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ABSTRACT

Charged, Rotating Black Holes in Higher Dimensions

Chris Verhaaren
Department of Physics and Astronomy

Master of Science

We present a method for solving the Einstein-Maxwell equations in a five dimensional,
asymptotically flat, black hole spacetime with three commuting Killing vector fields. In
particular, we show that by reducing the dimension of the Einstein-Maxwell equations in a
Kaluza-Klein like manner we can determine the components of the metric and vector poten-
tial which lie in the direction of the Killing vector fields. These components are determined
by nine scalar fields each of which satisfy a partial differential equation in two variables.
These equations take the form of an elliptic operator set equal to a nonlinear source. We
find evidence that particular combinations of these fields satisfy Dirichlet boundary condi-
tions, and are well suited to numerical solution using Green functions. Using this method
we generate numerical solutions to the 441 Einstein-Maxwell equations corresponding to
charged generalizations of the Myers-Perry solution. We also discover symmetry relations
among the scalar equations which constrain their functional forms and posit the existence
of two rigidity-theorem-like relations for electrovac spacetimes and sketch how their use
generalizes our method to N + 1 dimensions.

Keywords: Black Holes, Higher Dimensions, Einstein-Maxwell Equations, Rigidity
Theorem
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Chapter 1

Introduction

Ever since their discovery, black holes have motivated scientists to better understand theories
of gravity. While physical study of their properties remains elusive, their theoretical existence
alone has encouraged deeper questions and predictions about the nature of space, time, and
the universe. Similar questions have led to theories which attempt to unify the forces of
nature. Since these theories of quantum gravity must reduce to our current theories in
appropriate limits, and because black holes make up a large part of the interface between
classical and quantum effects, the black holes predicted by these theories are of particular
interest.

As a first step we must understand the characteristics of black holes as predicted by
general relativity (GR), our current model of gravity. Unsurprisingly, the majority of in-
vestigations into black holes assume a universe with three spatial directions and one time
direction. Such a 341 dimensional spacetime is a natural choice in light of current obser-
vations. However, many unified theories require a universe with a dimensionality beyond
the 4 observed, so a catalogue of higher dimensional GR black holes might be useful for
comparison.

A first, perhaps naive, guess might be that such higher dimensional black holes somehow



“naturally” generalize from 3+1 black holes. This idea motivates a brief study of four dimen-
sional black holes. We begin with an indispensable trait as far as cataloging is concerned,
namely uniqueness. It has been shown (see [1] for example) that under modest conditions
(such as asymptotic flatness and stationarity) 341 black holes are completely determined by
their mass, angular momentum, and electromagnetic charge.

The Kerr-Newman [2] (KN) solution to the 341 Einstein-Maxwell equations is the most
general black hole since it incorporates mass, angular momentum, and electric charge. The
previously discovered solutions (named for their discoverers): (1) Schwarzschild [3] which
incorporates mass only, (2) Reissner-Nordstrom [4,5] which has mass and charge, and (3)
Kerr [6] which has mass and angular momentum, can all be thought of as limiting cases of
the KN solution.

Clearly, properties of the KN solution must hold in some form for all 341 black holes.
In particular, it has been shown that these black hole spacetimes include a null surface
which is a topological two-sphere (S?) [7]. This surface, called the event horizon, is a one
way boundary that separates the so-called interior of the black hole from events outside the
horizon.

There is also a connection between the symmetries of a 3+1 black hole spacetime and
its temporal evolution. For instance, a black hole is spherically symmetric if and only if it is
static [8]. If a black hole is stationary (in a steady state) it must be axisymmetric [7]. There
are many more properties of black holes which we have not discussed. While these other
aspects of black hole mechanics are important, they fall outside the scope of this work. We
therefore direct the interested reader to one of the many texts on GR, such as Wald [9].

As we make the transition to higher dimensional GR we find that some aspects of 3+1
GR generalize intuitively to N 4+ 1 dimensions while others do not generalize at all. However,
it is useful to explain some of the appeal of extra dimensional theories. The work of Kaluza

[10] and Klein [11] was one of the first serious forays into extra dimensional GR. They



discovered that if an extra dimension has a U(1) symmetry, the 441 Einstein equations
can be separated into the 341 Einstein equations and the 3+1 Maxwell equations. The
fly in the ointment is that besides these two sets of equations, which have a clear physical
interpretation, their formalism also generates a scalar field referred to as the dilaton which has
no agreed upon physical meaning. This extra scalar field notwithstanding, it is remarkable
that by introducing an extra dimension the theories of gravity and electromagnetism are
unified. A very heuristic explanation of why so many unification theories require many extra
dimensions is that, similar to Kaluza-Klein (KK) theory, including more dimensions gives
the theory enough freedom to incorporate more forces.

So, with extra dimensions we might unify the forces. Unification with gravity immediately
leads to black holes in higher dimensions. Alternatively, since all observational evidence
supports a 3+1 dimensional universe it may be the case that there are no extra dimensions.
We might then ask why spacetime has this 3+1 dimensional structure. The first higher
dimensional black hole solutions were found while addressing this question. Tangherlini [12]
generalized both the Schwarzschild and Reissner-Nordstrom black holes to N 41 dimensions
to see if 341 black holes were in some way special. These black holes have been shown
to be static and unique just as the 3+1 case [13]. The topology of their event horizon is
that of an (N — 1)-sphere (SV~1) which is a natural generalization of their four dimensional
counterparts.

The generalization of Kerr black holes to higher dimensions proved to be more compli-
cated. The major challenge comes from the multiple independent angular momenta in higher
dimensional spacetimes!. In fact, L%J independent angular momenta must be taken into ac-

count for the N + 1 dimensional rotating black hole.? The Myers-Perry (MP) solution [14]

'Tn technical terms, the independent planes of rotation for a body in an N dimensional space correspond

to the Casimir invariants associated to the group of rigid rotations in R, namely SO(N).

2| & | refers to the integer part of 5.



models higher dimensional black holes with all possible angular momenta.

The MP black hole’s event horizon topology in five dimensions is S® like the Tangerlini
solutions. However, uniqueness does not immediately follow as it does for static black holes.
Emparan and Reall [15] discovered a a black ring (a black hole with a topologically toroidal®
event horizon) solution in 4+1 spacetime. Such a black ring can have the same mass and
angular momenta as a MP black hole, but does not share other important properties. Clearly,
more parameters are needed to uniquely define a rotating black object in higher dimensions.
In fact, as the dimension of the spacetime increases, more exotic horizon topologies become
possible, see Fig. 6 of [16]. However, hope for some type of uniqueness remains. It has
been shown [17,18] that when certain aspects of black holes (including horizon topology) are
carefully defined, rotating black holes can be uniquely characterized.

It is also worth noting the implications of stationarity on higher dimensional spacetimes.
Recall that in the 341 case stationarity implied the existence of axisymmetry. Now, in higher
dimensions there are more than one possible axisymmetries that can exist in a spacetime,
as exemplified by the MP solution. However, in higher dimensions stationarity only implies
one axisymmetry [19].

While increasingly exotic black objects become possible in higher dimensions, an N + 1
generalization of the KN solution is noticeably absent. Since 1986, when the MP solution
was published, a charged MP solution of the Einstein-Maxwell equations has withstood
general solution. FEven so, some analytical and numerical work has been produced. On
the numerical side, Kunz et al. [20,21] have provided numerical solutions for the special
cases of only one angular momentum and equal angular momenta in 441, 6+1, and 8+1
dimensional spacetimes. Of course, in order to find these solutions the authors also made
significant analytical deductions about the nature of the black hole solutions they were

seeking. Similar and further analysis was made by Aliev and Frolov [22]. Their work has

3Specifically, the horizon’s topological structure is S! x S2.



been mainly perturbative, including an analytic solution in the limit of small rotation [23].
The intent of this work is to find a general numerical solution of the 441 Einstein-
Maxwell equations corresponding to an electrically charged MP black hole. These equations

are generated from the Einstein-Maxwell action in five dimensions

Re* 1 _, 5
S = / (167TG - ZLF Fab) V—g d’z, (1.1)

where G is Newton’s gravitational constant, ¢ is the speed of light in vacuum, R is the scalar
curvature, and Fj; the Maxwell field tensor. By varying this action with respect to the
metric and the electromagnetic vector potential one can derive the Einstein and Maxwell

equations:

GG

Gab :C—4 Tab (12)

V,F* =0 (1.3)

where G, and T, are respectively the Einstein and Stress-Energy tensors.

In order to make this problem tractable, we use dimensional reduction with respect to the
assumed symmetries of the spacetime. This technique was first made precise by Geroch [24]
and since the symmetries we assume are all U(1), certain similarities with KK theory will
become apparent.

Since the 4+1 MP solution is asymptotically flat and has an event horizon with S3
topology, we assume these conditions as we begin our analysis. These assumptions are
natural both as a charged generalization of the MP solution and as a higher dimensional
generalization of the KN solution. As a parallel assumption to asymptotic flatness, we will
assume the standard condition that the vector potential vanishes at spatial infinity.

We will also assume that the black hole spacetime is stationary and allows two indepen-
dent planes of rotation. These three symmetries will allow us to reduce the Einstein-Maxwell
equations from five dimensions to two dimensions. Similar to KK theory, this will gener-

ate three Maxwell-like fields on the remaining two dimensional manifold and nine unknown



scalar functions. Six of these functions result from the reduction of the geometry and three
from the reduction of the Maxwell field. We will show that these Maxwell-like fields are
made trivial by enforcing local flatness. Additionally, the scalar functions can be chosen to
have a form well adapted to numerical analysis. Specifically, we will show that each can be
defined by one of a family of elliptic differential operators set equal to a nonlinear source.
In addition, they will satisfy Dirichlet boundary conditions at spatial infinity and the event
horizon.

These properties allow us to construct a Green function for this family of operators.
With these functions in hand we will generate a numerical solution for the scalar fields.
When these fields have been specified, it becomes a relatively simple matter to solve the two
dimensional GR problem.

As we analyze our decomposed equation set we will show how the equivalence of the two
axisymmetries lead to relationships between the unknown scalar functions. These relation-
ships constrain the form of these functions. In addition we postulate the existence of two
rigidity-like theorems for electrovac spacetimes.

Unless otherwise specified we will choose units such that ¢ = G = 1. Our assumed metric
has signature +3 and we take the sign convention found in Wald [9] for components of the

Einstein-Maxwell equations.



Chapter 2

Geometry and Symmetries

The power of the formalism we introduce in this thesis depends on our ability to reduce
the dimension of the 441 Einstein-Maxwell equations by “dividing out” the symmetries of
a spacetime. As explained in Chapter 1, we assume that the solution we wish to solve for
has three independent symmetries.

These symmetries correspond to commuting Killing vector fields on the spacetime man-
ifold. Specifically, we assume a stationary spacetime with two independent axisymmetries.
This corresponds to the existence of a timelike Killing vector field together with two spacelike
Killing vector fields with closed orbits. Each of these Killing vector fields can be thought of
as generating a U(1) symmetry group. As a result, following KK, we expect three Maxwell-
like fields to be generated as we divide out these symmetries. We also obtain a set of scalar
fields generalizing the single dilaton of KK.

The method and mathematical consistency of this process is due to Geroch [24]. He has
shown that the quotient space resulting from such an operation is a submanifold orthogonal
to the Killing vector field related to the symmetry of the initial space. This allows us to
completely separate portions of the Einstein-Maxwell equations into linearly independent

components that lie along each Killing vector in the submanifold.

7



2.1. METRIC PROPERTIES 8

In this chapter we employ this method to reduce the dimensionality of our problem from
five to two. Specifically, we find the relation between the five and two dimensional metrics

and then build up the geometric components of the Einstein equations from that relation.

2.1 Metric Properties

We begin with a differentiable manifold M with metric g,, that admits one timelike Killing
vector field t* and two independent spacelike Killing vector fields ¢* and 1* whose orbits are

closed!. We denote their norms by:
%, = =, ¢%Pq = b, Y, = a®. (2.1)
It is convenient to choose coordinates on the manifold adapted to these vector fields; namely,
9= (0)"% ¢" = (0)", ¥* = (0y)" (2.2)

This choice of coordinates ensures that every quantity defined on M is a function of the

remaining two coordinates only. Next, for convenience we define a scaled Killing vector V¢

by
Ve = g, (2.3)
and define
Dap = g — a’Va Vi, (2.4)

which is the metric on the four dimensional submanifold of M orthogonal to V. This
orthogonality is easily verified:
(4)gabva _ gabva . a2%%‘/a

2

a
=Vy— 5V =0. (2.5)

IThat is to say the orbits of the spacelike Killing vector fields are topological circles.



2.1. METRIC PROPERTIES 9

We can now use this four metric to project ¢* into the four manifold. We do this to
create linear combinations of the Killing vectors which are guaranteed to be orthogonal both
to each other and the remaining submanifold. We begin by defining the vector

(4)¢a = (4)gab¢b _ (ba . a?va%¢b
= ¢" — YV, (2.6)
where we have defined V,, = ¢*Vj,. We then define the norm
WMo, = b* — a®V} = p*. (2.7)
As before, we scale this vector by p? and define
(Ape

U = PR (2.8)

which can be used to define the metric on the three manifold orthogonal to both V¢ and U*:
Dap = gab — a*VoVs — p*UaUp- (2.9)
Now, since

1
VaUa =V (¢a - ¢aV¢) E
1

= (Vy — Vy) E =0 (2.10)

it can easily be shown that g, is orthogonal to V¢ and U® (similar to (2.5)) as desired.
It is important to notice that our order of projecting out Killing vectors has preferred one
direction over the other in the subsequent derivations. Its possible to keep both Killing vector
fields on an equal footing (see Appendix C ), but we will proceed as we have begun. We
choose to do this because certain functions that appear naturally in our present formalism
become awkward in the symmetric case. However, we will use some of the insights gained

from the symmetric formalism in later chapters.



2.1. METRIC PROPERTIES 10

Returning to our construction, we use the three metric (2.9) to project t* into the three

manifold. Explicitly,
Bpa = B)g1b = 19 — by, — Doy,
=t =" (V, = U Vy) — ¢°Us, (2.11)
where we have defined V, = t*V, and U; = t*U,. We then find the norm
B, = — (S + a®V2 + p*U}) = —Q, (2.12)

and as before we scale (2.11) by the norm to define

; (3)ta
T = 2k (2.13)
We note
u 1
TVaZGQ—QQ(Vi—Vt):Oa (2.14)
1
TaUa - W (Ut - Ut) - O, (215)

which shows that we can define the two dimensional metric o, on a submanifold of M which

is orthogonal to all three Killing vectors by
Oab = Jap — a°V,Viy — p?U Uy + Q*T, T, (2.16)

We will call this submanifold /. Notice that we have constructed the vectors V*, U®, and
T to be orthogonal to each other and to A'. We use this property to treat V¢, U%, T%, and
O as linearly independent “directions” in M.

As with the Kaluza-Klein case, we expect these dimensional reductions to generate
Maxwell-like fields with the scaled, orthogonal Killing vectors acting as vector potentials.
These fields will appear naturally in our formulation of the Einstein-Maxwell equations. We

define these fields as:

Wap = 0aTy, — OpTu, Yup = 0uUy — OpUs, Zap = 0aViy — OV (2.17)



2.1. METRIC PROPERTIES 11

We then separate these fields into pieces lying along each Killing vector and the field in N.
This is done by making the definition ®W,;, = 0,°0,%W_q and similarly for the other fields.
We find

Wab = gacgdecd
= (0,5 + a®V,Ve + p?UU° = Q°T.T°) (0, + a*ViVI + p*UU? — Q*T, 1) Weg

= O, (2.18)
Similarly, we have

Yo, = Doy, + Tu0U; — Ty0uUy (2.19)

Zab = (Q)Zab — UaﬁdeJ -+ UbaaV¢ + Ta (ab‘/;f - Utabv(j)) - Tb (aa‘/t - Utaa‘/d)) . (220)

We now write the line element for the metric in terms of the 2 metric and the components
and norms of the Killing vectors. Our coordinates are chosen to be 2% = (¢, 2!, 22, ¢,) with
t, ¢, and v adapted to our Killing vectors as indicated previously. This choice constrains our
metric coefficients to be functions of the remaining coordinates z' and 22, which we have

left completely general. Then we can write the full line element from (2.16) as

ds® = — (Q* — a®V? — p*U}) dt* 4 2 (a®ViV; + p*UrU; + Q*Th) dtda’!
+ 2 (a®VaV; + p* bl + Q*Ty) dtda® + 2 (a®ViVy + p°Uy) dtde
+2a°Vdtdip + (o1 + a®VE + p*Us — Q1Y) dz'da’
+2 (012 + a*ViVa + p*UrUs — Q° TV T3) dz'dz® + 2 (a®ViVy, + p°Us ) dz'dé
+2a°Vida' di + (09 + a®Vy + p*Us — Q*T5) dz’da® + 2 (a*VaVy + p*Us) da*de

+ 20*VadaPdip + (p* + a’V}) dd* + 2a°Vydpdy) + a’dy)®, (2.21)

where U; denotes the 2! component of U,, etc.



