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until the reflected beam hit the loudspeaker.

(a) (b)

Figure 5.11 Two pieces of custom equipment used for the experimental

setup; (a) microphone positioner and (b) altazimuth-mounted laser pointer.

For these experiments, the array diameter was 7.62 cm and the sampling frequency

was 192 kHz. In many cases, some erroneous solution sets were produced due to the

number of peaks in the cross correlation functions. These solutions are ignored in the

following results as fully-developed versions of proposed solutions are outside of the

scope of this thesis (see Secs. 5.8.4 and 5.8.5).

5.7.1 Margin of Error

Measuring arrival angles with a laser in an altazimuth mount can produce very ac-

curate results. However, the reference markings on the altazimuth used were only

accurate to about one half of a degree. In addition, the placement of the altazimuth

in an anechoic chamber is often subject to errors due to deflection of the cable tension

floor when a person stands near the altazimuth for adjustment. The accuracy of the

elevation angles particularly is prone to error. Because of these inherent problems, a

margin of error exists on the order of 1 to 4 degrees. The average error results given



110 Chapter 5 Numerical Verification, Experiments, and Results

for the experiments above are relative to the measured arrival angles as though they

were absolutely correct. This is not always the case, as there is some uncertainty

regarding the exact arrival angles.

5.7.2 Single Reflector Experiment

One of the simplest scenarios that can be conceived is a single source and a single

reflector in a free-field environment. The reflecting panel was a standard-size (2.44 m

x 1.22 m) sheet of MDF board and was placed along one wall of the anechoic chamber.

The microphone array was positioned such that the direct sound arrival came from φ

= 0.25◦, θ = 0◦. The actual angle of arrival for the single reflection was determined

to be φ = 35.5◦, θ = -3◦. An illustration of the experimental setup is shown below in

Fig. 5.12. For this experiment, the arrival angles for the direct sound calculated by

the STCM algorithm were φ = 1.2◦, θ = -1◦ while those for the single reflection were

φ = 34◦, θ = -6◦, resulting in an average error of 2.2◦.

x

y

Figure 5.12 Experimental setup used for a single reflector case in an ane-

choic chamber where dotted lines represent rays traced by reflections.
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5.7.3 Single Small Reflector Experiment

Another situation of interest relates to the size of the reflecting surface that creates

an unwanted arrival. In order to investigate this, a single, small reflecting plywood

panel was used in an anechoic chamber. The panel measured 60.5 cm x 61 cm and was

placed along one wall of the chamber. A diagram of the setup is shown in Fig. 5.13.

x

y

Figure 5.13 Experimental setup used for a single, small reflector case in an

anechoic chamber where dotted lines represent rays traced by reflections.

The actual direct sound arrival angles were φ = -25◦, θ = 5.5◦ and the arrival

angles for the small panel were φ = 44.5◦, θ = 1◦. The results from the STCM were

φ = -24◦, θ = 6.7◦ for the direct sound and φ = 43.05◦, θ = 2.02◦ for the reflection,

resulting in an average error of 1.25◦.

5.7.4 Dual Symmetric Reflector Experiment

The next experiment was a dual reflector arrangement depicted in Fig. 5.14. The

reflecting panels measured 2.44 m x 1.22 m and 1.75 m x 1.22 m and were placed on
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opposite sides of the chamber with the microphone array and loudspeaker centered

between the two. Because the peaks resulting from the reflecting panels had widths of

more than one sample, the centering was performed by changing the loudspeaker po-

sition until the peak resulting from the two reflections was maximized. This indicated

that the arrivals were overlapping closely, though there was likely some uncertainty

in path lengths of approximately 5 - 10 mm. This was done because one of the most

difficult scenarios to resolve is the case of simultaneous arrivals that are symmetric

about an axis.

x

y

Figure 5.14 Experimental setup used for a dual symmetric reflector case in

an anechoic chamber where dotted lines represent rays traced by reflections.

The actual direct sound arrival was at φ = 2◦, θ = 3◦, while those of the simul-

taneous reflections were φ = 49◦, θ = -4.5◦ and φ = -45◦, θ = -0.5◦. The STCM

calculated arrival angles for the direct sound of φ = 2◦, θ = 7◦ and reflection arrival

angles of φ = 42◦, θ = -3.5◦ and φ = -39◦, θ = -3.5◦, respectively. These numbers

result in an average error of approximately 4◦.



5.7 Experimental Results 113

5.7.5 Dual Asymmetric Reflector Experiment

An additional experiment utilized two reflecting panels placed asymmetrically about

the microphone array as shown in Fig. 5.15. This was implemented to investigate

how well the STCM works with extreme azimuthal arrival angles. The reflectors had

the same dimensions as in the previous experiment.

x

y

Figure 5.15 Experimental setup used for a dual asymmetric reflector case in

an anechoic chamber where dotted lines represent rays traced by reflections.

The actual angles of arrival for the direct sound in this arrangement were φ =

-15◦, θ = -1◦ while those for the two simultaneous reflections were φ = -176◦, θ =

-6.5◦ and φ = 63◦, θ = -8◦. The calculated arrival angles were φ = -17.5◦, θ = 0.5◦

for the direct sound and φ = -178◦, θ = -5◦ and φ = 63◦, θ = -6◦ for the simultaneous

arrivals, resulting in an average error of approximately 1.2◦.
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5.7.6 Variable Acoustics Chamber Experiment

As a final controlled experiment, the loudspeaker and microphone array were placed in

a room designed for variable acoustics work. The chamber measures approximately

3.8 m x 2.7 m x 2.5 m. The ceiling and walls have removable absorptive panels.

The panels do create some reflections at very low frequencies (< 100 Hz) and high

frequencies (> 5 kHz), but the reflections were dominant from the exposed room

surfaces. The floor is hard tile over concrete and the walls and ceiling behind the

absorptive panels are concrete finished with hard plaster and paint. The room exhibits

a very strong resonance near 43 Hz, so the IRs were bandpass-filtered between the

frequencies of 100 Hz and 30 kHz.

For the experiment, two adjacent wall panels were removed and the microphone

array and loudspeaker were placed in opposite corners of the room, as shown in

Fig. 5.16. The microphone array was positioned such that the reflections from the

wall and floor would arrive simultaneously and a second order reflection was created

by a path from the loudspeaker, to the floor, to the wall and finally to the array.

The actual arrival angles for the direct sound were φ = 1◦, θ = -20◦. The actual

arrival angles for the simultaneous (see Sec. 5.7.4) first-order reflections were φ =

97.5◦, θ = -15◦ for the wall and φ = 1◦, θ = -48◦ for the floor. Finally, the actual

angles of arrival for the second order reflection were φ = 98◦, θ = -37.5◦. For the

direct sound, the STCM algorithm produced arrival angles of φ = 0.5◦, θ = -23◦. For

the first order reflections, the STCM results were φ = 102◦, θ = -16◦ for the wall

and φ = 2◦, θ = -46◦ for the floor reflection. The arrival angles for the second-order

reflection were calculated to be φ = 102◦, θ = -39◦. These results yield an average

error of approximately 3.25◦.
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x

y

Figure 5.16 Experimental setup used in a variable acoustics chamber where

dotted lines represent rays traced by reflections.

5.7.7 Summary of Results

In summary, the results from the experimental setups discussed in Secs. ?? through 5.7.6

are presented in Table 5.13.
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5.7.8 Off-Axis Experiments

Previously we discussed how loudspeakers and microphones exhibit a type of low-pass

filtering effect on the system due to their limited frequency response characteristics.

In addition to these effects that, until now, were assumed to be caused solely by

the imperfect response characteristics of the sources and receivers, the enclosures of

these also have a filtering effect. These effects are caused primarily by diffraction

and the enclosure characteristics of the microphones or loudspeakers. Because we

used precision omnidirectional microphones, these effects are less than those for the

loudspeaker. The loudspeaker was very much not omnidirectional and its orientation

can play a very large role in whether or not a reflection can be accurately localized.

To determine the extent of this effect, measurements using the same experimental

setups discussed previously were taken with the loudspeaker turned both 90◦ and

180◦ from their optimal orientation. Only the results for the dual symmetric reflector

and the dual asymmetric reflector experiments are presented here.

For the dual symmetric reflector case (see Fig. 5.14) with the speaker facing di-

rectly away from both the microphone array and the reflectors, the frequency content

was rolled off dramatically. Localization of the direct sound was possible, but the

error was on the order of 2.5◦. The two simultaneous reflections, however, were not

able to be resolved at all due to the extreme smearing caused by the lack of high-

frequency content. Upon further examination, the high frequencies began to roll off

in the range of 1 - 2 kHz when the speaker was facing the opposite direction. This

explains why there was no possible way to determine the arrival angles for the simul-

taneous arrivals. With the speaker rotated 90◦ from its original position, the direct

sound and the simultaneous reflections were localized, but with an average error of

over 4◦.

For the dual asymmetric reflector case (see Fig. 5.15), the results were an even
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better illustration of the effects that an off-axis measurement can have. With the

source rotated 90◦ from its original position, the reflector at φ = 63◦, θ = -8◦ was

located only slightly off-axis while the reflector located at φ = -178◦, θ = -6.5◦ was

located strongly off-axis. When the STCM was run on these IRs, the panel slightly

off-axis was localized with an average error of approximately 6◦ while the panel far

off-axis was not able to be localized at all. The direct sound was also not able to be

localized accurately. When the loudspeaker was turned to face 180◦ relative to the

original orientation, both panels were located well off-axis. The direct sound was not

able to be localized with this speaker orientation, either. The simultaneous arrivals

were not able to localized either. The smearing effect of the off-axis orientation was

too great (see Fig. 5.17).
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Figure 5.17 Cross correlation function for simultaneous arrivals in the dual

asymmetric reflector experiment with the loudspeaker oriented 180◦ from its
original position.

Due to the sometimes dramatic reduction in usability of the STCM with signals

containing little high frequency energy, it is important to ensure enough the source

produces enough high frequency energy to provide enough detail in the measurements.
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Use of a wide-bandwidth, low-directionality source would ensure proper energy at all

directions, however, such a source is difficult to find. Even standard dodecahedrons

exhibit limited high frequency response and spatial beaming at higher frequencies

which increases directionality. For further discussion of the importance of high fre-

quency content, see Sec. 5.8.3.

5.8 Discussion

During the course of the experiments, many important issues came to light regarding

the STCM method and the experimental setup itself. This section explores these

issues and other details.

5.8.1 EASERA

The signal processing used within EASERA also proved to be somewhat problematic.

It was found that the use of band-limited excitation signals was not as effective as

using full bandwidth sweeps and then filtering afterwards. The reason for this is un-

known, but it appears that the method used to generate the bandlimited excitation

signals produces some energy outside of the specified frequency band. This additional

energy is primarily at lower frequencies, which caused excitation of the lowest-order

room modes in the variable acoustics chamber (see Sec. 5.7.6). Additionally, the

loudspeaker compensation function, which utilizes a deconvolution process to remove

the effects of the loudspeaker from the measurement, creates some very strange arti-

facts, such as doubled peaks, when used. For this reason, all signal processing beyond

derivation of the IR was done in Matlab. The IR could have been extracted in Mat-

lab, but the IRs resulting from EASERA were calculated quickly and accurately,

eliminating the need to do so in Matlab.
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5.8.2 Erroneous Solutions and Cross Correlation Peak Selec-

tion

To help increase the effectiveness of the method, a subset of four microphones from the

seven-microphone array was used to generate solution sets to be compared with the

results from the seven-microphone array for both numerical simulations and experi-

ments. This helped greatly in the numerical simulations, but proved to be problematic

in some experimental cases. It was found that the four-microphone cross-correlation

functions did not always contain sufficient data for the angles of arrival to be accu-

rately determined. This resulted in the inability to compare the two sets of results,

resulting in more erroneous solutions because the time-delay constraint was the only

safeguard. It appears that the solution to this problem is to ensure sufficient high

frequency content in order to provide the time resolution necessary to accurately

determine the angles of arrival (see Sec. 5.8.3).

The selection of the peaks in the cross correlation functions proved to be more

difficult than originally anticipated. At times, the peaks in the cross correlation

necessary to produce the correct arrival angles were either smeared due to a lack of

time resolution or they were of lower amplitude than other peaks, many of which did

not relate to physical arrivals. This is due to the calculation of the cross correlation

function. Further discussion of this issue and a proposed solution are presented in

Sec. 5.8.5.

5.8.3 High-Frequency Content

High-frequency energy was found to be vital in maintaining a high level of detail

in the cross-correlation function. If the function is considered in light of a Fourier

transform, then it is readily apparent that a lack of high frequency information in the
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function results in a decrease in the amount of detail that can be expressed within the

cross correlation time window. When a wider bandwidth can be used, there is greater

potential for better results when using the STCM. One must therefore be selective in

both the source (loudspeaker) and receiver (microphone) used in the measurements.

