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ABSTRACT

Simulating the FTICR-MS Signal of a Decaying Beryllium-7

Ion Plasma in a 2D Electrostatic PIC Code

Michael Takeshi Nakata

Department of Physics and Astronomy

Doctor of Philosophy

Beryllium-7 (Be-7) only decays by electron capture into lithium-7 (Li-7) with a half life of 53
days. We study the effect of ionization on this decay rate. We do so by trapping a Be-7 ion plasma
in a cylindrical Malmberg-Penning trap and measuring Be-7 and Li-7 concentrations as functions
of time by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

We have simulated these signals in a 2-dimensional electrostatic particle-in-cell (PIC) code.
The two spectrum peaks merge at high ion densities whereas at low ion densities they can be re-
solved. The merged peak shifts linearly according to the relative abundances of these species.

We have also simulated singly-ionized beryllium-7 hydride (BeH+) and Li-7 ion plasmas at
high densities. These two separate peaks shift according to their relative abundances. We describe
an analytical model that explains how these peaks shift.

Keywords: beryllium-7, electron capture, lithium-7, ion plasma, Fourier transform ion cyclotron
mass spectrometry, FTICR-MS, FTMS, 2D electrostatic particle-in-cell, PIC,
simulation
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CHAPTER 1

INTRODUCTION

1.1 7BE, AN INTERESTING SCIENTIFIC TOOL

Beryllium-7 (7Be) is the lightest element to decay solely by electron capture to Lithium-7 (7Li). It

does so with a half life of about 53 days.1,2 It usually decays as follows:

7Be+ e−→ 7Li+νe +861.8 keV (89.6%)

7Be+ e−→ 7Li∗+νe +384.2 keV (10.4%)

7Li∗→ 7Li+ γ +477.6 keV

90% of the time, it decays directly to lithium-7 (7Li) with most of the decay energy of 861.8 keV

being carried by the electron neutrino (νe). 10% of the time, it decays to an excited 7Li∗ state

with a 384.2 keV electron neutrino. This subsequently decays to the ground state and releases a

photon (γ) with 477.6 keV energy. This was first observed by Roberts, Heydenburg, and Locher3

in lithium and boron targets.

One interesting aspect of 7Be is how it has been used as a scientific instrument to probe our

universe. Its reactions were used to indirectly confirm the existence of neutrinos.4 Its discovery5

in our atmosphere from cosmic-ray spallation of nitrogen and oxygen has led to its becoming a

tracer for atmospheric transport and other geophysical processes. Its decay reaction, found in the

solar proton-proton fusion cycle, was first used to probe the sun’s interior to better understand this

cycle.6

1
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Environment T1/2 (days) Reference

endohedral C60 52.68 ± 0.05 Ohtsuki et. al7

Be(OH)2 at 442 kbar 52.884 ± 0.022 Huh8

BeO 54.226 ± 0.006 Liu and Huh9

TABLE 1.1 Half-Life of 7Be in various environments

Another interesting aspect of 7Be is how its decay rate is affected by the electron density

around the nucleus. Segre10 was among the first to propose studying this effect on 7Be’s decay

rate. Since then, many researchers have observed a 1 to 2% change in the half life of 7Be when it

is placed in different electronic environments. Table 1.1 lists some of these measurements under

various conditions. Since oxygen pulls the electrons away from the 7Be nucleus site, its decay rate

decreases in BeO. For both the 7Be in a buckyball C60 and under 442 kbar of pressure in Be(OH)2,

the electrons move toward the nucleus thereby increasing the decay rate.

To our knowledge no one has studied the decay rate when ionized, which would be its most

natural state in our upper atmosphere and sun. We desire to study this effect on the half life of

7Be. Hutchison11 in our plasma group used both Hartree-Fock self-consistent field and Density

Functional Theory methods to calculate the relative changes in the decay constants for 7Be, 7Be+,

and 7Be++ and found that the decay rate for singly-ionized 7Be would increase compared to its

accepted values.

1.2 OUR 7BE EXPERIMENT

To study the half life of ionized 7Be, we require an experimental apparatus that can confine 109

ionized 7Be ions for a period on the order of the half life. Our group has devised such a system as

shown in the Figure 1.1.
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FIG. 1.1 Overview schematic of our 7Be experiment. The B4C sample is inserted into the mod-
ified MeVVA ion source. The Quadrupole Mass Filter (QMF) filters the mass contaminants. The
Malmberg-Penning traps our 7Be ions axially by electrostatic end electrodes. The outer solenoid
(which is part of the trap) confines the ions radially by producing an axial magnetic field of a
strength of about 0.43 T. The whole experiment is evacuated between 10−9 to 5×10−10 torr.

The process begins by locally creating 7Be by bombarding an isotopically enriched boron car-

bide (B4C) sample with a proton beam with an average energy of 400 keV in a Van de Graaff

accelerator. The nuclear reaction that occurs in the B4C is as follows:

10B+ p+→ 7Be+4 He (1.1)

This creates 7Be in the B4C sample and ejects alpha particles (4He).

The sample is moved from the accelerator and inserted into a Metal Vapor Vacuum Arc (MeVVA)

ion source.12 We then eject the 7Be ions from the sample by arcing across the surface with high

voltage in this ion source. This not only releases 7Be from the B4C sample, but also other contam-

inants like B and C ions.

We filter these contaminants from the 7Be ions by applying alternating and DC voltages on

four poles in a quadrupole mass filter (QMF).13 The QMF also channels them into our trap’s high

magnetic field, which tends to deflect particles away from the trap by mirroring them if they have

too much transverse velocity.

After the ions enter the trap region they are confined radially by applying an axial magnetic
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+V
c grounded +V

c

plasma

B

E

FIG. 1.2 A nonneutral plasma is confined radially by an axial magnetic field. It is confined in
the axial direction by electrostatic potential Vc on the two end electrodes of a Malmberg-Penning
trap. The trap region remains grounded.

field. They are confined in the axial direction by electrostatic potentials on end electrodes in a

Malmberg-Penning trap.14 Figure 1.2 shows how these ions are confined. In our trap, we can

repeat the firing of the ion source and channeling through the QMF sequence as many times as we

need to collect 109 7Be ions.

We plan to hold this 7Be ion plasma for its half life by using a rotating wall technique which

was pioneered in these machines.15 Normally, small static field errors and background neutral gas

exert a drag on the rotating nonneutral plasma which causes it to slowly expand and be lost to the

wall. The rotating wall technique works by applying a “rotating wall” electric field on the plasma

at a rate faster than its natural rotation frequency. This frequency is the E×B rotation frequency of

the plasma at r = 0. As a result, the nonneutral plasma spins up and compresses into a steady-state

equilibrium.

To determine the decay rate of 7Be ions, we can either detect the 477.6 keV gamma emitted in

10.4% of the decays or observe the increase of 7Li ions in the plasma. The cylindrical geometry of

our trap makes it difficult to detect the isotropic gamma emissions, so we will use a sectored ring

on our trap to detect the 7Li ions in the plasma using a Fourier transform ion cyclotron resonance
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mass spectrometry (FTICR-MS) technique.16 Finally, we will use a set of charge collecting disks

connected to an integrator circuit17 to destructively measure the radial profile of our plasma when

it is dumped out the end of the trap.



CHAPTER 2

THEORY AND PREVIOUS WORK

2.1 FTICR-MS

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS)18,19 is based on the

fact that charged particles in a uniform magnetic field exhibit a circular motion known as cyclotron

motion. The frequency of these orbits depends on the charge-to-mass ratio of the ions q/m and on

the magnetic field B.

fc =
1

2π

q
m

B (2.1)

If the uniform magnetic field strength is known and the charge is the same for all the confined

ions in the trap, we can determine the composition and abundance of the ions by observing which

cyclotron frequencies are present and the strength of the signal at each frequency.

In our trap we use a 4-segmented cylindrical electrode to excite and detect the cyclotron motion.

Initially, the cyclotron signal from the confined ions cannot be detected because the thermal energy

distribution and their random phases with each other make the signal too small to see. To detect a

measurable signal, we apply a dipolar oscillating voltage signal on two opposing sectors near the

ions’ cyclotron frequencies. This creates an approximately uniform electric field which oscillates

at the cyclotron frequency and therefore accelerates the ions outward as shown in Fig. 2.1. This

makes the orbits larger and re-phases the orbits so all the ions are in phase with each other. This

much larger induced signal is then detected on two other opposing sectors. This signal is then fast

Fourier transformed (FFT) to obtain a frequency spectrum which characterizes the confined ions in

6
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the trap. Provided we excite within the range of frequencies that cover the expected ion masses, it

becomes possible to determine the relative abundances of the ions by the amplitude of the signals

at the associated cyclotron frequencies.

Excite
D

etect

B

FIG. 2.1 FTICR-MS consists of using the dark grey sectors to excite the cyclotron motion of the
confined ions. As energy is added to these ions, they spiral out as shown by the light grey path.
After excitation, the light grey sectors detect the induced signal from the excited ions. Finally, this
induced signal is fast Fourier transformed to obtain the frequency spectrum which characterizes
these confined ions in the trap.

One of the fundamental limitations of FTICR-MS is the presence of external and self electric

fields. These fields cause an E×B drift on the confined ions. This drift causes the entire charge

column to rotate. This rotation causes the cyclotron frequency to be downshifted by a certain

rotation frequency associated with the drift. For normal FTICR-MS systems at low densities,

this is primarily the magnetron frequency which comes from the radially confining electric fields.

