(a)-x(b))**2+(y(a)-y(b))**2))*&

cos(atan(dy(b))+(pi/2)-atan2(y(a)-y(b),x(a)-x(b)));

end function flatdiff

function rounddiff(a,b)

use params, only:k2,pi,i

use fullsurface, only:x,y,phi,dtheta,r,sterm

use bessel, only:h11

implicit none

complex(kind=k2)::rounddiff

integer,intent(in)::a,b

B.2 RoughTE.f90 53

rounddiff = i*pi/2*h11(2*pi*sqrt((x(b)-x(a))**2+&

(y(b)-y(a))**2))/sqrt((x(b)-x(a))**2+(y(b)-y(a))**2)*&

((y(b)-y(a))*cos(phi(b))-(x(b)-x(a))*sin(phi(b)));

end function rounddiff

function cartTE(a,b,sing,n,c,offset,xp)

use params, only: k2,pi

use quadFunc, only: cartNfunc, setParams

use quad, only:llquadz, linlogOrder

implicit none

complex(kind=k2)::cartTE

complex(kind=k2)::k=2*pi

real(kind=k2),intent(in)::a,b,sing,c(:,:),offset,xp(:)

integer,intent(in)::n

call setParams(n,sing,c,offset,xp,k)

cartTE=llquadz(cartNfunc, linlogOrder(b-sing,n), sing, b, k)-&

llquadz(cartNfunc, linlogOrder(sing-a,n), sing, a, k)

end function cartTE

function polTE(a,b,sing,n,r)

use params, only: k2,pi

use quadFunc, only: polNfunc, setPolParams

use quad, only:llquadz, linlogOrder

implicit none

complex(kind=k2)::polTE

complex(kind=k2)::k=2*pi

real(kind=k2),intent(in)::a,b,sing,r

integer,intent(in)::n

call setPolParams(n,sing,k,r)

polTE=llquadz(polNfunc,linlogOrder(b-sing,n), sing, b, k)-&

llquadz(polNfunc,linlogOrder(sing-a,n), sing, a, k)

end function polTE

subroutine Efield(iangle, field, oangles)

use pconst, only: dpi

use params, only: k2, thpoints, thrange, len, patches, tpatches, i, k0

54 Chapter B Fortran Code

use fullsurface, only: x,y,sterm,dx,yp,dy,r,dtheta

use timer, only: tm_mark

use mkl95_precision, only: wp=>dp

use mkl95_lapack, only: gesv

use displot, only: plot

implicit none

real(kind=k2), intent(in)::iangle

complex(kind=k2), intent(out)::field(:)

real(kind=k2), intent(out)::oangles(:)

real(kind=k2)::thetar,T ! incident angle in radians

real(kind=k2)::dth ! spacing between output angle points

real(kind=k2)::xphase, yphase, pi=dpi

integer::ith,v,q,pvq,ii,j,k,l

complex(kind=k2),allocatable::rhs(:)

complex(kind=k2),allocatable::B(:,:)

character(len=*),parameter::titles(1)=(/"surface current"/)

complex(kind=k2)::C3,C4,C3t,C4t,test1,test2,test3,test4

real(kind=k2),parameter::zero=0

real,allocatable::Intensity(:)

! Compute right-hand side and solve for surface current

! NOTE: You may want to change this to allow for multiple rhs

! without recomputing the Nystrom matrix

allocate(rhs(2*(patches*4+tpatches*4)))

thetar = iangle*pi/180 ! switching to radians

xphase=2*pi*cos(thetar);

yphase=-2*pi*sin(thetar);

rhs = exp(cmplx(zero,xphase*x+yphase*y));

! This next step is the bottleneck. It can probably be speeded up

! a lot by using an optimized BLAS. MATLAB is actually faster on

! this step then this program

call gesv(A,rhs) ! rhs is now the current

call tm_mark(’Solve for surface current’)

dth=thrange/(thpoints-1)

oangles=(/(ith*dth+iangle-thrange/2,ith=0,thpoints-1)/)*pi/180

B.2 RoughTE.f90 55

C3 = 13*dx/12;

C4 = 11*dx/12;

C3t = 13*dtheta*r/12

C4t = 11*dtheta*r/12

allocate(B(thpoints,4*(2*(patches+tpatches))))

do v=1,thpoints

if (len/=0) then

do q=1,patches

pvq = 4*(q-1)