If one can compensate for their response deficiencies, the cross correlation will have

greater detail and the measured response will more closely represent the unfiltered

room response. An obstacle to completely removing the loudspeaker or microphone

effects from a measurement is the fact that a deconvolution is only possible for a

single angular axis at a time. This makes it unfeasible to remove all effects of the

loudspeaker or microphone for every direction.

One possible advantage of the STCM when working with off-axis measurements is

the fact that the sampling frequency can be reduced. As long as there is not significant

frequency content above the Nyquist frequency, the method can be used successfully

with virtually any sampling frequency. Higher sampling rates can continue to be

used with the method despite a lack of some high frequency. The higher rates will

essentially interpolate the data without providing any finer detail in time. Zero

padding may also be used for interpolation to provide more closely spaced samples

while not providing any additionaly information [41].

5.8.4 Frequency Magnitude Compensation

Due to the importance of high-frequency content in the IRs and the cross correlation

functions, at least some method for compensating for the loudspeaker or microphone

high frequency rolloff is desired. Several methods could be implemented to remedy

a lack of high frequency energy, but a typical loudspeaker will have a non-uniform

radiation pattern in both the elevation and the azimuth. This makes some methods

impractical. A general high-frequency magnitude boost might be acceptable, but
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one would need to determine what the equalization curve should be. To eliminate

some of the detrimental effects of using an on-axis response for off-axis measurements,

the on-axis frequency-response magnitude was simply smoothed over octave bands.

The smoothed frequency response magnitude was then inverted before multiplying the

measurement frequency response magnitude. The smoothed frequency response curve

of the powered two-way loudspeaker used in the experiments is shown in Fig. 5.18.

One will note that above approximately 45 kHz, the signal turns to noise due to

the limited amount of high-frequency signal present in the loudspeaker-microphone

system.
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Figure 5.18 Smoothed frequency-response curve of a Mackie HR-824 loud-

speaker used for frequency magnitude compensation.

To illustrate the effects of the general frequency-resonse magnitude compensation,

Fig. 5.19 shows a section of an IR before and after the process. The compensation

increases detail and introduces a change in the amplitude scale. However, because the

relative amplitude values are most important in both the IR and the cross correlation

function, the latter change does not have a strong impact on the usefulness of the
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DIR. Only the relative amplitudes are important for determining the arrival angles.
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Figure 5.19 Section of an IR (a) before and (b) after the frequency magni-

tude compensation process.

As seen in the figure, the magnitude compensation also introduces substantial

enhancement of high frequency noise that was not as prominent previously and which

has an effect on the cross-correlation function. Figure 5.20 shows an example cross-

correlation function before and after the frequency magnitude compensation process.

It is clear that the compensation increases the number of peaks in the cross-correlation

function. This is particularly undesirable for an automated peak detection process

because the greater the number of chose peaks, the greater the chances are that

erroneous solutions will be calculated that satisfy the constraint equations. To gain

the advantages of the frequency magnitude compensation process while minimizing

the negative effects, a solution is now presented.



124 Chapter 5 Numerical Verification, Experiments, and Results

−3 −2 −1 0 1 2 3

x 10
−4

0

1

2

3

4

5

6
Cross Correlation in X

Time Delay (s)

M
ag

ni
tu

de

(a)

−3 −2 −1 0 1 2 3

x 10
−4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Cross Correlation in X

Time Delay (s)

M
ag

ni
tu

de
(b)

Figure 5.20 Example cross correlation function (a) before and (b) after the

magnitude compensation process.

5.8.5 Noise Gating

The frequency-response magnitude compensation thus has some benefits, but also

some serious drawbacks. The greatly increased number of peaks in the cross corre-

lation potentially poses a very serious threat to the utility of this method, especially

if an automated peak detection feature is desired. In an effort to take advantage of

the magnitude compensation’s benefits while avoiding the drawbacks, one can begin

by revisiting the cross-correlation function. It, like the convolution, can be consid-

ered graphically as well as mathematically. To graphically derive the time-windowed

cross correlation function, the time windowed IRs from two different microphones are

overlayed, multiplied, and summed. One of the windowed IRs remains stationary

while the other is shifted by a sample in one direction. The process of multiplying

and summing are repeated for each shift in both the positive and negative directions,

where the shift represents the time delay between the signals and the value of the

sum is the cross power. With this understanding, it is easy to see how the boosted
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high-frequency noise in the magnitude-compensated IR will increase the noise in the

cross-correlation function. If a method for eliminating the noise induced in the IR by

the magnitude compensation process could be implemented without affecting the in-

crease in high-frequency content in the IR peaks of interest, the quality of the STCM

cross correlation calculation could be significantly enhanced.

One simple way to accomplish this is through the use of a noise gate. A noise

gate was created with a decaying exponential threshold for this work. It was defined

by the starting point (in samples) and the decay factor. All samples in the IR that

did not exceed this threshold were set to zero and only the samples exceeding the

threshold remained intact. Figure 5.21 shows an IR from the dual symmetric reflector

experiment with the superposed threshold. It also shows the resulting noise-gated IR.
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Figure 5.21 An IR shown (a) with a superposed noise gate threshold and

(b) the modified IR after a noise gate has been applied.

As seen in the figure, there are many places where the cutoff is very abrupt. This

is sometimes referred to as “center clipping,” which can introduce high-frequency

artifacts in the frequency response due to the sudden nature of the cutoff [42]. This
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high frequency content was filtered out using a 15th order Chebyshev low-pass filter

with 0.5 dB pass-band ripple and a cutoff frequency of 30 kHz. The Chebyshev filter

was chosen because of its uniform phase shift, which helps keep the cross-correlation

function intact after filtering.

The point of the noise gating was to reduce the noise associated with the mag-

nitude compensation process. Figures 5.22 through 5.24 show the cross correlation

along the x, y, and z axes for the dual symmetric reflector case discussed in Sec. 5.7.4

using the original IRs, the gated IRs, and finally the compensated and gated IRs.

The gating process combined with the compensation process provides clean cross cor-

relation functions. While they can be somewhat coarse due to the simplistic nature

of the noise gate, a more sophisticated gate would most likely produce better re-

sults. However, a more elaborate gating procedure would likely require complicated

adaptive signal processing and is outside of the scope of this thesis. The preliminary

results merely demonstrate that the concept shows promise and should be considered

in pertinent future work.

5.9 Chapter Conclusions

A variety of numerical simulations have been carried out to test the accuracy and

usability of the STCM method described in Chs. 3 and 4. The STCM was found to be

accurate, even in realistic cases where the impulse responses were densely populated

and had many interesting features. Experiments were also developed and carried

out to test the DIR’s ability to work in real-world circumstances. It proved to be

effective in these simple experiments, allowing one to conclude that the use of real

data should not be problematic. One might argue that there should be very low

errors (approaching zero) in the numerical simulations, but a few factors that may
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Figure 5.22 Cross Correlation functions for the dual symmetric reflector

experiment using original IRs.

contribute to them are the selection of peaks manually and the time quantization

(sampling) of the signals, both of which introduce uncertainty into the measurement.

Certain drawbacks of the STCM have also been discussed. These drawbacks

include the its inability to be used for arrivals long after the direct sound arrival

(except in cases of strong late arrivals) and the statistical likelihood that erroneous

results will occasionally be produced, despite the constraints and other preventative

measures that have been implemented. Additional considerations for the STCM that

were discovered during the course of experimental work were discussed and plausible

solutions to those were presented. Despite these limitations, the STCM has been

shown to perform well in situations in which many of the previous methods would

fail. A comparison between the STCM and the most common of the previous methods

(the Polar ETC) will be presented in the next chapter.
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Figure 5.23 Cross Correlation functions for the dual symmetric reflector

experiment using noise gated IRs.
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Figure 5.24 Cross Correlation functions for the dual symmetric reflector

experiment using noise-gated and magnitude-compensated IRs.
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Chapter 6

Comparison of Methods

The primary motivation for developing a new DIR method was to improve upon

previous methods. While it was derived with very few assumptions and appears to

give good results under specified conditions, a comparison with previous methods

is needed to ascertain if significant improvements were really made. This chapter

presents the results of a comparison between the STCM and the Polar ETC methods

using both numerically simulated data and experimental data measured for the same

setups discussed in Sec. 5.6.

6.1 Polar ETC

6.1.1 Polar ETC Program

Before presenting the results of the comparison, a brief description of the Polar ETC

program used is warranted. The commercial Polar ETC software is currently licensed

and developed by GoldLine and implemented in the TEF analyzer. Consequently, the

program can only be used with energy time curves (ETCs) measured by the TEF,

which has a sampling frequency of 48 kHz. In order to ensure fair numerical compar-
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isons, a sampling frequency of 192 kHz was needed. Interpolation can yield higher

sampling frequencies, but it doesn’t provide the additional information required. In

addition, the ETC has been shown to not actually measure of the energy density in

a room [31]. Finally, since we are using numerical simulations, there would be no

way to use the actual numerical models used in the previous chapter with the com-

mercial Polar ETC program. A Matlab program was accordingly written to perform

the Polar ETC using squared IRs and the equations given in the original Polar ETC

papers [5,6]. The code was benchmarked using numerically generated data to ensure

proper operation (see Sec. 6.2.1). The code is included in Appendix A.

To properly implement the program, the IRs had to be generated as though they

were detected with ideal cardioid microphones. The Berkley-Allen IR generation

program was altered to produce the cardioid response pointing in each of the six

required Cartesian directions. The code for the modification is also presented in

Appendix A. It involved using the equation of a cardioid solid and applying to the

the known direction of arrival from each image source. Specifically, the weighting

equations used were

W+X = 1 + cos(φ)cos(θ) (6.1)

W−X = 1− cos(φ)cos(θ) (6.2)

W+Y = 1 + sin(φ)cos(θ) (6.3)

W−Y = 1− sin(φ)cos(θ) (6.4)
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W+Z = 1 + sin(θ) (6.5)

W−Z = 1− sin(θ) (6.6)

In these expressions, W indicates the weighting function and the subscript denotes

the direction the virtual microphone points. The weightings were applied to every

arrival in the IR.

For the experimental comparisons, the commercial Polar ETC package was imple-

mented using a TEF-20 analyzer, a Shure SM-81 cardioid microphone, a Cartesian

microphone positioner (see Fig. 5.11(a)), and TEF Soundlab Windows software. The

excitation source was a Mackie HR-824 loudspeaker driven with a swept sine. One

should note that the sampling frequency of the TEF analyzer and other parameters

differ between the Polar ETC and STCM measurement setups. These differences are

for the purpose of comparing results from the Polar ETC using a typical measurement

setup with results from the STCM using a measurement setup that is anticipated to

be typical of it. Erroneous results were generated by both the Polar ETC and the

DIR, but they have been omitted to simplify the comparison process.

6.2 Comparison Results

The results for both the numerical and experimental scenarios are presented here.

The results for the STCM method were presented in Ch. 5 so for the sake of brevity,

only average errors are presented here for comparison.
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6.2.1 Numerical Comparisons

Small Rectangular Room

The first of the numerical comparisons is for the numerically modeled room in Sec. 5.4.

In order to ensure proper working order of the Polar ETC code, the angles of arrival

for the direct sound were also calculated. For the given source/receiver configuration,

the actual direct sound angles of arrival are φ = 45◦, θ = 35.26◦. The Polar ETC

returned angles of arrival of φ = 45◦, θ = 35.26◦, which are exactly the same. This

indicated that the program was working correctly. The calculated angles of arrival

for the STCM method were also φ = 45◦, θ = 35.26◦.

To demonstrate the improved utility of the STCM over the Polar ETC, the

strongest peak in the room IR was analyzed, which corresponds to three simulta-

neous arrivals (see Fig. 5.7). The Polar ETC returned arrival angles φ = 45◦, θ =

35.26◦ while the actual arrival angles were φ = 45◦, θ = -52.70◦, φ = -61.7◦, θ =

25.36◦, and φ = 151.7◦, θ = 25.36◦. Interestingly, those angles are identical to those

of the direct sound arrival and result in an average error of 69◦. By comparison, the

STCM method produced an average error of 0.5◦. This is a clear example of where

the Polar ETC becomes ineffective due to the assumption of a single arrival within a

given sample.