2.2. ASYMPTOTIC FLATNESS 12

2.2 Asymptotic Flatness

Now, (2.21) is not particularly enlightening or useful. In order to better understand and
hopefully simplify this metric we enforce asymptotic flatness. This assumption constrains
the behavior of the unknown metric coefficients at spatial infinity. This will also motivate
our choice of the coordinates ' and z2.

For example, asymptotic flatness requires that at spatial infinity, or infinitely far away
from the black hole, the metric must become flat. Equivalently, the metric must become

Minkowski space, which in 4+1 dimensions and Cartesian-like coordinates can be written as
ds* = —dt* + da* + dy® + d2* + dw?. (2.22)

Our Cartesian-like coordinates ¢, x, y, z, and w can take on any real value. However, these
coordinates are not adapted to the assumed symmetries of our spacetime. Recall that the
spacelike Killing vectors of M have closed orbits. This precludes the adapted coordinates
taking on all value in the reals. Typically, we choose such coordinates to take values over a
finite interval such as [0, 27].

With this property in mind, one might think spherical coordinates in 4+1 dimensions

would be a good choice. Minkowski space can be expressed in these coordinates as:
ds* = —dt* + dr? + r? [d&z + sin®# (d¢2 +sin? ¢ d@DQ)] , (2.23)

where t € R, r € [0,00), both 6 and ¢ take values from the interval [0, 7], and ¥ € [0, 27].
This coordinate system is closer to what we would like, but only v has a “full” orbital period.
If either 6 or ¢ were to take on values larger than 7 we would double count points and our
coordinates would not be well defined.

For this reason we choose to use bi-azimuthal coordinates. For flat space the line element

in these coordinates is

ds® = —dt?® + dr® + r? (d@2 + sin? 8dp* + cos® 9d¢2) , (2.24)
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where ¢t € R, r € [0,00), both ¢ and v range over [0,27], and 6 € [0, §]. Because both ¢
and 1) parameterize closed orbits, these coordinates seem best adapted to the symmetries of
our spacetime. To correspond to this choice, we pick ! = r € [0,00) and 2% = 6 € [0, zl

Taking advantage of the fact that any two dimensional Riemannian metric is conformally

flat, we can write the line element of o,
@ds? = e (dr® + rdf?) (2.25)

where « is an as yet undetermined function of r and 6.

Now that we have decided what form (2.21) will take at infinity we can find the asymptotic
limits of the metric coefficients. Because the Killing vectors do not become null at infinity
(that is, their norms do not become zero) we immediately see that Vi, V., Vi, Vi, Uy, U,., Uy,

T., and Tp must all vanish at spatial infinity. It then follows that at spatial infinity

a—=0 Q>—1 p*—r2sin?0 a® — r?cos?d. (2.26)

2.3 The Ricci Tensor

Now that all the building blocks have been defined, we can construct the geometric compo-

nents of the Einstein equations. We begin with the metric connection

1
be = Egad (Ovgea + OcGba — Oagne)

1 1 1 1
— (2 Zc + §Gad5bcd + §V“ch + §Ua2bc — éTaHbc (227)
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where we have made the following definitions

Oy, = ~0" (Ob0ca + OcOba — DuOne) (2.28)

1
2
Spea = a* (Vi PZea + V.OZyq) — a® (ViU + V.Uy) 04V

+a* (Vo + V.Ty) (04Vi — Us0aVy) + p* (U Yo + U 2Y30)

+ p2 (Uch + Uch) 8dUt - Q2 (Tb(2 cd + Tc(z)Wbd)

— VbVC&iaQ — UbUcﬁdpQ + TchﬁdQZ (229)
Qe = 0, (a°V2) + 0. (a°V) (2.30)
Zbc = 8(, (p2UC) -+ (90 (pQUb) + CL2 (%acvd, + V},ﬁngf,) (231)

II,. = ab (QQTC) -+ 86 (QQT()) + p2 (UbﬁcUt + UcabUt)

+ a®[Vy (0:V; — Upd:Vy) + Vo (Vi — U0y V)] (2.32)
Last, we separate the Ricci tensor as defined by

Ry, = 0.1, — 9,0, + T¢,I'° — I I° (2.33)

a ac™ eb*

We can express the five dimensional Ricci tensor in 2-covariant form by defining A, as the
covariant derivative with respect to the 2-metric ,0,, on N. In accordance with [24] the

operator A, is defined on the 2-manifold and with respect to oy, by
A A% = 0% 0% 07 VA%, (2.34)
This is equivalent to
A DA%, = 9,PAe, + e D44, 2pd 2)ge (2.35)

where we have highlighted the fact that A, must operate on tensors living on . Recall
that because we chose coordinates adapted to our Killing vectors, any scalar function f on
N will satisfy

A.f =0.f. (2.36)
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The Ricci tensor then takes the form?

1 a?
GAAQ — S50V, A

(AV, — UAVy) (AgV; — UsAgViy)

1 1
Rab = Uaco—bd |:(2)Rcd - _AcAda - _AcAdp -
p 2
: Q2A Ue AU+ 505

2
+ 3 e VAR % By, Cy, — % A (QWed}

1
+2‘/(a0-b§l {WAC (agpQ (Q)ch) :|
1 a®
+2U(a0'b§l |:2PTQAC (ap3Q (2)}/(1 c) + % (Q)chAcV¢:|
2
+2T (403 {2 0 A, (apQ® DWW, H@ @y cA U, + 2 @7, (AV; — UtAcvqﬁ)}
FV Vs | —2 A (pQAa) + o @zed @z |+ “—4A Vi AV
a pQ C 4 C 2p2 (&
CL4
- TQ? (AV; — U AVy) (A, — UtAcvd,)}
+2V,, U, _ Q—aA Vs L O ey, OV (AV; — UAV,) AT,
Y 2aQ 4 2Q? ‘
3 2 2
+2V,Th) %AC (% (AV; —UtACV¢)> @ @z 2y, }
p C p C (4 p C
+U, U, aQA (aQA.p) + T @yred @y, — —A Vs AV — QQA U A Ut]
+2U, Ty %AC ( A Ut) LA B @y, + = (A Vi, — UAVy) ACV¢}
. 4 2
T, T Q o Q) + Ci @ypyed @y, — P SAU; AT,

2

— ? (AV; — U AV (AV, — Uy AVy) (2.37)
While the above expression looks unwieldy, recall that each combination of vectors or tensors
not enclosed in brackets are linearly independent. In the subsequent chapter we similarly

separate the stress-energy tensor, leading to a set of scalar equations rather than one tensor

equation.

2The parenthesis around indices denotes symmetrization in the usual way: Tar)y = % (Tap + Tpa)-



Chapter 3

Electromagnetic Considerations

In the last chapter we expressed the Ricci tensor, which will serve as the geometric part of
the Einstein equations, as a set of linearly independent terms. In this chapter we separate
the electromagnetic stress-energy tensor in a similar way. We will then be able to equate
each linearly independent term through the Einstein equations. These associated terms
make explicit the two dimensional tensorial equation, a set of six scalar equations, and the
three Maxwell-like equations mentioned in Chapter 1. Similarly, we will separate the 4+1
Maxwell equations into a two dimensional Maxwell equation on the submanifold A" and three

additional scalar equations.

3.1 The Stress-Energy Tensor

Since we wish to find solutions to the Einstein-Maxwell equations we must construct the
stress-energy tensor T, for electromagnatism and decompose it as we did the Ricci tensor.
Where before we began with the metric g, as our fundamental quantity, here we begin with

the electromagnetic vector potential A,. From this potential we define the Maxwell field

16
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tensor Fj;, in the usual way
Fab = aaAAb - 8bAaa (31)

so that the stress-energy tensor for electromagnetism becomes

1
AnTy = F, Fpy — Zgachchd. (3.2)

We also make the following definitions for convenience in subsequent equations:

VeA, = Ay UA,=Ay T°A, = Arp (3.3)

and
E, = AJ(Q*Ar) + p* Ap AU + a* Ay (AV; — Ui A Vy) (3.4)
B, = A,(pPAy) + > Ay A V. (3.5)

Note that F,, B,, and A.(a?Ay) are vectors that live strictly in AN. Using the above

definitions the stress-energy tensor may be expressed as

1 1 1
4nTy, = Jacabd {(2)Fce (2)Fde + _QAc(agAV)Ad(CLQAv) + chBd _ @EcEd
a D
L oper @ 2 a4 el 2 2 . 2
=0 F Py S A(a" AV) A (0" Ay) + BB~ S EE,

+2V],0,] _(2)Fd€Ae(a2Av)} +2U(a‘7b§{—(2)FdeBel 9T {( F, E]
+VaV; zlAe( *A)A (@A) - & Opes OF, _ © pep | @

a = a e a _ ef — 7= e R

A 1% v)— F 758 202

+2V(, Uy Ae(cﬂAv)Be] + 2V T { — Ae(a2Av)Ee] + 20U, Ty { — BeEe}

EeEe]

1 2 p2 p2
+U,U, | =B°B, — = @F<t OF,, — ﬁAe(cﬂAv)Ae(aQAv) + —EE]
a

|2 4 202
o @ @ aeragn L @
T. 1, |=E°E, + — e F, —A(a*Ay)A(a“ A ——B°B.|. 3.6
T GBS S+ A @AM @A) + TBB). 30

The last quantity we need for the Einstein equations is the trace of T, which we denote
Te =T. This is readily computed from (3.6):

1 1 1 1
e ef (2 el 2 A e
AT = FE E — Z < )F ( )Z ef — 2_0/2A ((I AV)A (CZ V) 21923 B (37)
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3.2 Maxwell’s Equations

We next consider Maxwell’s equations in source free regions. In terms of F;, these can be

written as
V[ =0 (3.8)
Ojalre) =0 (3.9)
where the square brackets on the indices denote antisymmetrization. Because our definition
of the field tensor (3.1) is explicitly antisymmetric (3.9) is trivially satisfied, and only (3.8)
remains to be solved.
As before, we decompose these equations along and orthogonal to the directions defined

by our assumed Killing vectors. Since we are working with a vector rather than tensor

equation the separation is simpler. Explicitly,
0=V,F? =0" V,F" + V* [a*V.V F] + U [P*UVLF?] = T [Q*T. Vo F?] . (3.10)

Again, because each term is linearly independent of the others each term must vanish indi-

vidually. This leads to the following equations

apLQAe (ap@ (Q)F“e) =0 (3.11)
@Ae (%A%cﬁflﬂ) = % @pef @7 . + ]%BEA,;VQS — éE (AV, — UAVy)  (3.12)
apLQAe (?Be) = % @pes Cy,, — éEeAeUt (3.13)
ﬁAe (%E) N % CEe Wy (3.14)

The first of these equations is readily identified as Maxwell’s equations on A in source free
regions. The remaining three equations are all scalar and have similarities in their sources.
Each is sourced by one the KK Maxwell fields contracted with the physical Maxwell field.
Additionally, (3.12) and (3.13) are sourced by interactions between functions associated with

rotations and the components of the projections of the vector potential.



Chapter 4
Simplifying the Einstein Equations

The results of chapters 2 and 3 give us all we need to pose the Einstein-Maxwell equations in
our formalism. However, due to the multiplicity of terms in (2.37) and (3.6) we are motivated
to simplify these equations as much as possible before we solve them.

In our units, the Einstein equations of general relativity are
1
Ry — §gabR = SﬂTaba (41)

where R is the Ricci scalar defined by R = R%,. By taking the trace of both sides of (4.1)

we find
2—n

S

= 8nT, (4.2)

where n is the dimension of spacetime. This allows us to rewrite the Einstein equations in

five dimensions as

1
Rab = 87 <Tab - ggabT> . (43)

We then use the linear independence of each Killing vector “direction” to equate terms on

each side of (4.3) using (2.37), (3.6), and (3.7).

19
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4.1 E&M in Two Dimensions

First, we note the similarity between the equation for the two dimensional E&M field (3.11)

and the equations for the three Maxwell-like fields from the dimensional reduction:

g (7 P () w
2a;3Q N 2y acq? Q) _pacp _ % (Q)Z“CAC% (4.5)
2@@2 S @2 (A, — UAV,) . (4.6)

We can simplify all these equations by taking advantage of the properties of E&M in two
dimensions.
Consider an arbitrary antisymmetric Maxwell-like field £*® on a two dimensional manifold

N with metric o, (2!, 2%) and covariant derivative A.. The defining relation for f (similar
0 (3.8)) is
A f=—j° (4.7)

where j° is a source term. Now, due to the antisymmetry of fo

DApAGf® = Ay (Duf ™ + Lo f? +T0.f)
= Oy (0uf™ + Taef ) + Ty (0af™ + T f)
= 0y ([Gf™) = TocObf
= [P,

— 0,0, /7 =0 (4.8)

where we have used the fact that the product of antisymmetric and symmetric quantities

vanish as well as the identity

I =0d.Invo (4.9)
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where o is the determinant of the metric. Then, by combining (4.7) and (4.8) we find the

following constraint on j¢

0= Ayj°

= 0pj° + j0.In /o
1

0, (V7) (4.10)

or, in terms of components
0 (') = —0s (j*V0o) . (4.11)

Simplification enters at this point by defining a scalar function P(z!, z?) such that

WP =j'\o 0P =—j%/0. (4.12)

Notice that P has been constructed to satisfy (4.11) identically. This allows us to solve for

7% as follows

ja — gababp

= e"A,P, (4.13)

where % is the Levi-Civita tensor. In terms of the completely antisymmetric symbol [a b]!
it is defined by
1
e = —Jab). (4.14)

Vo
This definition of j¢ leads to a simple solution of f%°. By substituting (4.13) into (4.7)

we find

A f® = —e"A,P

= —A, (&*P), (4.15)

IThat is to say [a b] = —[b al.
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which leads to

A, (f*—e®P)=0. (4.16)

This shows that f% is exactly P multiplied by € up to a constant multiple of £%. By

absorbing this constant into the definition of P we find the result
f=e"p. (4.17)
Returning to our four Maxwell-like fields we can define
(2)frab — fgab (2)7ab = zzab  (2)yab — geab @)/ab = peab (4.18)

where f , 2, U, and w are scalar functions of  and 6. We then rewrite (3.11) as a scalar

equation

N
o, (a0f) =0
d, (apQ f) —0. (4.19)
Then for some constant k; we have
f= Cg—lQ. (4.20)

Recalling the asymptotic behavior of a, p, and ) from (2.26) we can make the definition
ap@ = r?sinf cos OF (r, 0), (4.21)

where F' goes to one at spatial infinity. This definition make explicit that at ¢ = 0 and 0 = 5
f diverges, unless k; = 0. So, we find

f=o0. (4.22)

This result agrees with [22] where the authors show that in a 441 spacetime with the Killing

vectors of the MP solution the vector potential only has components in the directions of the
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Killing vectors. We say that such a vector potential is circular. In fact, such a result must be
true since our spacetime satisfies the requirements of theorems which prove electromagnetic
potential circularity( see Carter’s corollary to theorem 7 in [25]). We have, in effect, explicitly
proved this theorem for our special case.

Besides agreeing with previous work, the vanishing of f also begins the simplification of

our equation set. For instance, (4.4) becomes

A, (a’pQe*2) =0, (4.23)
which leads analogously to
z=0. (4.24)
Similarly, (4.5) and (4.6) lead to
=0 w=0. (4.25)

Our progress toward simplification is marked. Already, the four two dimensional Maxwell
fields have been shown to be identically zero. In the next section we show that this allows

us to further simplify the metric.