Nevertheless, there is also a small contribution from the image charges on the wall which increases

as the number of ions increases. For nonneutral plasmas like ours, this is the diocotron frequency,

which results in the rotation of an offset plasma around the symmetry axis of the confining walls.
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It is due to the radial electric fields from the image charges on the wall.

The measured ion cyclotron resonance frequency ficr is always the cyclotron frequency fc

downshifted by the rotation frequency fd associated with the E×B drift where the E is the trap

and image electric field.

ficr = fc− fd (2.2)

2.2 PREVIOUS WORK: PLASMA LIMITATIONS

Another limitation of FTICR-MS which particularly affects our system is that our ion cloud is

a nonneutral plasma. A nonneutral plasma is defined as a gas of charged particles that exhibits

collective behavior. This collective behavior comes from the long-range Coulomb interaction of

charged particles. There are two main conditions that a charge cloud must satisfy to be a plasma.

λD� L (2.3)

ωp > νc (2.4)

Condition one is that its Debye length, λD, is shorter than the physical dimensions, L, of the plasma.

Condition two is that the typical plasma oscillation frequency, ωp, is greater than the mean collision

rate, νc. In our case, the Debye length is 377 µm which is much less than the radius of our plasma

which is 2 cm. Our plasma frequency is 251 kHz, which is much greater than ion-ion collision

frequency of 417 Hz.

As the number of ions increases in the cloud, not only is there an image charge related fre-

quency shift, but there are Coulomb interactions between the ions, which then behave collectively.

This electrostatic coupling causes clouds of similar mass species to phase lock.20,21 It also causes

other frequency shifts that are not well understood because of the collective behavior of a plasma.
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Some of the initial work to understand this Coulomb interaction was done by Jeffries et. al22

for a weak space charge effect. Later, Gorshkov, Marshall and Nikolaev23 considered two species

with a line charge model, with both line charges orbiting at the same radius. However, none of

these works can fully explain an ion cloud which is a nonneutral plasma.

In two FTICR-MS experiments, Huang et al.20 and Naito and Inoue21 observed that the spec-

tral peaks for similar mass species coalesced at high densities. Peurrung and Kouzes24 generalized

this as part of the phenomena exhibited by coupled gyrators. Naito and Inoue21,25 modeled this

phenomenon with two singly-charged particles confined in a plane perpendicular to a uniform

magnetic field. They calculated that one of the mode frequencies of this four-degrees-of-freedom

system is at the molecular-number weighted average of the two individual cyclotron frequencies.

They speculate that this frequency is the frequency of the coalesced peak.

Using a two-cylindrical ion cloud numerical simulation, Mitchell and Smith26 observed that

the frequency after phase locking was almost, but not quite, the weighted average of their unper-

turbed cyclotron frequencies. In a subsequent paper27, they observed that there was a relative ion

abundance dependence on the single collective cyclotron frequency of cylindrical ion clouds. In

this paper, they study extensively the various parameters which effect the phase locking of ion

clouds. Mitchell28 further simulated this phenomenon in a 3D PIC code. He noticed that the fre-

quency at phase locking for two equal amounts of two species was an average of the two shifted

unperturbed cyclotron frequencies. This shift was due to the image charge interaction between the

phase-locked ion cloud and the conducting wall. He used the Gorshkov et. al23 calculation of

the image charge frequency shift for a line charge inside a grounded cylindrical trap. This result

Mitchell thought was fortuitous because his simulation was in a cubic trap and not in an infinitely

long cylindrical trap.

Recently, Boldin and Nikolaev29 have revisited the theory of peak coalescence in FTICR-MS.

They describe the motion of the ion clouds in terms of their averaged drift motion in a crossed
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magnetic and electric fields. They assume ion clouds of constant size and their motion is studied

in two dimensions. They use a first-order approximation of the equations of motion in relation to

dm/m, where dm is the mass difference and m is the mass of a single ions. They focused their study

on the onset of coalescence in an arbitrary interaction potential. Using their condition of the onset

of coalescence for uniformly charged spheres, our simulation (which has a different geometry)

agrees with their results within reasonable approximations.

In a pure electron plasma, Gould and Lapointe30 observed that the m = 1 cyclotron mode

had a frequency equal to the cyclotron frequency downshifted by the diocotron frequency. In a

nonneutral Mg+ ion plasma, Sarid, Anderegg, and Driscoll31 observed a shift in these cyclotron

modes. They could explain these shifts for the major species with a multispecies cold plasma

theory, but not for the minor species. They used Davidson’s32 multispecies cold plasma theory to

explain their frequency shifts for the major species.

2.3 DAVIDSON’S COLD MULTISPECIES PLASMA THEORY

Davidson32 derived an electrostatic dispersion relation for an infinitely long, constant density,

nonrelativistic, multispecies nonneutral plasma column using a macroscopic cold fluid description.

This plasma column with a radius Rp is confined inside a cylindrical conductor of radius Rw. The

macroscopic cold fluid description consists of a linearized steady-state continuity equation, the

force balance equation, and Maxwell’s equations. The perturbed solutions for density, velocity,

electric and magnetic fields were all Fourier decomposed in the following way:

δψ(r,θ ,z, t) =
∞

∑
m=−∞

∞

∑
kz=−∞

δψ
m(r,kz)exp[i(mθ + kzz−ωt)] (2.5)
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where δψ is any of the perturbed quantities. We choose to restrict our attention to purely azimuthal

modes, so we set kz = 0. So, we are left with any m order angular solutions. The electrostatic

dispersion relation for a cold uniform density multicomponent nonneutral plasma column is:

0 = 1−∑
j

ω2
p j[1− (Rp/Rw)

2m]

2(ω−mωr j)[(ω−mωr j)+(−ωc j +2ωr j)]
. (2.6)

In this equation m is the angular mode number. The sum in this dispersion relation is over the

species j of the plasma with the angular frequencies are defined as follows:

ωc j =
eB
m j

, ω
2
p j = f j w2

p j = f j
e2n0

m jε0
, ωr j = ωc j

1−

(
1−2

w2
p j

ω2
c j

)1/2
 .

The first angular frequency, ωc j is the cyclotron oscillation. The second angular frequency, ωp j,

is the plasma oscillation. The m j in these angular frequencies are the mass of species j. Note

that we have redefined Davidson’s plasma angular frequency ωp j to wp j where f j = n j/n0 is the

fraction of the number density and n0 = ∑
k

nk is the total density of the plasma column. The third

angular frequency, ωr j is related to the slow rotation of the plasma column. We have taken the sign

convention to be positive for all of these angular frequencies.

This theory predicted the plasma cyclotron peak frequency shifts which were observed by Sarid

et. al31 for their major species. They also extended this theory to include the radial density profile

dependence on these frequency shifts. However, they could not explain the shifts from the minor

species.
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2.4 TWO CHARGED RODS IN A GROUNDED CYLINDER MODEL

To better understand the spectral peak shifts with abundances of 7BeH+ and 7Li+ plasma at high

density, Ross L. Spencer developed an electrostatic analytical model. The model simply consists

of two infinitely long charged rods of radius Rp that are nearly centered in a grounded infinitely

long cylinder of radius Rw. This model includes the radial extent of the charge column and the

collective behavior of a nonneutral plasma which Gorshkov, Marshall and Nikolaev’s simple line

charge model23 does not take into account.

To simplify our equations of motion, we define the total number of particles n0 = n1 + n2 as

the sum of the number of each species and the fraction of species 1, f = n1/n0, to be the ratio

of the number of species 1 to the total number of particles. We also define the following angular

velocities:

ωc1 =
eB
m1

, ω
2
p1
=

e2n0

ε0m1
, ωc2 =

eB
m2

, ω
2
p2
=

e2n0

ε0m2

related to the cyclotron and plasma oscillation of each charged rod. The equations of motion for

each charged rod are:

r̈1 =ωc1(ṙ1× ẑ) +
(1− f )

2
ω

2
p1
(r1− r2) +

ω2
p1

2
R2

p

R2
w
[ f r1 +(1− f )r2]

r̈2 =ωc2(ṙ2× ẑ) +
f
2

ω
2
p2
(r2− r1) +

ω2
p2

2
R2

p

R2
w
[ f r1 +(1− f )r2].

(2.7)

The first term in this set of equations represents the magnetic force on the respective rods. The

second term is the electric coupling between the two rods. For rod 1 it is the electric force from rod

2 on rod 1. The third term represents the effect of the image charge on the grounded cylindrical

wall from each rod. The r1 term is the image charge for rod 1 while the the r2 term is the image
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charge for rod 2.

If we assume sinusoidal time dependence e−iωt , this set of equations yields a dispersion relation

of 4th order in ω2. The four roots are: (1) the diocotron mode, (2) the rotation of each rod around

the other, which I name the binary mode, roots (3) and (4) are the cyclotron oscillations near the

cyclotron frequency of each individual mass, but shifted by the electrostatic fields. These cyclotron

oscillations vary with the fractions of the species just as our spectral peak frequency does in our

simulation. I refer you to Fig. 4.9 for the agreement between the simulation and the model.

This analysis also agrees with Davidson’s cold multispecies plasma dispersion relation which

predicts the same four modes, but this model gives a better physical picture of what is going on

in our experiment. We learn about four different physical oscillation modes which are present in

Davidson’s theory but not as transparent. However Davidson’s theory does extend this analysis to

understand the frequency shifts for two different mass species to higher m angular modes and to

more species than two.

Using Davidson and this analytical model, we can identify the different modes of oscillation

in our simulated spectrum for equal amounts of 7BeH+ and 7Li+ at a central density of 1013 m−3.