B(v,pvq+1)=-C3*rhs(pvq+1)*flatfield(pvq+1,oangles(v))

B(v,pvq+2)=-C4*rhs(pvq+2)*flatfield(pvq+2,oangles(v))

B(v,pvq+3)=-C4*rhs(pvq+3)*flatfield(pvq+3,oangles(v))

B(v,pvq+4)=-C3*rhs(pvq+4)*flatfield(pvq+4,oangles(v))

end do

end if

do q=patches+1,patches+tpatches

pvq = 4*(q-1)

B(v,pvq+1)=-C3t*rhs(pvq+1)*roundfield(pvq+1,oangles(v))

B(v,pvq+2)=-C4t*rhs(pvq+2)*roundfield(pvq+2,oangles(v))

B(v,pvq+3)=-C4t*rhs(pvq+3)*roundfield(pvq+3,oangles(v))

B(v,pvq+4)=-C3t*rhs(pvq+4)*roundfield(pvq+4,oangles(v))

end do

! Far Field - Top Surface

if (len/=0) then

do q=patches+tpatches+1,2*patches+tpatches

pvq = 4*(q-1)

B(v,pvq+1)=C3*rhs(pvq+1)*flatfield(pvq+1,oangles(v))

B(v,pvq+2)=C4*rhs(pvq+2)*flatfield(pvq+2,oangles(v))

B(v,pvq+3)=C4*rhs(pvq+3)*flatfield(pvq+3,oangles(v))

B(v,pvq+4)=C3*rhs(pvq+4)*flatfield(pvq+4,oangles(v))

end do

end if

! Far Field - Left Surface

56 Chapter B Fortran Code

do q=2*patches+tpatches+1,2*(patches+tpatches)

pvq = 4*(q-1)

B(v,pvq+1)=-C3t*rhs(pvq+1)*roundfield(pvq+1,oangles(v))

B(v,pvq+2)=-C4t*rhs(pvq+2)*roundfield(pvq+2,oangles(v))

B(v,pvq+3)=-C4t*rhs(pvq+3)*roundfield(pvq+3,oangles(v))

B(v,pvq+4)=-C3t*rhs(pvq+4)*roundfield(pvq+4,oangles(v))

end do

field(v) = sum(B(v,:))*i*sqrt(i)*k0

end do

allocate(Intensity(size(field)))

Intensity=abs(field)**2;

deallocate(Intensity)

call tm_mark(’Solve for far field’)

deallocate(rhs)

deallocate(B)

oangles=oangles*180/pi ! convert to degrees

end subroutine Efield

function roundfield(a,b)

use params, only: pi, i, k0

use fullsurface, only: phi, x, y, sterm

implicit none

integer,intent(in)::a

real(kind=k2),intent(in)::b

complex(kind=k2)::roundfield

complex(kind=k2)::expnt,test

real(kind=k2)::front

expnt = exp(-i*k0*(x(a)*cos(b)+y(a)*sin(b)))

roundfield = sterm(a)*sin(b-phi(a))*expnt

end function roundfield

function flatfield(a,b)

use params, only: pi, i, k0

use fullsurface, only:dx, dy, sterm, y, x

implicit none

integer,intent(in)::a

real(kind=k2),intent(in)::b

B.3 fullsurface.f90 57

complex(kind=k2)::flatfield

complex(kind=k2)::expnt

expnt = exp(-i*k0*(x(a)*cos(b)+y(a)*sin(b)))

flatfield = sterm(a)*sin(b-atan(dy(a)))*expnt

end function flatfield

end module RoughTE

B.3 fullsurface.f90

In order to apply the MFIE to solve for the reflected TE field, the surface needed to be

closed to avoid instabilities caused by derivatives at the endpoints of the surface. This

module uses make surface to randomly generate surface knots to simulate roughness

based on the parameters of surface frequency and rms roughness height and connects

them using a spline. The subroutine surf setup then uses the calculated splines to

interpolate values for the surface for the given discretization scheme.