4.2 Gauge Choice

Now that we have shown that the Maxwell fields vanish on the two manifold, we have
constrained the r and # components of the Killing vectors. These constraint equations leave

room for a gauge choice in certain metric coefficients. For example, from (2.18) we find
DWWy = Wy = 0,1 — 0T, =0 (4.26)

as a constraint on the components of T,,. However, this relation only constrains the r and 6

components since each component is independent of ¢, ¢, and ¢ and T is orthogonal to 1*
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and ¢*. We also notice that this constraint does not uniquely define T, or Ty. Specifically,
any 7, such that

T =T, + dax (4.27)

for any scalar function x(r, 8) still satisfies (4.26). A convenient choice for x is
Ouy = —T, (4.28)
where we have tacitly restricted the index to r and . With this choice we immediately find
T =T,—T,=0 (4.29)

or more specifically
T.=0 T,=0. (4.30)

With T, and Tj set to zero we move on to the next constraint (2.19). Notice again that
only the U, and Uy components are constrained. With this in mind we restrict indices to r

and 6 as before. Under this restriction (2.19) becomes
@y, = 0,U, — U, = 0. (4.31)
We then argue exactly as before that
U.-=0 Uy=0. (4.32)
The last constraint (2.20) has the analogous effect, namely
Vi=0 Vp=0. (4.33)

When we consider the metric as written in (2.21) it is clear that the gauge choice made in
this section substantially simplifies the metric. In effect we have chosen a gauge in which
the metric has no cross terms between the two-manifold and the subspace spanned by the

Killing vectors.
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4.3 The Einstein-Maxwell Equations

While further simplification would be welcome, we have reached the point where simplifica-
tions are harder to come by. Still, we have solved four equations, and their solution does
simplify the remaining equations considerably.

We now write the remaining Einstein equations. First, the two dimensional Einstein

equation on N is

1 1 1 a® p?
2 _
@R == AuAa+ ]3AaAbp + aAaAbQ + 2—])2AGV¢ AV — TQQAaUt AU,
a? 2
_ 7622 (Aa‘/t — UtAaV¢) (Ath — UtAbV¢) + ?Aa ((IzAV) Ab ((ZQAV)
2 2 2 1
+ EBaBb — @EaEb — gO’ab |:¥Ac (a2Av) Ac ((IQA‘/)
1 C 1 C
+ EB B, — @E Ec} (4.34)

The immediate forms of the scalar equations are

a at at
EAC (pQACCL) = Q_ZQZACV(Z) ACV¢ - TC)Q (Ac‘/;f - UtACV¢) (ACW - UtACV¢)
2 2 c 2 CL2 c (12 c
-3 2A. (a®Ay) A° (a*Ay) — EB B, + @E E. (4.35)
2 4
P ac o a” e, DT err 2o pe
- QA (0QAD) = —F AV, AV, — 5 5 AN {23 B.
p2 2 2 p2
- 54 (a*Ay) A° (a®Ay) + @EE} (4.36)
2 a2
LN (apQ) = B A AU+ G (BVi = UALG) (AV; =~ UA)
2 2E°F, QQA 2Ay) AC (a*A & B°B 4
+§ c+§ c(a V) (a/ V)"—F c (37)
b c CL3Q a2p2 c c c 2
Q ae (C2[aN, —U,a1,] ) = —EoA, (a?Ay) (4.39)
% 5 eVt tRcVe = c\a Ay .
Q \o(ap’ a’ . c c
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While this is the initial form of the equations, certain combinations may be simpler to solve.

Notice for example, that we can combine (4.35), (4.36), and (4.37) into

A°A, (apQ) = 0. (4.41)

Similarly, we can combine (4.35) and (4.37) into

a2
c c p c 2 2 c 2
@A (pA aQ) A V¢ A Ve + QQQA Uy AU, — 502 AC (a Av) A (a AV)
aQ 2
— BB, ECEc 4.42
+ 3 + 307 (4.42)
and (4.36) and (4.37) into
1 a? a2
ap_QA (aAch) 2Q2 (A Vi — UtAcV¢) (A V. —UA V¢) — 2—p2ACV¢, A Ve
2 2
2 c 2 c c
+ @AC (a®Ay) A (a®Ay) — ﬁB B. + 3TQQE E.. (4.43)

The reasoning behind these last two combinations is not as clear as the first. However, we
will see in the following chapter that these combinations have definite Dirichlet boundary
conditions, which will be essential for our numerical method.

For completeness we restate the remaining Maxwell equations:

” QA (IBAE(CLQAV)> = ]%B@Aev(Zj éE (AV; — U;AVy) (4.44)
Qp Lo
apQA (“ ) = — A (4.45)
1 ANl
@Ae (515 > = 0. (4.46)

While the last two of these look relatively simple, recall from chapter 3 that E* and B*
are shorthands for longer expressions. In summary, the remaining equations are a two
dimensional tensorial equation and nine scalar equations. In the following chapter we will

motivate which combinations of these scalar equations are best suited to numerical solution.



Chapter 5

Boundary Conditions

In chapter 4 we wrote the Einstein-Maxwell equations after imposing our simplifying assump-
tions. Specifically, we found nine equations with second order derivative operators acting on
our unknown scalar functions. From the theory of partial differential equations, we know that
in order to completely determine these functions we will need to specify boundary conditions
at spatial infinity and the event horizon.

Our assumption of asymptotic flatness and the vanishing of the vector potential at infinity
determine the behavior of all the scalar functions at spatial infinity. In particular they all
approach some constant value. In addition, because we know the asymptotic behavior of
every function we can easily find the behavior of their combinations. However, we also need
a set of boundary conditions at the event horizon before we can solve the equations. We will
motivate a choice of functions which, in addition to approaching a constant value at infinity,

will become constants on the event horizon.

27



5.1. USING THE RIGIDITY THEOREM 28

5.1 Using the Rigidity Theorem

In Chapter 1 we mentioned that there are a collection of theorems that establish the unique-
ness of black holes in four dimensions. One of the components of these theorems has been
called the rigidity theorem [7]. This theorem proves the existence of a Killing vector field
that at the horizon is (i) tangent to the generators of the event horizon and thus a null
vector and (ii) is orthogonal to timelike and spacelike Killing vectors that determine the
stationarity and axisymmetry of the spacetime. (Additional discussion of this theorem can
be found in Appendix A.)

This theorem has a higher dimensional extension. From the 4+1 rigidity theorem [19]

we know there exists a vector field

X" =t = Quo" — Qup” (5.1)

with constants {24 and 2, which, on the event horizon, satisfies

X%a =0, X% =0, x%y=0, x",=0. (5.2)

More particularly, at the horizon x* is tangent to the generators of the event horizon, which
implies that it is null.
Since the inner product between y* and the Killing vectors vanishes at the horizon, we

have the relations
XYal, =0 (Vi = Qy = V) =0 (5.3)
and
X'al, = (Ur = Qo) + Vi (Vi = UV — Q) = 0 (5.4)
where 7, denotes the coordinate location of the event horizon. We can then substitute (5.3)
into (5.4) as
P’ (Uy —Qy) = 0. (5.5)
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Since p? does not vanish at the horizon (or equivalently U® does not become null) we find

Th
where €24 can be thought of as the angular velocity of the event horizon in the ¢ direction.

Using this relation in (5.4) we also find
(Vt - Utv¢) ’Th = Q1/J' (57)

Again, we can interpret €1, as the angular velocity of the event horizon in the 1 direction.

We can then use (5.6) and (5.7) to show

X'ta], =—Q*, =0 (5.8)

at the horizon.
It is clear that the results of the rigidity theorem motivate solving for certain combinations

of the scalar fields. For instance, from (5.7) we choose to solve for the function
W=V, —-UVy (5.9)

since we know the boundary condition at the horizon, and from asymptotic flatness W must
vanish at spatial infinity. In contrast, (5.6) tells us that U;, which “naturally” comes out of
our equation set, is a good function (in the sense of having a known constant value on the
horizon) to solve for.

We can also define three more functions with known boundary conditions using (2.26)
and (5.8). Recall equations (4.41), (4.42), and (4.43), which we claimed would be useful
later. Since we know () vanishes on the horizon, and we know the asymptotic forms of a, p,

and () we can define the following functions

ap@ = r?cosOsinfF, a@) =rcosfG, pQ =rsinfH (5.10)

where F', G, and H all vanish at the event horizon and become 1 at spatial infinity. Thus,

from the rigidity theorem we have found the form of five of the nine functions to solve for.
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5.2 Rotational Cross Term and E&M

Choosing which combinations of the remaining functions have definite boundary conditions
is not as straightforward. As far as we are aware there are no theorems that motivate the
following identities. In these cases we rely on known solutions in the 3+1 and 4+1 cases.
We will see that both the boundary conditions for the rotational cross term function and
the E&M functions will suggest new rigidity-theorem-like vectors.

v
By considering the MP metric (see section B.2) we find that the combination 2 s

D)
p
constant at the horizon with constant value €242, as defined above. This leads us to define

(5.11)

~
11l
’BMLSI

While we have no proof that this Dirichlet boundary condition on the horizon is correct in
the general charged case, we have determined an equivalent condition that is reminiscent of

the rigidity theorem. We begin by assuming that at the event horizon

v
p—g’ = Q0. (5.12)

Th

This implies that on the horizon

0 =ty — a”p* RSy
=g — a* (62 — QQV;) Q4,0
=ty — (V*0a’dp — V" Ypda) Qe
0 =9 [¢0 — Q¢ (D430 — ¥1da)] , (5.13)
or equivalently
0 =¢" [ta — Q" (Vea — d12la)] (5.14)

where we have used the notation 1, = 1@, = a*Vy. The symmetry between these last two

equivalent forms reinforces the idea that both rotational directions are on equal footing. We
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also note that (5.13) and (5.14) can be written in a from even more suggestive of the rigidity
theorem. This is done is section C.2. We would expect similar relationships to hold in higher
dimensions and this case is considered in section C.3.

The remaining functions are for the components of the vector potential. Here we reason
by analogy from the Kerr-Newman metric in 341 spacetime (see Appendix A). In short we

assume the following boundary conditions:

Q2AT|Th = o (5.15)
AU|M = &,y (5.16)
Ay = V3 Ay|, = ®uldy, (5.17)

where the constant @, is the electric potential at the event horizon and €2, and €, are the

constants we defined earlier. The first of these equations is equivalent to
AX®], = P, (5.18)

which is similar to the identity explained by Carter [26] in the 3+1 case. (Compare with
(A.30).) We also find in section B.1 that (5.15) can be explicitly verified for charged Tangher-
lini black holes. We also show in section B.3 that all three of these boundary conditions can
be verified explicitly for Aliev’s [23] perturbative solution.

Similar to the 3+1 case (A.34) we can define the vector
Ay = Ay — P — 05Q40" (5.19)
with properties on the horizon equivalent to the three vector potential boundary conditions.
We find that the conditions (5.16), (5.17), and (5.15) are equivalent to requiring that on the
event horizon
Ap* =0 (5.20)
Ay =0 (5.21)

Agx® = At = @y, (5.22)
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respectively. Similar to our choice of the rotation function W, we solve for
AW = AV — V¢AU (523)

rather than Ay since it has a known boundary condition at the horizon. Note that the form
of A, is very similar to the x*. We make this connection more precise in Chapter 10.

Also, recall that we assume the usual boundary condition for the vector potential at
spatial infinity. Specifically, we assume that each component vanishes as we approach infinity.
So, to recapitulate, we have chosen to solve for the functions F, G, H, U, W, I, Q*Ar, Ay,

and Ay. Which at the event horizon satisfy

F=0 G=0 H=0
Ut == Q¢ W == Qw [ = Q¢Q¢’ (524)
QZAT = (I)h AU = (I)hQ¢ AW = (I)th,

and at spatial infinity

U=0 W=0 I=0 (5.25)
Q*Ar =0 Ay =0 Ay =0.

In short we have chosen a set of scalar equations which satisfy Dirichlet boundary conditions

at the horizon and at spatial infinity.



Chapter 6

Nine Scalar Equations

Now that we have found the nine scalar functions with known (or suspected) boundary
conditions we can write out the Einstein-Maxwell equations for these functions in coordinate
form. We will illustrate this process by one simple example, namely equation (4.41), and
then quote the remaining results.

While the specifics of each equation are not tremendously enlightening there are some
unifying characteristics we will exploit. For instance, we will see that in every equation we
can place terms linear in the function on the left had side, and nonlinear terms on the right
hand side. The left hand sides of these equations all have a similar form, specifically that of
a modified Laplacian operator.

To see how these operators come about, we begin with (4.41) and using our chosen

function F' from (5.10) we have
AA° (r*sinf cos0F) = 0. (6.1)

We then use the following identity for arbitrary scalar functions f and g

Ac(7A%9) = =0, (10" 0hg) (6.2

g
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where /o = re?® from (2.25). We then rewrite (6.1) as

0, (\/EUCdé?d (T2 sin 0 cos QF)) =0

2
sin @ cos 60, (r (T2F)) + %8939 (sinf cos0F) =0

0’°F 50F 1 0%°F 200t0—2tan98_F_

w v tEam T e g (6.3)

This homogeneous equation can be solved by separation of variables, but we will wait until
the following chapter where we will use a Green function approach.

We now define the following quantities for convenience:

r2sin? QF?

oI 1 10F 109G
I =5 +21 (FJFFW_EW) (6.5)
al 1 0G

_OW  r?sin? 0F?1 U,

"=t T e o (6.7)
W, E@@V;/ N r? sin;29F2[ aa[gt s
+ 7"2%2291’2 {%AU + 220 Ayl (; ML L %%—f)] (6.9)
Awe 582;1—;/ —2Aw <tan9 + %%—Z)
+ TQ%ZQW {%AU + %I%— 2Ap1 (cote —tan 6 — é% - %%—ZI)} (6.10)
Ay E% + 24y (% + %36_1: _ é%) <AU N Tzcos2[352AVI>
oot ora or -

H? or
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2 2 2
AU@ ——8AU + 2AU <C0t9 — —a—G) (AU + ricos” OF AVI)

90 G 00 72
" %ﬂ% (6.12)
-2
Ap, E@C)@QfT n r2 5121;29F2 aa(it (AU . r2 COS2I§§72AVI)
N r? cos;@ZFQAV 681/7[“/ 613
L2
AT@ Q;QAAT + 7"2 SIZZQ_FQ aa(gt (AU n T2 COSZ-[—??ZAVI)
+ T2 COS‘ZZ_‘[QQF%AV aaVQV ' (614)

With these definitions in place we write the differential operators and source terms for

the remaining scalar equations. We begin with G and H:

82_G 38G lazG’ cot f — tan@@G
or2 ' ror | r2 002 r2

oG 2+ 1 [0G\? 1 aF

G or rz2 \ 00 F or
N r2sin2 9 F4 ou,\ 2 + 1 8Ut 4 r* cos? 0 sin? O F* 24 [_92
2H2(G3 or 00 2H2(G T2

B 27”2(:(;;5F2G (A%/W—i- A%,;/g> n 4r28z13r26F2 <A(2]r AQU@)
r

202 (1o | Al
+ oo (ATT + 7) (6.15)

82H+§8_H+182H+00t9—tan68_ﬂ_
or? ror 1?2002 72 00

1 ((0H\* 1 (9H\®\ _10F o, 1
H or r2 \ 00 F or \ or

r?cos?OF* (., W risin®@cos? OF* [, 12
+—(W +—)— (ITJW_?)

2H3G? T r2 2G2H
N 472 cos? F? A2, 4 Az B 2r2sin? OF2H A2 AQM9
3H 72 3G? r?

2F? (o Al
+ 3G—2H (ATT + 7) . (616)



36

Notice the symmetry between the G and H equations, where U, is the rotational functions
associated with G' and W with H. In fact, for the Tangherlini black holes, where all rota-
tional functions vanish, G and H are identical. This identity is motivated from symmetry
considerations in Appendix C.