For the second peak analyzed in Sec. 5.4 (located at t = 25 ms), the Polar ETC

returned arrival angles of φ = -135◦, θ = -35.26◦. Again, we see that when there are

multiple arrivals within a given sample, the Polar ETC fails to provide meaningful

results. The average error here was approximately 31◦ as opposed to the DIR’s average

error of about 1◦. By comparison, the STCM method begins to break down with a

very high arrival density within a given cross correlation time window, as discussed

in Sec. 4.10.
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Long Narrow Room

To further compare the Polar ETC to the STCM method numerically, the long,

narrow, rectangular room of Sec. 5.5 was used. The Polar ETC was used to analyze

the first peak discussed there (t = 62 ms) which was composed of two simultaneous

arrivals. The Polar ETC calculated angles of arrival of φ = 3.42◦, θ = 5.42◦. These

angles are not very close to either of the actual values of φ = -15.37◦, θ = 14.21◦ or

φ = 20.55◦, θ = -3.35◦. This resulted in an average error of approximately 14◦. By

contrast, the STCM returned arrival angles of φ = -14.62◦, θ = 14.18◦ and φ = 20.7◦,

θ = -4.23◦, resulting in an average error of about 0.5◦ for the same peak.

The tallest peak in the IR was also analyzed. This peak is composed of four

simultaneous arrivals. As expected, the Polar ETC only produced a single set of

arrival angles, φ = 90◦, θ = 57.8◦. This resulted in an average error of approximately

72◦ while the STCM method returned four solutions which resulted in an average

error of approximately 0.2◦.

6.2.2 Experimental Comparisons

Additional comparisons between the STCM and Polar ETC methods were conducted

in an experimental setting. The setups used were the same as those presented in

Sec. 5.7. The Polar ETC measurements were taken directly after the IRs for the

STCM to reduce any chance of error due to non-identical setups. For each method,

only the valid solution sets were considered, as there were erroneous solutions for

both the Polar ETC and the STCM method.
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Single Reflector Experiment

For the single reflector case discussed in Sec. 5.7.2, the Polar ETC calculated angles

of arrival of φ = 1.9◦, θ = -2.4◦ and φ = 45.1◦, θ = -7.5◦ for the direct and reflected

arrivals, respectively. The actual arrival angles were φ = 0.25◦, θ = 0◦ and φ = 35.5◦,

θ = -3◦ for the direct and reflected arrivals, respectively. This results in an average

error of approximately 4.5◦. This may be acceptable accuracy for some applications,

though the azimuth of the reflection was off by about 10◦. The STCM method

performed better, producing an average error of approximately 2.25◦.

Single Small Reflector

In the case of a single, small reflecting surface, the Polar ETC again performed quite

well. The actual arrival angles for the direct sound were φ = -25◦, θ = 5.5◦ while

those calculated by the Polar ETC were φ = -28.8◦, θ = 6.3◦, resulting in an average

error of 2.3◦. The STCM method had an average error of approximately 1.1◦, which

is slightly better, but when dealing with a difference of 1 degree, the performance of

both could be considered good.

For the reflection, the Polar ETC produced angles of arrival of φ = 47.9◦, θ = 2.9◦,

resulting in an average error of 2.4◦ when compared to the actual arrival angles of φ

= 44.5◦, θ = 1◦. This still compares relatively well to the average error of 1.25◦ for

the STCM method. All in all, both the STCM and Polar ETC methods performed

quite well for this case.

Dual Parallel Reflectors

The previous experiments were suitable for the Polar ETC because there were no

simultaneous arrivals. The dual parallel reflector case discussed in Sec. 5.7.4, however,

proved more of a challenge. The Polar ETC produced highly accurate angles of arrival
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for the direct sound of φ = 2.5◦, θ = 3.1◦ resulting in an average error of 0.3◦. This

outperformed the DIR’s average error of 2◦. For the first-order reflections, the Polar

ETC returned the angles φ = -28.3◦, θ = -7.1◦ resulting in an average error of about

22◦. This was much worse than the DIR’s average error of 4◦.

Dual Asymmetric Reflectors

The dual asymmetric reflector case discussed in Sec. 5.7.5 produced results that are

not surprising, considering the simultaneous arrivals. The Polar ETC was able to

localize the direct sound accurately with angles φ = -15.1◦, θ = -0.7◦. However, it was

unable to successfully localize either of the two simultaneous reflections, producing a

single arrival at φ = 54.3◦, θ = -16.7◦. The actual arrival angles were φ = -15◦, θ =

-1◦ for the direct sound and φ = -176◦, θ = 6.5◦, φ = 63◦, θ = -8◦ for the reflections,

resulting in an average error of 0.4◦ for the direct sound and 50◦ for the reflections.

In contrast, the STCM identified the direct sound and both reflections, producing

average errors of 1.5◦ and 2◦ for the direct and reflected arrivals, respectively.

Variable Acoustics Chamber

The Polar ETC did not perform as well in the variable acoustics chamber. The

direct sound was calculated at φ = -5.5◦, θ = -15.1◦, resulting in an average error of

about 5.5◦ while the STCM method averaged an error of approximately 2◦. For the

simultaneous first-order reflections, the Polar ETC returned the angles φ = 89.6◦, θ

= -18.1◦, which is actually quite close to the reflection off the wall, but it ignored

the other reflection completely. The average error for just the wall reflection is 6◦

compared to 3◦ for the DIR. However, the Polar ETC’s average error for the floor

reflection is 60◦ compared to 1.5◦ for the DIR. Again, for the single second-order

reflection, the Polar ETC produced very good results. The calculated angles were φ
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= 99.4◦, θ = -39.5◦, resulting in an average error of 1.75◦, slightly better than the

average error of 2.5◦ for the DIR.

Summary of Results

In summary, Table 6.1 shows the average of the average errors for each scenario using

both the Polar ETC and the STCM.
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Table 6.2 shows the average errors for both the Polar ETC and the STCM in the

categories of single and multiple arrivals for both numerical and experimental cases.

Table 6.2 Average errors for the Polar ETC and STCM classified by type.

Numerical Experimental

Single Multiple Single Multiple

Polar ETC 0.0◦ 46.5◦ 2.1◦ 35.0◦

STCM 0.5◦ 0.35◦ 1.6◦ 2.5◦

Off-Axis Results

In addition to the experiments just discussed, the effect of loudspeaker directivity

on the measurements was assessed. This was done by rotating the speaker to point

in a direction other than towards the microphone location. The results showed the

reflecting surfaces closer to the radiation axis of the loudspeaker were weighted more

strongly in the composite response. In some cases, the energy radiated toward one

reflector dominated to such an extent that one reflector was correctly localized by

the Polar ETC. For example, the reflector located at φ = -176◦, θ = -8◦ in the dual

asymmetric reflector case was calculated to be φ = -165.2◦, θ = -9.6◦. This is because

the loudspeaker had its back almost directly facing the other reflecting panel, thus

radiating very little energy in that direction. The average error in this case was

approximately 5.5◦ for that one reflector, a great improvement over how the Polar

ETC typically performs with simultaneous arrivals.
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6.3 Discussion

The numerical and experimental comparisons brought to light some the issue of choos-

ing a threshold using the commercial Polar ETC package. This proved to be an issue

critical to extracting useful results from the Polar ETC in single arrival cases. The

threshold is a user-defined level and only the arrivals in the composite ETC that

exceed the threshold are localized. Several peaks in the ETC that were of interest

spanned more than one sample, and therefore more than one angle was determined.

In some cases, the discrepancy between these two calculated angles was as large as

15◦. This has the potential to not only be confusing, but also to produce erroneous

results. This is similar to having erroneous solution sets that meet the constraints in

the DIR. The Polar ETC, therefore, also has problems with erroneous solution sets.

This is an aspect of the measurement system that has, to the author’s knowledge,

not been previously disclosed or discussed. This is solely an artifact that is created

when digital signals are used but, due to the need for processing of the signals, will

always occur when a peak in the ETC spans more than one sample.

6.4 Chapter Conclusions

The STCM method has been compared with the Polar ETC for cases in which the

Polar ETC results are valid and has been shown to perform favorably. The Polar ETC

has been shown to be accurate for many single arrival cases, even outperforming the

STCM at times. However, the fact that the Polar ETC is unable to distinguish

between simultaneous arrivals is a demonstrated weakness. In multiple-arrival cases,

the STCM has been shown to be far superior to the Polar ETC by identifying the

separate arrivals with an acceptable degree of accuracy. The fact that the different

arrivals were distinguishable is a large improvement over all methods that assume a
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single arrival within a given sample.



Chapter 7

Conclusions

Over the years, many methods have been developed to determine the directions of

acoustic arrivals in room acoustics problems. When one can accurately detect of-

fending surfaces or room features that result in a nonideal room response, the cause

is usually straightforward to fix. Most methods developed in the past have suffered

from at least one of the following shortcomings: (1) simplified assumptions that are

commonly invalidated when considering nonideal room responses, (2) a large amount

of expensive equipment to adequately take the measurements, (3) long measurement

times, and (4) insufficient accuracy.

This thesis has discussed the basics of some of these previous methods and has

proposed a new short-time correlation method (STCM) for the measurement of di-

rectional information in rooms. Theoretical developments have been derived without

the simplifying assumptions of past methods. The approach minimizes the amount

of equipment and time necessary for practical implementation while still maintain-

ing a high degree of accuracy. Many practical considerations necessary for its best

implementation have also been presented.
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7.1 Summary of Findings

The thesis has also provided numerical simulations to verify the STCM functionality.

They have shown that the method is very accurate under typical conditions over a

limited time range after the direct sound arrival. Beyond this time range, the results

begin to be mixed with erroneous solution sets created by combinations of time delay

components that meet the constraints.

Simple experiments have also been conducted in controlled acoustical environ-

ments to verify the utility of the method with measured data. When the proper

steps were taken, the method shows great promise, though further work is required

on signal-processing-related issues to make the method more robust and free from

erroneous solutions. Two steps have been introduced preliminarily to help accom-

plish this goal: frequency-response magnitude compensation and noise gating. The

combination helps increase the detail in the IRs (and therefore the cross correla-

tion functions) while reducing noise. It thus allows for more accurate results while

reducing the number of erroneous solution sets for given constraints.

Finally, the accuracy of the STCM has been compared to the results given by

the Polar ETC method. It has been shown that for many of the most “interesting”

features in modeled room IRs, the Polar ETC gives the directional result of a sin-

gle arrival determined by the weighted sums given in Sec. 2.2, while for most cases,

the new method is able to break down single peaks into constituent reflections with

corresponding angles of arrival. Despite its known benefits, some characteristics of

the STCM require further investigation and resolution. These include filtering effects

and off-axis response characteristics of loudspeakers, and the comparison of results be-

tween the seven-microphone array and a four-microphone subset for enhanced sorting

and elimination of erroneous solutions.
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7.2 Contributions

This work has made several contributions to the field of Directional Impulse Response

measurements:

1. An in-depth investigation and generalized analysis of the Polar ETC method

that is not available in the literature.

2. Needed theoretical documentation of cross correlation techniques for DIRs.

3. Discovery and documentation of the errors produced by simultaneous arrivals

for both the Polar ETC and cross correlation methods.

4. A new DIR measurement platform which includes:

(a) The ability to resolve simultaneous arrivals.

(b) The ability to conduct DIR measurements using either sequential or simul-

taneous measurements, allowing the user to choose between a minimum of

equipment or a minimum of measurement time.

(c) A computationally efficient algorithm.

(d) A higher degree of accuracy than past methods.

It should be noted that the STCM is not the only solution to the DIR problem,

nor is it a perfect solution. It has its own limitations. Nevertheless, the benefits of

the method appear to outweigh its inconveniences or disadvantages when it is set up

and implemented correctly. It is the author’s intent that the STCM be developed into

a more streamlined package that will allow both the professional acoustician and the

dedicated hobbyist to better diagnose and correct room problems, and thus enhance

listener enjoyment of program material.
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7.3 Future Work

While this work has made significant progress in the development of an advanced DIR

tool, there is still much work to be done to make it more user friendly and robust.

The following tasks should be included in this effort:

1. Implement a more accurate frequency-response magnitude compensation to in-

crease useful detail in the cross correlation function.

2. Implement an adaptive noise gating procedure to reduce noise in the cross cor-

relation function, thereby reducing the number of erroneous solutions.

3. Investigate zero padding of the cross spectrum and other interpolation methods

to further reduce errors of calculated solutions.

4. Develop automatic peak detection for the cross correlation function.

5. Create an intuitive graphical user interface (GUI).

6. Develop a method of accurate relative-amplitude determination for simultane-

ous arrivals.

7. Further reduce erroneous solution sets in the solution-finding algorithm by en-

hancing constraint equations.

8. Automate the determination of necessary constants for constraint equations.

9. Implement built-in filtering functions to eliminate the effects of nonideal micro-

phone directivities.

10. Investigate ways to mitigate the detrimental effects produced by off-axis radia-

tion from loudspeakers.
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11. Use every possible microphone pairing to further reduce the occurrence of erro-

neous solutions.