! This module allocates dynamic memory. It is wise to call surf_clean

! in order to free it up at program exit.

module fullsurface

use spline

use params, only:k2, externSurface

implicit none

private

! surf_clean: call this when done with surface to free allocated memory

! surf_setup: call to setup up surface points

! x,y: coordinates of surface points

! sterm: Jacobian at surface points

! dx: distance between x surface points

! c: spline coefficients

! theta: coordinate of end circle

58 Chapter B Fortran Code

! dtheta: distance between angle points

public surf_clean, surf_setup, x, y, dy, sterm, theta, phi

public xp, yp, ct, cb, dx, pl, tl, dtheta, r

real(kind=k2), allocatable:: x(:), y(:), xp(:), yp(:)

real(kind=k2), allocatable:: sterm(:), theta(:), dy(:),phi(:)

real(kind=k2), allocatable:: ct(:,:),cb(:,:)

real(kind=k2)::pl, dx, r, tl, dtheta

character(len=*),parameter::titles(1)=(/"surface"/)

! logical,parameter::debug=.TRUE.

contains

subroutine surf_clean

implicit none

if(allocated(x)) deallocate(x)

if(allocated(y)) deallocate(y)

if(allocated(xp)) deallocate(xp)

if(allocated(yp)) deallocate(yp)

if(allocated(ct)) deallocate(ct)

if(allocated(cb)) deallocate(cb)

if(allocated(sterm)) deallocate(sterm)

if(allocated(theta)) deallocate(theta)

if(allocated(phi)) deallocate(phi)

if(allocated(dy)) deallocate(dy)

end subroutine surf_clean

subroutine surf_setup(sigma, spacing)

use params, only: len, patches, spacing, k2, surfplot, thick, tpatches, zero

use pconst, only:dpi

use displot

implicit none

real(kind=k2),intent(in)::sigma, spacing

integer::i, j, np, ns, na, nt, bb

real(kind=k2),allocatable::dybot(:), dytop(:)

real(kind=k2),allocatable:: theta1(:), thetaa(:), thetab(:), phia(:),phib(:)

real(kind=k2),allocatable:: xl(:), yl(:), xr(:), yr(:)

real(kind=k2), allocatable:: sterml(:), stermr(:)

real(kind=k2), allocatable:: x1(:), ytop(:), ybot(:), stermtop(:), stermbot(:)

real(kind=k2)::pi=dpi

B.3 fullsurface.f90 59

pl = len/patches ! patch length = tot length div number of patches

r=thick/2; ! radius is half of scatterer thickness

tl=pi/tpatches; ! theta length = pi / theta patches

dtheta=tl/4; ! delta theta between each quadrature point on sides

if (len/=0) then

dx = pl/4 ! distance between quadrature points

ns = 4*patches ! number of spline points

np = len/spacing+1 ! number of knots

na = 4*tpatches ! number of angle points

nt = 2*ns+2*na ! size of arrays

allocate(x1(ns),ybot(ns),ytop(ns))

allocate(dybot(ns),dytop(ns))

allocate(stermbot(ns),stermtop(ns))

allocate(xp(np),yp(np),ct(4,np),cb(4,np))

x1=(/ ((0.5+i)*dx, i=0,ns-1) /)

! Make the bottom surface

! call make_surface(sigma, xp, yp, cb, spacing, -thick, np-2)

ybot =-thick+0*x1!(/ (ppvalu(xp, cb, np-1, 4, x1(i), 0), i=1,ns) /)

dybot=(/ (ppvalu(xp, cb, np-1, 4, x1(i), 1), i=1,ns) /)

stermbot = sqrt(1+dybot**2) ! path integral Jacobian

! Make the top surface

call make_surface(sigma, xp, yp, ct, spacing, zero, np)

ytop =(/ (ppvalu(xp, ct, np-1, 4, x1(i), 0), i=1,ns) /)

dytop=(/ (ppvalu(xp, ct, np-1, 4, x1(i), 1), i=1,ns) /)

stermtop = sqrt(1+dytop**2) ! path integral Jacobian

else

ns = 0

na = 4*tpatches

nt = 2*ns+2*na

! write(6,*)’This is a circle’

end if

60 Chapter B Fortran Code

allocate(theta1(na),thetaa(na),thetab(na))

allocate(xl(na),yl(na),xr(na),yr(na))

allocate(sterml(na),stermr(na))

allocate(phia(na),phib(na))