Next, equations for the functions related to rotation:

82Ut i §8Ut i la2Ut i 3cotd —tan@@Ut B
or? ror  r2 002 72 00

QU (409G 20H _50F\ 10U, (409G 20H
or \Gor H Or F or r2 00 \G o0 H 00
r2 cos? OF? I, W, AvoArg
- H2 (I’/‘WT‘ + 7"2 ) -2 (AUT‘ATT‘ + 7’2 ) (617)

82W+§8W+i82W+cot0—3tan98W:

Or? r or  r? 002 r2 oY)
ow (20G 40H 50F 10W (20G 4 0H
W( _____)+EW(5%+EW>

55 + H Or F or
B r2sin? F? {8Ut [af (1 1 OF 18H)}

)Y O il
G2 or 8r+ T+F8r H Or

+ L oU, {g — 21 (tan@—i—la—H)}}

7200 |09 H 00
AW@AT@ 7”4 COS2 0 sin2 ‘9F4I IgWg
—2 (AWTATT -5 > - Ve LW+ =
27’2 sin2 9F2] AU@A 9
+— (AUTATT +=3 4 ) (6.18)
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@—i— 78[+l@+3cot9—3tan0g_
or2  ror  r?2062 72 00
(9](23G 2 OH 5(9F) 18[(28G 23H>

EW—FH@T F or
g(l@_G 10H 20F r 0GOF r OHOF r O0GOH
,

ar Hor For) 7Pog\Gog "Hog

G8T+H8r F8T+GF6T8T+HF6T8T GH or or
_L (6F>> 4_I<coteaH tanf G 1 aGaH)

or 2\ H 00 G 00 GH 0 90

F* (0oU,0W 190U, oW AwoAuve
- — —2( Ay, A
G*H? (87“ or * r2 00 00 ) ( wrdur ¥ 72 )

o [rsin®Qcos?OF% (., 12 2r¢cos’0 [, Ak,
WF{ e\ te) T e (At

4r¥sin®0 [ Az, 2 9 A?m
+T (AUT = +3G2H2 Aq, + —2 )| (6.19)

Last, the equations for the components of the vector potential:

PPQ*Ar N §3Q2AT 182Q2AT N cot 0 — tan 6 0Q*Ar
or? r Oor r2 002 r2 060

8Q2AT(23G E@_H_i@_F)+i8Q2AT(28G+28H)
or r2 00 G o0 H oo

G8T+H8r F or

Tzsin 9F2 <8AU 8Ut i 1 8AU 6Ut) _ TZCOS29F2 <8AV 1 8AV )

o2 or or 12 00 o0 g ar Vg W

20F%A 2QF?
N r? sin U {r cos (I W+ I(;W@) 49 (AUTATT+ AUOATB)‘|

G2 H2 T2
902 cos? OF? A AppA
+ COSH2 v <AWTATT + W;’g T") (6.20)

8214(] 5 OAU 1 62AU 3cotd — tanb 8AU

a2 i or Trae T = 20
0Ay E@_G B EO_F i@AUa_G r? cos? O F? I 0Ay Rl Iy 0Ay
or \Gor For r2G 00 00 H? " or r2 00

B Gf;ﬁ (f?aUt 8@;AT iz %(gt aneAT) LA F? {74 COS;;QS; OF> ([3 .\ I_{g)
r r r r
2r¢cos? 6 [, Az, 4r¥sin®0 [, A%,
(A e )
2 , A2, 2r2 cos? OF2 Ay
METeE (ATT 2 )T H2

AwoAre )

(AWTAUT +—3 (6.21)
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82AW 5 aAW 1 82AW cot ) — 3tané 8AW

a2y or 2o T = 00
OAw (20H _3OF\ 2 0w
or H Or F or r2H 00 00

r2sin? 0F? 8AUg N l(‘?AUg B F? 0Q*Ar OW i@QQAT(‘?_W
G2 or Or 1?2 00 00 G2H? or Or r2 00 00

2 i02 2 2
o [r7sin®l [, Apy 1 o Afg
~2y | (S ) — g (4 S

_2T2 cos? 0 (AI%V N A%,W) +AUT2 sin? 0 (AU - AU@AW@):|

3H? r2 G? 72
r?sin® OF* [rtcos® Osin*0F? [, 12 8ricos?d (., A,
— Al [ G H? (fr * —) T T (AWT T )
107 sin” ¢

A2 2 A2
2 Ueé 2 To
3G2 (AUT = ) NETETE (AT’“ " 7)}

r?sin?@F% [ 0Ay (1 10F 10H 20Ay 1 0H
I 2 - - === —
a2 { ar ( ) <tan9+Hae)

r For HOor r 00

7’2 COS2 0F2 8AV 8AV Ig 7“2 COS2 QFZ AWQAUQ
—_ I — - 7=
H? ( or " * or 7’2) 24y H? (AWTAUT * r? )]

(6.22)



Chapter 7

Green Functions & The Numerical

Method

Two of the important results given in the previous two chapters are that the scalar equations
each satisfy one of a family of differential operators and each satisfies Dirichlet boundary
conditions. These properties motivate the construction of Green functions for this family of
operators.

In this chapter we will construct this family of Green functions and explicitly solve for
the boundary terms that result from Green’s identity. This analysis will give us the analytic
solution for the function F immediately and motivate the lowest order radial behavior of

each scalar function. We conclude the chapter with some details of our numerical method.

7.1 Construction of Green Functions

We begin with the five dimensional flat space metric in bi-azimuthal coordinates (2.24). Note

that this metric has determinant

g = —r%sin? 0 cos? 6. (7.1)

39
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We take the usual definition of the Laplacian in 5D (4 spatial dimensions) of a scalar function

f as

Vif = %aa (V=99"0nf)

_672_]” 390f l82f cot § — tan O f
Cor2  ror  r? 062 r2 09

(7.2)

By comparing with the operators that appear in the Einstein-Maxwell equations in chapter
6 we notice that each of the scalar equations satisfies (7.2) or a modification of the same.

This motivates our definition of the family of differential operators

5 _ o2, Ptqd  pcotd—gtand 9
V(Fa‘]) =V + r 87“+ r2 897

(7.3)

where p,q € {0, 1,2}, for which we want to construct a Green function.
When constructing a Green function we typically use self-adjoint operators. These oper-

ators are of the form wV%py 2 f for some scalar weight function w and must satisfy
WV, f =V - (wVf), (7.4)

where V is the gradient with respect to our flat space 5D metric in (2.24). In the case of the

operators (7.3) w can be shown to be
w = (rsinf)? (rcosd)?. (7.5)

Now that we have a self-adjoint operator we can begin to determine the Green functions.

As usual we want to find the Green functions G, q)(Z, Z’) which satisfy
WV Gl = —4770(T — ). (7.6)
Proceeding in the usual way, we begin by solving the homogeneous equation

Vi Gowa = 0. (7.7)

(p,q
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We employ separation of variables, defining G = R(r)©(f) and choosing the separation
constant to be 2[(2l + p + ¢ + 2). Changing coordinates to u = cos26 we find that the

angular equation becomes

20 [p-— 0
(1—,ﬂ)——{u+u(2+¥)}@H(HH}%)GZO (7.8)

which is the Jacobi equation.

[MS]

q
’2

The solutions to (7.8) are the Jacobi polynomials P>'?(u). These are shown (in [27] for

example) to have the orthogonality relation

p+

Dopg g . 2T (n+ 14+ )T (n+1+9)
P22 ()P22 (1) (1 — 10)2 (1+ )? dp = 2 2)5
[ P PR ) 0w et = S

[NIiS]

(7.9)

Notice that the weight function (7.5) includes the angular piece needed for the orthogonality

integral. The polynomials also satisfy the recursion relation
P+q P+q 5.2
2(1+1) <l+1+T) (2l+T> P22 (p) =

2 _ 2 P g
<2l+1+¥> KquL}%) <2l+2+1%>u+p q]plw(m

2 (14 B) (e 8) (22 50 PR, (7.10)

Most importantly, the Jacobi polynomials form a complete set which allows us to expand
the delta function in p as a sum of Jacobi polynomials.
In order to make use of this property, we note that with respect to our four spatial

dimensions

5@ — &) = 2 5(r — ) — )56 — ¢)5( — o). (7.11)

3
Since we can expand d(u — p') in terms of the Jacobi polynomials and (7.3) is independent

of ¢ and 1), it only remains to find the one dimensional Green function g(r, ') satisfying

2 d 1
rpﬂd—?z + 17 (p+ g+ 3) d—‘z — pPtaT2y (l +1+ %) = S0(r—r'). (7.12)
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We find the solution to be

r2 T\ A+2+p+g ,
/ 2244l + 2 4+ p + q) 1_<?> T
g(r.1) = o (7.13)

1 r 414+24-p+q ;
— (= >
rAt2Hrta(4] + 2 4+ p + q) <7"’> rer

or more compactly

20 ) A2
g(r,r') = - 1— (—) (7.14)
AP 2 g |\

where 1y, is the r value at the event horizon. The full Green function is found to be

i IT (1+ 1+ 251)
~T(I+1+5)T(1+1+9)

il - 4l+2+p+q
X 1—(— . 7.15
PP 41+ 2+ p+ ) (T<) (7-15)

7.2 Boundary Terms

G ) (1 1,7 1))

Recall that for a function f which satisfies

v%p,q) f=35 (7.16)

Green’s identity is

/ (wa G — GwV(pq)f) dV:% w(fVG — GVf) - da. (7.17)
1% oV
All the functions we are solving for satisfy Dirichlet boundary conditions so we choose our

Green function to satisfy homogeneous Dirichlet boundary conditions. In particular this

forces
]{ wGV f = 0. (7.18)
v

This relation along with (7.6) and (7.17) allows us to solve for f using

—47r2f—/GwadV=]§ wfVG -da (7.19)
14 ov
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or after integrating over ¢ and 1
Oo g 13 /o /3.0 10! g A /o ! 10!
f=- GwSyr'” cos ' sin6'dr'do" — wfVG - nr” cos @ sinf'df (7.20)
Th 0 0
where n = 7 at ' = oo and n = —7 at the event horizon, denoted " = r,. Because we take
f as having constant values on the boundaries, we can evaluate the boundary integral using

the orthogonality of the Jacobi polynomials. At infinity the boundary term becomes

24p+
o (1= (=) (7.21)
r
and at the horizon

l, () (7.22)

We can now solve (6.3) for F' immediately. We recall from (6.3) that Sp = 0 and

p = q = 1. Further, from (5.24) and (5.25) we have F|rh = 0 and F|C>o = 1. Direct

F= (1 - (%)4) . (7.23)

This result is verified explicitly in Appendix B using the charged Tangherlini and MP solu-

substitution into (7.20) we find

tions as well as Aliev’s perturbative solution.

For the remaining equations it is convenient to change variables. We do this to simplify
our numerical solution of the equations and to enforce boundary conditions more precisely.
As before, we will set p = cos 20 with p € [—1,1]. In order to enforce boundary conditions

at spatial infinity exactly we use a compactified coordinate, s, defined by

Tn
=1-—. 7.24
s=1-- (7.24)

Note that this maps the horizon to s = 0 and spatial infinity to s = 1. Our final equation
for f is then

4
Ty

f= —/0 wGSf—4(1 — S)Sd'u/ds’ + f|3:0(1 N 8)2+p+q 4 f|3:1 (1 _ (1 _ S)2+p+q) (7'25>
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where

TZJrq
= 1
w(&ﬂ) 2p+ (1_3>p+q( +:u)

[N4S)

(1—p)? (7.26)

and

o i Ir l—|— 1+ p+q) (1 . 8>)2l+2+p+q
IICHESTY

T l+1+ YD (I+1+2)r (1 — s )2
g

x (1 = (1= s PR () R (), (7.27)

7.3 Numerical Method

Now that we have found this family of Green functions we turn to numerical methods to solve
our equation set. While (7.25) appears to be a straightforward definition for an unknown
function f, recall that the term Sy in the integral conceals significant complexity.

From Chapter 6 we recall that the source terms of our partial differential equations couple
each function (excluding F') to the other seven. In addition, each source is nonlinear in all
nine functions. Specifically, for a given function f the source will include nonlinear terms
that contain f itself. This complicated nature of the source terms encourages us to employ
an iterative method to solve the equations.

Before we can begin such a process we must first be ready to evaluate the source terms.
Recall from Chapter 6 that these terms can involve combinations of the functions themselves
and their derivatives with respect to s and p. In order to evaluate these combinations we
specify each function at every point of an evenly spaced (N + 1) x (M + 1) grid. On this
grid s varies from 0 to 1 in steps of % and p varies from —1 to 1 in steps of % With our
functions defined on this grid, we use fourth order centered difference derivatives to evaluate
each function’s source.

Returning to our iterative method, we begin by specifying an initial guess for each of

the functions. This guess is typically motivated by the known black hole solutions in five
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dimensions. We also use the boundary terms to guide our initial guess. Since these boundary
terms are functions of s, they must represent at least the lowest order radial behavior of the
function in the vicinity of the respective boundaries (the event horizon or spatial infinity).
Once a guess has been specified, we calculate the source terms for each of the functions.
After each source has been calculated, we can use (7.25) to generate a new guess for the
next iteration. In effect, we make a series of successive approximations of f. If we denote
our initial guess fy and fy the result of the Nth iteration, then we can rewrite (7.25) for the

Nth iteration as

4

fv=- /01 WGSf(fN—l)ﬁdﬂ/dsl + f] (L= ) Pr g f| (1= (1 —s)*™PH).
(7.28)
Notice that the integral depends on fy_; from the source terms, but the boundary terms are
known explicitly for the exact f. This means that the same boundary term is added after
each iteration.

Before we evaluate the integral in (7.28) we must construct the Green function in the
numerical code. The first obstacle is the generation of Jacobi polynomials. Clearly, we
cannot generate the complete set, but using the recursion relation (7.10) we can generate
the first [ polynomials, where we leave [ as a user defined parameter. To begin this process

we take the usual definitions

D
2

Pp? =1, P =p+B(1+p) — 41— p). (7.29)

(SIS
[S]N<}

The remainder of the integrand, such as the weight function, is straightforward to construct.
We then evaluate the integral using Simpson’s rule and add the appropriate boundary terms.

As stated before, the output of this process serves as the new guess for the next iteration.
Of course, we do not perpetuate this process indefinitely. After each step, we calculate how
much each function changed during the iteration. Once the changes in the system as a whole

have become sufficiently small we say that the system has converged to a solution.



Chapter 8

Two Dimensional GR

Once the nine scalar fields have been determined we return to the remaining tensor equation;
specifically, the Einstein equations on the two dimensional manifold A/. In this chapter we
show that this tensorial equation can be reduced to a first order partial differential equation
for one unknown function. Furthermore, we formulate this equation so that it is well suited
to numerical solution.

Recall from (2.25) the line element on o,,. Then using (2.28) we find the unique compo-

nents of the connection on N:

r _ Oa r _ Oa T . .20a

L =5 [Ty = 50 Loy = —1r—1°5 (8.1)
0 __ —10«a o _ 1 Oa 0 _ O«

=25 Tw=7+% Tw=20%

Then using (2.33) we find the Ricci tensor on N to be

1 9%« 1 da 9%«
B 2oz Trar T a2 0
Rab__ 52 a 52 (82)
@] [ 20%«a
0 W—FTE—'—T 2

Using (4.34) we now write the three unique equations that must be satisfied. First, (using
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the definitions from chapter 6) the r,r equation

—10*%a 10a J*« da (2 10F 1 da
woE ror o or ; a_ T iagg (010~ tene)

F

1 82F+46F 2 2 2 G +28F 190G

F\ o062 ror G Or For Gor
_20H (1 208 LG_H L 2 0GOH _sin0F! (90’

H or For Hor GH Or oOr 2G1H? or

rd C08298111 8F4[2 _ rPcos?OF! N 2r% cos® O F? oA Az

2H?2G? " 2G2H* " 3H? Wr r2
222 2 2 2

+2T sin® O F (QAQUT—AUG)— 2F (214%7»—@)- (3.3)

3G? 72 G?*H? r?
Next, the 0,0 equation:

10°a¢ 10« 3a:aa (2 18F)_%8—(cot9—tane)

2902 ror oz or For 00
_|_L8_F+ia_G la_G_ t 6 +ia_H ia_H_Ft 0
rF Or  r2G 00 \ G 00 r2H or \ H Or an

sin? 0 F* OU, N r? cos® f sin® O F* = cos? O F -~
2G4 H? 00 2H2G2 DTELY;
_ 2r%cos® OF? ( 2 2A§V9> _ 2r%sin® GF? ( s 2A2Ue)
Wr Ur

3H? 3G? 72
2F2 ([, 212,

Last, the 7,0 equation

a(cot@—tan@) Oa 24—18—F _Lor cot@—tanﬁ—za—G—Ea—H
or o \r "For) For G oo H o0
+18Ht 9+28H _18G 8—28G +1(‘9H 18G_1
Tdor "™ ger) " cor \“'"Gca ) Tmae \Gor 7
n 1 0G 16H_1 T sin 0F48Ut8Ut+r40082€sin29F4II
Goo \Hor r 2GAH?2  9r 00 2G2H?2 o
r2cos? OF* 2r2 cos® O F? 2r2 sin? 0 F2
- ST W, Wy + —H AwrAwe + —G AvrAve
2F?
BN e —— Ary Arg. (8.5)

Recall that R, is symmetric so the 6,r equation contains no new information.
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We can then subtract (8.4) from (8.3) to create one equation. We do this because the form

of this new equations is very similar to (8.5) and, most importantly, the second derivatives

of o cancel.
Oa 2+18F +0a( (0t 9)_1817 18F_1_28G_28H
or \r F Or 00 0 an - For\For r GOor Hor
10G /1 1 0G +18G ‘0 1 0G 10H /1 1 0H
Gor\r Gor) r2Gog \“" Gos) Hor \r Hor
1 OH 1 OH 1 0G O0H 1 0GoH
— ——— (tanf + —— — === - ===
r2H 00 H 00 GH \ Or Or r2 00 00
B r2sin? 0 F* oU,\ 2 1 /ouy 2 N r* cos? O sin? O F* . I_g
4GAH? or rz2 \ 00 4G2H? [
r? cos? O F* Wi 2 cos? O F* Az
e (W) g (5
r? sin? O F2 A%, F? AZ,
A (A%,r A ) e (A%r _ Tg) | (3.6)

The equations (8.5) and (8.6) form a linear system which we will invert. To make this
clearer we define the right hand side of (8.5) as C' and the right hand side of (8.6) as D. We

also make the definitions

A:%%—%%—f B = cotf — tan6. (8.7)
We can then express (8.5) and (8.6) as
B A b C
= . (8.8)
-1 da
A =B 57 D

This can be easily solved for the derivatives of «

G 2 =B —A C

oo | BEATATN 4 p || D
1 BC +r?AD (59)

B2+12A% | 240 — BD)
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From the theory of first order partial differential equations, either of the two equations
in (8.9) determines a completely. That is, the two equations for o do not over specify the
problem. Instead the two equations should be viewed as integrability conditions. We choose

to solve
2

T 10
since the boundary condition in r is easily applied. Recall from (2.26) that at infinity «
vanishes. We enforce this condition using the compactified coordinate s defined in (7.24). It
is also possible to solve the 6 derivative equations by enforcing local flatness as a boundary
condition at either # =0 or 6 = 7.
Finally, we draw attention to the fact of a’s decoupling from the elliptic equations listed

in Chapter 6. While a depends on each of these functions, they do not depend on «. This

allows us to first solve the elliptic equations and then use that solution to solve for a.