12. Investigate the possibility of implementing the DIMUS or CLEAN-SC algo-

rithms for deconvolving the spatial IR of the microphone array if every possible

microphone pair is utilized.

The author encourages additional work in these and other related areas.
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Appendix A

The Matlab code for all of the programs used in this thesis is given here.

A.1 Sources in Free Space IR Generation

This code is an adaptation of a program written by Ryan Chester.

1 clear all, close all tic

2

3 FS=192000; fs=FS/2; c=343; rho=1.21; d=1.5 * .0254;

4

5 %% Setting up the relationships between the frequency and time domains

6 N=2ˆ15; dt=1/fs; t=0:dt:dt * (N−1); df=1/(dt * N); f=(df:df:fs) −df;

7 k=2 * pi * f/c;

8

9 DT=1/FS; T=0:DT:DT * (N−1); DF=1/(DT * N); F=DF:DF:FS; K=2 * pi * F/c;

10

11 %% Setting up sensor locations , source locations , source strengths etc.

12 mic=[0,0,0];

13

14 chord=[3.972, −0.86, −.07;

15 3.8978, 7.6498, −1.2066;

155
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16 −8.5933, 0.6009, −.9815];

17 %% Pressure calculations

18

19 q0=(2+.2 * j)./k; A=j * rho * c* k. * q0/(4 * pi); p=zeros(size(k));

20 sch=size(chord); for n=1:sch(1)

21 r=sqrt((mic(1) −chord(n,1))ˆ2+(mic(2) −chord(n,2))ˆ2+(mic(3) −chord(n,3))ˆ2);

22 p=p+A. * exp( −j * k* r)/r;

23 end clear sch r dx dy dz

24

25 %% Frequency response

26 pfr=p./A; % pressure frequency response

27

28 %% Calculation of impulse response

29 pfrL=[0,(pfr(2: end )),0,fliplr(conj(pfr(2: end )))]; %Extended pressure frequency response

30

31 pirL=ifft(pfrL); pir=pirL(1:N);

32

33 ipir=ifft(1./fft(pir)); ipir=fftshift(ipir);

34

35

36 %% Plotting the responses

37 figure plot(t(1:length(pir)/2),pir(1:length(pir)/2), ' k ' )

38 title( ' Impulse Response ' ) xlabel( ' Time ( s) ' ) ylabel( ' Normalized

39 Magnitude ' )

40

41 % break

42 %%

43 wavwrite(pir,FS, ' F: \3DIRS\Simulations \DualAsymmetricModelOrigin.wav ' )
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A.2 Allen-Berkley IR Generation

This code is a Matlab translation of the image source IR generation program originally

written by Allen and Berkley. The code for counting the actual arrival density as

shown in Fig. 4.16 along with the code for writing the .Wav file has been appended

to the end.

1 %Program that generates impulse responses based on the image source method

2 %

3 % −−−−−−−−−−−−−

4 % | |

5 % | |

6 % | |

7 % | |

8 % |−>−−−−−−−−−−−−−

9 % (0,0) ˆ+ Y +X−>

10 %

11

12 clear all; close all;

13

14 %Define constants

15 c=343; FS=192000; T=1/FS; NPTS=2ˆ16; HT=zeros(1,NPTS); tmax=NPTS/FS;

16 dt=T; t=0:dt:tmax −dt; d=.0254 * 1.5;

17 num=zeros(1,NPTS); %This is to count the number of arrivals in a single IR peak

18 ampind=ones(1,NPTS); angnum=ones(1,NPTS);

19

20 %Room Dimensions

21 lx=30; ly=8; lz=4.5; RL=[lx/(c * T) ly/(c * T) lz/(c * T)];

22

23 %Source position
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24 x0=25; y0=1.5; z0=1.25; R0=[x0/(c * T) y0/(c * T) z0/(c * T)];

25

26 %Receiver position

27 x=5; y=7; z=2.5; R=[x/(c * T) y/(c * T) z/(c * T)];

28

29 %Reflection coefficients

30 betafront=.85; betaback=0.85; betaleft=0.85; betaright=0.85;

31 betaup=0.8; betadown=0.7; Beta=[[betaback betaleft

32 betadown];[betafront betaright betaup]];

33

34 N1=floor(NPTS/(2 * RL(1))+1); N2=floor(NPTS/(2 * RL(2))+1);

35 N3=floor(NPTS/(2 * RL(3))+1);

36

37 tic

38

39 for nx=−N1:N1

40 for ny=−N2:N2

41 for nz=−N3:N3

42

43 NR=[nx ny nz];

44

45 DR=R;

46 DR0=R0;

47 Delp=zeros(1,8);

48 R2L=zeros(1,3);

49 RP=zeros(3,8);

50 I1=1;

51 for L=−1:2:1

52 for J=−1:2:1

53 for K=−1:2:1

54



A.2 Allen-Berkley IR Generation 159

55 RP(1,I1)=DR(1)+L * DR0(1);

56 RP(2,I1)=DR(2)+J * DR0(2);

57 RP(3,I1)=DR(3)+K * DR0(3);

58

59 I1=I1+1;

60

61 end

62 end

63 end

64

65 R2L(1)=2 * RL(1) * NR(1);

66 R2L(2)=2 * RL(2) * NR(2);

67 R2L(3)=2 * RL(3) * NR(3);

68 theta=zeros(1,8);

69 phi=zeros(1,8);

70

71 for I=1:8

72

73 Rang=zeros(1,3);

74

75 delsq=0;

76 for J=1:3

77

78 R1=R2L(J) −RP(J,I);

79 delsq=delsq+R1ˆ2;

80 Rang(J)=R1;

81

82 end

83

84 Delp(I)=sqrt(delsq);

85 theta(I)=acosd(Rang(3)/sqrt(Rang(1)ˆ2+Rang(2)ˆ2+Rang(3)ˆ2)) −90;
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86 phi(I)=180/pi * atan2(Rang(2),Rang(1));

87

88 end

89

90 I0=0;

91 angind=0;

92 for L=0:1

93 for J=0:1

94 for K=0:1

95

96 angind=angind+1;

97 I0=I0+1;

98 ID=round(Delp(I0));

99 FDMI=ID;

100 ID=ID+1;

101 if ID>NPTS

102 else

103 GID=Beta(1,1)ˆabs(nx −L) * Beta(2,1)ˆabs(nx) ...

104 * Beta(1,2)ˆabs(ny −J) * Beta(2,2)ˆabs(ny) ...

105 * Beta(1,3)ˆabs(nz −K) * Beta(2,3)ˆabs(nz)/FDMI;

106

107 HT(ID)=HT(ID)+GID;

108 num(ID)=num(ID)+1; %how many arrivals are in one sample

109

110 IDtemp=round(Delp(I0));

111

112 thetanew(IDtemp,angnum(IDtemp))= −theta(angind);

113 phinew(IDtemp,angnum(IDtemp))=phi(angind);

114

115 amp(IDtemp,angnum(IDtemp))=GID;

116
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117 if phinew(IDtemp,angnum(IDtemp)) <−180

118

119 phinew(IDtemp,angnum(IDtemp))= ...

120 phinew(IDtemp,angnum(IDtemp))+360;

121

122 end

123

124 angnum(IDtemp)=angnum(IDtemp)+1;

125

126 end

127

128 end

129 end

130 end

131

132 end

133 end

134 end

135

136 amp=amp/max(amp);

137

138 toc

139

140 f=1000; %Low pass cutoff

141 w=8* atan(1) * f; T=1e −4; R1=exp( −w* T); R2=R1; B1=2 * R1* cos(w * T);

142 B2=−R1* R1; A1=−(1+R2); A2=R2; Y1=0; Y2=0; Y0=0; for a=1:NPTS

143 X0=HT(a);

144 HT(a)=Y0+A1 * Y1+A2* Y2;

145 Y2=Y1;

146 Y1=Y0;

147 Y0=B1* Y1+B2* Y2+X0;
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148 end

149

150 HT=0.99 * HT/max(abs(HT));

151

152 figure subplot(2,1,1) plot(t,HT, ' k ' ) title( ' Impulse Response ' )

153 ylabel( ' Amplitude ' ) subplot(2,1,2) plot(t,num, ' k ' ) title( ' Number of

154 Arrivals ' ) xlabel( ' Time ( s) ' ) ylabel( ' Number of Arrivals ' )

155

156 wavwrite(HT,FS, ' F: \3DIRS\OriginIR.wav ' )

157 % break

158 win=21; arrden=zeros(1,length(num)); for a=win+1:length(num) −win

159 arrden(a)=sum(num(a −win:a+win));

160 end

161

162 for a=length(num) −win+1:length(num)

163 arrden(a)=sum(num(a −win: end ));

164 end

165

166 wint=win/192000;

167 arrdentheory=4/3 * pi * cˆ3/(lx * ly * lz) * ((t+wint).ˆ3 −(t −wint).ˆ3);

168

169 figure plot(t,arrden, ' g' ,t,arrdentheory, ' k−−' ) title( ' Arrival

170 Density ' ) xlabel( ' Time ( s) ' ) ylabel( ' Arrivals within 2\Deltat ' )

171 legend( ' Calculated ' , ' Predicted ' )

A.3 Modified Modal Expansion

The code used for the modified modal expansion in Sec. 4.4.3 is based on code written

by Dave Nutter.
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1 clear all; close all; clc;

2

3 tic Lx = 30; Ly = 8; Lz = 4.5; c = 343; rho = 1.21; V=Lx * Ly * Lz;

4 S=2* Lx * Ly+2 * Lx * Lz+2 * Ly * Lz;

5

6 d=1.5 * .0254;

7

8 %Source position

9 x0=25; y0=1.5; z0=1.25;

10

11 %Array Origin Location

12 x=5; y=7; z=2.5;

13

14 alphax=1 −.85ˆ2; alphay=1 −.85ˆ2; alphaz=((1 −.8ˆ2)+(1 −.7ˆ2))/2;

15

16 A=(2 * alphax * Ly * Lz+2 * alphay * Lx * Lz+2 * alphaz * Lx * Ly);

17 alphas=A/S; %spatially averaged absorption coefficient

18

19 fcut=1000; %Specify max frequency of bandwidth

20

21 T60=.161 * V/( −log(1 −alphas) * S); %Calculate Norris −Eyring T60

22 ∆f=2.2/T60; %modal bandwidth in Hz

23

24 df=2; %Specify frequency resolution

25

26 Nx=ceil(2/c * fcut * Lx); %Calculate number of modes needed along each axis

27 Ny=ceil(2/c * fcut * Ly); Nz=ceil(2/c * fcut * Lz);

28 % break

29 m = 1;

30

31 fndata = zeros((Nx+1) * (Ny+1) * (Nz+1),7); for nx=0:Nx
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32 for ny=0:Ny

33 for nz=0:Nz

34 fndata(m,1) = c/2 * sqrt((nx/Lx)ˆ2+(ny/Ly)ˆ2+(nz/Lz)ˆ2);

35 fndata(m,2)=nx; fndata(m,3)=ny; fndata(m,4)=nz;

36 if nx ==0

37 fndata(m,5)=1;

38 else

39 fndata(m,5)=2;

40 end

41 if ny ==0

42 fndata(m,6) = 1;

43 else

44 fndata(m,6) = 2;

45 end

46 if nz ==0

47 fndata(m,7) = 1;

48 else

49 fndata(m,7) = 2;

50 end

51 m=m+1;

52 end

53 end

54 end

55

56 fndata = sortrows(fndata)';

57

58 fmax=ceil(fndata(1, end )); %Specify max frequency present

59 %% Prelims

60 Lxinv=1/Lx; Lyinv=1/Ly; Lzinv=1/Lz;

61

62 fw2=10 * ceil( ∆f);
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63

64 Q = 1; %constant volume velocity source

65

66 p=zeros(1,fmax/df+500);

67 %% Origin Mic

68 findx=1;

69

70 flow = floor(fndata(1,1));

71

72 fhi=ceil(fndata(1, end ));

73

74 for f=flow:df:fhi

75 k=2 * pi * f/c;

76 if f==0

77 else

78 b = find(f −fw2 ≤fndata(1,:) & fndata(1,:) ≤f+fw2);

79 Npart = fndata(2:7,b);

80 fnpart = fndata(1,b);

81 kn=2 * pi * fnpart/c;

82 for N=1:size(Npart,2) %add together portions from each nat freq

83 xpsi = cos(Npart(1,N) * pi * x* Lxinv);

84 x0psi = cos(Npart(1,N) * pi * x0 * Lxinv);

85 ypsi = cos(Npart(2,N) * pi * y* Lyinv);

86 y0psi = cos(Npart(2,N) * pi * y0 * Lyinv);

87 zpsi = cos(Npart(3,N) * pi * z* Lzinv);

88 z0psi = cos(Npart(3,N) * pi * z0 * Lzinv);

89 ex=Npart(4,N);

90 ey=Npart(5,N);

91 ez=Npart(6,N);

92 Linv = (ex * ey * ez); %enx , eny , enz

93
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94 psiS = x0psi * y0psi * z0psi;

95 psiR = xpsi' * ypsi * zpsi;

96 Almn=−j * rho * c* k* Q* Linv/V * psiS/(kˆ2 −kn(N)ˆ2 −j * kn(N)/(4 * V) * A);

97 p(findx) = p(findx)+Almn * psiR;

98

99 end

100

101 end

102 farray(findx)=f;

103 findx=findx+1;

104 end

105

106 pfr1=[farray;p(1:length(farray))];

107 % save / fslhome / briguy / pfrOriginLN.mat pfr1

108 toc

A.4 STCM Program

The actual program used for calculating the angles of arrival is here. This is the

finished form, though several versions have existed.