Figure 2.2 illustrates the two different types of oscillation modes. There are slow modes and fast

modes. We are only sensitive to the odd harmonics of m because of our detection symmetry. In

the slow modes subplot we see the binary mode. We normally would not be sensitive to the binary

mode with the detection geometry, but there is a nonlinear coupling to the diocotron mode which

makes it visible with a small amplitude. In the fast modes subplot, we identify each peak by

its species cyclotron oscillation frequency downshifted by the diocotron frequency. These peaks

change with the relative abundances of the confined species.
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FIG. 2.2 Overall spectrum for equal amounts 7BeH+ and 7Li+ at central density of 1013 m−3.
Note there are two types of modes of oscillations. There are slow “diocotron” modes and fast
“cyclotron” modes. Note that we do not observe any even angular m order modes because of the
symmetry of our detection.



CHAPTER 3

SIMULATING THE FTICR-MS SIGNAL IN A 2D PIC CODE

3.1 INTRODUCTION AND OVERVIEW OF CODE OPERATION

7Be and 7Li ion plasmas were simulated in a collisionless, electrostatic, 2-dimensional particle-in-

cell (PIC) code to better understand the FTICR-MS signal in the plasma regime. The FTICR-MS

signal is not well understood in this regime. Others have tried to solve this problem analytically,

but it is difficult because it is intrinsically nonlinear.

We assume that the particles in our plasma do not collide in a manner that affects their cyclotron

frequencies. Our collision time in our system between ions is about 2 ms. The period for our

cyclotron motion is about 1 µs. Our ion-neutral collision time is of the order of days. This collision

time was calculated by assuming a pressure of 10−9 torr and a cross sectional area from a water

molecule with a radius of 1 Å in length. As a result we do not need to be concerned about ion-

neutral collisions.

We also assume that the cyclotron motion of these particles is independent of the bouncing axial

motion in our experimental trap. Our PIC code has a Cartesian computational grid with a circular

boundary; consequently the code is called Particle Meshed Ring, PMR. It inherited a linear direct

solver for the electrical potential from a fluid code named PEPI written by Ross L. Spencer.

PMR begins by inputting the system parameters from an input file which is piped into the pro-

gram. Next it sets up the storage for the direct Poisson solver, predir, and detector, predetect.

Then it sets up the initial plasma equilibrium. It creates an equilibrium density profile, dens, using

deqmaker and a velocity profile, veq, using veqmaker. It can also read in an initial perturbed

15
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velocity profile vrp into our code to add to the velocity profile veq in veqmaker. Partinit uses

dens and veq to initialize the positions and velocities of each of the particles.

Before entering the main time loop, we initialize our mover by taking a half time step backward

in our velocities using vint. This is done so that we can use the leap-frog method to integrate the

equations of motion. The leapfrog method requires the positions and velocities to differ in time

by half a timestep. To take this backward step we interpolate the particles’ positions on to a

computational grid using densmaker, apply the initial boundary conditions using bdycon, solve

Poisson’s equation to calculate the electric fields on the grid using directsolve and then move

this initial half step back by applying Newton’s laws of motion to the particles. Thus, we begin our

program defining the positions at t = 0 and velocities at t =−∆t/2 for each particle and the initial

electric fields, efg, on the grid at t = 0.

For each time step, the code does the following: (1) It moves each particle subject to the

electromagnetic force by interpolating the electric fields on the grid to the particles’ positions

and using a constant magnetic field perpendicular to the x-y grid using mover. (2) It builds a

density grid from the particles’ positions using densmaker. (3) It applies time varying boundary

conditions in bdycon. (4) It solves Poisson’s equation to calculate the electric fields on the grid

using directsolve. (5) It calculates the induced signal on the wall using detect. After the run

the induced signal from the wall is post-processed in MATLAB to find the desired FTICR-MS

signal.

Figure 3.1 illustrates this overall process. The remaining chapter will cover in detail these main

components of our PMR code.
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partinit
x,v,E

mover

x
densmaker

n

x,v,E
directsolve

bdy
bdycon

φ
detect

FIG. 3.1 Overview of PMR code. The bold text are major subroutines in the code. The small
text are the major variables passed from one subroutine to the other. Partinit initializes the
particles. The middle triangle is the main time loop of the PMR code. The mover which moves
the particles position and velocities by the Lorentz force. Densmaker interpolates the positions to
a computational density grid. Directsolve solves Poisson’s equation to obtain the electric fields.
We apply boundary conditions with bdycon and detect the signal on the wall with detect each
time around the time loop.

3.2 PARTINIT: INITIAL PARTICLE DISTRIBUTION

The code begins with an initial dynamical plasma equilibrium. This is accomplished by preparing

an initial density profile dens and a velocity profile veq for partinit.

Deqmaker makes a flat or quadratic radial profile by filling the appropriate values in a density

grid dens for a given profile. In most of our cases, we use a flat radial profile because we assume

our plasma has equilibrated to room temperature.

Next, our Poisson solver directsolve solves for the electric fields from the given density

profile. After calculating the electric fields, veqmaker calculates the initial velocity profile veq

using the Lorentz force. The following equation

−
m v2

θ

r
= q (Er + vθ Bz) (3.1)

calculates the θ -component of velocity vθ . Veqmaker can also add a radial perturbation to this

equilibrium velocity profile.

Partinit begins by integrating the density profile to get the total number of particles. Then
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it loops through 2-dimensional spatial and velocity grids. In this triple loop, it first calculates

the density value for a given x and y position via bilinear interpolation from the density profile.

Second, it uses a 2-dimensional Maxwellian distribution to calculate the distribution value at a

given position and velocity. The Maxwellian is calculated as follows:

f (x,y,v) = n(x,y)
1

2π v2
th

e−
1
2 (

v
vth

)2
(3.2)

where vth =
√

kBT
m is the thermal velocity and n(x,y) is the density value at a given x and y position

on the grid. Third, it calculates the fraction of simulated particles for a given velocity as follows:

∫∫
f (x,y,v) 2π v dv dA

Ntot
np = fv np (3.3)

where fv is the fraction of real particles for a given velocity and np is the number of simulated par-

ticles. Then partinit uses a random number generator to place the simulated particle’s position

and velocity randomly in the given position and velocity bin. Next we add the equilibrium velocity

profile to this initial thermal velocity distribution. Finally, we calculate sizepart, the ratio of the

number of real physical particles to simulated particles to be used throughout the main program.

3.3 MOVER: BORIS-BUNEMAN MOVER

We move each particle using a Boris-Buneman E×B mover. First, this subroutine interpolates the

electric field on the grid to the particles’ position. It uses the same bilinear weighting that is used

in densmaker. For the x-component of the electric field, we interpolate as follows:

Ex(x,y) = f00 Ex(i, j)+ f10 Ex(i+1, j)

+ f01 Ex(i, j+1)+ f11 Ex(i+1, j+1)
(3.4)
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where fxx are weights from each quadrant of the cell. Figure 3.3 illustrates these area weights.

Second, it moves the particles according to a Boris mover.33 This mover is based on a leap-frog

scheme. Using the following centered-difference form of the Lorentz equations of motions:

vt+∆ t/2−vt−∆ t/2

∆ t
=

q
m

[
E+

vt+∆ t/2 +vt−∆ t/2

2
×B
]

(3.5)

we move each particle forward in time. This mover separates the electric and magnetic forces.

Initially each particle experiences a half time step from the electric force:

v− = vt−∆ t/2 +
qE
m

∆ t
2
. (3.6)

This is followed by a rotation from v− to v+ by the magnetic force using Buneman’s34 reduced set

of equations:

v′x = v−x + v−y tan(θ/2) (3.7)

v+y = v−y − v′x sin(θ) (3.8)

v+x = v′x− v+y tan(θ/2). (3.9)

Here, θ = ωc∆ t = qB
m ∆ t is the cyclotron angular frequency multiplied by the time step. Then we

calculate the remaining half time step from the electric force:

vt+∆ t/2 = v++
qE
m

∆ t
2
. (3.10)

Finally, we conclude by moving the particle’s position as follows:

xt+∆ t = xt +vt+∆ t/2 ∆ t. (3.11)
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For more information about this Boris-Buneman mover see Birdsall’s35 text.

Lastly the mover checks to see if the particle has escaped from our allowable computational

region. Figure 3.2 illustrates this process. The particle array is ordered in such a way that all species

1 particles are together followed by all species 2 particles and so forth. The escaped particles are

placed in the end of the active part of this particle array. As a result, it is important that the order

of this particle array is maintained as mover moves the escaped particles to the end of the particle

array.

The basic algorithm is that if a particle escapes the computational region, we decrement the

number of active particles and increment the number of escaped particles. If the current particle

has not escaped, the next time through the loop, we exchange the current value with the value at

the number of escaped particles position. Figure 3.2 illustrates this in the fifth iteration where the

current position 5 in the array is exchanged with position 3 in the array because there are 2 escaped

particles. In short, this algorithm is efficient only because it maintains the particle array order and

does not need to shift the remaining array up each time a particle escapes.