Chapter 9

Results

In this chapter we present and discuss our numerical results. We first demonstrate the
pros and cons of our method by recovering the known solutions of the Einstein-Maxwell
equations. Following this analysis, we present numerical solutions for charged MP black
holes. Specifically, we consider the scalar functions satisfying the equations in Chapter 6.
We do not consider the function « since it is not coupled to the other equations. Also, we

note from Appendix B that for the known solutions the functional form of « is

o () o

where the exact definition of ¥ can be obtained from other scalar functions. It is likely that
this relation also holds for charged MP black holes. If this is the case, once we have solved

the coupled equation set we will also know .

9.1 Tangherlini

We begin with the equations for a spherically symmetric black hole without electric charge.
The analytic form of this black hole solution (and its charged generalization) was found by

Tangherlini [12] and serves as a basic, but nontrivial, check of our equations and method.
50
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Figure 9.1 The numerical output of the function G corresponding to the Tangherlini
solution denoted by a representative set of discrete points overlaid on the exact
solution. For this solution we used a 401 x 201 grid and set r, = 0.5. We see that
the numerical results agree very well with the exact solution.

Since this solution does not allow rotation and is uncharged, the only nonvanishing un-
known functions are G and H. Applying this to equations for G and H, (6.15) and (6.16)
respectively, we find that they uncouple from one another. Furthermore, we notice that G
and H satisfy identical equations. Because they also satisfy identical boundary conditions,
they must be the same function. We refer to this function as G in the remainder of the
section.

In addition to these simplifications, our assumption of spherical symmetry implies that
G is a function of r only. In effect, our set of eight coupled partial differential equations has
been reduced to one ordinary differential equation. However, we still use our Green function
solver as a test of our method.

As outlined in Section 7.3 we first pick an initial guess for G and then calculate the
source. We discover immediately that our initial choice for G can determine whether or not

our algorithm converges. For instance, if we choose to begin with the flat space solution,
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Figure 9.2 The difference between the numerical solution for Tangherlini function
G and the exact solution. For this solution we used a 401 x 201 grid and set
r, = 0.5. The behavior of the error is not important, since it is at the level of
machine precision. The important fact is the order of the error is 1071°,

corresponding to G = 1, then the program begins to oscillate wildly after a few iterations.
We note that this guess does not satisfy the boundary conditions for G. Apparently, a guess
so far from the functional form of G is not good enough.

Recalling that the boundary term from (7.25) corresponds to at least the lowest order
behavior of GG, we choose this term as our initial G. From Chapter 5, G must vanish at the
horizon and become 1 at spatial infinity, s = 1. Also, from the differential operator in (6.15)

we find p = ¢ = 0. Thus our initial guess Gy is

Go=G|_, (1—(1—s)*7")
=(1-(1-3s)). (9.2)
When we use this initial guess the program converges immediately. In Fig. 9.1 we plot a

representative sample of the numerical result alongside the exact solution. We can see that

the two plots agree very well. We see just how well in Fig. 9.2, where we plot the difference



9.2. CHARGED TANGHERLINI 53

between the numerical and exact solutions for G. The particular behavior of the error is
unimportant in this case. That the error is on the order of 107 is the important fact.
This degree of accuracy must be taken with a grain of salt. For the uncharged Tangherlini
black hole it turn out that G = Gy. That is, the boundary integral is exactly G. We have in
effect guessed the correct solution, and our program has confirmed that it is correct. Still, we
gain confidence in using the boundary terms for the other functions as guides to our initial

guesses.

9.2 Charged Tangherlini

The charged Tangherlini black hole shares many of the simplifications from the previous
section. All functions that have to do with rotation vanish, and the remaining functions
depend only on s. When we compare the source terms of G and H we see that while they
might be identical, there is no immediately apparent reason why they must be. However, as
we observe in Section C.2 symmetry considerations force them to be identical.

Thus, we have two independent functions to solve for: G and Q*Ar. Since we know the
analytic form of G in the uncharged case we take that form as an initial guess for the charged
case. Taking our lead from our experience with the uncharged case we use the boundary

term Q?Ar as our initial guess. So,
QZATO = (I)h(l — S)2 (93)

where @), is the electric potential at the event horizon as defined in Chapter 5. The constant
is left as a free parameter in the program with which we can increase or decrease the charge
of the black hole. A similar free parameter is r, the radial coordinate of the event horizon.
This parameter can be thought of a a way to increase or decrease the mass of the black hole.
We omitted it from the uncharged case because, while that black hole has mass, it turns

out that G is independent of r, in the uncharged case. When generating solutions we set
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rp, = 0.5, which from (B.6) corresponds to setting m = 1 where m is the mass parameter in
the Tangherlini solution.

-3 Q2At Comparison
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Figure 9.3 We plot Q?A for a charged Tangherlini black hole. The numerical
solution is compared with the exact solution. We use a 401 x 401 grid, r, = 0.5,
and ¢, = 0.001. Notice that near the event horizon, s = 0, the agreement is poor.

One last set of important parameters to set are the dimensions of our grid. Recall from
Section 7.3 that each function is defined on an N + 1 x M + 1 grid where s varies along N
and p along M. As we increase the size of N or M our numerical functions more closely
approximate the continuum limit. This should increase the accuracy of our derivatives and
integrations, and in short reduce the error of our method. Conversely, as the size of the grid
decreases the program runs more quickly. Again, as the uncharged case had error on the
order of machine precision, varying the size of the grid had little effect past a certain point.
In particular we used a 401 x 201 grid to generate Figures 9.1 and 9.2.

Contrary to the uncharged case, charged Tangherlini black holes illustrate the effects of
varying these parameters. For example, Fig. 9.3 compares the numerical and exact forms of

Q*Ar. In this plot we have set 1, = 0.5, @, = 0.001 and use a 401 x 401 grid. It is clear from
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Figure 9.4 We plot the error between numerical and exact forms of Q*Ar for a
charged Tangherlini black hole. We use a 401 x 401 grid, r;, = 0.5, and ®;, = 0.001.
Notice that the error has an oscillatory form. These oscillation errors seem to be
sourced by the event horizon and propagate into the solution.

the figure that near the event horizon it becomes difficult to converge to the correct solution.
In Fig. 9.4 we see that the numerical solution seems to have an oscillatory departure from
the exact solution near the event horizon. We will see this behavior repeatedly in subsequent
graphs. It appears that the event horizon acts as a source of these error oscillations, which
then propagate into the full solution.

This behavior hear the horizon is unsettling, but perhaps it becomes vanishingly small
as we increase the size of the grid. In Figs. 9.5 and 9.6 we compare the numerical and exact
values of Q? Az, but now we have increased the gird to 801 x 801. In comparing Figs. 9.3 and
9.5 we notice the discrepancy of the latter from the exact solution is slightly improved, but
not as much as we might have hoped. This sentiment is confirmed as we compare Figs. 9.4
and 9.6. While the error is smaller when we use the larger grid, the change is not dramatic.

In Figs. 9.7 and 9.8 we construct plots similar to those previous, but we have increased

the grid size to 1601 x 1601. Inspection of these plots reveals that the magnitude of the error
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Figure 9.5 We plot Q?Ar for a charged Tangherlini black hole. The numerical
solution is compared with the exact solution. We use an 801 x 801 grid, r, = 0.5,
and ®, = 0.001. Notice that near the event horizon, s = 0, the agreement is poor.
However, by comparing with Fig. 9.3 we see that the discrepancy from the exact
solution is slightly improved.

has not changed much, but the location and form of the error has. Specifically, the bulk of
the error in Fig. 9.8 is below zero rather than the more even splits of the previous graphs.

We also consider what effect increasing the grid size has on (. In Fig. 9.9 we see that
the numerical and exact solutions agree very well. In this plot we used a 1601 x 1601 grid,
however the plot for a 401 x 401 grid is distinguishable. In Figs. 9.10 and 9.11 we plot the
error using grid sizes 1601 x 1601 and 401 x 401 respectively. First, by comparing with Fig.
9.2 we note that the error is much larger than in the uncharged case. We also see that the
decrease in the error is small, similar to what we observed with Q%?Ar.

Since we have not yet shown a plot of QA that corresponds to the exact solution, one
might wonder if our equations are correct. To alleviate this fear we use the exact solution as
our initial guess to check our equations. In Fig. 9.12 we compare the exact and numerical

solutions when the initial guess is the exact solution. Note that the code is forced to go
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Figure 9.6 We plot the error between numerical and exact forms of Q*Ar for a
charged Tangherlini black hole. We use an 801 x 801 grid, r;, = 0.5, and ®; = 0.001.
When compared with Fig. 9.4 we see that the amplitude of the error is slightly
smaller with the larger grid.

through at least two iterations, so this does check our equations.

Again, comparison of G with the exact solution appears identical to Fig. 9.9. However,
the error in G and Q?A7 as shown in Figs. 9.13 and 9.12 has gone down considerably from
before. A remarkable result is that the error in G is now largest in the middle of the grid
rather than at the event horizon. We also notice that while the error is much smaller than
the previous charged cases, it is still much larger than the uncharged black hole. Conversely,
the error Q?Ar has the same form as in previous cases, and that while it is smaller the
difference is not as dramatic as with G.

Up to this point all our results have kept @, and hence the charge of the black hole, fixed.
Ideally we should be able to increase the charge of the black hole without incident until we

reach some maximal amount of charge, that if passed would lead to a naked singularity®.

IThis is exactly what happens in the 3+1 dimensional case.
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Figure 9.7 We plot Q?Ar for a charged Tangherlini black hole. The numerical
solution is compared with the exact solution. We use a 1601 x 1601 grid, r, = 0.5,
and ®, = 0.001. Notice that near the event horizon, s = 0, the agreement is poor.
However, by comparing with Figs. 9.3 and 9.5 we see that the discrepancy from the
exact solutions takes a different form, but is not smaller in magnitude.

Unfortunately this is not the case. After increasing @, to a certain point (which is not close
to maximal) the program no longer converges.

In Figs. 9.16, 9.15, and 9.17 we plot the comparison of Q?Ar with the exact solution,
the error in G and the error in Q%A respectively. In each of the figures ®;, = 0.25 and the
grid size is 401 x 401. We also used the exact solution as our initial guess. With this in mind
we notice immediately that the error in G is very high when compared with the ®;, = 0.001
case. Conversely, although the error in QQ?A7 appears high recall that the function itself
becomes much larger. So, the error keeps about the same proportion to the value of the

function. When @, is increased significantly past this point the program begins to fail.
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Figure 9.8 We plot the error between numerical and exact forms of Q*Ar for a
charged Tangherlini black hole. We use a 1601 x 1601 grid, r, = 0.5, and ®; = 0.001.
When compared with Figs. 9.4 and 9.6 we see that the error has a larger negative
amplitude and smaller positive amplitude.
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Figure 9.9 We plot G for a charged Tangherlini black hole. The numerical G is
compared with the exact solution. We used a 1601 x 1601 grid, r, = 0.5, and
®;, = 0.001. Similar to Fig. 9.1 the agreement appear to be excellent.
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Figure 9.10 We plot G for a charged Tangherlini black hole. The numerical G
is compared with the exact solution. We used a 401 x 401 grid, r, = 0.5, and
®;, = 0.001. Notice the error has similar behavior and order as that of Q?Ar.
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Figure 9.11 We plot the error between the numerical G for a charged Tangherlini
black hole and the exact solution. We used a 1601 x 1601 grid, r, = 0.5, and
®;, = 0.001. Compare with Fig. 9.10 and note that the total error is slightly
reduced.
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Figure 9.12 We plot the error between the numerical Q? Ay for a charged Tangher-
lini black hole and the exact solution. We used a 1601 x 1601 grid, r;, = 0.5, and
®;, = 0.001. In this case we take the exact solution as our initial guess. Note that
the numerical solution agrees with the exact solution.
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Figure 9.13 We plot G for a charged Tangherlini black hole. The numerical G
is compared with the exact solution. We used a 1601 x 1601 grid, r, = 0.5, and
®;, = 0.001. In this case we use the exact solution as our initial guess. Notice that
the error is still greater than the uncharged case, Fig. 9.2 but smaller than all other
charged cases.
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Figure 9.14 We plot the error between the numerical Q? Az for a charged Tangher-
lini black hole and the exact solution. We used a 1601 x 1601 grid, r;, = 0.5, and
®;, = 0.001. Notice that the error is significantly smaller than previous cases.
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Figure 9.15 We plot the error between the numerical and exact G for a charged
Tangherlini black hole. We used a 401 x 401 grid, r, = 0.5, and ®;, = 0.25. In this
case we use the exact solution as our initial guess. Notice the order of the error is
larger than before.



9.2. CHARGED TANGHERLINI

Q2At Comparison
0.35

0.3f

0.257

0.2

0.15¢

0.1r

0.05¢

0 0.2 0.4 0.6 0.8 1
)

Figure 9.16 We compare the numerical Q%A for a charged Tangherlini black hole
and the exact solution. We used a 401 x 401 grid, r, = 0.5, and ¢, = 0.25. Our
initial guess was the exact solution. Notice that the agreement is excellent.
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Figure 9.17 We plot the error between the numerical Q?Ar for a charged Tangher-
lini black hole and the exact solution. We used a 401 x 401 grid, r, = 0.5, and
®;, = 0.25. We see that the error is similar in behavior and order to the error in G.
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9.3 Myers-Perry

The rotating black hole solution found by Myers and Perry [14] is considerably more compli-
cated than the Tangherlini black holes. This family of black holes solutions is not spherically
symmetric, so each function we solve for will in general depend on both s and p. We must
also account for the three rotation functions U;, W, and I, and recognize that G and H are
no longer identical.

We will also find the same type of instability in the MP code that we found in charged
Tangherlini. When our initial guess is not very close to the exact solution we have oscillatory
error propagating from the horizon. In addition we will find oscillating error in p along the
horizon. Also, similar to the behavior we found when varying ®;,, the parameters €, and

2, can only be increased so much before the code fails to converge.

9.3.1 One Rotation

We begin by considering a MP black hole with only one nonzero angular momentum. This
limited case is useful place to begin. The single rotation code is more stable in both the
charged and uncharged cases. A solid background in the uncharged case will prepare us for
the charged case which we consider later.