1 %Program for taking the seven cartesian impulse responses , taking the cross

2 %correlation , determining whether there are multiple simultaneous arrivals

3 %and then computing the polar angles of arrival

4

5 clc; clear all; close all;

6

7 c=343; %Speed of sound

8 d=1.5 * .0254; %Distance from origin to mic in meters
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9

10 %Read in the seven impulse response files and the sampling frequency

11 [Front,FS]=wavread( ' \\kirchhoff \acoustics \students \Brian

12 Thornock \Experimental Data \6 August 2009 \SingleReflectorFront.wav ' );

13 Back=wavread( ' \\kirchhoff \acoustics \students \Brian

14 Thornock \Experimental Data \6 August 2009 \SingleReflectorBack.wav ' );

15 Right=wavread( ' \\kirchhoff \acoustics \students \Brian

16 Thornock \Experimental Data \6 August 2009 \SingleReflectorRight.wav ' );

17 Left=wavread( ' \\kirchhoff \acoustics \students \Brian

18 Thornock \Experimental Data \6 August 2009 \SingleReflectorLeft.wav ' );

19 Up=wavread( ' \\kirchhoff \acoustics \students \Brian

20 Thornock \Experimental Data \6 August 2009 \SingleReflectorUp.wav ' );

21 Down=wavread( ' \\kirchhoff \acoustics \students \Brian

22 Thornock \Experimental Data \6 August 2009 \SingleReflectorDown.wav ' );

23 Origin=wavread( ' \\kirchhoff \acoustics \students \Brian

24 Thornock \Experimental Data \6 August

25 2009 \SingleReflectorOrigin.wav ' );

26 % break

27

28 %Truncate IRs to speed up calculation

29 Front=Front(1:9000); Back=Back(1:9000); Right=Right(1:9000);

30 Left=Left(1:9000); Up=Up(1:9000); Down=Down(1:9000);

31 Origin=Origin(1:9000);

32

33 %Define Some More physical constants

34 t=0:1/FS:length(Front)/FS −1/FS; %total time record of the impulse response

35 ∆tmax=round(FS * 2* d/c); %Max time delay ( in samples ) for mic spacing

36 ∆tmax4=round(FS * d/c); %Max time delay for four −mic configuration

37 degfac=1; %Factor eliminating degenerate solution sets

38 timefac=7; %Constraint factor for 7 mic config

39 timefac4=5; %Constraint factor for 4 mic config
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40 ovlpfac=7; %Factor for choosing overlapping solutions

41

42 %Display the Origin IR

43 figure(1) plot(t,Origin) title( ' Plot of the Origin IR ' ) xlabel( ' Time

44 ( s) ' ) ylabel( ' Magnitude ' ) ylim([1.1 * min(Origin) 1.1 * max(Origin)])

45 pause (1)

46

47 %Zoom in on the peak of interest for greater accuracy

48 disp( ' Pick a Range of the Peak You are Interested in ' )

49 [time,ampt]=ginput(2); tpremod=time(1):1/FS:time(2);

50

51 Originpremod=Origin(round(time(1) * FS):round(time(1) * FS)+length(tpremod) −1);

52

53 close all;

54

55 figure plot(tpremod,Originpremod) title( ' Zoomed plot of the origin

56 IR ' ) ylim([1.1 * min(Originpremod) 1.1 * max(Originpremod)])

57

58 pause(1)

59

60 choice=input( ' Would you like to zoom more?( y=1/ n=0) − ' );

61

62 close all;

63

64 while choice==1

65 figure

66 plot(tpremod,Originpremod)

67 title( ' Plot of the Origin IR ' )

68 xlabel( ' Time ( s) ' )

69 ylabel( ' Magnitude ' )

70 ylim([1.1 * min(Origin) 1.1 * max(Origin)])
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71 pause (1)

72

73 %Zoom in on the peak of interest for greater accuracy

74 disp( ' Pick a Range of the Peak You are Interested in ' )

75 [time,ampt]=ginput(2);

76 tpremod=time(1):1/FS:time(2);

77

78 Originpremod=Origin(round(time(1) * FS):round(time(1) * FS)+length(tpremod) −1);

79

80 close all;

81

82 figure

83 plot(tpremod,Originpremod)

84 title( ' Zoomed plot of the origin IR ' )

85 ylim([1.1 * min(Originpremod) 1.1 * max(Originpremod)])

86

87 pause(1)

88

89 choice=input( ' Would you like to zoom more?( y=1/ n=0) − ' );

90

91 end

92

93 %Make the two vectors the same length

94 Originpremod=Origin(round(time(1) * FS):round(time(1) * FS)+length(tpremod) −1);

95 close all; clear ampt; clear time;

96

97 figure(2) plot(tpremod,Originpremod) title( ' Zoomed Plot of the

98 Origin IR ' ) xlabel( ' Time ( s) ' ) ylabel( ' Magnitude ' )

99 ylim([1.1 * min(Originpremod) 1.1 * max(Originpremod)]) clc;

100

101 %This gives the sample numbers corresponding to the time values
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102 %chosen

103 disp( ' Pick the Peak You Want to Analyze ' ) t0=ginput(1);

104

105 %Pick off just the time component , not amplitude

106 t0=t0(1); tpeak=round(FS * t0); clc; close all;

107

108 %Take the time window of the IRs to compute the cross correlation about the

109 %certain peak in the IR

110 Frontmod=Front(tpeak −∆tmax:tpeak+ ∆tmax);

111 Backmod=Back(tpeak −∆tmax:tpeak+ ∆tmax);

112 Rightmod=Right(tpeak −∆tmax:tpeak+ ∆tmax);

113 Leftmod=Left(tpeak −∆tmax:tpeak+ ∆tmax);

114 Upmod=Up(tpeak −∆tmax:tpeak+ ∆tmax);

115 Downmod=Down(tpeak −∆tmax:tpeak+ ∆tmax);

116 Originmod=Origin(tpeak −∆tmax:tpeak+ ∆tmax);

117

118 Frontmod4=Front(tpeak −∆tmax4:tpeak+ ∆tmax4);

119 Leftmod4=Left(tpeak −∆tmax4:tpeak+ ∆tmax4);

120 Upmod4=Up(tpeak −∆tmax4:tpeak+ ∆tmax4);

121 Originmod4=Origin(tpeak −∆tmax4:tpeak+ ∆tmax4);

122

123 clear Front; clear Back; clear Right; clear Left; clear Up; clear

124 Down;

125

126 tmod=(tpeak −∆tmax)/FS:1/FS:(tpeak+ ∆tmax)/FS;

127

128 figure(2) plot(tmod,Originmod) title( ' Plot of section of IR to be

129 analyzed ' ) xlabel( ' Time ( s) ' ) ylabel( ' Magnitude ' )

130

131 pause(1)

132
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133 close all;

134

135 Frontfmod=fft(Frontmod); Backfmod=fft(Backmod);

136 Rightfmod=fft(Rightmod); Leftfmod=fft(Leftmod); Upfmod=fft(Upmod);

137 Downfmod=fft(Downmod);

138

139 Frontfmod4=fft(Frontmod4); Leftfmod4=fft(Leftmod4);

140 Upfmod4=fft(Upmod4); Originfmod4=fft(Originmod4);

141

142 Sfb=Backfmod. * conj(Frontfmod); Srl=Leftfmod. * conj(Rightfmod);

143 Sud=Downfmod. * conj(Upfmod);

144

145 Sfo=Originfmod4. * conj(Frontfmod4); Slo=Leftfmod4. * conj(Originfmod4);

146 Suo=Originfmod4. * conj(Upfmod4);

147

148 clear Frontfmod; clear Backfmod; clear Rightfmod; clear Leftfmod;

149 clear Upfmod; clear Downfmod; clear Frontfmod4; clear Leftfmod4;

150 clear Upfmod4; clear Originfmod4;

151

152 Rfb=fftshift(ifft(Sfb)); Rrl=fftshift(ifft(Srl));

153 Rud=fftshift(ifft(Sud));

154

155 Rfo=fftshift(ifft(Sfo)); Rlo=fftshift(ifft(Slo));

156 Ruo=fftshift(ifft(Suo));

157

158 clear Sfb; clear Srl; clear Sud; clear Slo; clear Sfo; clear Suo;

159

160 tcorr= −∆tmax/FS+1/(2 * FS)−.03/FS:1/FS: ∆tmax/FS+1/(2 * FS)−.03/FS;

161 figure(4) plot(tcorr,abs(Rfb)) title( ' Cross Correlation in X' )

162 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )

163
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164 [tx,xamp]=ginput; clear xamp;

165

166 close;

167

168 figure(5) plot(tcorr,abs(Rrl)) title( ' Cross Correlation in Y' )

169 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )

170

171 [ty,yamp]=ginput; clear yamp; ty= −ty;

172

173 close;

174

175 figure(6) plot(tcorr,abs(Rud)) title( ' Cross Correlation in Z' )

176 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )

177

178 [tz,zamp]=ginput; clear zamp;

179

180 clc; close all;

181 %% Seven Mic Processing

182 angind=1; theta=0; phi=0;

183

184 for l=1:length(tx)

185 for m=1:length(ty)

186 for n=1:length(tz)

187 if abs(sqrt(tx(l)ˆ2+ty(m)ˆ2+tz(n)ˆ2) −2* d/c) <(2 * d/c)/timefac

188

189 theta(angind)=asind(tz(n)/sqrt(tx(l)ˆ2+ty(m)ˆ2+tz(n)ˆ2));

190 phi(angind)=(180/pi * atan2(ty(m),tx(l)));

191

192 if phi(angind) <−180

193

194 phi(angind)=phi(angind)+360;
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195

196 end

197

198 if phi(angind) >180

199 phi(angind)=phi(angind) −360;

200 end

201

202 times(angind,:)=[tx(l) ty(m) tz(n)];

203

204 angind=angind+1;

205

206 else

207 end

208 end

209 end

210 end

211

212 %Implement loops to eliminate multiple solution sets

213 if length(theta) >1

214 for aa=1:length(theta)

215 %As long as we are not at the last theta entry , compare the

216 %current entry to all higher ones for equality

217 if aa<length(theta)

218 for bb=1:length(theta) −aa

219 %The choosiness of how close solution sets can be is

220 %chosen here. In this case , it is for theta and phi to

221 %within one degree.

222 if abs(theta(aa) −theta(aa+bb)) ≤degfac ...