3.4 DENSMAKER: PARTICLE POSITIONS TO DENSITY GRID

Densmaker makes a density grid ρi, j from the particles’ positions p(x,y). The density is described

by a cell-edge grid as shown in Fig. 3.3. First consider the x-direction. We begin by calculating the

particle’s distance from the edge of the grid xi in terms of the grid spacing dx. This is calculated

as follows:

xl =
x− xi

dx
+1. (3.12)

This dimensionless value is only an integer when the particle’s position is on a grid point. We next

truncate this factor xl to be an integer in order to get the left grid index il . To obtain the fraction

of the cell in the x-direction, fx, we take the difference of this particle distance xl and the left grid
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FIG. 3.2 This is a workflow cartoon of how escaped particles are moved to the end of the particle
array. Each row represents one iteration in the for loop stepping through the particle array. Each
column represents one step in each iteration. The dot in the first column represent the current
element on the array for that iteration. The extra box in the second, third and fifth rows represents a
temporary variable. The number on the upper right corner represents the number of active particles.
The bolded values represent the current affected value. The value of one represents a particle that
has escaped the allowable computation region.
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FIG. 3.3 Accumulation of fraction of density unto grid points ρ by opposing area f . The density
grid point ρi, j accumulates the fraction of density from the area is f00 for particles’ position at
p(x,y).

index il . By construction this fraction is always positive. We then find the analogous values in the

y-direction.

After obtaining these fractions for both directions, we calculate the weights for the four corners

of the cell. For the left-bottom corner, the weight f00 is the area (1− fx)(1− fy) times grid density

factor f0. This is the area of the region opposite to the left-bottom grid point as shown in Fig. 3.3.

The grid density factor f0 is just the grid density 1/dx2 which has units m−2.

3.5 BDYCON: EXCITE CYCLOTRON MOTION BOUNDARY CONDITIONS

To excite the cyclotron motion of each species, we apply an oscillating electric potential on two

sectored boundaries. The two sector boundaries are out of phase with each other.

Bdycon applies these boundary conditions by first setting the functional form of the electric

potential. It can apply a grounded condition, an impulse, single frequency excitation, broadband
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excitation, or read a file of the functional voltage form. It continues to apply this form until the

driving time tdr is reached. Bdycon uses a function phibdy to calculate the boundary value for a

given angular value. Phibdy also sets up the two left and right quarter sector boundaries on which

we apply these conditions. It also sets the value on one sector opposite to that of the other.

For the grounded condition, bdycon sets all the boundary values to zero voltage. For the

impulse condition, it sets the boundary values to a constant voltage. For the single frequency

excitation, it sets the boundary values to a sinusoidal function with a driving amplitude A and a

single driving frequency ω .

For broadband excitation, we use the following functional form:

f (t) = a tdr
sin(ω1τ)− sin(ω2τ)

π τ
(3.13)

where a is the spectral amplitude, tdr is the driving time, ω1 is the start angular frequency, ω2 is the

end angular frequency, and τ = t− .5 tdr. This functional form is analogous to a bandpass filter.

This functional form and its spectrum is illustrated in Fig. 3.4. In the time domain, its maximum

amplitude from base to peak can be calculated as follows:

Amax = 2 tdr

N

∑
n

an ∆n (3.14)

where Amax is the maximum time amplitude, ∆n is the bandwidth of the rectangular function, and

the sum is over N number of rectangular functions in the spectrum.

If we read a file for the functional voltage waveform, bdycon linearly interpolates this voltage

form in time. One standard voltage waveform we read from a file is the optimized stored wave-

form inverse Fourier transform (SWIFT) waveform. This excited waveform and its spectrum is

illustrated Fig. 3.5.
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FIG. 3.4 Bandpass filter time and frequency domain. Note the high dynamic range that would
be required in the time domain (about 800 mV). Note the Gibb’s phenomena on the edges of the
rectangular profiles in the frequency domain.

SWIFT was first developed by Marshall et. al.36 This technique involves inverse Fourier trans-

forming a desired excitation magnitude spectrum F(ω) to excite the cyclotron motion of the ions in

FTICR-MS trap. Subsequently, Chen et. al37 found that any nonlinear phase modulation (prefer-

ably a quadratic phase function) reduced the dynamic range in the time domain. Later, Guan and

McIver38 developed a optimized quadratic phase function. We have used their optimized phase

function.

Guan and McIver’s optimal phase function P(ω) is calculated using the desired power spectrum

G(ω)≡ |F(ω)|2 as follows:

P(ω) =
t1− t0∫

ω1
ω0

G(y)dy

∫
ω

ω0

∫ y

ω0

G(x)dxdy+ t0(ω−ω0)+P0. (3.15)

The first term spreads the excitation power over the time period t1− t0. The integral
∫

ω1
ω0

G(y)dy is

the area under the power spectrum. The second term time shifts the waveform to the time location
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FIG. 3.5 This is stored waveform inverse Fourier transform (SWIFT) time and frequency do-
main. The techniques involves using a desired excitation magnitude spectrum (like the one on the
right) to obtain the time domain signal on the left. The time domain has a reduce dynamic range
(about 100 mV) compared to the bandpass filter version (about 800 mV) for the same excitation
magnitude spectrum. Note the frequency domain does not exhibit the Gibb’s phenomena on the
edges of the rectangular profiles.

between t0 and t1. The third term is the initial phase P0 which we can simply choose to be zero.

If we choose to spread our excitation power to half the excitation time T1, this phase function

can be reduced in the following way. First let us define the time period over which we spread the

excitation power as

T ≡ t1− t0 = T1/2.

Second, we define the starting point of this excitation spread as

t0 ≡ (T1−T )/2 = (T1−T1/2)/2 = T1/4.
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Now, we discretize our continuous integrals into sums as follows:

Pk =
T1

2
N−1
∑

k=1
Gk

k

∑
j=1

j

∑
i=1

Gi ∆ω +
T1

4
k ∆ω

The double sums are cumulative sums. Then, we note how the sampling frequency fs is related to

our excitation interval T1, angular frequency step ∆ω , and its product as follows:

T1 = N∆t = N
1
fs

∆ω = 2π∆ f = 2π
fs

N

 T1∆ω = 2π.

Our phase function reduces to the following form:

Pk =
π

N−1
∑

k=1
Gk

k

∑
j=1

j

∑
i=1

Gi +
π

2
k

For a phase function of frequency rather than angular frequency, we can divide the top form by 2π

to get the following:

P′k =
Pk

2π
=

1

2
N−1
∑

k=1
Gk

k

∑
j=1

j

∑
i=1

Gi +
1
4

k

3.6 DIRECTSOLVE: SOLVE POISSON’S EQUATION FOR ELECTRIC FIELDS

We solve Poisson’s equation using a matrix solver. We translate Poisson’s equation ∇2V =−ρ/ε0

into the linear problem Ax = b. We finite difference the Laplacian, ∇2, as follows:

∇
2 V =

Vi+1, j−2Vi, j +Vi−1, j

∆ x2 +
Vi, j+1−2Vi, j +Vi, j−1

∆ y2 =− ρ

ε0
(3.16)
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The coefficients in front of the electric potential terms form the matrix A. The right-hand side of

Poisson’s equation is just the density grid calculated by densmaker times a known constant q/ε0.

We are trying to solve for the electric potential which is our unknown matrix x.

To solve for the unknown x, we decompose the invertible matrix A = LU into its lower and

upper triangular matrices. This breaks the single matrix problem into two easier matrix problems

as follows:

A x = b→


L y = b

U x = y
(3.17)

We first solve for the unknown y’s by forward substitution of the known b’s into the lower triangular

matrix L. Then we backward substitute the y’s into the upper triangular matrix U to solve for the

unknown x’s.

For our code, we use a cartesian grid with a circular boundary to avoid the difficulties at

the origin in polar coordinates. Presor prepares the storage for both the direct linear solver,

directsolve, and the FTICR-MS detection subroutine, detect. It first identifies the interior

points. Each interior point is a point surrounded by four other grid points which are inside the cir-

cular boundary. Then it identifies the edge points which are the outer edge grid points surrounding

the interior grid points. These edge points are the closest grid point to the boundary. Presor also

calculates the scaled lengths from the edge points to the circular boundary. Figure 3.6 illustrates

these points and lengths.

Predir loads a banded matrix A with the appropriate coefficients for the Laplacian operator. It

starts by loading the normal center-difference coefficients from the Laplacian operator as shown in

Eq. 3.16. Then it loads the identity operator for the points outside our circular boundary. For our

circular boundary, it quadratically extrapolates the Laplacian operator for each direction, adding

the appropriate coefficients together.
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FIG. 3.6 The computation grid to solve Poisson’s equation. The interior points are mark by
diamonds. The edge points are mark by “X”’s. The boundary points are mark by circles. t1,y and
t2,x are the scaled distance from the edge point to the boundary point.

For a south-west edge point, the extrapolated Laplacian operator is as follows:

∇
2 Vi, j =

2
∆x2

[
V1,x

t1,x(t1,x +1)
−

Vi, j

t1,x
+

Vi+1, j

t1,x +1

]
+

2
∆y2

[
V1,y

t1,y(t1,y +1)
−

Vi, j

t1,y
+

Vi+1, j

t1,y +1

]
=− ρ

ε0
. (3.18)

where V1,x and V2,x are the electric potential values on the circular boundary, t1,x and t1,y are the

scaled length from the edge point to the circular boundary, and ∆x and ∆y are the grid spacings in

the respective x and y directions. Figure 3.7 shows how this operator can be visually described as

a “short-legged” operator where t1,x and t1,y are the short legs compare to the normal grid spacing

∆x and ∆y. Predir also loads the coefficients from the boundary terms like V1,x and V2,x that con-

tribute to the right-hand side of the problem. These coefficients will be combined in directsolve

with the boundary conditions from bdycon to build the proper right-hand side of the equation.
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FIG. 3.7 Southwest short-legged operator for circular boundary. This operator is a quadratic
extrapolation of the normal Poisson operator. Notice the “short” legs of this operator are t1,x and
t1,y in contrast to the “normal” legs ∆x and ∆y.