As we have shown in Appendix C the functions U; and W are conjugate under a symmetry
transformation. This is a consequence of the arbitrariness of the labels ¢ and 1) that we have
assigned to the two spacelike Killing vectors. This is why there is no need to discuss the two
possibilities of single rotation. In this section we will assume that U; and I are identically
zero, but choosing W and [ to be zero would give equivalent results.

When we consider equation (6.15) with I, U; and the vector potential set to zero we notice
that G decouples from the other equations. In particular it reduces to the same source terms

for the uncharged Tangherlini black hole. In Fig. 9.18 we plot the numerical result for G
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on an 801 x 801 grid with 7, = 0.5 and €, = 0.1. However, G becomes independent of
these parameters as it decouples from the other equations. It is also independent of y since
it reduces to the Tangherlini case. The error, as seen in Fig. 9.19, is of order 1076, This

agreement appears in the same way as it did in the uncharged Tangherlini case.

G data

0.8
0.6

0.4

"y,
Wt2pqttty
V217544104
G
L
1’%%%% %
et
i s
AT

7

0.2

2
2
SR
T %
a1y e
i
iy gt e g
0 Vi i
1 1 R
Ly, 1, e,y g iyl terg
Uiyttt ergt e
i
L0y 0 0
LA
BT,
Lyggt il
iyttt 00 g
Ui
Ly
4

0.5

Figure 9.18 The numerical results for G from a single rotation MP black hole.
These results were calculated on an 801 x 801 grid with r;, = 0.5 and €, = 0.1.
However, since G uncouples from the other equations in this case the result is
independent of these parameters.

The function H does not reduce to a previous case. However, as shown in Fig. 9.20 H
appears to be identical to GG. Closer inspection of H reveals it is p dependent, but on a
smaller scale.

We now take the Tangherlini solution as our initial guess supplemented by the boundary
term for W. Specifically,

Wy = Qy (’;—h>4 (9.4)
where we set 2, = 0.001. In this case H appears exactly as in Fig. 9.20. In Fig. 9.21 we
plot the error in H between the numerical and exact solution. While the error in H is much

larger than in GG, the order of the error is significantly smaller than the order of H. We also
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G error

Figure 9.19 Error between the numerical and exact G for single rotation MP black
hole. These results were calculated on an 801 x 801 grid with r, = 0.5 and €2, = 0.1.
Similar to Fig. 9.2 only the order of the error is important.

notice that the error is largest near the event horizon, and propagates out from the horizon.
This behavior is similar to what we saw with Q?Ap in section 9.2. In addition we notice
error oscillations in p along the event horizon.

The appearance of error at the event horizon will be a common theme for the remainder
of our results. For instance, in Fig. 9.22 we see that W exhibits this error plainly. We can
see why this error is so apparent in W as opposed to H by looking at Fig. 9.23. The error is
order 10, which is the same as the error in H. But W itself is order 102 while H is order
1. This is why the error is more visible in W than H.

It is important to recognize that these oscillations in p at the horizon are numerical
artifacts. Consider Figs. 9.24 and 9.25. In the former we see many oscillations, which
correspond to the error in W. The latter plot gives a more regular dependence. This is the
real ;1 dependence of W which appears to be approximately odd about ¢ = 0. In short, not

only do we have error propagating in s from the event horizon we also see error oscillating
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Figure 9.20 The numerical results for H from a single rotation MP black hole.
These results were calculated on an 801 x 801 grid with r;, = 0.5 and ©Q, = 0.1.
While this functions appears very similar to G (see Fig. 9.18) it is u dependent on
a smaller scale.

in u close to the horizon.

As we did in section 9.2 we can reduce this error some by guessing the correct solution
at the outset. This also serves as a check on the validity of our equations. We also illustrate
some of the range of €, for which the code still converges. For the following plots we use
the exact solution as our initial guess and take €2, = 0.1.

First, recall that these changes have no effect on GG. The function H also appears the
same, but as seen in Fig. 9.26 its error does change. Because we have started with the
exact solution the error oscillations have been decreased, however the larger magnitude of
2y keeps something of them present.

In Figs. 9.27 and 9.28 we plot W and its error respectively. When examining W alone
we cannot see the error oscillations close to the event horizon. This is because the error in
W, though larger than before, is smaller relative to the order of W itself. When we look at

the p dependence of W (see Fig. 9.29) we find the that these oscillations are still present.
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Figure 9.21 Error in H between the numerical and exact solution single rotation
MP black hole. We used an 801 x 801 grid with 7, = 0.5 and Q, = 0.001. Notice
that the error is order 10~* while H is order 1. The bulk of the error appears at the
event horizon. Notice the appearance of error oscillations in p along the horizon.

However, they disappear as we move away from the horizon and leave W with the same p

dependence we saw in Fig. 9.25.
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W data
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Figure 9.22 The numerical results for W from a single rotation MP black hole.
We used an 801 x 801 grid with 7, = 0.5 and €, = 0.001. Notice the erroneous
oscillations near the event horizon.

W error
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Figure 9.23 Error in W between the numerical and exact solutions for a single
rotation black hole. We used an 801 x 801 grid with r;, = 0.5 and €, = 0.001.
We clearly see oscillatory error propagating from the horizon and along the horizon.
Notice that the error is only one order of magnitude smaller that the order of the
function.
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Figure 9.24 We plot the p dependence of numerical W close to the horizon of
a single rotation MP black hole. We used an 801 x 801 grid with r, = 0.5 and
2y = 0.001. Compare with Fig. 9.25.
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Figure 9.25 We plot the p dependence of numerical W close to the horizon of
a single rotation MP black hole. We used an 801 x 801 grid with r, = 0.5 and
2y = 0.001. Notice that away from the horizon the p dependence is very regular.
Compare with Fig. 9.24.
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Figure 9.26 Error in H between numerical and exact forms of a single rotation MP
black hole with 2, = 0.1. In this case we have used the exact solution as our initial
guess. Notice that the error oscillations in p have been reduced.
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Figure 9.27 Numerical W for a single rotation MP black hole with ©, = 0.1.
Notice that error oscillations near the horizon are not visible due to the increased
magnitude of W itself.
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Figure 9.28 Error in W for a single rotation MP black hole with €2, = 0.1. Notice
that the order of the error is larger than Fig. 9.23, but is smaller relative to the
order of W.
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Figure 9.29 We plot the u dependence of W for single rotation MP black hole with
2y = 0.1. Notice the error oscillations are still present close to the horizon.
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9.3.2 Two Rotations

The main difference introduced by having two nonzero angular momenta is the connection
between the two rotational planes. This connection is encoded in the function I. Unfortu-
nately, we find that I can be very unstable and can make the code diverge whenever it is
nonzero. Unsurprisingly, this instability begins at the event horizon in a manner similar to
the numerical error exposed in the previous section.

A natural first thought upon seeing this divergence is that the code is incorrect. However,
by using the exact solution as our initial guess we can check that the source terms are
accurate. The integrater is identical to the previous cases which led to reasonable accuracy
and convergence. We are left then to speculate that the system is unstable, specifically in
the function I.

We will illustrate some of the symptoms of this instability. We assume the exact solution
for a MP black hole with €2, = 2, = 0.001 and define the functions on an 801 x 801 grid.
The functions G and H look identical to Figs. 9.18 and 9.20 respectively at the large scale.
However, in Figs. 9.30 and 9.31 we see that they each have a different dependence on pu.

Their respective dependences appear to be reflections of one another across p = 0. A
similar occurrence shows up in the plots of their errors. In Figs. 9.32 and 9.33 we plot the
error in G and H respectively. We clearly see that their respective error plots are mirror
images about p = 0.

This reflection symmetry is also present in U; and W. In Figs. 9.34 and 9.35 we plot the
1 dependence of U; and W respectively. The symmetry in their dependence is unsurprising
in the light of our analysis in Appendix C. In that appendix we show that letting u become
—p and exchanging €2, and €y we take U, into W and vice versa. Since we have set {0y =
U; and W should differ exactly by mirror u dependence about p = 0.

Along with this expected symmetry, we find symmetry in their error plots as well. In
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mu dependance of G at s= 0.301
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Figure 9.30 We plot the ;1 dependence of G for a MP black hole with €, = Q4 =
0.001. Note the mirror symmetry with Fig. 9.31.

Figs. 9.36 and 9.37 we plot the error in U; and W respectively. Notice that similar to the
case with G and H their error is symmetric about p = 0.

Finally, we consider the function I. In Fig. 9.38 we plot I. Recall that at the horizon [
should have the value Q4, = 1075, This also serves as the maximum value for 7. Thus we
see that the entire plot is dominated by error. In fact, plotting the error in I gives back the
same plot. So, while the other functions were not rendered useless, I becomes all error. The
cause likely corresponds to the spike at = —1 close to the horizon. However, we have not

yet discovered how to prevent this numerical divergence.
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mu dependance of H at s= 0.301
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Figure 9.31 We plot the i dependence of H for a MP black hole with €2 = €y =

0.001. Note the mirror symmetry with Fig. 9.30.

G error

-7

x 10

Figure 9.32 We plot the error in G for a MP black hole with €, = Q4 = 0.001.

Notice the mirror symmetry in p with Fig. 9.33.
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H error

-7

x 10

Figure 9.33 We plot the error in H for a MP black hole with €, = €, = 0.001.
Notice the mirror symmetry in p with Fig. 9.32.

« 107 mu dependance of Ut at s= 0.301
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Figure 9.34 We plot the ;1 dependence of U, for a MP black hole with €, = Q0 =
0.001. Note the mirror symmetry with Fig. 9.35.
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«10™ mu dependance of W at s= 0.314
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Figure 9.35 We plot the ;1 dependence of W for a MP black hole with €0, = Q0 =
0.001. Note the mirror symmetry with Fig. 9.34.
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Figure 9.36 We plot the error in U; for a MP black hole with €, = €, = 0.001.
Notice the mirror symmetry in p with Fig. 9.37.
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W error

x 10

Figure 9.37 We plot the error in W for a MP black hole with €, = €4 = 0.001.
Notice the mirror symmetry in p with Fig. 9.36.

| data

-4

x 10

Figure 9.38 We plot I for a MP black hole with 2, = €, = 0.001. This plot is
completely dominated by the error in /. The order of I is only 107°.
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9.4 Charged Myers-Perry

Now that we have verified, at least as far as possible, the validity of our method we turn our
attention to charged MP black holes. We find that many of the behaviors we have noted in
the previous sections carry over into the rotating, charged case. This is true both in the true
behavior of the functions and the error inherent in our method.

As an analytic solution for these black holes has yet to be found, we extract information
about the form of the unknown functions to guide further work. In particular we find some
numerical evidence for the boundary conditions we have assumed for the projections of the
vector potential. We also find an identical divergent behavior in the numerical solution for

I as in the uncharged case.

9.4.1 One Rotation

As with the MP black holes we first consider single rotation solutions. As in the uncharged
case, these solutions are numerically more stable and contain much of the important func-
tional behavior. For ease of comparison to the uncharged case we choose nonzero rotation
in the 1 direction. This means the functions I, U;, and Ay are set to zero. The plots in this
section we generated on an 801 x 801 grid with r;, = 0.5.

We have seen in the previous sections that the closer our initial guess is to the exact
solution the smaller the error. With this in mind we do not simply take the MP solution
supplemented by boundary terms as our initial guess. Instead we begin with the pertubative
solution discovered by Aliev [23]. The exact form of the initial guess can be found in section
B.3.

Initially, we set €2, = 0.001 and ®; = 0.001 to attempt to keep the error at the horizon
small. We first notice that unlike the uncharged case G does not reduce to a p independent

form. While Fig. 9.39 does not appear i dependent, we see in Fig. 9.40 that G does have
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mu dependance of G at s= 0.301
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Figure 9.40 We plot the p dependence of G for a charged, singly rotating black
hole with ®; = 0.001 and €, = 0.001. Note that unlike the uncharged case G has
nontrivial p dependence.

unlike the uncharged case, there are no visible error oscillations near the horizon even though
the values of €2, are identical. These oscillations are present on a smaller scale, but disappear
quickly as we move away from the horizon.

In contrast to the improved behavior at the horizon exhibited by W, we see in Fig. 9.46
that Ay has very large oscillations at the horizon. We presume that these oscillations are
error because they are of the same form as error in other functions. Recall that the function
I also seems to be unstable close to the horizon. It may be the case that functions which
connect physical properties, for instance I connects the two spins and Ay, connects spin and
charge, are more unstable than the other functions. After these initial oscillations at the

horizon, we see in Fig. 9.47 the p dependence of Ay, takes a form very similar to W.
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mu dependance of H at s= 0.351
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Figure 9.41 We plot the i dependence of H for a charged, singly rotating black
hole with ®, = 0.2 and €2, = 0.1. This general form of this dependence is not
dependent on ®; and €2,. Compare with Fig. 9.40.
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S

Figure 9.42 Numerical result for Q*Ar in a singly rotating, charged black hole
with ®; = 0.001 and €, = 0.001.
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«10™ mu dependance of Q2At at s= 0.351
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Figure 9.43 We plot the 1 dependence of Q%A in a singly rotating, charged black
hole with ®;, = 0.001 and €2, = 0.001.
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Figure 9.44 Numerical result for W in a singly rotating, charged black hole with
®;, = 0.001 and €2, = 0.001.
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« 107 mu dependance of W at s= 0.501
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Figure 9.45 We plot the p dependence of W in a singly rotating, charged black
hole with ®; = 0.001 and €2, = 0.001.

AW data
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Figure 9.46 Numerical result for Ay in a singly rotating, charged black hole with
¢, = 0.001 and Q, = 0.001. We take the large oscillations in 4 at the even horizon
to be error.
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« 107 mu dependance of Av at s= 0.325
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Figure 9.47 We plot the u dependence of Ay in a singly rotating, charged black
hole with ®; = 0.001 and €, = 0.001. Close to the event horizon there is a more
complicated dependence which we take to be erroneous.
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9.4.2 Two Rotations

Finally, we consider the most general case. That of a charged black hole with two nonzero
angular momenta. Like the uncharged case we find that our method is unstable in the
function I. Knowing this, there is not much new information that we can extract beyond
what was found in the singly rotating case. One conclusion we do confirm is the symmetry
relations between the functions.

From the uncharged case we saw that even when the exact solution was the initial guess,
the program did not converge. Knowing this it is unlikely that any initial guess would allow
the charged case to converge. However, we expect better results with a better guess. We
take as our initial guess the ansatz used by Aliev [23] that lead to the perturbative solution.

For convenience in defining this ansatz we define the following:

Jm—a? — 37 — 4(¢ — ab)

2 _

T = 1 (9.5)

2 12 4

2, m—a b7
R =r+ — + i (9.6)
A=R+ a? 9.7)
B =R+ b’ (9.8)

+cos20(a® — %) 1}
w2y L h .
e+ 5 - (9.9)
2

D =YAB + (m - %) (Ab” cos® 6 + Ba®sin® 6) (9.10)

where ¢ is a charge parameter and a and b are rotation parameters relating to ¢ and

respectively. The ansatz is as follows:

B+ (m — %) b2 cos? 6
D
by

H=rF 2 (9.12)
>B + (m — %) b2 cos? 0

G =rF (9.11)
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aB (m — %)
U, = — — 5 (9.13)
W = — M (9.14)
= 5 )
;%) o
= 5 .
2 _ Q\/§AB
Q°Ar = 5D (9.16)
_CLQ\/gB
Ay = 5D (9.17)
_qu/gA
Ay = 5D (9.18)

where F' is defined by equation (7.23). We choose this guess because, unlike the perturbative
solution, it incorporates the complexity of the MP solution. In addition is includes a coupling
to electric charge very much like the Kerr-Newman solution in four dimensions. It also
reduces to the MP and charged Tangherlini solutions in the appropriate limits.

This guess also satisfies as the boundary conditions of all our functions and the leading
order radial behavior of each function corresponds to the boundary terms associated to each
function by Green’s identity. In addition, while it is not an exact solution, Aliev has shown
that it does satisfy the Einstein-Maxwell equations when the values of a and b are very small.

With this initial guess we employ our method on an 801 x 801 grid with Q4 = Q, =
®;, = 0.001. Many of the plots appear very similar to previous cases, but we include them
for completeness. For most we do not include a plot of u dependence. This is because the
form of the p dependence is similar to previous cases.

We do briefly focus on the p dependence of Ay and Ay,. Notice in Figs. 9.56 and 9.57
the mirror symmetry between Ay and Ay,. This case is similar to that of U, and W and
occurs for the same reason. In the language of Appendix C Ay and Ay are conjugate to
each other under the exchange of Q04 and €, with yu becoming —pu.