223 && abs(phi(aa) −phi(aa+bb)) ≤degfac

224

225 %Set theta and phi to bogus values that can be easily
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226 %found in a loop and eliminated

227 theta(aa+bb)=370;

228 phi(aa+bb)=370;

229

230 end

231 end

232 end

233

234

235 end

236 %Find the indices with the bogus value and eliminate them

237 indextheta=find(theta==370);

238 indexphi=find(phi==370);

239 theta(indextheta)=[];

240 phi(indexphi)=[];

241

242 else end

243

244 %% Four Mic Selection

245 %Now do the four mic stuff

246 tcorr4= −∆tmax4/FS+1/(2 * FS)−.13/FS:1/FS: ∆tmax4/FS+1/(2 * FS)−.13/FS;

247

248 figure(7) plot(tcorr4,abs(Rfo)) title( ' Cross Correlation in X' )

249 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )

250

251 [tx4,xamp]=ginput; clear xamp;

252

253 close;

254

255 figure(8) plot(tcorr4,abs(Rlo)) title( ' Cross Correlation in Y' )

256 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )
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257

258 [ty4,yamp]=ginput; clear yamp;

259

260 ty4= −ty4;

261

262 close;

263

264 figure(9) plot(tcorr4,abs(Ruo)) title( ' Cross Correlation in Z' )

265 xlabel( ' Time Delay ( s) ' ) ylabel( ' Magnitude ' )

266

267 [tz4,zamp]=ginput; clear zamp;

268

269 close;

270

271 %% Four Mic Processing

272 angind4=1;

273

274 for l=1:length(tx4)

275

276 for m=1:length(ty4)

277 for n=1:length(tz4)

278 if abs(sqrt(tx4(l)ˆ2+ty4(m)ˆ2+tz4(n)ˆ2) −d/c) <(d/c)/timefac4

279

280 theta4(angind4)=asind(tz4(n)/sqrt(tx4(l)ˆ2+ty4(m)ˆ2+tz4(n)ˆ2));

281 phi4(angind4)=(180/pi * atan2(ty4(m),tx4(l)));

282

283 if phi4(angind4) <−180

284

285 phi4(angind4)=phi4(angind4)+360;

286

287 end
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288

289 if phi4(angind4) >180

290 phi4(angind4)=phi4(angind4) −360;

291 end

292

293 times4(angind4,:)=[tx4(l) ty4(m) tz4(n)];

294

295 angind4=angind4+1;

296

297 else

298 end

299 end

300 end

301 end

302

303

304 if length(theta4) >1

305 for aa=1:length(theta4)

306 %As long as we are not at the last theta entry , compare the

307 %current entry to all higher ones for equality

308 if aa<length(theta4)

309 for bb=1:length(theta4) −aa

310 %The choosiness of how close solution sets can be is

311 %chosen here. In this case , it is for theta and phi to

312 %within one degree.

313 if abs(theta4(aa) −theta4(aa+bb)) ≤degfac ...

314 && abs(phi4(aa) −phi4(aa+bb)) ≤degfac

315

316 %Set theta and phi to bogus values that can be easily

317 %found in a loop and eliminated

318 theta4(aa+bb)=370;
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319 phi4(aa+bb)=370;

320

321 end

322 end

323 end

324

325

326 end

327 %Find the indices with the bogus value and eliminate them

328 indextheta4=find(theta4==370);

329 indexphi4=find(phi4==370);

330 theta4(indextheta4)=[];

331 phi4(indexphi4)=[];

332

333 else end

334

335 %Now use a loop to cross compare between 4 and 7 mic

336 newind=1; for ind1=1:length(theta4)

337 for ind2=1:length(theta)

338

339 if abs(theta4(ind1) −theta(ind2)) ≤ovlpfac ...

340 && abs(phi4(ind1) −phi(ind2)) ≤ovlpfac

341 %The user can choose to use the 4 mic , 7 mic or a combination

342 %for what the resulting angle should be. In some cases , one is

343 %better than the others , but that can only be determined

344 %afterwards

345 thetanew(newind)=theta4(ind1);

346 phinew(newind)=phi4(ind1);

347 newind=newind+1;

348 else

349 end
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350

351 end

352 end

353

354 if length(thetanew) >1

355 for aa=1:length(thetanew)

356 %As long as we are not at the last theta entry , compare the

357 %current entry to all higher ones for equality

358 if aa<length(thetanew)

359 for bb=1:length(thetanew) −aa

360 %The choosiness of how close solution sets can be is

361 %chosen here. In this case , it is for theta and phi to

362 %within one degree.

363 if abs(thetanew(aa) −thetanew(aa+bb)) ≤degfac ...

364 && abs(phinew(aa) −phinew(aa+bb)) ≤degfac

365

366 %Set theta and phi to bogus values that can be easily

367 %found in a loop and eliminated

368 thetanew(aa+bb)=370;

369 phinew(aa+bb)=370;

370

371 end

372 end

373 end

374

375

376 end

377 %Find the indices with the bogus value and eliminate them

378 indexthetanew=find(thetanew==370);

379 indexphinew=find(phinew==370);

380 thetanew(indexthetanew)=[];
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381 phinew(indexphinew)=[];

382

383 else end

384

385 %Scatter plot of arrivals

386 figure(10) scatter(phinew,thetanew) title( ' Scatter plot of spherical

387 angles of arrival ' ) xlabel( ' \phi ( deg ) ' ) ylabel( ' \theta ( deg ) ' )

388 xlim([ −180 180]) ylim([ −90 90])

389

390 %Display the numerical values in command window

391 disp( ' phi = ' ) disp(phinew) disp( ' theta = ' ) disp(thetanew)

A.5 Polar ETC Programs

The different programs used for the Polar ETC (including the cardioid IR generation

program) are included here.

A.5.1 Cardioid IR Generation

1 %Cardioid impulse responses based on the image source method

2 %

3 % −−−−−−−−−−−−−

4 % | |

5 % | |

6 % | |

7 % | |

8 % |−>−−−−−−−−−−−−−

9 % (0,0) ˆ+ Y +X−>

10 %
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11

12 clear all; close all;

13

14 %Define constants

15 c=343; FS=192000; T=1/FS; NPTS=2ˆ16; HT=zeros(1,NPTS); tmax=NPTS/FS;

16 dt=T; t=0:dt:tmax −dt; d=.0254 * .25;

17 num=zeros(1,NPTS); %This is to count the number of arrivals in a single IR peak

18 ampind=ones(1,NPTS); angnum=ones(1,NPTS);

19 % amp=zeros ( NPTS,1);

20

21 %Room Dimensions

22 lx=30; ly=8; lz=4.5; RL=[lx/(c * T) ly/(c * T) lz/(c * T)];

23

24 %Source position

25 x0=25; y0=1.5; z0=1.25; R0=[x0/(c * T) y0/(c * T) z0/(c * T)];

26

27 %Receiver position

28 x=5; y=7; z=2.5; R=[x/(c * T) y/(c * T) z/(c * T)];

29

30 %Reflection coefficients

31 betafront=.85; betaback=0.85; betaleft=0.85; betaright=0.85;

32 betaup=0.8; betadown=0.7; Beta=[[betaback betaleft

33 betadown];[betafront betaright betaup]];

34

35 N1=floor(NPTS/(2 * RL(1))+1); N2=floor(NPTS/(2 * RL(2))+1);

36 N3=floor(NPTS/(2 * RL(3))+1);

37

38 tic

39

40 for nx=−N1:N1

41 for ny=−N2:N2
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42 for nz=−N3:N3

43

44 NR=[nx ny nz]; % modified by Buye. before was NR=[ N1 N2 N3];

45

46 DR=R;

47 DR0=R0;

48 Delp=zeros(1,8);

49 R2L=zeros(1,3);

50 RP=zeros(3,8);

51 I1=1;

52 for L=−1:2:1

53 for J=−1:2:1

54 for K=−1:2:1

55

56 RP(1,I1)=DR(1)+L * DR0(1);

57 RP(2,I1)=DR(2)+J * DR0(2);

58 RP(3,I1)=DR(3)+K * DR0(3);

59

60 I1=I1+1;

61

62 end

63 end

64 end

65

66 R2L(1)=2 * RL(1) * NR(1);

67 R2L(2)=2 * RL(2) * NR(2);

68 R2L(3)=2 * RL(3) * NR(3);

69 theta=zeros(1,8);

70 phi=zeros(1,8);

71

72 for I=1:8
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73

74 Rang=zeros(1,3);

75

76 delsq=0;

77 for J=1:3

78

79 R1=R2L(J) −RP(J,I);

80 delsq=delsq+R1ˆ2;

81 %I think R1 is the distance vector that I need to

82 %compare with R so that I can get the correct arrival

83 %angles

84 Rang(J)=R1;

85

86 end

87

88 Delp(I)=sqrt(delsq);

89 theta(I)=acosd(Rang(3)/sqrt(Rang(1)ˆ2+Rang(2)ˆ2+Rang(3)ˆ2)) −90;

90 phi(I)=180/pi * atan2(Rang(2),Rang(1));

91

92

93 end

94

95

96

97 I0=0;

98 angind=0;

99 for L=0:1

100 for J=0:1

101 for K=0:1

102

103 angind=angind+1;
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104 I0=I0+1;

105 ID=round(Delp(I0));

106 FDMI=ID;

107 ID=ID+1;

108 if ID>NPTS

109 else

110 %Origin IR

111 GID=Beta(1,1)ˆabs(nx −L) * Beta(2,1)ˆabs(nx) ...

112 * Beta(1,2)ˆabs(ny −J) * Beta(2,2)ˆabs(ny) ...

113 * Beta(1,3)ˆabs(nz −K) * Beta(2,3)ˆabs(nz)/FDMI;

114

115 % %Front , Left , Back , Right facing IRs

116 % GID=(1 −cosd ( phi ( angind )) * cosd (−theta ( angind ))) ...

117 % * Beta (1,1)ˆ abs ( nx−L) * Beta (2,1)ˆ abs ( nx ) ...

118 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...

119 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

120

121 % %Up and Down facing IRs

122 % GID=(1+ sind (−theta ( angind ))) * Beta (1,1)ˆ abs ( nx−L) ...

123 % * Beta (2,1)ˆ abs ( nx ) ...

124 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...

125 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

126

127 HT(ID)=HT(ID)+GID;

128 num(ID)=num(ID)+1; %how many arrivals are in one sample

129

130 IDtemp=round(Delp(I0));

131 thetanew(IDtemp,angnum(IDtemp))= −theta(angind);

132 phinew(IDtemp,angnum(IDtemp))=phi(angind);

133

134 amp(IDtemp,angnum(IDtemp))=GID;
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135

136 if phinew(IDtemp,angnum(IDtemp)) <−180

137

138 phinew(IDtemp,angnum(IDtemp))= ...

139 phinew(IDtemp,angnum(IDtemp))+360;

140

141 end

142

143 angnum(IDtemp)=angnum(IDtemp)+1;

144

145 end

146

147

148 end

149 end

150 end

151

152 end

153 end

154 end

155

156 amp=amp/max(amp);

157

158 toc

159

160 f=1000; %Low pass cutoff

161 w=8* atan(1) * f; T=1e −4; R1=exp( −w* T); R2=R1; B1=2 * R1* cos(w * T);

162 B2=−R1* R1; A1=−(1+R2); A2=R2; Y1=0; Y2=0; Y0=0; for a=1:NPTS

163 X0=HT(a);

164 HT(a)=Y0+A1 * Y1+A2* Y2;

165 Y2=Y1;
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166 Y1=Y0;

167 Y0=B1* Y1+B2* Y2+X0;

168 end

169

170 HT=2000* HT; %Don' t normalize these IRs !

171

172 figure subplot(2,1,1) plot(t,HT) title( ' Impulse Response ' )

173 subplot(2,1,2) plot(t,num) title( ' Number of Arrivals ' ) xlabel( ' Time

174 ( s) ' )

175

176 wavwrite(HT,FS, ' F: \3DIRS\Simulations \LongNarrowCardioidOrigin.wav ' )

A.5.2 Subcardioid IR Generation

1 %Subcardioid impulse responses based on the image source method

2 %

3 % −−−−−−−−−−−−−

4 % | |

5 % | |

6 % | |

7 % | |

8 % |−>−−−−−−−−−−−−−

9 % (0,0) ˆ+ Y +X−>

10 %

11

12 clear all; close all;

13

14 %Define constants

15 c=343; FS=192000; T=1/FS; NPTS=2ˆ16; HT=zeros(1,NPTS); tmax=NPTS/FS;

16 dt=T; t=0:dt:tmax −dt; d=.0254 * .25;
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17 num=zeros(1,NPTS); %This is to count the number of arrivals in a single IR peak

18 ampind=ones(1,NPTS); angnum=ones(1,NPTS);

19 % amp=zeros ( NPTS,1);

20

21 %Room Dimensions

22 lx=30; ly=8; lz=4.5; RL=[lx/(c * T) ly/(c * T) lz/(c * T)];

23

24 %Source position

25 x0=25; y0=1.5; z0=1.25; R0=[x0/(c * T) y0/(c * T) z0/(c * T)];

26

27 %Receiver position

28 x=5; y=7; z=2.5; R=[x/(c * T) y/(c * T) z/(c * T)];

29

30 %Reflection coefficients

31 betafront=.85; betaback=0.85; betaleft=0.85; betaright=0.85;

32 betaup=0.8; betadown=0.7; Beta=[[betaback betaleft

33 betadown];[betafront betaright betaup]];