! Make the side loops

do j=1,4*tpatches

theta1(j)=(-.5+j)*dtheta; ! setup for side (theta) quad

end do

phia = theta1; ! phi is angle of line tangent to surface

phib = theta1-pi;

thetaa = theta1-pi/2; ! theta is angle of position in polar

thetab = theta1+pi/2;

xr=r*cos(thetaa)+len; ! x values for right side

yr=r*sin(thetaa)-r; ! y values for right side

xl=r*cos(thetab); ! x values for left side

yl=r*sin(thetab)-r; ! y values for left side

stermr=1; ! Jacobian for right side

sterml=1; ! Jacobian for left side

! This section fills arrays with the information on the scatterer

! x,y: scatterer boundary values

! dy: surface derivatives

! sterm: surface Jacobian

allocate(theta(nt))

allocate(x(nt))

allocate(y(nt))

allocate(dy(nt))

allocate(sterm(nt))

allocate(phi(nt))

if(len /= 0) then

! Bottom of Scatterer

do bb=1,4*patches

theta(bb)=0;

B.3 fullsurface.f90 61

phi(bb)=0;

x(bb)=x1(bb);

y(bb)=ybot(bb);

dy(bb)=dybot(bb);

sterm(bb)=stermbot(bb);

end do

! Right side of Scatterer

do bb=1,4*tpatches

theta(4*patches+bb)=thetaa(bb);

phi(4*patches+bb)=phia(bb);

x(4*patches+bb)=xr(bb);

y(4*patches+bb)=yr(bb);

dy(4*patches+bb)=0;

sterm(4*patches+bb)=stermr(bb);

end do

! Top of Scatterer

do bb=1,4*patches

theta(4*(patches+tpatches)+bb)=0;

phi(4*(patches+tpatches)+bb)=0;

x(4*(patches+tpatches)+bb)=len-x1(bb);

y(4*(patches+tpatches)+bb)=ytop(bb);

dy(4*(patches+tpatches)+bb)=dytop(bb);

sterm(4*(patches+tpatches)+bb)=stermtop(bb);

end do

! Left side of Scatterer

do bb=1,4*tpatches

theta(4*(2*patches+tpatches)+bb)=thetab(bb);

phi(4*(2*patches+tpatches)+bb)=phib(bb);

x(4*(2*patches+tpatches)+bb)=xl(bb);

y(4*(2*patches+tpatches)+bb)=yl(bb);

dy(4*(2*patches+tpatches)+bb)=0;

sterm(4*(2*patches+tpatches)+bb)=sterml(bb);

end do

! Deallocate used variables

deallocate(x1)

62 Chapter B Fortran Code

deallocate(ytop)

deallocate(ybot)

deallocate(dytop)

deallocate(dybot)

deallocate(stermtop)

deallocate(stermbot)

deallocate(sterml)

deallocate(stermr)

else

! Surface is a circle

x=(/xr, xl/)

y=(/yr, yl/)

phi=(/phia, phib/)

theta=(/thetaa, thetab/)

dy=0

sterm = (/stermr, sterml/)

end if

deallocate(theta1, thetaa, thetab)

deallocate(xr, xl)

deallocate(yr, yl)

deallocate(phia,phib)

if(surfplot) then

call plot(real(x),real(y*1.001+0.001),’x’,’y’,titles,’line’)

endif

end subroutine surf_setup

subroutine make_surface(sigma, xp, yp, coef, spacing, ht, np)

use params, only: k2, externSurface

use random

implicit none

integer, intent(in)::np

real(kind=k2), intent(in)::sigma, spacing, ht

real(kind=k2), intent(out)::xp(:),yp(:),coef(:,:)

integer::i,ios

real(kind=k2)::dummy

real,external::rand

B.3 fullsurface.f90 63

if(externSurface)then

! Read in the spline points from a file

! Check the points for consistency

write(6,’(a)’)’Reading surface data from surface.txt’

open(unit=7,file="surface.txt",status="old")

read(unit=7,fmt=*,iostat=ios)(xp(i),i=1,np),(yp(i),i=1,np)

if(ios /= 0) then

stop ’Error reading surface file. Not enough data points.’

end if

read(unit=7,fmt=’(f)’,iostat=ios)dummy

if(ios ==0) then

stop ’Error reading surface file. Too many data points.’