Finally, predir decomposes this banded matrix A into lower and upper triangular matrices using

the subroutine ludcmp_b. In our code, the decomposed banded matrix ALU replaces the original

banded matrix A. Note that this decomposition only needs to be done once, since A only depends

on the type of boundary conditions at the wall and not in the value of the boundary condition.

Directsolve first loads the density part from densmaker to the right-hand side of the matrix

equation. Second it adds the boundary conditions to the right hand side. This involves multiplying

the operator coefficients calculated by predir with the boundary values from bdycon. Then it

directly solves for the electric potential by doing the forward substitution for the lower triangular

matrix and back substitution for the upper triangular matrix using the subroutine lubksb_b on the

banded matrix A and right-hand side contribution. Finally, we use these electric potential values to

calculate the electric fields for each direction on the grid. For more information about how to solve

Poisson’s equation, I refer to Birdsall’s35 and Hockney’s39 texts.
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FIG. 3.8 To extrapolate x-component of the electric field on the boundary point E2,x, we use the
electric potential values on the boundary point V2,x and the grid points Vi+1, j and Vi+2, j. We also
use the distances ds2,x and h. We quadratically extrapolate the electric field to the boundary.

3.7 DETECT: CALCULATE THE WALL SIGNAL

To detect our signal, we calculate the electric field at the boundary using the electric potential at the

boundary and two nearest interior grid points. Figure 3.8 shows how we quadratically extrapolate

the electric field to the boundary. In the x-direction, the equation for the electric field is as follows:

E2,x =−
∂ V2,x

∂ x
=

2ds2,x +h
ds2,x (h+ds2,x)

V2,x−
h+ds2,x

ds2,x h
Vi+1, j +

ds2,x

(h+ds2,x) h
Vi+2, j (3.19)

where ds2,x is the distance from the edge grid point to boundary and h is the grid spacing in the

x-direction. We use the boundary point V2,x and the two nearest interior points Vi+1, j and Vi+2, j to

extrapolate E2,x on the boundary.

As one can notice from Fig. 3.8, we will not get both components of the electric field at each

boundary point. Also, they will not be equally spaced in angle on the boundary arc. So, we
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interpolate the extrapolated electric field components to a uniformly spaced angle array.

Predetect prepares indices and coefficients to quadratically extrapolate the electric field to

the circular boundary. It also creates a sorting key to sort these values by increasing angle value.

Then it calculates the indices and coefficients to cubically interpolate onto a uniform angle grid.

Predetect also maintains the angle periodicity such that when it passes −π or π , the values are

mapped back onto the values between −π to π

Detect uses the preparation from predetect to calculate the induced charge on a boundary

sector. It extrapolates the electric field on the boundary, sorts them by increasing angle value, and

interpolates them onto a uniform-spaced arc grid. Then, we numerically integrate the electric fields

on each boundary arc using a composite Simpson’s algorithm to calculate the induced line charge

on them. This algorithm is as follows:

λ = rb ε0
∆θ

3

[
Er(θ0)+4

N

∑
m=1,3,...

Er(θm)+2
N

∑
n=2,4,...

Er(θn)

]
(3.20)

where rb is the radius to the boundary, ε0 is the permittivity of free space, ∆θ is the uniform grid

spacing, Er is the electric field on the uniform arc, and N is the total number of values between the

first and final angles. Finally, we subtract this time signal from the opposing sectors to obtain the

wall signal.

To verify that our detect was working properly, we compared the simulation results for the

electric fields on the wall with an analytical solution for the radial electric field from a line charge

in a grounded infinite cylindrical wall. The analytical solution we use is as follows:

Er =
λ

2πε0r
(r2− r′2)

(r2−2rr′cos(θ −θ ′)+ r′2)
(3.21)

where the primed variables (r′,θ ′) relate to the distance and angle to the line charge and the un-
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primed variables (r,θ ) to the boundary wall. Figure 3.9 illustrates this analytical solution. As a line

charge moves closer to the wall, the peak height increases. As the line charge rotates to a different

angle, the peak occurs at that given angle. We also checked that the integrated values of the electric

field are the same as the analytical solution.
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FIG. 3.9 Radial electric field at the wall boundary for a line charge at (R,θ ) = (0.02 m, 180◦).
As the line charge moves closer to the wall, the peak height increases. As the line charge rotates to
a different angle, the peak occurs at that given angle.

3.8 MATLAB ANALYSIS

After obtaining the wall signal from the 2D PIC simulation, we post-process this signal in MAT-

LAB to obtain our desired FTICR-MS spectrum. The 2D PIC code writes out the time and the

difference of the induced line charge on two opposing sectors to a text file.

In a MATLAB script, we first read this file and convert this wall signal ∆λ (t) into voltage

signal v(t) as follows:

v(t) = ∆λ (t)
L
C

(3.22)
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where C is the capacitance and L is the length of the ring electrode. For our 8 mm electrode, the

capacitance is about 85 pF.

We fast Fourier transform (FFT) our voltage signal to obtain the magnitude and phase spectrum.

A good review on this material can be found in the MATLAB help and National Instruments

LabVIEW 2009 Help. FFT is the algorithm which gives the discrete Fourier transform (DFT) of

the time signal. The DFT and its inverse are defined as follows:

Xk =
N−1

∑
n=0

xn e−i 2πk
N n ⇔ xn =

1
N

N−1

∑
k=0

Xk ei 2πk
N n (3.23)

where xn represents the sample time signal and N is the total number of samples. Both the time

domain xn and the frequency domain Xk have a total of N samples. Xk is a sequence of complex

numbers which represents the amplitude and phase of different sinusoidal components of the dis-

crete time signal xn. The normalization constant 1 and 1/N in front of these transformations and

the sign in the exponent are chosen by convention.

We can rewrite the argument of the exponent as follows:

i 2πk
1
N

n = i 2πk
fs

N
n

1
fs

= i 2πk ∆ f n∆t

= i ωk tn.

First, we multiply the numerator and denominator by the sampling frequency, fs. Second, we note

how fs is related to the frequency step, ∆ f , and time step, ∆t. Third, we note how ∆ f and ∆t are

related to the discrete frequency values, ωk, and discrete time values, tn.

xn =
1
N

N−1

∑
k=0

Xk eiωktn ⇔ Xk =
N−1

∑
n=0

xn e−iωktn
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Now the inverse DFT states that the discrete time signal xn can be made up of a sum of sinusoidal

components eiωktn with a given complex amplitude Xk. In this form, we can see that the DFT is a

truncated exponential Fourier series. The DFT is also a series of delta functions spaced by the time

interval ∆t = 1/ fs.

The first term in the DFT of a time signal X0 is the average value or DC component of the

signal. For a constant time signal with 4 samples of 1 V, this would be 4 V. To normalize this, we

divide this term by the total number of samples to get back 1 V.

The spectral magnitude of our signal is the amplitude of Xk in polar form. We calculate this

magnitude by taking the complex modulus of Xk and multiplying by the normalization constant

1/N as follows:

ak =
|Xk|
N

=

√
Re(Xk)2 + Im(Xk)2

N
. (3.24)

For real time values xn, Xk is related to XN−k as follows:

Xk = X∗N−k (3.25)

where the star denotes complex conjugation. As a result of this relation, our spectrum is half

redundant and we usually only look at half the spectrum. However, the amplitude of this half

spectrum is only half the value. Therefore, to obtain the absolute amplitude of the sinusoidal

components, we need to multiply our spectral magnitude by 2. A spectrum displayed this way

is usually referred to as a one-sided or single-sided spectrum. Since we are looking at relative

amplitudes, we have ignored this factor of 2 in our spectra.

If the number of samples N is even, then there is a value at the Nyquist frequency. The Nyquist

frequency is half the sampling frequency. Below the Nyquist frequency are the positive frequen-

cies. Above the Nyquist frequency are the aliased negative frequency components. If the signal
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has frequency components above the Nyquist frequency, then these components spill over to the

positive frequencies. This phenomena is called aliasing where we can not distinguish the alias

frequencies from the actual frequencies in the signal.

To avoid this problem, the Nyquist frequency needs to be greater than the highest frequency in

our signal.

fN =
fs

2
> fmax (3.26)

For our case, the Nyquist frequency is about 4 MHz which is greater than the highest frequency

component in our signal which is at 1 MHz.

The DFT of a time signal assumes periodicity with a period length of N. In most applications

of DFT, we truncate a time signal with an incomplete number of cycles. This causes the DFT

signal to leak amplitude from the actual frequency to other frequencies. This phenomena is known

as spectral leakage. To resolve this issue, we use a technique known as windowing where we

artificially constrain the signal to be narrow in time. As we narrow the signal in time, it broadens

the spectral peaks so that they don’t fall to other finite frequency values. We window our signal by

multiplying it by a given window function.

In our case, we use a Hann window to resolve this issue. The Hann window function is defined

as:

w(n) = 0.5
[

1− cos
(

2πn
N−1

)]
. (3.27)

The bottom left plot in Fig. 3.10 shows how the Hann window narrows the raw time signal. The

windowed spectral magnitude at the bottom right illustrates that we do not actually have a peak

point. It also does not allow any spectral leakage to other frequencies as the raw spectral magnitude

does in the above right plot in Fig. 3.10.

Goodner et. al40 did an extensive study on quantifying the ion abundances in FTICR-MS.