34

35 N1=floor(NPTS/(2 * RL(1))+1); N2=floor(NPTS/(2 * RL(2))+1);

36 N3=floor(NPTS/(2 * RL(3))+1);

37

38 tic

39

40 for nx=−N1:N1

41 for ny=−N2:N2

42 for nz=−N3:N3

43

44 NR=[nx ny nz]; % modified by Buye. before was NR=[ N1 N2 N3];

45

46 DR=R;

47 DR0=R0;
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48 Delp=zeros(1,8);

49 R2L=zeros(1,3);

50 RP=zeros(3,8);

51 I1=1;

52 for L=−1:2:1

53 for J=−1:2:1

54 for K=−1:2:1

55

56 RP(1,I1)=DR(1)+L * DR0(1);

57 RP(2,I1)=DR(2)+J * DR0(2);

58 RP(3,I1)=DR(3)+K * DR0(3);

59

60 I1=I1+1;

61

62 end

63 end

64 end

65

66 R2L(1)=2 * RL(1) * NR(1);

67 R2L(2)=2 * RL(2) * NR(2);

68 R2L(3)=2 * RL(3) * NR(3);

69 theta=zeros(1,8);

70 phi=zeros(1,8);

71

72 for I=1:8

73

74 Rang=zeros(1,3);

75

76 delsq=0;

77 for J=1:3

78
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79 R1=R2L(J) −RP(J,I);

80 delsq=delsq+R1ˆ2;

81 %I think R1 is the distance vector that I need to

82 %compare with R so that I can get the correct arrival

83 %angles

84 Rang(J)=R1;

85

86 end

87

88 Delp(I)=sqrt(delsq);

89 theta(I)=acosd(Rang(3)/sqrt(Rang(1)ˆ2+Rang(2)ˆ2+Rang(3)ˆ2)) −90;

90 phi(I)=180/pi * atan2(Rang(2),Rang(1));

91

92

93 end

94

95

96

97 I0=0;

98 angind=0;

99 for L=0:1

100 for J=0:1

101 for K=0:1

102

103 angind=angind+1;

104 I0=I0+1;

105 ID=round(Delp(I0));

106 FDMI=ID;

107 ID=ID+1;

108 if ID>NPTS

109 else
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110 %Origin IR

111 GID=Beta(1,1)ˆabs(nx −L) * Beta(2,1)ˆabs(nx) ...

112 * Beta(1,2)ˆabs(ny −J) * Beta(2,2)ˆabs(ny) ...

113 * Beta(1,3)ˆabs(nz −K) * Beta(2,3)ˆabs(nz)/FDMI;

114

115 % %Front , Left , Back , Right facing IRs

116 % GID=( .7 −.3 * cosd ( phi ( angind )) * cosd (−theta ( angind ))) ...

117 % * Beta (1,1)ˆ abs ( nx−L) * Beta (2,1)ˆ abs ( nx ) ...

118 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...

119 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

120

121 % %Up and Down facing IRs

122 % GID=( .7 +.3 * sind (−theta ( angind ))) * Beta (1,1)ˆ abs ( nx−L) ...

123 % * Beta (2,1)ˆ abs ( nx ) ...

124 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...

125 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

126

127 HT(ID)=HT(ID)+GID;

128 num(ID)=num(ID)+1; %how many arrivals are in one sample

129

130 IDtemp=round(Delp(I0));

131 thetanew(IDtemp,angnum(IDtemp))= −theta(angind);

132 phinew(IDtemp,angnum(IDtemp))=phi(angind);

133

134 amp(IDtemp,angnum(IDtemp))=GID;

135

136 if phinew(IDtemp,angnum(IDtemp)) <−180

137

138 phinew(IDtemp,angnum(IDtemp))= ...

139 phinew(IDtemp,angnum(IDtemp))+360;

140
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141 end

142

143 angnum(IDtemp)=angnum(IDtemp)+1;

144

145 end

146

147

148 end

149 end

150 end

151

152 end

153 end

154 end

155

156 amp=amp/max(amp);

157

158 toc

159

160 f=1000; %Low pass cutoff

161 w=8* atan(1) * f; T=1e −4; R1=exp( −w* T); R2=R1; B1=2 * R1* cos(w * T);

162 B2=−R1* R1; A1=−(1+R2); A2=R2; Y1=0; Y2=0; Y0=0; for a=1:NPTS

163 X0=HT(a);

164 HT(a)=Y0+A1 * Y1+A2* Y2;

165 Y2=Y1;

166 Y1=Y0;

167 Y0=B1* Y1+B2* Y2+X0;

168 end

169

170 HT=2000* HT; %Don' t normalize these IRs !

171
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172 figure subplot(2,1,1) plot(t,HT) title( ' Impulse Response ' )

173 subplot(2,1,2) plot(t,num) title( ' Number of Arrivals ' ) xlabel( ' Time

174 ( s) ' )

175

176 wavwrite(HT,FS, ' F: \3DIRS\Simulations \LongNarrowCardioidOrigin.wav ' )

A.5.3 Hypercardioid IR Generation

1 %Hypercardioid impulse responses based on the image source method

2 %

3 % −−−−−−−−−−−−−

4 % | |

5 % | |

6 % | |

7 % | |

8 % |−>−−−−−−−−−−−−−

9 % (0,0) ˆ+ Y +X−>

10 %

11

12 clear all; close all;

13

14 %Define constants

15 c=343; FS=192000; T=1/FS; NPTS=2ˆ16; HT=zeros(1,NPTS); tmax=NPTS/FS;

16 dt=T; t=0:dt:tmax −dt; d=.0254 * .25;

17 num=zeros(1,NPTS); %This is to count the number of arrivals in a single IR peak

18 ampind=ones(1,NPTS); angnum=ones(1,NPTS);

19 % amp=zeros ( NPTS,1);

20

21 %Room Dimensions

22 lx=30; ly=8; lz=4.5; RL=[lx/(c * T) ly/(c * T) lz/(c * T)];



192 Chapter A

23

24 %Source position

25 x0=25; y0=1.5; z0=1.25; R0=[x0/(c * T) y0/(c * T) z0/(c * T)];

26

27 %Receiver position

28 x=5; y=7; z=2.5; R=[x/(c * T) y/(c * T) z/(c * T)];

29

30 %Reflection coefficients

31 betafront=.85; betaback=0.85; betaleft=0.85; betaright=0.85;

32 betaup=0.8; betadown=0.7; Beta=[[betaback betaleft

33 betadown];[betafront betaright betaup]];

34

35 N1=floor(NPTS/(2 * RL(1))+1); N2=floor(NPTS/(2 * RL(2))+1);

36 N3=floor(NPTS/(2 * RL(3))+1);

37

38 tic

39

40 for nx=−N1:N1

41 for ny=−N2:N2

42 for nz=−N3:N3

43

44 NR=[nx ny nz]; % modified by Buye. before was NR=[ N1 N2 N3];

45

46 DR=R;

47 DR0=R0;

48 Delp=zeros(1,8);

49 R2L=zeros(1,3);

50 RP=zeros(3,8);

51 I1=1;

52 for L=−1:2:1

53 for J=−1:2:1
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54 for K=−1:2:1

55

56 RP(1,I1)=DR(1)+L * DR0(1);

57 RP(2,I1)=DR(2)+J * DR0(2);

58 RP(3,I1)=DR(3)+K * DR0(3);

59

60 I1=I1+1;

61

62 end

63 end

64 end

65

66 R2L(1)=2 * RL(1) * NR(1);

67 R2L(2)=2 * RL(2) * NR(2);

68 R2L(3)=2 * RL(3) * NR(3);

69 theta=zeros(1,8);

70 phi=zeros(1,8);

71

72 for I=1:8

73

74 Rang=zeros(1,3);

75

76 delsq=0;

77 for J=1:3

78

79 R1=R2L(J) −RP(J,I);

80 delsq=delsq+R1ˆ2;

81 %I think R1 is the distance vector that I need to

82 %compare with R so that I can get the correct arrival

83 %angles

84 Rang(J)=R1;
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85

86 end

87

88 Delp(I)=sqrt(delsq);

89 theta(I)=acosd(Rang(3)/sqrt(Rang(1)ˆ2+Rang(2)ˆ2+Rang(3)ˆ2)) −90;

90 phi(I)=180/pi * atan2(Rang(2),Rang(1));

91

92 end

93

94 I0=0;

95 angind=0;

96 for L=0:1

97 for J=0:1

98 for K=0:1

99

100 angind=angind+1;

101 I0=I0+1;

102 ID=round(Delp(I0));

103 FDMI=ID;

104 ID=ID+1;

105 if ID>NPTS

106 else

107 %Origin IR

108 GID=Beta(1,1)ˆabs(nx −L) * Beta(2,1)ˆabs(nx) ...

109 * Beta(1,2)ˆabs(ny −J) * Beta(2,2)ˆabs(ny) ...

110 * Beta(1,3)ˆabs(nz −K) * Beta(2,3)ˆabs(nz)/FDMI;

111

112 % %Front , Left , Back , Right facing IRs

113 % GID=( .5 −1.5 * cosd ( phi ( angind )) * cosd (−theta ( angind ))) ...

114 % * Beta (1,1)ˆ abs ( nx−L) * Beta (2,1)ˆ abs ( nx ) ...

115 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...
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116 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

117

118 % %Up and Down facing IRs

119 % GID=( .5 +1.5 * sind (−theta ( angind ))) * Beta (1,1)ˆ abs ( nx−L) ...

120 % * Beta (2,1)ˆ abs ( nx ) ...

121 % * Beta (1,2)ˆ abs ( ny−J) * Beta (2,2)ˆ abs ( ny ) ...

122 % * Beta (1,3)ˆ abs ( nz−K) * Beta (2,3)ˆ abs ( nz )/ FDMI;

123

124 HT(ID)=HT(ID)+GID;

125 num(ID)=num(ID)+1; %how many arrivals are in one sample

126

127 IDtemp=round(Delp(I0));

128 thetanew(IDtemp,angnum(IDtemp))= −theta(angind);

129 phinew(IDtemp,angnum(IDtemp))=phi(angind);

130

131 amp(IDtemp,angnum(IDtemp))=GID;

132

133 if phinew(IDtemp,angnum(IDtemp)) <−180

134

135 phinew(IDtemp,angnum(IDtemp))= ...

136 phinew(IDtemp,angnum(IDtemp))+360;

137

138 end

139

140 angnum(IDtemp)=angnum(IDtemp)+1;

141

142 end

143

144

145 end

146 end
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147 end

148

149 end

150 end

151 end

152

153 amp=amp/max(amp);

154

155 toc

156

157 f=1000; %Low pass cutoff

158 w=8* atan(1) * f; T=1e −4; R1=exp( −w* T); R2=R1; B1=2 * R1* cos(w * T);

159 B2=−R1* R1; A1=−(1+R2); A2=R2; Y1=0; Y2=0; Y0=0; for a=1:NPTS

160 X0=HT(a);

161 HT(a)=Y0+A1 * Y1+A2* Y2;

162 Y2=Y1;

163 Y1=Y0;

164 Y0=B1* Y1+B2* Y2+X0;

165 end

166

167 HT=2000* HT; %Don' t normalize these IRs !

168

169 figure subplot(2,1,1) plot(t,HT) title( ' Impulse Response ' )

170 subplot(2,1,2) plot(t,num) title( ' Number of Arrivals ' ) xlabel( ' Time

171 ( s) ' )

172

173 wavwrite(HT,FS, ' F: \3DIRS\Simulations \LongNarrowCardioidOrigin.wav ' )

A.5.4 Polar ETC Matlab Program
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1 %Program to create the Polar SIR modification of the PolarETC Stripped

2 %down version uses seven impulse responses located on the Cartesian axes

3 %

4 %NOTE!!! The Polar ETC ( and therefore the Polar SIR) does not account for

5 %multiple simultaneously arriving reflections. It can therefore give

6 %erroneous image source locations if two or more reflections arrive at the

7 %same instant in time

8

9 clear all; close all; clc;

10

11 c=343;

12

13 [Front,FS]=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidLeft.wav ' );

14 Back=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidRight.wav ' );

15 Left=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidBack.wav ' );

16 Right=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidFront.wav ' );

17 Up=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidUp.wav ' );

18 Down=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidDown.wav ' );

19 W=wavread( ' F: \3DIRS\Simulations \LongNarrowCardioidOrigin.wav ' );

20

21 t1=0; t2=length(W)/FS; dt=1/FS; t=t1:dt:t2 −dt;

22

23 %Multiply the IR by it ' s complex conjugate to obtain the SIR

24

25 Fsq=(Front. * conj(Front)); Bsq=(Back. * conj(Back));

26 Lsq=(Left. * conj(Left)); Rsq=(Right. * conj(Right));

27 Usq=(Up. * conj(Up)); Dsq=(Down. * conj(Down)); Wsq=(W. * conj(W));

28

29 % break

30

31 clear FrIR; clear BaIR; clear LeIR; clear RiIR; clear UIR; clear
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32 DoIR; clear Fr; clear Ba; clear Le; clear Ri; clear U; clear Do;