While we do not have sufficient accuracy to make specific analysis of these results, we
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Ut data
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Figure 9.51 Plot of U, for charged MP black hole using an 801 x 801 grid with
Qy = Qy = &, = 0.001.
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Figure 9.52 Plot of W for charged MP black hole using an 801 x 801 grid with
Qy = Qy = &, = 0.001.
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| data

Figure 9.53 Plot of I for charged MP black hole using an 801 x 801 grid with
Q4 = Qy = &, = 0.001. This bulk of this plot is likely error.

AU data

x 10

Figure 9.54 Plot of Ay for charged MP black hole using an 801 x 801 grid with
Qs = Qp = &, = 0.001. Note the large oscillations. These are assumed to be
€rroneous.
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AW data

-6

x 10

Figure 9.55 Plot of Ay for charged MP black hole using an 801 x 801 grid with
Q4 = Qp = &, = 0.001. Note the large oscillations. These are assumed to be
€rroneous.

w107 mu dependance of Au at s= 0.551
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Figure 9.56 We plot the i dependence of Ay for charged MP black hole using an
801 x 801 grid with €, = Q,, = ®; = 0.001. Note the symmetry with Fig. 9.57.
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« 107 mu dependance of Aw at s= 0.525
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Figure 9.57 We plot the u dependence of Ay, for charged MP black hole using an
801 x 801 grid with Q4 = Q,; = ®, = 0.001. Note the symmetry with Fig. 9.56.



Chapter 10

Conclusion

While an analytic charged MP solution remains elusive we have made significant progress
toward that result. Our approach to the Einstein-Maxwell equations have led to numerical
solutions corresponding to charged MP black holes. At present the instability of the function
I prevents serious analysis of the most general case, however even these cases can be plumbed
for information.

While these numerical solutions are limited by the ranges of charge and rotation for which
the code converges, they are completely general in a different sense. Previous numerical
solutions [20,21] focused on single rotations or equal rotations, but our method can take any
combinations of spins smaller than a certain magnitude. It is also worth noting that these
rotation values are not so small as to simply reconstruct Aliev’s pertubative solution [23].
Our solutions give structure to functions quadratic in rotation, and appear more similar to
the MP solution than the perturbation.

Along the way to creating these solutions we have found an analytic solution for the func-
tion F'. Surprisingly, F' seems to take on the same form for all 441 black holes whose event
horizon is a topological sphere. This new result appeared naturally from our dimensional

reduction of the Einstein-Maxwell equations.

94



95

Our alternative dimensional reduction as outlined in Appendix C gives us additional
information about the functions which come out of the decomposition. We have shown ex-
plicitly the form of a symmetry operation derived from the symmetric nature of the Killing
vector fields ¢® and ¢®. In addition, each of the nine scalar functions behaves simply under
this symmetry operation. That is to say, the three functions U;, Ay, and H can be trans-

formed into W, Ay, and Hy respectively by exchanging Q4 and 2, and letting § become

T _

5 — 0. Thus, in a sense only three of these six functions are unique. We have also shown

that F, I, and Q?Ar are self conjugate under this transformation. This means that they
must exhibit certain symmetries in their functional form. We have verified these symmetries
numerically for all functions other than I.

We have also motivated, but have not proved, the existence of a vector A, which is a
modification of the vector potential A,. We conjecture that this A, plays a role similar to
x* of the rigidity theorem. Recall that for an N + 1 spacetime such that L%J = M with
a timelike Killing vector field ¢* and spacelike Killing vector fields gb‘(li) i€ {l... M} with

closed orbits, there exists a vector
M
i=1
where the (2;s are constants corresponding to angular velocities of the horizon. This vector

is null on the horizon and orthogonal to each of the Killing vector fields of the spacetime on

the horizon. We conjecture that
M
Ao =Ag— 0 Qo (10.2)
i=1

where @, is the electric potential at the horizon has the properties that at the horizon it is

orthogonal to each of the ¢;)s and furthermore satisfies

AX°|, = Aat"], =y (10.3)

Th
In concert with this rigidity-theorem-like vector A, we have postulated for the connections

between rotation and electric charge we also posit the existence of rigidity-theorem-like



96

vectors related to the connection between different rotational planes. We define the vectors

M
Gy = oty — DV (10.4)
i

where the V(‘;)s are defined by equation C.47. We claim that for ¢ # j these vectors satisfy
qli)gba(j) ‘rh =0. (105>

As we explicitly show in section C.3, using these two rigidity-like theorems along with
the original rigidity vector x* allows one to dimensionally reduce the above specified N +
1 dimensional spacetime in a Kaluza-Klein like manner while ensuring that each scalar
function generated by the decomposition satisfies Dirichlet boundary conditions in electrovac
spacetimes.

While we have not yet found an analytic form for the charged MP solution we have made
definite progress. We plan to continue to refine our code to reduce the error in our algorithm
and begin extracting what we can about the analytic form of our solutions. We hope then to
use our numerical solutions and analytical knowledge of the functional forms generated by
our method to obtain an analytic solution of the Einstein-Maxwell equations corresponding

to a charged MP black hole.



Appendix A

341 Formalism and E&M Boundary

Conditions

In this appendix we apply the formalism we employed in chapter 2 to a 3+1 spacetime. We
then use this formalism to examine the KN solution. We pay particular attention to the
functional forms and boundary conditions of functions similar to those chosen in chapter 5.
Similar to chapter 2 we assume a differentiable manifold M with metric g,, which is both
stationary and axisymmetric. These properties correspond to Killing vector fields ¢* and t*

with norms
PPy = §* 1, = —c%. (A1)

We choose coordinates adapted to the Killing vectors and define the scaled vectors

a 1 a a —1 a a
Yo=500)" M= o2 ((9)" = ¢ Y") (A.2)
¢2
where Q% = ¢ + —; Similar to chapter 2, we can express the metric as
s
Gab = Oap + 52}/(1% - QzMaMba (A?))

where o, is the metric on the two dimensional submanifold which is orthogonal to both Y¢

and M“. Note also that by construction Y* and M* are orthogonal to each other. We also
97
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define the function

G

2 (A.4)

w =

which at the event horizon can be shown to be the constant €2, thought of as the angular
velocity of the event horizon.

This last statement is a result of the rigidity theorem [7]. This theorem proves that there
is a vector y® defined as

X" =1" = Qo (A.5)

which on the event horizon satisfies

XaXa =0 Xata =0 Xa¢a =0. (A6>

(Compare with (5.1) and (5.2) in the 4+1 case.) It is straightforward to show that the

properties of x* on the horizon result in

Q2|rh =0 (A7)

We also have a vector potential A,. As in chapter 4 the portion of A, which is on the
two manifold vanishes. The remaining scalar functions are Ay, = A,M* and Ay = A, Y".
From the uniqueness theorems in 3+1 dimensions we know the KN solution is the unique
stationary axisymmetric solution of the Einstein-Maxwell equations. We can then use the
KN metric and vector potential to calculate the boundary values of the functions generated
by the above formalism.

Beginning with Wald [9] we can write the KN solution in Boyer-Lindquist coordinates as

AY) dr? in® ¢ 2mr —¢%) .\
ds? = —TdtQ +3 (% - d82> + ps;l (d¢2 - wdt) (A.9)

A, = —% [(dt), — asin0(de),] , (A.10)
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where m, a, and ¢ are mass, rotation, and charge parameters respectively. We also define
S=r24cos’d A=r2—2mr+a2+¢ p=(r2+a2)’ — Aa?sin?6, (A.11)
with the outer event horizon given by the largest root of A = 0 namely,
rp=m+/m?—a®— ¢ (A.12)

We want to use an isotropic radial coordinate 7 since we have assumed that o, is con-

formally flat. This coordinate transformation must satisfy

dr _dr (A.13)

=
We pick the solution

r=T+m+ 2, (A.14)
r

where

\/ﬁ
AL (A.15)

Th = ,
" 2
because this gives r and 7 the same asymptotic behavior. We can then rewrite (A.9) and

(A.10) as

—_— i —_ .. 9 9 2 2
ds? = ——=dt* + = (dr +7°d6?) + ps%_ne <d¢2 ~ Mdt) (A.16)

A, = —% [(dt)s — asin® 6(dg),)] , (A.17)

where 7 and barred quantities are taken as functions of 7. We can then compare with the

line element from (A.3)

ds? = —Q2dt? + &* (dr? +72d0?) + 5% (d¢ + wdt)” . (A.18)
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We immediately find

AY
Q=\— (A.19)
1%
F2
sQ =Tsind ( — _—g) =TsinfF (A.20)
T
a 2
w=— > (2mr — ¢*) (A.21)
1. (3
2 2
Q*A, = T EE) (A.23)
D
Ay =227 (A.24)
D
As expected from asymptotic flatness, at spatial infinity
Q—1 F—1 w—0
(A.25)

a—0 Q*Ay —0 Ay — 0.
At the event horizon the results are more interesting. As expected from the rigidity theorem,
at the horizon
Q=0 F=0. (A.26)
We also find the explicit form of €2:

a
|Fh - 2m(m+ 27, — ¢ (A.27)

Qha

The behavior of the E&M fields are particularly interesting. At the event horizon

27)
24, —__ dm+2m = A2
@ M}?h 2m(m + 27p,) — ¢> 4 (A.28)
aq(m + 27,)
Ay| = = O, A.29
Y}”’ 2m(m + 273) — ¢2)? o ( )

where @, is a constant electric potential at the horizon. This first result is equivalent at the

horizon to the identity denoted by Carter in [26]

YA, = Py, (A.30)
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The second has (as far as we are aware) not been previously recognized. Note the following

equivalence at the horizon

Ay = &0,
Ay = 2P, Q)
Ay — Q2,0 =0
(Au — D 6) 6" = 0. (A31)

Now, consider this orthogonality at the horizon as well as the following

Q2AM = At — wAd)

A
= At — s_;¢t
A
— (Aa _ S—jgb) e (A.32)

If we then take (A.28) and (A.29) as given at the horizon (A.32) becomes
(Ao — ©1Qua) 1" = Oy (A.33)
It is suggestive that the vector
A=A, — Py, (A.34)

(which is somewhat reminiscent of x*) should have the particular behavior of (A.33) and
(A.31) at the horizon. We conjecture that there is some electromagnetism rigidity-like theo-
rem for Einstein-Maxwell spacetimes that motivates these results from a general framework.

The full conjecture is stated in Chapter 10.



Appendix B

4+1 Formalism Applied to Known

Solutions

In this appendix we consider the form and asymptotic behavior of the scalar functions, as
chosen in chapter 5, of the charged Tangherlini and MP solutions. We also analyze the
perturbative charged rotating solution found by Aliev. In fact the behavior of the functions
in these known solutions, as well as the KN solution in Appendix A, are the motivations for

the function choices in chapter 5.

B.1 Charged Tangherlini

We begin with the charged Tangherlini line element and vector potential in Boyer-Lindquist

type coordinates [12]

-1
ds? = (1—@+ )dt2 (1——+q—4) dr®

r* (d6* + sin® 6d¢® + cos® 0dy)?) (B.1)
_ V3
A, = 5,2 (dt),, (B.2)
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where m and ¢ are mass and charge parameters respectively. The vanishing of the g

component defines the location of the outer event horizon as

m+ v/ m? — 4¢> (B.3)

2

2 _
Ty, =

We need to express the metric in an isotropic radial coordinate 7 since oy, is explicitly

conformally flat. This transformation must satisfy

rdr dr

R == (B.4)
We pick the solution

7"2:F2+%+;—§, (B.5)
where

2 = —m24_ 'l (B.6)
to give r and T the same asymptotic behavior. This allows us to rewrite (B.1) as

74 74\ 2 r2
ds® = — ( — FZ) dt* + = (d7? +72d0%) + 7 (sin® Od¢” + cos® Odip?) (B.7)

where 7 is taken to be the function of 7 defined in (B.5).
We can now compare with the simplified form of (2.21):
ds® = — Q*dt* + * (dr* + 72d0%) + p* (dp + Uydt)” + a® (dip + Vidt)?

+ a® (dp + Vydo)? — adip® + 24>V, Vydtdo. (B.8)
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Then, using the functions defined in chapter 5 we find

-
apQ = 7 sin 6 cos 0 (1 — ;—Z) = 7%sinf cos OF (B.9)
F
G=H-= (B.10)
?4
1+ 5%+
1 m T
Oézéln (14—2—#4—?—2) (B.ll)
3
2qy - 1Y3 B.12
@ar=- 2 (B.12)
Uy =W =T=Ay = Ay =0, (B.13)

Notice that as claimed in Chapter 6 H = G for black holes without rotation. Also, we have
explicitly verified the form of F' which was derived in section 7.2.

In agreement with asymptotic flatness and our E&M convention, at spatial infinity

F>51 G=H—1 a—=0 Q*Ar —0. (B.14)

At the event horizon F, GG, and H vanish, but

Q*Ar|_ = - = = ®,, (B.15)
h

is a constant we define as the electric potential at the horizon ®j.

B.2 Myers-Perry

We begin with the MP line element in bi-azimuthal Boyer-Lindquist like coordinates [14]

2 ) 9
2 (1 _ T\ L0 L 9 _Qmasm 0 _mecos 0
ds? = (1 z) dt> + % (Hdr +do ) S dtdg — = dtdy
2 29 b2 20
+ sin® ¢ (7“2 +a®+ %) dp? + cos? 0 (r2 + 0%+ %) >
2 202 2
mab sin” 0 cos edqbd@/z, (B.16)

)y
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where m is a mass parameter and a and b are independent rotation parameters. Also,

Y =17r*+a*cos? 0 + b*sin? 0 (B.17)

II=(r"+a*) (r* +b*) — mr?, (B.18)

and the location of the outer event horizon is determined by the largest positive root of

IT=0or
— a2 =} — a2 = b2)2 — 4¢2p2
Ti:m a ++/(m—a ) a?p* (B.19)
2
To transform into an isotropic radial coordinate 7 we must satisfy
rdr  dr
—_— = —. B.20
VII T (B-20)
We pick the solution
2 _ 2 A
9 o m—a“—=>b> T,
= _— + = B.21
rET =2 (B.21)
where
a2 —2)2 — 4a2h2
p_ Vm—a y f— daP? (B.22)
For convenience we define the following quantities
2_ 2 A
A572+m++f—g (B.23)
T
232 A
B=p MOV T (B.24)
2 T
We then rewrite (B.16) as
m b)) 2masin? 0 2mb cos?
’ ( 2) = ) > TS v
2 3 29 b2 29
+sin?f (A " m?) 46 + cos? 6 (B n WT> ay?
2mabsin® 0 cos? 0
magsn veos dodi, (B.25)

)y

where

Y=7+ + o5 (B.26)
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We now compare (B.8) and (B.25). So, using the functions defined in chapter 5 we obtain

—4
ap@ = 7 sin 6 cos 0 (1 — %) =72 sinf cos OF (B.27)
>
G=7TF{= (B.28)
Y B + mb?cos? 0
3 2 2
orp XB + +mb? cos? 0 _ (B.29)
YAB +m (Ab2 cos?  + Ba? sin 0)
1 b}
B
U, =— — ma — (B.31)
YAB 4+ m (Ab2 cos? § + Ba?sin 0)
W mbA - (B.32)
YAB +m (Ab2 cos? § + Ba?sin 9)
mab (B.33)

I == :
YAB+m (Ab2 cos? § + Ba? sin® 9)
Notice that as with the charged Tangherlini solution we have verified the form of F.

In agreement with asymptotic flatness, at spatial infinity we have

F—-1 G—=1 H—=1 a—=0

Uy—0 W—=0 I—0. (B.34)
At the horizon

F—-0 G—=0 H-—DO. (B.35)

In agreement with the rigidity theorem [19], at the horizon we make the definitions

a(a®? = b —m — 477)
= Qy = — B.
Utl ¢ m(aQ—l—bQ—m—éﬁi) ( 36)

b(b? — a®> — m — 47%)

=0y =— . B.
Wl =% = @ —m ) (B:37)

A more surprising result is

2ab
Il =— = Q0 B.38
‘rh m(a2 +h2 —m— 4;2) G2 ( )

which we discuss further in Chapters 5 and 10 as well as in Appendix C.
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B.3 Aliev Perturbation

We begin with the line element and vector potential found by Aliev [23] in bi-azimuthal

Boyer-Lindquist type coordinates with mass and charge parameters m and ¢ respectively

2 2\ —1
2 _ m g 2 m g 2
ds __(1_7‘_2+ﬁ)dt+(1_ﬁ+7’_4) dr

+ 7% (d6* + sin® §d¢* + cos® dy)?)