end if

close(unit=7)

write(6,’(a)’)’Read data successfully from surface.txt’

else

xp = (/ ((i-1)*spacing, i=1,np) /)

yp(2:np-1) = (/ (random_normal()*sigma,i=2,np-1) /) + ht

end if

yp(1)=ht

yp(np)=ht

coef(1,:)=yp

coef(2,1)=0

coef(2,np)=0

call cubspl(xp, coef, np, 1, 1)

end subroutine make_surface

end module fullsurface

64 Chapter B Fortran Code

Appendix C

Matlab Code

This matlab code loads the TE and TM data based on the parameters of the run. It

calculates the mean values for each set of parameters and plots the function versus

qh for each specific knot separation. The functions for each knot separation are then

fit to a cubic polynomial and the coefficient values are plotted for both TE and TM.

clear all; close all; clc;

format long e

knots=input(’knots= ’); % input values for marylou run

angles=input(’angles= ’);

heights=input(’heights= ’);

samples=input(’samples= ’);

params=knots*angles*heights; % total parameters

params2=angles*heights; % total qh values

isep=1:knots; % index values

iangle=1:angles;

iheight=1:heights;

sep=isep*(20.0/knots); % knot separation

angle=15.0+(iangle-1)*(75.0/(angles-1)); % incident angle

height=iheight*(0.1/heights); % roughness height

65

66 Chapter C Matlab Code

load TMTrial1.txt

Rm=-log(TMTrial1);

load TETrial5.txt

Re=-log(TETrial5);

Sm=zeros(params,samples);

Se=zeros(params,samples);

for i=1:samples

Sm(1:params,i)=Rm((1:params)+(i-1)*params);

Se(1:params,i)=Re((1:params)+(i-1)*params);

end

for i=1:params;

qbare(i)=(sum(Se(i,:))/samples)’;

q2bare(i)=(sum(Se(i,:).^2)/(samples-1))’;

qbarm(i)=(sum(Sm(i,:))/samples)’;

q2barm(i)=(sum(Sm(i,:).^2)/(samples-1))’;

end

qsqe(1:params)=sqrt(q2bare(1:params)-qbare(1:params).^2*samples/(samples-1))’;

qsqm(1:params)=sqrt(q2barm(1:params)-qbarm(1:params).^2*samples/(samples-1))’;

for j=iheight

qh(iangle+(j-1)*angles)=2*pi*sin(angle(iangle)*pi/180)*height(j);

end

H=ttest(qbare,qbarm)

tbare=zeros(params2,knots);

tsqe=zeros(params2,knots);

tbarm=zeros(params2,knots);

tsqm=zeros(params2,knots);

for j=1:knots

tbare(1:params2,j)=qbare(j+((1:params2)-1)*knots);

tsqe(1:params2,j)=qsqe(j+((1:params2)-1)*knots);

tbarm(1:params2,j)=qbarm(j+((1:params2)-1)*knots);

67

tsqm(1:params2,j)=qsqm(j+((1:params2)-1)*knots);

end

mdat(:,1)=qh;

mdat(:,2:knots+1)=tbarm;

mdat(:,knots+2:2*knots+1)=tsqm;

edat(:,1)=qh;

edat(:,2:knots+1)=tbare;

edat(:,knots+2:2*knots+1)=tsqe;

sdate=sortrows(edat);

sdatm=sortrows(mdat);

options=fitoptions(’poly3’);

options.lower=[-Inf -Inf -Inf -0];

options.upper=[Inf Inf Inf 0];

qhf=sdate(:,1);

DW=2*qhf.^2;

for n=isep

ks=n*(20.0/knots);

s=sprintf(’Attenuation at %g wavelength knot separation’,ks);

% For S polarization

Fm=fit(qhf,sdatm(:,n+1),’poly3’,options);

Pm(n,1)=Fm.p1;

Pm(n,2)=Fm.p2;

Pm(n,3)=Fm.p3;

Pm(n,4)=Fm.p4;

Cm=confint(Fm);

C1m(n,1)=(Fm.p1-Cm(1,1))/2.06;

C1m(n,2)=(Cm(2,1)-Fm.p1)/2.06;

C2m(n,1)=(Fm.p2-Cm(1,2))/2.06;

C2m(n,2)=(Cm(2,2)-Fm.p2)/2.06;

C3m(n,1)=(Fm.p3-Cm(1,3))/2.06;