33 clear Mic1; clear Mic2; clear Mic3; clear Mic4; clear Mic5; clear

34 Mic6;

35

36 %Define the " energy density " E from the D' Antonio paper to be able to use

37 %the direction cosines u, v and w and therefore extract the directional

38 %information

39

40 E=1/2 * sqrt((Fsq −Bsq).ˆ2+(Rsq −Lsq).ˆ2+(Usq −Dsq).ˆ2);

41

42 disp( ' Select a range to examine and threshold ' )

43

44 figure plot(t,W) title( ' Pressure Impulse Response ' ) xlabel( ' Time

45 ( s) ' ) ylabel( ' Magnitude ' ) ylim([1.3 * min(W) 1.3 * max(W)]) xlim([t1

46 t2])

47 % break

48 [time,amp]=ginput(2); tpremod=time(1):1/FS:time(2);

49

50 %Make the two vectors the same length

51 Originpremod=W(round(time(1) * FS):round(time(1) * FS)+length(tpremod) −1);

52 close all;

53 clear amp; %clear time ;

54

55 % figure (1)

56 % plot ( tpremod , Originpremod )

57 % title (' Zoomed Plot of the Origin IR ')

58 % xlabel (' Time ( s)')

59 % ylabel (' Magnitude ')

60 % ylim ([1 .1 * min ( Originpremod ) 1.1 * max( Originpremod )])

61 clc;

62 %
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63 % disp (' Press any key to continue and select a threshold ')

64 % pause

65 %

66 % thresh =input (' Set threshold value − ');

67 thresh=0.17; thresh=thresh * ones(1,length(W));

68

69 figure

70 plot(tpremod,Originpremod, ' b' ,tpremod,thresh(1:length(tpremod)), ' r−−' )

71 title( ' Composite IR with Threshold ' ); xlim([tpremod(1)

72 tpremod(length(tpremod))]); ylim([min(Originpremod)

73 max(Originpremod)]); xlabel( ' Time ( s) ' ); ylabel( ' Magnitude ' );

74

75 % disp (' Press any key to continue ')

76 pause

77

78 %Find all peaks that are higher than the thresholds. This part may be

79 %obselete due to the same section that allows for user defineable time

80 %limits for narrowing the time window in which the user is interested

81

82 u=zeros(length(W),1); v=zeros(length(W),1); w=zeros(length(W),1);

83 theta=370 * ones(length(W),1); phi=370 * ones(length(W),1);

84 timeend=zeros(length(W),1);

85

86 for l=round(time(1) * FS):round(time(1) * FS)+length(tpremod) −1

87 if W(l) >thresh(l)

88

89 %Find the direction cosines using the squared impulse responses

90 %since energy is proportional to pressure squared ( thus the squared

91 %impulse response )

92

93 u(l)=(Rsq(l) −Lsq(l))/(2 * E(l));
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94 v(l)=(Fsq(l) −Bsq(l))/(2 * E(l));

95 w(l)=(Usq(l) −Dsq(l))/(2 * E(l));

96

97 % u( l )=( Right ( l )−Left ( l ))/(2 * E( l ));

98 % v( l )=( Front ( l )−Back ( l ))/(2 * E( l ));

99 % w( l )=( Up( l )−Down( l ))/(2 * E( l ));

100

101

102 %Find the theta , phi and time values for the reflections. Display

103 %them so that one can locate the peak on the graph using time and

104 %then find the offending surface using theta and phi where theta is

105 %the elevation from −90 to +90 degrees and phi ranges from zero

to

106 %360 degrees , as is the physics convention

107

108 theta(l)=180/pi * atan2(w(l),sqrt(u(l)ˆ2+v(l)ˆ2));

109 phi(l)= −(180/pi * atan2(v(l), −u(l))+180);

110

111 if phi(l) <−180

112 phi(l)=phi(l)+360;

113 end

114

115 if phi(l) >180

116 phi(l)=phi(l) −360;

117 end

118

119 timeend(l)=l/FS;

120

121 sprintf( ' t ( s) = %2.5g ' ,timeend(l))

122 sprintf( ' theta ( deg ) = %2.5g ' , theta(l))

123 sprintf( ' phi ( deg ) = %2.5g ' ,phi(l))
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124

125 end

126 end

127

128 %Remove all the entries in phi and theta that correspond to samples that

129 %are not above the threshold

130 indextheta=find(theta==370); indexphi=find(phi==370);

131 theta(indextheta)=[]; phi(indexphi)=[];

132

133 close all;

134

135 scatter(phi,theta) title( ' Image Source Locations ' ); xlabel( ' \phi

136 ( degrees ) ' ); ylabel( ' \theta ( degrees ) ' ); xlim([ −180 180]) ylim([ −90

137 90])
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Appendix B

B.1 Spherical Coordinate Rotations

To demonstrate that the weighting equations in Sec. 6.2.1 are correct for a cardioid

solid with its main lobe facing along the Cartesian axes, let us consider the general case

of rotating functions in three dimensions. This is a common practice in mechanics,

but it is usually performed on a Cartesian function that one wishes to rotate about

a fixed Cartesian axis. In practice, the coordinate system is rotated with respect to

the function, but rotating the function while keeping the axes fixed yields the same

result if the rotation angle is opposite in sign. In this work, the primary interest lies

in rotating a function described in spherical coordinates as opposed to one defined in

Cartesian coordinates.

To begin, let our function in spherical coordinates be defined as r(θ, φ). The

function can be described in Cartesian coordinates as


x(θ, φ)

y(θ, φ)

z(θ, φ)

 =


r(θ, φ)cos(θ)cos(φ)

r(θ, φ)cos(θ)sin(φ)

r(θ, φ)sin(θ),

 (B.1)

where θ is defined as the elevation angle relative to the horizontal (x-y) plane. The

choice of rotation matrix depends on the axis to be fixed during a given portion of the

203
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rotation process. An axis is described as fixed when the function is rotated in such

a way that the components along the fixed axis remain unchanged. The Cartesian

rotation matrices are [43]


1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)

 (B.2)

if the x axis is fixed,


cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)

 (B.3)

if the y axis is fixed, and


cos(γ) sin(γ) 0

−sin(γ) cos(γ) 0

0 0 1

 (B.4)

if the z axis is fixed. The angles α, β, and γ are arbitrary angles through which the

function is rotated with the corresponding axis fixed.

By operating on the Cartesian definition of the spherical coordinate function with

each of the rotation matrices defined in Eqs. (B.2) through (B.4), one obtains the

following results:
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
x(θ′, φ′)

y(θ′, φ′)

z(θ′, φ′)

 =


1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)




rcos(θ)cos(φ)

rcos(θ)sin(φ)

rsin(θ)



=


r(θ′, φ′)cos(θ′)cos(φ′)

r(θ′, φ′)cos(θ′)sin(φ′)cos(α) + r′sin(θ′)sin(α)

−r(θ′, φ′)cos(θ′)sin(φ′)sin(α) + r′sin(θ′)cos(α)

 , (B.5)

with rotation with the x-axis fixed,


x(θ′, φ′)

y(θ′, φ′)

z(θ′, φ′)

 =


cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)




rcos(θ)cos(φ)

rcos(θ)sin(φ)

rsin(θ)



=


r(θ′, φ′)cos(θ′)cos(φ′)cos(β) + r′sin(θ′)sin(β)

r(θ′, φ′)cos(θ′)sin(φ′)

−r(θ′, φ′)cos(θ′)cos(φ′)sin(β) + r′sin(θ′)cos(β)

 , (B.6)

with the y-axis fixed, and


x(θ′, φ′)

y(θ′, φ′)

z(θ′, φ′)

 =


cos(γ) sin(γ) 0

−sin(γ) cos(γ) 0

0 0 1




rcos(θ)cos(φ)

rcos(θ)sin(φ)

rsin(θ)



=


r(θ′, φ′)cos(θ′)cos(φ′)cos(γ) + r′cos(θ′)sin(φ′)sin(γ)

−r(θ′, φ′)cos(θ′)cos(φ′)sin(γ) + r′cos(θ′)sin(φ′)cos(γ)

r(θ′, φ′)sin(θ′)

 ,(B.7)

with the z-axis fixed. The ′ indicates the new coordinate system. In other words,

after the rotation, r(θ′, φ′) is now defined in terms of the new coordinate system φ′
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and θ′. Depending on what one wants to achieve and what is known, the resulting

equations can be solved for r(θ′, φ′) in terms of the original coordinate system (if the

relationship between the old and new coordinate system is known), or they can be

solved to find the relationship between the new coordinate system and the old [if

r(θ′, φ′) is known].

B.2 Rotation of a Cardioid Solid

Let us now consider the case of a cardioid solid aligned along the +z axis. In two

dimensions, the cardioid is described as

r(θ) = 1 + sin(θ), (B.8)

where θ is the angle from the x-y plane. If the two-dimensional cardioid is now rotated

about the z-axis to create a solid, there is still no dependence on φ (see Fig. ??), and

the equation representing the solid in three dimensions remains exactly the same as

the two-dimensional representation. If the solid is then rotated so that it is oriented

along the +x axis, the y axis must be fixed during the rotation. The rotation angle

β is 90◦, so the resulting vector becomes


x(θ′, φ′)

y(θ′, φ′)

z(θ′, φ′)

 =


r(θ′, φ′)sin(θ′)

r(θ′, φ′)cos(θ′)sin(φ′)

−r(θ′, φ′)cos(θ′)cos(φ′)

 =


[1 + sin(θ′)]sin(θ′)

[1 + sin(θ′)]cos(θ′)sin(φ′)

−[1 + sin(θ′)]cos(θ′)cos(φ′)

 (B.9)

We desire to find r(θ′, φ′) as a function of the original, unprimed coordinate system

which requires determining the new coordinates in terms of the old coordinates. Let

us begin by considering the original Cartesian system. A plot of the axes and angular
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(a)

(b)

Figure B.1 A cardioid solid facing in the +z direction with views of (a) the

entire solid and (b) the solid cut in half to show its cardioid profile.
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definitions are shown in Fig. B.2(a). A plot of the axes after a 90◦ rotation about a

fixed y axis with its angular definitions are shown in Fig. B.2(b).

It is also useful to define the angles in terms of the Cartesian components. These

definitions can be found by inspection and are as follows:

sin(θ) =
z√

x2 + y2 + z2
(B.10)

cos(θ) =

√
x2 + y2√

x2 + y2 + z2
(B.11)

sin(φ) =
y√

x2 + y2
(B.12)

cos(φ) =
x√

x2 + y2
(B.13)

for the original coordinate system and

sin(θ′) =
z′√

x′2 + y′2 + z′2
(B.14)

cos(θ′) =

√
x′2 + y′2√

x′2 + y′2 + z′2
(B.15)

sin(φ′) =
y′√

x′2 + y′2
(B.16)

cos(φ′) =
x′√

x′2 + y′2
(B.17)
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x

y

z

-z

-y

-x
θ φ

r

(a)

z’

y’

-x’

x’

-y’

-z’

θ’

φ’

r

(b)

Figure B.2 Cartesian coordinate system and angular definitions for (a) the

original coordinate system and (b) the rotate coordinate system.
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for the rotated coordinate system. As seen in Fig. B.2, the relationships between the

Cartesian components in the two coordinate systems can be expressed as


x′

y′

z′

 =


−z

y

x

 (B.18)

Substitution of the values in Eq. (B.18) into Eqs. (B.10) through (B.17) yields the

following relations:

sin(θ′) = cos(θ)cos(φ) (B.19)

cos(θ′)sin(φ′) = cos(θ)sin(φ) (B.20)

cos(θ′)cos(φ′) = −sin(θ) (B.21)

If these values are then substituted into Eq. B.9, obtain the values


x(θ, φ)

y(θ, φ)

z(θ, φ)

 =


r(θ, φ)cos(θ)cos(φ)

r(θ, φ)cos(θ)sin(φ)cos(θ)

r(θ, φ)sin(θ)

 =


[1 + cos(φ)cos(θ)]cos(θ)cos(φ)

[1 + cos(φ)cos(θ)]cos(θ)sin(φ)

[1 + cos(φ)cos(θ)]sin(θ)


(B.22)

From this equation it is obvious that the equation for r(θ, φ) becomes

r(θ, φ) = 1 + cos(φ)cos(θ). (B.23)

A similar approach can be followed for rotating the solid from facing in the +z direc-



B.2 Rotation of a Cardioid Solid 211

tion to the +y direction resulting in an equation for the solid of

r(θ, φ) = 1 + sin(φ)cos(θ). (B.24)

These and similar results show that the equations given in Eqs. (2.38) through (2.43)

are valid. Three-dimensional plots of these two functions are shown in Fig. B.3.
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(a)

(b)

Figure B.3 Cardioid solids facing in the (a) +x direction and (b) +y direc-

tion.