- 7"% (m - z—z> (asin®Odtdg + bcos® fdtdy) (B.39)
A, = —%; [(dt)a — asin? 0(dp)a — b cos? H(dw)a} , (B.40)

with the perturbative condition that terms quadratic or higher in the rotation parameters a
and b vanish.

Notice the similarities between (B.39) and the charged Tangherlini metric (B.1). In
fact, the transformation to an isotropic radial coordinate 7, the radial location of the event
horizon, and the functional forms of «, F', GG, and H are all identical to the results from
section B.1. So, using (B.5) and (B.6) we can rewrite the metric as

2 m ¢ 2 TP e 2 2 2 a q° ’
ds® = — <1—ﬁ+ﬁ)dt +§(dr +72d0?) + r?sin Qldqﬁ—ﬁ(m—r—?)dt]
ra

b 7 ?
+ 12 cos? 0 {d - = (m - —2> dt} , (B.41)
r

where r is a function of 7. Another immediate result is that the function I must be identically
zero. This is consistent with the MP solution. Recall from (B.33) that I of order ab and

hence must vanish in our perturbative limit.
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The remaining functions can be identified through comparison with (B.8) as

2
Ap = — —
@ Ar 2r2
A — aq\/g
u 2r4
qu/§
Aw = )
W 2r
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(B.42)
(B.43)
(B.44)

(B.45)

(B.46)

In agreement with asymptotic flatness and our convention for E&M each of these five

functions vanish at spatial infinity. In accordance with the higher dimensional rigidity the-

orem [19] we make the identifications

a
Ul =9 = 5w
2
b
Vil. =Q, =
=0 =~

Then, making the extension from Carter [26]

QQAT’F}L =@,

Similar to the result in (A.29) we also find

bg/3
AU‘? - _Q\/_ 7 = q)hQ¢
o2(2r 4+

aqV/3

Aw‘ =5 = (I)th.

g (272 4 m)?

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

This serves as partial validation of our choice of functions and boundary conditions in chapter

5, wherein we also discuss the behavior of a special vector (5.19) which is equivalent to these

boundary conditions, similar to the 3+1 case as explained at the end of Appendix A.



Appendix C

Symmetric Formalism

In this appendix we show how to decompose the Einstein-Maxwell equations using the as-
sumed symmetries of the spacetime while retaining the inherent symmetry between the two
spacelike Killing vector fields. While we do not use this formalism to generate a new set of
partial differential equations, we do find aspects of our problem which become more clear in
a symmetric formalism. We also present a method for carrying out such a decomposition in

an N + 1 spacetime with M = [§] commuting spacelike Killing vector fields.

C.1 Basic Structures

As in Chapter 2 we assume a five dimensional differentiable manifold M with metric g,,. We
also assume the existence of three mutually commuting Killing vector fields. One of these
is assumed to be timelike, and is denoted t*. The remaining two are both spacelike Killing

vector fields with closed orbits. We denote them as ¢* and ¥®. We label their norms as

7fata = _027 ¢a¢a = bz? Ww)a = CLZ, (Cl)

and choose coordinates on the manifold adapted to these vectors fields:

1= (8,)7, ¢ = (0,)", ¢ = (9y)™ (C.2)
109
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We also define the following quantities for convenience:

"% = Uy, tPa = Qp, VP = 1y (C.3)

We now wish to project out the subspace spanned by 1* and ¢* without removing the

symmetry between the two vector fields. So, in contrast to (2.9) we define
(3)gab = Gab — Kab, (04)

where (3)gab is the three dimensional metric on the submanifold orthogonal to both * and

¢*. We first note that K., must be symmetric. Next, by enforcing orthogonality we find

Bgapt® = 0 = 1y — Kyp = Ky = 1y (C.5)
Dgapd” = 0=y — Ky = Ko, = ¢, (C.6)

It follows that
wa = az, K¢>¢> = b2, K¢¢ = w(;g. (C?)

At this point we do not actually know if such a K, exists. However, we will show that it
not only exists, but has a very convenient decomposition.
Knowing that K, must be symmetric and supposing it’s tensorial form comes from

products of ¥* and ¢* we takes ansatz

Ko = c1 (Vatp + Vpda) + ooy + 30000, (C.8)

where the ¢;s are as yet undetermined coefficients. By enforcing the orthogonality conditions

where

D = a®b* — i}, (C.10)
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Now that we know that ®)g,, is a well defined quantity, we can project the timelike Killing

vector into the three dimensional manifold. In exact agreement with Chapter 2 we find
B =19 — Wep* — Uy, (C.11)

which has the same norm —Q? as defined by (2.12). Then we define the two dimensional

metric o4, on the submanifold A/ orthogonal to all the Killing vectors as

Oab = YGab — Kab + QQTaTb- (012>

C.2 Properties of Symmetric Projection

We now compare some of the naturally occurring functions in the symmetric formalism to
the functions chosen in Chapter 5. We will see that many of the functions with Dirichlet
boundary conditions on the horizon are directly related to K,,. To see this we write our

definition of K, in a more suggestive way

Kab = ¢a% + ¢a[7b7 (013)
where we have made the definitions
7=y, Yy (C.14)
"“Dp" D™ ‘
~ CL2 ¢¢
=—ap — —y. 1
Uy D<Z5b D Py (C.15)

Notice that V;, and U, satisfy
V=1 U =0

_ _ (C.16)
¢ava =0 (baUa = 1a
and
- b2 - a2 — ¢¢
a - a — a - _1F C17
ViVo=5 Ula=—5 VU o (C.17)
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Comparing with the vectors and functions defined in Chapters 2 and 5 we find that

ﬁa = U,. We then immediately associate

D - ~
pP=, U=1tU, Ay=A,. (C.18)
a

These associations alone are unsurprising. The more interesting results are
W =tV,, Ay = A%V, I=VeU,. (C.19)

Note that many of the functions with Dirichlet boundary conditions on the horizon appear

as contractions with ‘7,1 and ﬁa. We also find
DQ? = r*sin® § cos® OF>. (C.20)

This relation shows a drawback of this formalism. We showed in Chapter 7 that F' can be
solved for analytically by combining the equations for three naturally occurring functions. In
the symmetric formalism however, equations for D are quite unwieldy making the equation
for F less plain.

An important aspect of the relations above is that V, and U, are conjugate to each other

under the transformation
¢a N ¢a ¢a N wa' (C21)
We will refer to this symmetry transformation as 7 and denote its action
T(*) = ¢°, (C.22)
and similar. With this in mind we notice that
T(Ut) = VV, T(W) = Ut, T(AU) = Aw, T(Aw) = AU- (023)

We then say that U, and W are a conjugate pair, and similar for Ay and Ay, It is also easy

to see that Q?Ar, F, and I are invariant (or self-conjugate) under 7.
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After these observations it is natural to wonder about the properties of G and H. Recall
from (5.10) that G is related to a@ and H to pQ. Of a, p, and @ only a does not naturally
appear in the symmetric formalism. However, p? has naturally occurring symmetry conjugate

function we denote p#,. From the definition of p? we can easily find

~ ~ D

VeV, = 5= Py (C.24)
We can then define

pw@ = rcos O Hyy, (C.25)

where Hyy is the conjugate function to H. It is worthwhile to note that when 1), vanishes,
that is when one of the rotations vanishes, p#, reduces to a®. This, and the lack of
dependence, explains why G = H for Tangherlini black holes.

In the definition of Hy, and F' we have tacitly introduced the bi-azimuthal coordinates
discussed in Chapter 2. We need to find the effect of 7 on these coordinates. It is sufficient
to find what transformation takes ¢ — v and vice versa while leaving the line element (2.24)

invariant. It is straightforward to check that this condition is satisfied by

T(¢) =1, (V) =9, 7(0)=5—0. (C.26)

We note one last property of 7. As W and U, and conjugate and Q?Ar is self conjugate

it must follow that
T(Qy) = Qy, 7(Qy) = Qy, 7(Pp) = Pp. (C.27)

We are now in the position to make the following claim about the functional form of the nine
scalar functions expressed in bi-azimuthal coordinates. We claim that the three functions
F, I, and Q?A7; must be invariant under 7. Further, the remaining six functions belong
to conjugate pairs. For example, if we were to discover the functional form of U, then by

exchanging (4 with 0, and sin @ with cos # we would then have the functional form of W,
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We also make a few final observations about the equations (5.13) and (5.14) in the context

of the symmetric formalism. Specifically, we can rewrite (5.13) as
(0 [% — QwQ¢D‘/ai| ‘Th =0, (C.28)

and (5.14) as
6" |0 = 2:0D0] |, = 0. (C.29)

This rewriting makes these relations appear even more similar to the rigidity theorem vector

x%. In particular we can define the vectors

() = ¥ — QDU (C.30)
Gy = 9" — 2DV, (C.31)

which satisfy
St 9al,,, = Clotal,, = 0. (C.32)

C.3 An N+1 Symmetric Formalism

In this section we construct the symmetric projector K, for spacetimes of N + 1 dimension.
In so doing we also create the quantities we need to extend the rigidity-theorem-like vectors
discussed at the end of the previous section to arbitrary dimension.

We begin with a simpler case. Let M have dimension N + 1 such that L%J = 3. Suppose
further that there exist three spacelike Killing vector fields with closed orbits. We denote

them
Py Py Yoy (C.33)
where the notation (i) labels a vector rather than indicating the index of a vector.

By proceeding in an analogous manner to section C.1 we define

(3)gab = Gab — Kap- (034)
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Enforcing orthogonality between the Killing vector fields and (3), 9. We find K, has the form

1
Ko = D [Ga) V1) + Ga@2) Vi) + Gaz)Vas)] » (C.35)

where using the shorthand ¢; j) = gb?i)gzﬁa(j) we have defined

D= 901902963 — 45(1,1)‘?5?2,3) — d22) ¢ — $@33) ¢ (1,2) T 2001,292:3)901,3), (C.36)

and

Vi) =é(n (02063 — 23)) + &) (P393 — P1.2033))
+ 0 (0020023 — ¢2003) (C.37)
V(%) :925[(12) (¢(1,1)¢(3,3) 1 3)) + ¢ (1) (Cb(l 3 (2,3) — ¢(1 2)<Z5 3,3 )
+ ¢y (2003 — dundus) (C.38)
Vi) =0(s) (dundes — ¢ha) + 00 (da2bes — dusde)
)

+ &) (Pa2)P0.3) — P P23 (C.39)

Notice that we can write these in a more compact fashion using antisymmetrization

_arqle b ]
D =391 6(2)9 (3)Pat) P2 Dc(3) (C.40)
a [a ]
V(l) _3!¢(1)¢l()2)¢(3)¢b(2)¢c(3) (C.41)
a _apia b
V(3) =3l O(3)P 1) Po(3) Pet) (C.42)
a la c]
V) =319 01 02 Bb(1) be(2)- (C.43)

We are now ready for the general case. Let M be N + 1 dimensional with [§] = M
allowing a timelike Killing vector field t*. Suppose further that there exist M spacellike
Killing vector fields with closed orbits labeled ¢(;) with ¢ € {1...M}. We can then define

(N_M—H)gab = Gab — Kab; (C44)

where

ab - i (045)
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In this last equation we use the following definitions

D EM!gb[(il s Qﬁaﬁ] ¢a1(1) e CbaM(M) (046)

b
Vi _M¢ ¢z+1 : ¢ﬁl§]¢b1 (i41) " Porr_1 (i—1) (C.47)

where lists from (i + 1) to (i — 1) the label (1) follows (M) in the cyclic manner. These
structures define the symmetric projector for the spacetime with properties specified above.
We can also use these structures to construct rigidity theorem like vectors that give rise to
boundary conditions like (5.11).

While the definition for V(f) is motivated, we can make the definition more rigorous.

Recall from the rigidity theorem that the vector

M
_ Z Qi) (C.48)

satisfies the relations
%Xa’rh =0 (C.49)

at the horizon. We can think of these M equations as determining the M constants €);.

Using induction it can be shown that

1 o )
Q M QZS[ gb (i+1) " gblgivjl a¢b1 i+1) gbe 1(i—-1)| - (050)

Th

Using the M =1 and M = 2 cases as a guide we assume

‘/(‘,lt == QZ (C51)

iybalp,

from which we recover (C.47).

Notice that by using (C.47) we can determine many of the properties of K. Notice first

Viyba() = - (C.52)
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It immediately follows that K,* = M and
K@y = Pai)- (C.53)

In short K, behaves as the metric of the submanifold P of M spanned by the gb‘(li)s. Equiv-
alently, it is a projector from M into P.
We now use K, to connect the various rigidity theorem like vectors we have introduced

in Chapter 10. Notice that we can easily define the scalar functions w; by
w; = ‘/(C;)ta, (C54)
so that w;| = ;. We now use (C.44) to understand y*. Specifically,

Thus, x* is the projection of the timelike Killing vector field into the submanifold orthogonal
to all gzﬁ?i)s. In light of this definition the orthogonality between x* and the qb?i)s becomes

obvious. From (C.55) we can also make the definition

(N=M+1)y jagh (92, (C.56)
It also seems likely that the combination D(Q? satisfies

DQ?* = AF(r,0;)F? (C.57)

where AF(r,0;) are terms defined by asymptotic flatness and

oM
F_1—(“> , (C.58)
r
for the isotropic radial coordinate r.
Similar to above analysis we can define the scalar functions
A, = Lo A
w; = 5‘/(7,) as (C.59)
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where A, is the electromagnetic vector potential. We take these functions as satisfying

Ay,

vy = Pnl; (C.60)
at the event horizon. Then the vector A, defined in (10.2) can be expressed as

Ay = A, %ZQ@ (N=M+1), b 4, (C.61)

o

Once again, the orthogonality of A, and the qb?i)s immediately follows. We can also define

the function

Q*Ap = =M+ b A pe, (C.62)
Then at the horizon we have
Q*Ar|, =X"Ad|, = At*], =T (C.63)
Last, we define the functions
)
Wiy =5 (C.64)

which are associated with the overlap between the ith and jth Killing vectors. These func-

tions are assumed to have the boundary condition
Wi, = 29 (C.65)

at the horizon. Now, we construct the projectors K;q by

E

Ky = 5 Vij)a®(b- (C.66)

These projectors act as a metric on the submanifold spanned by {¢f;, - - ¢, }\{¢{; }, or all
the spacelike Killing vectors other than gb?i). In addition this subspace is orthogonal to qﬁ‘(li).

Using these projectors we can rewrite equation (10.4) as

(G = (K% — K{iy) ¢4, (C.67)
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We note the similarity of this relation to equations (C.55) and (C.61) with (Kab — K(i’)b)

(N=M+1)g b,

playing a role similar to

Let us consider the implications of these special vectors, assuming we have correctly
guessed their behavior. By reducing the dimension of the N + 1 Einstein-Maxwell equations,
using K, and t* to project out the M + 1' dimensions associated with the Killing vector
fields, we are left with the N — M dimensional Einstein-Maxwell equations and a set of

scalar fields. These fields correspond to the unique metric coefficients in the M +1 x M + 1

block of the metric spanned by the Killing vectors and the M + 1 nonzero components of the

(M+1)(M+2)
2

f (M+4)(M+1)
2

vector potential. More specifically, the scalar equations must determine metric

coefficients and M + 1 components of the vector potential for a total o scalar
functions.

Now, using the properties of x* we can find Dirichlet boundary conditions at the horizon

for M + 1 functions. Namely,

Q. =0 w| = (C.68)

Next, using A, we find

QZATL}L =, A,

. = Onl, (C.69)
determining a further M + 1 Dirichlet boundary conditions. The properties of the (s vield

. M(M—1 2
This accounts for another ¢ ) %. Com-

boundary conditions, bringing our total to

(M+4)(M+1)
2

paring this with our unknown functions we seem to be M boundary conditions

short. At this point we again take the 4 + 1 case as our guide. We define the norms

! Again, we take |£'] = M.
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and then define the functions

He AFG) = Qpis (C.72)

where again the functions AF; will be determined by asymptotic flatness. Since ) vanishes
at the horizon, we find the same result for each H;). This gives us the boundary conditions
for the last M functions.

Each of these functions has simple behavior at spatial infinity. That is they either vanish
or become 1. Thus, we have chosen a set of functions with Dirichlet boundary conditions
that completely determines the unique unknown components of the metric and the vector

potential.
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