Based on their results, in order to obtain an optimal quantization of the spectrum they recom-
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FIG. 3.10 Comparison of Hann windowed signal vs. raw signal. On the left column, we show
the raw time signal, the Hann window, and the windowed signal. On the right column, we illustrate
the raw spectrum and the windowed spectrum. The windowed spectrum does not have the spectral
leakage seen in the raw spectrum.



3.9 Verifying our 2D PIC code 37

mended the following: (1) Use the appropriate window or apodization function for peak height

ratios observed in the spectrum. (2) Zero fill the time signal until the peaks of interest are rep-

resented by 10-15 points. (3) Use three data points of highest intensity of the peak to locate the

peak maximum by fitting it to a polynomial of the form y = (ax2 + bx+ c)n. In this peak fitting

procedure, they use what Goodner et. al termed as “Comisarow method”41 which is to use an

appropriate n for the apodization function. They also found that the accuracy of quantitation using

peak height is about equal to that of peak area measurements.

For analysis of our spectra, we chose to use a Hann window to resolve relative ratios of about

1 to 10 for peak height measurements. We also took Goodner et. al’s other suggestions and tested

them on our known 7Be+ and 7Li+ plasma at a density of 109 m−3. In order to locate the peak

maximum and frequency, we found that the best peak fitting function was a Comisarow polynomial

of form y = (ax2 +bx+ c)n where n = 5.5 for a Hann window. Zero filling was not helpful so we

used the raw windowed time signal in our analysis. To find the area under the spectral peak, we

use a trapezoidal method.

3.9 VERIFYING OUR 2D PIC CODE

To verify our 2D PIC code, we first calculated the diocotron frequency for the single species plasma

and compared it to the analytical solution for an infinitely long plasma:

ωd =
ω2

p

2ωc

R2
p

R2
w
=

en0

2ε0 Bz

R2
p

R2
w
=

λ

2πε0 R2
w Bz

(3.28)

where ωd is the diocotron angular frequency, λ is the charge per length, Rw is the radius to the

wall, and Bz is the axial magnetic field strength. The diocotron frequency for an infinitely long

7Be ion plasma with a central density of 1013 m−3 is 8.359 kHz. The plasma radius Rp is about
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2 cm and the confining wall radius Rw is 4 cm. Note the line charge density was calculated in the

simulation by taking the number of real particles per length multiplied by the elementary charge.

The line charge density λ was calculated to be 2.01 nC/m for this simulation run.
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FIG. 3.11 This is a linear fit of the center-of-mass angle θcm for a 7Be ion plasma with a density
of 1013 m−3 and a 1 mm x-offset from the axis. The fitted diocotron frequency for an infinitely
long plasma is 8.417 kHz. The fitted equation is written in the top right corner.

In our code, we initially shifted our plasma column using a 1 mm offset in the x direction from

the axis. We observed the center-of-mass motion for about 10 cycles of diocotron period. Finally,

we fitted the center-of-mass angle θcm to a line and compared its slope to the infinite analytical so-

lution given by Eq. 3.28. Figure 3.11 shows that our simulation agrees with the analytical solution

to within 0.689%. The fitted diocotron frequency for our infinitely long plasma is 8.417 kHz.

To understand how the time step influences our frequency measurement, we performed FTICR

measurements in our code using different time steps in our plasma dynamics. We fast Fourier

transformed the signal and fitted the spectral peaks using Goodner’s suggest fitting function as

discussed previous section. Figure 3.12 illustrates how the time step ∆ t changes the measured
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frequencies quadratically.
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FIG. 3.12 This is a parabolic fit of the time step ∆ t to the two characteristic frequencies from
the wall signal for a 7Li ion plasma with a density of 1013 m−3. The ion plasma was excited with
a broadband pulse covering 931 kHz to 933 kHz at 2.5 V for 0.1 ms and was observed for 10 ms.
The fitted equation for (a) is f = (-0.0256∆t2 + 0.0307∆t + 8 457) Hz and for (b) is f = (-0.0255∆t2

- 0.0240∆t + 932 702) Hz.

For our typical simulation run, we chose to run with a 30 ns time step for a precision of about 4

significant digits in frequency. Notice in Fig. 3.12 (a) the frequency difference between 30 ns time

step and ideal 0 ns is downshifted by 22 Hz, while in (b) the frequency difference between 30 ns

time step and ideal 0 ns is upshifted by 21 Hz.

To further validate our code we have observed that the total energy is conserved for a non-

excited plasma. Also, a plasma initially in equilibrium remains in equilibrium throughout a non-

excited simulation run. As result, the PMR code seems to simulate well the physics of a plasma

column in an infinitely long grounded cylinder.

We chose our grid spacing to resolve a Debye length. The Debye length, λD, is calculated as
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follows:

λD =

√
ε0KTi

ne2 (3.29)

where KTi is the thermal energy of ions in the plasma and n is the number density. The typical

Debye length for our room temperature plasma of densities of 1013 m−3 is about 377 µm. In our

code, we use a 426×426 cell-edge grid covering a space of 8 cm × 8 cm. As a result, our grid

spacing of 188 µm is about half a Debye length. At a coarser grid, the damping of the wall signal

decreases which is shown in Fig. 3.13. The damping of the signal probably occurs from nonlinear

interactions between the two different mass species.
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FIG. 3.13 The damping of the signal envelope increases with grid spacing. These envelope
signals are for a driven equal number of 7BeH+ and 7Li+ ion plasma at a density of 1013 m−3

using 10 million simulated particles. The numbers in the legend are in units of grid points.

To understand how the number of simulated particles influences our time signal, we ran our

two cases using different number of simulated particles. In the case of 7Be+ and 7Li+, we found

that one million simulated particles was sufficient. More simulated particles did not change the

plasma dynamics. In the case of 7BeH+ and 7Li+, Fig. 3.14 illustrates how increasing the num-
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ber of simulation particles lessens the damping in the time wall signal. Three million simulated

particles would have been sufficient, but we chose to use ten million simulated particles to resolve

confidently this damping in the wall signal.
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FIG. 3.14 The damping of the signal envelope lessens as the number of millions of simulated
particles increases. These envelope signals are for a driven equal number of 7BeH+ and 7Li+ ion
plasma at a density of 1013 m−3 using 426 grid points. The numbers in the legend are in units of
millions of simulated particles.

3.10 INITIAL EXPLORATION

In our studies we first began by exploring the driving parameters and the plasma’s time response.

Given a bandwidth window, we usually knew approximately at what frequency to drive the system.

However the time and amplitude were determined by experimentation. We did our best to minimize

our drive time to minimize the total computation time. We usually used a drive time which would

allow for the desired drive spectrum to be resolved. For our 7Be+ case it was about 100 µs and for

the 7BeH+ case, it was 500 µs. We also maintain our drive time and amplitude in a linear plasma’s



3.10 Initial exploration 42

time response regime. In other words, we reduced drive time or amplitude if we lost particles in

our simulation or the time response was nonlinear in nature.

Figures 3.15 and 3.16 illustrate a study of these drive parameters for the case of equal amounts

of 7Be+ and 7Li+. Figure 3.15 illustrates how changing the drive time with a drive amplitude of 10

mV is nonlinear in the time response. Initially, the response is quadratic for the first 0.1 ms where

the ions had the drive applied for only 100 cyclotron cycles. After 0.1 ms it becomes closer to

linear, but is still visibly nonlinear. This is possibly from the interaction between the two species.

Figure 3.16 illustrates how changing the drive amplitude with a drive time of 0.1 ms is linear in

response for many orders of magnitudes as is expected.
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FIG. 3.15 Drive time vs. maximum of time signal with drive amplitude of 10 mV. This signal
is for equal numbers of 7Be+ and 7Li+ ions at a density of 1013 m−3. Notice how the response is
nonlinear.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

drive amplitude (mV)

m
ax

 s
ig

na
l (

m
V

)

0 50 100
0

0.5

FIG. 3.16 Drive amplitude vs. maximum of time signal with drive time for 100 µs. This signal
is for equal numbers of 7Be+ and 7Li+ ions at a density of 1013 m−3. The response is linear and
the fitted equation is max signal = (4.491×10−3 drive amplitude + 3.794×10−4) mV.



CHAPTER 4

RESULTS

4.1 OVERVIEW

Our goal in simulating the FTICR-MS signal of a decaying 7Be ion plasma was to see if we could

quantify the abundances of 7Be+ and 7Li+ in our 7Be experiment. In our experiment, we realized

that we also needed to study 7BeH+ and 7Li+ which are likely to be found in our vacuum system.42

Previously, Mitchell28 as well as Nikolaev et. al43 have shown in 3D PIC codes that the

FTICR-MS spectral peaks of two similarly massed ions coalesce at high ion density. The cyclotron

frequency difference between the two masses were about 459 Hz. Their respective spectral peaks

coalesced at a total of 350 000 ions in a cubical trap with a one inch side. This was done near

the plasma regime. The radius of their ion clouds were on the order of two Debye lengths. In

our case and for our simulation, the difference in cyclotron frequency between 7Be+ and 7Li+

is about 124 Hz. Our plasma radius, therefore, is about 50 Debye lengths, more than a order of

magnitude larger than in the 3D PIC codes of Mitchell and Nikolaev et. al. This means that we

are well within the plasma regime. Since we have more Debye lengths per radius, we require a

finer computational grid. In particular, we use a grid of 426×426. This compares to Nikolaev’s

finest grid of 128×128×128. The computational cost of extending to a much finer grid to three

dimensions is unacceptably high. Staying in two dimensions also allows us to work with more

particles in our simulations, reducing the shot noise in the results. As a result, we are extending

these previous simulation studies into the plasma regime where additional effects can possibly

exist.