C3m(n,2)=(Cm(2,3)-Fm.p3)/2.06;

68 Chapter C Matlab Code

% For P polarization

Fe=fit(qhf,sdate(:,n+1),’poly3’,options);

Pe(n,1)=Fe.p1;

Pe(n,2)=Fe.p2;

Pe(n,3)=Fe.p3;

Pe(n,4)=Fe.p4;

Ce=confint(Fe);

C1e(n,1)=(Fe.p1-Ce(1,1))/2.06;

C1e(n,2)=(Ce(2,1)-Fe.p1)/2.06;

C2e(n,1)=(Fe.p2-Ce(1,2))/2.06;

C2e(n,2)=(Ce(2,2)-Fe.p2)/2.06;

C3e(n,1)=(Fe.p3-Ce(1,3))/2.06;

C3e(n,2)=(Ce(2,3)-Fe.p3)/2.06;

M=polyval(Pm(n,:),qhf);

E=polyval(Pe(n,:),qhf);

De=sdate(:,n+1);

Dm=sdatm(:,n+1);

plot(qhf,DW,’r-’,qhf,Dm,’b.’,qhf,De,’g.’)

xlabel(’qh’)

ylabel(’ln(R)’)

title(s)

axis([0 .7 0 .7])

legend(’Debye Waller Calculation’,’Reflectance(TM)’,’Reflectance(TE)’)

pause

end

figure

E1=errorbar(isep,Pe(:,1),C1e(:,1),C1e(:,2),’b.’);

xlabel(’Knot Seperation’)

ylabel(’Coefficient’)

title(’Cubic Term (TE)’)

axis([0 40 -2 2])

figure

E2=errorbar(isep,Pe(:,2),C2e(:,1),C2e(:,2),’b.’);

xlabel(’Knot Seperation’)

69

ylabel(’Coefficient’)

title(’Quadratic Term (TE)’)

axis([0 40 -1 3])

figure

E3=errorbar(isep,Pe(:,3),C3e(:,1),C3e(:,2),’b.’);

xlabel(’Knot Seperation’)

ylabel(’Coefficient’)

title(’Linear Term (TE)’)

%axis([0 40 -.4 1.5])

figure

E4=errorbar(isep,Pm(:,1),C1m(:,1),C1m(:,2),’b.’);

xlabel(’Knot Seperation’)

ylabel(’Coefficient’)

title(’Cubic Term (TM)’)

axis([0 40 -2 2])

figure

E5=errorbar(isep,Pm(:,2),C2m(:,1),C2m(:,2),’b.’);

xlabel(’Knot Seperation’)

ylabel(’Coefficient’)

title(’Quadratic Term (TM)’)

axis([0 40 -1 3])

figure

E6=errorbar(isep,Pm(:,3),C3m(:,1),C3m(:,2),’b.’);

xlabel(’Knot Seperation’)

ylabel(’Coefficient’)

title(’Linear Term (TM)’)

axis([0 40 -.3 .1])

Index

Attenuation Function, 27

Correction Coefficient Functions, 29

Debye Waller Factor, 4

Field Integral Equations, 7
Field Integral Equations, Electric, 9
Field Integral Equations, Electric (Perfect

2D Conductor), 10
Field Integral Equations, Magnetic, 9
Field Integral Equations, Magnetic (Per-

fect 2D Conductor), 10
Fresnel Equations, 2

Geometric Optics, 6

Helium, Ionized, 1
Helium, Neutral, 2

Kirchoff Approximation, 6

Mie Series, 17

Physical Optics, 6
Physical Optics, Flat Plate, 16
Physical Optics, Infinite Cylinder, 17

Roughness, 3

Solar and Heliospheric Observatory (SOHO),
1

Tangent Plane Approximation, 6

70

	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Significance
	1.2 Roughness
	1.3 Previous Work

	2 Procedure
	2.1 Problem Setup
	2.2 Surface Setup
	2.3 Validation
	2.3.1 Flat Plate
	2.3.2 Cylinder Conductor

	2.4 Sample Field
	2.5 Computation

	3 Results
	3.1 Attenuation Function
	3.2 Correction Coefficients

	Bibliography
	A Program Results
	B Fortran Code
	B.1 ECS.f90
	B.2 RoughTE.f90
	B.3 fullsurface.f90

	C Matlab Code
	Index