44
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We begin by looking at the overall physical picture of our system illustrated in Fig. 4.1. We

are confining a two component ion plasma in a cylindrical trap. In our study, the two components

vary in their relative abundances. We detect the induced signal from this plasma on two opposing

quarter wall sectors. To obtain our FTICR-MS signal, we take the difference between the two

sectors and fast Fourier transform this signal.
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FIG. 4.1 Physical parameters for our simulation.

As a reference to what “normal” FTICR-MS spectra look like at lower density regime, Fig. 4.2

illustrates how the FTICR-MS spectra for 7Be+ and 7Li+ ions changes with their relative abun-

dances. We observe two separate spectral peaks for 7Be+ and 7Li+ ions. These peaks are at the

respective ideal cyclotron frequencies of 941 028 Hz for 7Be+ and 941 152 Hz for 7Li+. The peak’s

height varies with the abundances of each species. As the abundance of 7Be+ ions decreases, its

peak magnitude decreases and the 7Li+ peak magnitude increases.
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FIG. 4.2 This is a composite figure of the FTICR-MS spectra for 7Be+ and 7Li+ ions at a central
density of 109 m−3 as their relative abundances are varied. The numbers in the legend are the ratios
between the two species. 9:1 means 90% 7Be+ and 10% 7Li+.

4.2 7BE+ AND 7LI+

Coalescence study

We began by looking at the coalescence of the spectral peaks of 7Be+ and 7Li+ as the central

densities are varied from 109 to 1013 m−3. This was done for equal abundances of each species.

Figure 4.3 illustrates the changes which occurred in both the time history and spectrum as the

central density is increased.

In time, we observe a beating pattern which disappears for central densities exceeding 1011

m−3. Note that the strength of the time signal also increases with particle number. In the frequency

spectrum, we observe that the two separate peaks for 7Be+ and 7Li+ merge into a single, coalesced

peak at about a central density of 1011 m−3. This spectral peak also downshifts from the ideal

cyclotron frequency as central density increases. This shift becomes significant above 1012 m−3.
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Using Mitchell’s stability condition28, we verify that our spectral peaks coalesce at a density of

1011 m−3. This condition was originally derived from Peurrung and Kouzes44. Mitchell rewrote

this condition in term of a ratio of the plasma density to Brillouin density n/nB as follows:

n
nB

> 13
(

rc

Rp

)(
∆ fc

fc

)
(4.1)

where rc is the cyclotron radius, Rp is the plasma radius, ∆ fc is the difference in cyclotron fre-

quency, and fc is the cyclotron frequency. For this condition, we use 2.6 mm as the cyclotron

radius and 7Be+ cyclotron frequency. This cyclotron radius is the average of the two species’ ex-

cited center of mass radial position. In our simulation this critical condition is n/nB > 0.022%.

At a density of 1011 m−3, n/nB = 0.14% and the condition is satisfied. As shown in Fig. 4.3, the

spectral peaks coalesce at a density 1011 m−3 while at 1010 m−3, n/nB = 0.014% and the condition

is not satisfied.

Our experiment requires 109 ions for decay statistics. This corresponds to a central density of

1013 m−3. As a result, the 7Be+ and 7Li+ spectral peaks will have coalesced in our experiment.

Nonetheless, we would like to determine if we can quantify the relative abundances in this plasma

regime. At this density, the Debye length is 377 µm, which is much less than the 2 cm radius of

the plasma.

Quantifying abundances by frequency shift

In order to study quantitatively how this coalesced peak varies with the relative abundances of

7Be+ and 7Li+, we use the parameters in Table 4.1 in our 2D PIC code. The length of our simu-

lations corresponds to 200 ms. This took about two and half weeks to run on a supercomputer to

resolve the cyclotron frequency difference of about 124 Hz. With a 200 ms time signal, we have a

frequency resolution of 5 Hz.
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TABLE 4.1 Simulation parameters for the case of 7Be+ and 7Li+ at a density of 1013 m−3.

number of grid points 426

number of simulated particles 106

time step 30 ns

drive time 0.1 ms

drive spectral amplitude 2.5 V

drive frequency range 931 kHz to 933 kHz

time observed 200 ms

Figure 4.4 presents some of our results of how the frequency of the coalesced peak changes for

different ratios of 7Be+ and 7Li+. Clearly, the merged peak moves from the 7Be+ frequency to the

7Li+ frequency as the ratio of 7Li+ to 7Be+ increases. The spectral magnitude is about the same

for each ratio when we apply the same drive to our system.

Figure 4.5 shows that the coalesced peak frequency shifts linearly as a function of the 7Li+

fraction. The coalesced peak is the weighted average of the individual cyclotron frequencies of

7Be+ and 7Li+ downshifted by 8 458 Hz. The diocotron frequency for this case is 8 500 which is a

42 Hz difference from the overall shift. This difference is comparable to the numerical shift in the

frequency due to the finite step size as shown in Fig. 3.12. Based on our simulations it is reasonable

to say that the individual cyclotron frequencies are downshifted by the diocotron frequency.

This has been discussed previously in Sec. 2.2. Indeed, Mitchell28 observed a frequency shift

for two ion clouds of similar masses and with equal numbers at high density in a 3D PIC code. He

attributed this shift to the image charge interaction acting on the phase locked ion cloud. Further,

Mitchell and Smith27 observed that the coalesced peak frequency showed a dependence on the

relative abundance. Our results extend these observations into the plasma regime. The individual
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cyclotron frequencies are shifted by the diocotron frequency of the plasma. The coalesced peak

frequency does depend on the relative abundances of the two species even in the plasma regime.

One limiting factor in this measurement of relative abundances is the frequency difference

between the two species. In our case, there is about 124 Hz difference between the cyclotron

frequency of the two species. In our simulation, our frequency resolution is at 5 Hz. So, we can

only differentiate differences in ratio in 5% increments in the simulation.

Another limiting factor in measuring the relative abundances is the downshifting by the dio-

cotron frequency. By measuring the diocotron frequency at the same accuracy as our coalesced

peak, we can determine this overall shift. However, the magnetic field in our experiment is likely

to drift somewhat in time. This magnetic field drift will cause our respective frequencies to drift

too. It will therefore be imperative to measure both the coalesced peak and the diocotron peak

frequencies at each time. The frequency of an impurity species, which we will almost certainly

have within our plasma, may possibly provide another reference frequency with which to make our

abundance measurement. Such an approach still needs to be investigated in our 2D PIC simulation.

In short, we can determine the abundance of each species by the peak frequency shift from

their individual cyclotron frequencies downshifted by the diocotron frequency. As long as we can

measure both the coalesced peak frequency and the diocotron frequency, we should be able to

determine the abundances of 7Be+ and 7Li+ within our plasma. The study reported here is unique

because we have systematically quantified the abundances of two species with a coalesced spectral

peak frequency and have extended previous observations into the plasma regime.
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4.3 7BEH+ AND 7LI+

Time signal decays

From talking to Bollinger et. al42 at NIST, a group which has confined Be ion plasma in similar

traps to ours, we learned that our 7Be ion plasma will quickly become a 7BeH+ ion plasma. So it

was imperative that we also studied the 7BeH+ and 7Li+ case. This case is advantageous compared

to 7Be+ and 7Li+ case because the mass difference in this last case is larger. As a result, their

individual peaks would not coalesce but be two separate peaks.

However, we noticed that the time signal quickly decays at the density of 1013 m−3 for equal

amounts of 7BeH+ and 7Li+ ions. At other ratios the time signal decays more slowly. Figure 4.6

illustrates this decay effect. To confirm that this was a plasma effect, we studied this signal at a

density of 109 m−3. At this low density, we observed that the time signal remained at a constant

level as in case of the 7Be+ and 7Li+.

Finally, we decided to see if the decay effect decreases with driving amplitude. Figure 4.7

illustrates this decay for equal amounts of 7BeH+ and 7Li+ ions as we decrease our driving spectral

amplitude from 33 mV to 0.33 mV. At 33 mV, the decay occurs within less than 0.5 ms. By 3.33

mV, it has slowed down to about 5 ms. At 1 mV, as well as at 0.33 mV, it seems that we get

something of a normal exponential decay. The exact detail of why this decay occurs is still not

well understood.

In reviewing the literature, we found that this decay phenomenon is similar in nature to the

colloquially known “nipple effect” or spontaneous loss of coherence catastrophe (SLCC) spoken

of by Nikolaev43 and Aizikov45. This effect probably has to do physically with the energy transfer

between the cyclotron frequencies of each species and the E×B drift rotation frequency of this

ion plasma. Even with this obstacle, we moved forward to see if we could quantify the abundances

of a 7BeH+ and 7Li+ ion plasma.
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FIG. 4.6 7BeH+ and 7Li+ ion plasma time signal decay as the fraction of species in the plasma
is varied. This is at the density of 1013 m−3. This run used a 426×426 grid, a driving spectral
amplitude of 33.33 mV, and 10 million simulated particles. Notice how the decay is fastest when
there are equal amounts of each species. The fraction of species is labeled on the top right corner.
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FIG. 4.7 This illustrates how the time signal for equal amounts of 7BeH+ and 7Li+ ions varies
as driving spectral amplitude. This is at the density of 1013 m−3. This run used a 426×426 grid and
10 million simulation particles. The driving spectral amplitude is labeled on the top right corner.
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Quantifying abundances by frequency shift

In order to study quantitatively how the relative abundances of 7BeH+ and 7Li+ are related to

their FTICR-MS spectrum, we use the parameters in Table 4.2 in our 2D PIC code. Note that we

increase the number of simulated particles to better resolve this decay effect. We have also applied

a spectral amplitude of 1 mV to both broadband frequency ranges.

TABLE 4.2 Simulation parameters for 7BeH+ and 7Li+ case at density of 1013 m−3.

number of grid points 426

number of simulated particles 107

time step 30 ns

drive time 0.5 ms

drive spectral amplitude 1 mV

1st drive frequency range 785 kHz to 815 kHz

2nd drive frequency range 905 kHz to 935 kHz

time observed 5 ms

Figure 4.8 illustrates how the 7BeH+ and 7Li+ spectral peaks remain separate and vary with

their abundances. Their respective spectral peak frequencies shift with abundance. As the density

of the 7BeH+ ions decrease, the two spectral peaks move farther apart and away from the pure

7BeH+ peak. Meanwhile, the 7Li+ spectral peak moves toward its pure spectral peak. Another

interesting aspect we examined is how the spectral peak amplitudes also change with their relative

abundances.

To begin, we analyze the relationship of the peak frequency shifts to the relative abundances.

Our initial guess was that the peak frequency shifted linearly. However on closer inspection, we

found that it was not quite linear. Using the model of two overlapping rods of charge revolving
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FIG. 4.8 This is a composite figure of the FTICR-MS spectra for 7BeH+ and 7Li+ at a central
density of 1013 m−3 as their relative abundances are varied. The dashed straight line in each frame
represents the peak frequency for pure 7BeH+ or 7Li+. The number on top of each peak is the ratio
of 7BeH+ to 7Li+. As 7BeH+ decays into 7Li+, the 7BeH+ spectral peak shifts down away from
the pure 7BeH+ spectral peak while the 7Li+ peak shifts up toward the pure 7Li+ peak.

around a central axis in a grounded cylinder, as discussed in Sec. 2.4, we are able to model the

peak frequency shift. Figure 4.9 compares the results of this analytical model with our simulation

results for the peak frequency as a function of 7Li+ fraction. The agreement is very good; the

average percent error is 0.005% (about 50 Hz), where we define the average percent error, APE,

APE =
1
N

N

∑
i=1

|Ai−Am|
Am

×100%. (4.2)

N is the number of measurements, Ai is the simulation value, and Am is the model value.

This analytical model also works for a central number density of n0 = 1012 m−3. In this case,

the average percent error is 0.006% (about 60 Hz), which is basically the same error as seen at

higher density. In Fig. 4.10, we can see a small discrepancy. The simulation peak frequencies are

downshifted from the analytical model. The reason that the discrepancy is more visible in the 1012
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m−3 case is that the frequency spread increases with density. For 1012 m−3 the spread is 2 kHz,

while for 1013 m−3 it is about 20 kHz. A possible explanation for this consistent discrepancy is

that our model assumes a uniform radial density profile while in our simulation the radial density

profile changes with time.

We have also confirmed that our analytical model agrees with the multispecies cold plasma

theory used by Sarid, Anderegg, and Driscoll31 to quantify the cyclotron frequency shifts in a Mg+

ion plasma. This theory was derived by Davidson32 using a macroscopic cold fluid description.

This theory was discussed in Sec. 2.3. It is not as intuitive as our model, but it does extend to higher

order m angular modes and to more than two species. Therefore we have two analytical models

which can be used to determine the abundances of 7BeH+ and 7Li+ from their peak frequency

shifts.

One limitation in this measurement, of course, is that the decay of the time signal limits the

frequency resolution in our FFT. In 7BeH+ and 7Li+ studies, our simulation runs were for 5 ms.

This corresponds to a frequency resolution of about 200 Hz. In the 1012 m−3 measurement, we

could have run longer to get better resolution because the decay is slower at this lower density.

However, the average percent error between the two densities is only 0.001% (about 10 Hz) which

is reasonable to say that they exhibit the same error.

Another limitation is that these two analytical models do not take into account all the effects

that exist in our plasma, such as the radial density profile. Both models assume a uniform constant

radial profile for the plasma. Our simulated plasma will deviate some from this uniform constant

profile. As Sarid, Anderegg, and Driscoll31 found they could not explain the shifts of the minor

species in their Mg+ ion plasma experiment, so these models will probably not be able to account

for all the species we will have experimentally.
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FIG. 4.9 Analysis of how the FTICR-MS spectral peaks for 7BeH+ and 7Li+ vary with fraction
of 7Li+ at a central density of 1013 m−3. It fits well with an analytical model using two charge
columns in a grounded cylinder. The average percent error between the model and simulation is
0.005%.
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FIG. 4.10 Analysis of how the FTICR-MS spectral peaks for 7BeH+ and 7Li+ vary with fraction
of 7Li+ at a central density of 1012 m−3. It fits well with an analytical model using two charge
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Quantifying abundances by peak heights and areas

We can determine relative abundances by analyzing the peak height and the area under the peak.

Figures 4.11 and 4.12 illustrate how these quantities vary with relative abundance. As can be seen

from the graphs, the trends are not linear, but by calibrating these trends with the code we can

use this as an independent measure of abundances. Also notice that the trend line for the area is

smoother than the trend line for the peak height because of the averaging which occurs when taking

the area under the spectral peak.

Limitations for measuring abundances with peak height and area are similar to those for mea-

suring frequency shifts. The largest limiting factor is the signal decay rate which determines our

frequency resolution. Another is the numerical error from the simulation, which in the case of

7Be+ and 7Li+ could be on the order of 50 Hz for absolute frequency measurements.

In contrast to the 7Be+ and 7Li+ case, our abundance resolution can be greater if we can

prevent the signal from decaying too much. A measurement accuracy of 0.005% of 109 ions is 50

thousands ions, three orders of magnitude better than for the 7Be+ and 7Li+ peak measurement.

We also have two independent measurements of the abundances by using the spectral peak shifts

and the changes in height or area. This may be sufficiently advantageous experimentally that we

may want to encourage the formation 7BeH+ by adding hydrogen to our trap to bond with the

initial 7Be+ ion plasma.

In short, we can determine the abundance of 7BeH+ and 7Li+ by the peak frequency shift by

using two analytical models. We can also determine their abundances by calibrating the changes in

their spectral peak height and area in our simulation. This abundance measurement by peak height

and area is unique to this study and has not been seen in the plasma regime before.
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FIG. 4.11 Analysis of how the FTICR-MS spectral peak height for 7BeH+ and 7Li+ varies with
fraction of 7Li+ at a central density of 1013 m−3.
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4.4 SUMMARY

Our 2D PIC simulation has shown that we can quantify the abundances of 7Be and 7Li in a decaying

7Be ion plasma. This can be done for both 7Be+ to7Li+ and 7BeH+ to 7Li+ cases even under non-

ideal conditions, where collective plasma effects are significant. For 7Be+, the frequency variation

is linear with 7Li+ fraction. The frequency variation is not linear for 7BeH+, but we have two

analytical models that appear to correctly predict the frequency shifts. In addition, the peak height

and area changes in the case of 7BeH+ and 7Li+ provide an independent measure of the abundance.

We can calibrate this nonlinear relationship with our simulation. Thus the peak height and area

measurement together with the peak frequency shifts will increase our precision and confidence

in measuring the abundances of 7BeH+ and 7Li+ in our 7Be experiment. In summary, these two

independent measurements of abundance and the increase of accuracy in the 7BeH+ case leads us

to encourage the conversion of the initial 7Be+ plasma into 7BeH+ plasma.

We have extend the previous results such as the shift of the coalesced peak frequency into the

plasma regime. The multispecies cold fluid theory has also verified our 2D PIC simulation. How-

ever, the study reported here is unique in that we have systematically examined how the particular

spectra for 7Be+ or 7BeH+ and 7Li+ change with abundances in the plasma regime. The unique

question that we have asked is “Can we measure the relative abundances of 7Be+ and 7Li+ species

in an ion plasma?” The answer is that yes we can. Another distinctive feature of our study is

that we have found that in the plasma regime, we can use the peak height and area to measure the

abundances in the case of 7BeH+ and 7Li+.

In distinction to Mitchell28 and Nikolaev et. al43 3D PIC codes, our 2D PIC code is able to

produce accurate and trustworthy results within the plasma regime. To our knowledge, this has

never been done before. The price we have to pay is that the code is 2D. Were our code to be

extended to 3D, we would no longer be able to run for as long (up to 0.2 ms) in order to resolve
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our cyclotron frequency difference. Indeed, we needed our current grid resolution (426×426) in

order to resolve a Debye length of a few hundred microns. In short our 2D code was specifically

designed to observe the cyclotron motions of two or more species in the plasma regime.

4.5 RECOMMENDATIONS

For future investigations, I recommend that we further study the physics of the 7BeH+ and 7Li+

case using this 2D PIC simulation to understand the decay mechanism so that we may better detect

their relative abundances. I also recommend that we study a 7BeH+, 7Be+, and 7Li+ case to see if

it will assist in the calibration of 7Be+ and 7Li+ abundance measurement. This three species case

will also be closer to our real 7Be experiment case. Lastly, I recommend that we parallelize this

code, so that it may run more efficiently.

In conclusion, this simulation has been and is a useful tool to understand our diagnostics in our

7Be experiment. It has shown that we can detect the relative abundances of 7Li+ to either 7BeH+

or 7Be+.
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