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ABSTRACT

EXPLORATIONS IN QUANTUM RELATIVITY

Lucas Earl

Department of Physics and Astronomy

Bachelor of Science

We review some of the difficulties in merging quantum theory with relativity.

In particular, we discuss the issue of localization in quantum mechanics. We

introduce the conformal group, a supergroup of the Poincaré group and give

its generators and corresponding algebra. We then illustrate how this allows us

to construct a space-time localization operator that is consistent with special

relativity and quantum theory.



ACKNOWLEDGMENTS

There are many individuals who have been instrumental in helping me

finish this paper. I’m very grateful for the help of Dr. Van Huele for the innu-

merable hours he spent helping me with this subject. I would also like to thank

the faculty in the Departments of Physics and Astronomy and Mathematics

here at BYU and the faculty at UVU for the help they gave me throughout

my education. I’m also grateful for the support of my parents throughout my

undergraduate career.





Contents

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation: Unification . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Subject: Relativity versus quantum theory . . . . . . . . . . . . . . . 2
1.3 Tool: Transformation groups in physics . . . . . . . . . . . . . . . . . 3
1.4 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Statement of the problem 5

3 General background 7
3.1 Conformal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The conformal group . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Conformal generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Conformal algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Dirac’s relativistic electron theory . . . . . . . . . . . . . . . . . . . . 14
3.7 Zitterbewegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results and conclusions 21
4.1 Space-time localization in M(1,1) . . . . . . . . . . . . . . . . . . . . 21
4.2 Sketch of localization in M(1,2) and M(1,3) . . . . . . . . . . . . . . . 25
4.3 Dirac theory in quantum relativity . . . . . . . . . . . . . . . . . . . 28
4.4 Zitterbewegung in quantum relativity . . . . . . . . . . . . . . . . . . 29
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Conventions 31

B Group Theory 33

vii



viii CONTENTS

C Derivations 37
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Chapter 1

Introduction

The goal of physics is to provide an elegant and accurate description of the physical

world. This work attempts to contribute to this effort. In particular, we address

the issue of merging the relativistic and quantum worlds. First we argue in favor

of a unified description of physical phenomena. We then review some difficulties in

merging quantum theory with special relativity. As a tool for achieving unification,

we then introduce the transformation groups in physics. The chapter concludes with

a summary of the thesis.

1.1 Motivation: Unification

In theoretical physics we attempt to describe all phenomena using a consistent theory.

While there are aesthetic reasons for this (ie., a theory based on one equation is more

elegant than one based on multiple equations) a unified theory can do much more than

the two parent theories. As an example, consider the advent of electromagnetism.

In the 19th century James Clerk Maxwell unified the theories of electricity and mag-

netism into one field theory, electromagnetism. Optics was a direct application of

1
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Figure 1.1 The unification of the interactions.

electromagnetism, which was previously a separate discipline. In 1905 Einstein uni-

fied electrodynamics with mechanics (in particular, the principle of relativity). Not

all attempts at unification were successful, however. In 1915-1916 Albert Einstein

published his general theory of relativity, a geometric theory of gravitation. Much of

his research through the rest of his life dealt with combining his general theory with

Maxwell’s electromagnetism. At the time, these were the only fundamental forces

that were known. Einstein had little success. Since the discovery of the weak and

strong nuclear interactions, physicists have been searching for grand unified theories

(GUTs), without validated results. Quantum field theory unifies electromagnetism

and the weak interaction in what is known as the electro-weak theory. Further unifi-

cation is the goal of much of today’s research in theoretical physics.

1.2 Subject: Relativity versus quantum theory

Relativity (both special and general) and quantum theory are two well-established

theories. Einstein formulated relativity in the early 20th century to further under-

stand electromagnetism in different frames of reference. In this same period quantum
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theory explained some unexpected experimental results concerning the interaction of

light and matter. These theories have been tested to very high precision. Despite this,

there are reasons to believe that these theories do not give an exact description of

reality. A complete theory of the universe should describe things at all scales, which

is not currently the case for quantum theory and relativity. Quantum theory applies

on the microscopic scale, whereas relativity has most of its application on a larger

scale. There are further incompatibilities between both theories. One incompatibil-

ity is localization, the process of determining exactly where a particle is: quantum

theory does not allow exact localization (as illustrated by the need for uncertainty

relations), which is not the case in relativity. Another incompatibility is the interpre-

tation of time, time in quantum mechanics is absolute, just as in Newtonian physics,

contrasting time in relativity.

1.3 Tool: Transformation groups in physics

There are many transformation groups in physics. Many of these groups originate in

the invariance properties of physical laws such as electrodynamics. They are often

associated with a relativity principle. A property that is invariant under a group is a

property that does not change under the action of the group.

The Lorentz group, or the orthogonal group, is the group of all origin-fixing isome-

tries such as rotations. An isometry is an hyper-length preserving transformation.

Mass is one example of a Lorentz invariant, the mass of the particle is unaffected

from one frame to another.

The Poincaré group is a supergroup of the Lorentz group that also includes trans-

lations (both in time and in space). Mass is also an invariant in the Poincaré group.

The group that will be studied in detail in this thesis, the conformal group, was
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first described by Bateman and Cunningham [1] [2]. It has been shown to preserve

Maxwell’s equations. This group consists of all angle preserving transformations.

One should note that angle is defined in a 4-dimensional space by the definition of

the trigonometric functions as the generalized dot product. Mass is no longer an

invariant in the conformal group, at least not in the usual sense.

1.4 Summary of thesis

In chapter 2, I state my thesis. Chapter 3 is devoted to the general mathemati-

cal and conceptual framework necessary to construct quantum relativity. It begins

with a discussion of conformal symmetry and the conformal group. It then discusses

the invariance properties of the conformal group. After that it presents the algebra

of the conformal group. Then we discuss the problems of localization in quantum

theory. In Appendix A the conventions used throughout the thesis are enumerated.

In Appendix B we discuss the theory of groups. Appendix C collects some explicit

calculations that have been omitted from the actual text to avoid distraction.



Chapter 2

Statement of the problem

Quantum theory and relativity are shown to be inconsistent, particularly in their

treatment of localization. In this thesis we use symmetry and group theory to define

localization in quantum theory. More specifically, we show that the conformal group,

the largest group under which Maxwell’s equations are invariant, can be used to define

a consistent space and time localization operator.

5
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Chapter 3

General background

In this chapter we have some important concepts needed to obtain the results given

in chapter 4. We first discuss conformal symmetry and the associated algebra. The

chapter concludes with discussions on Dirac theory and Zitterbewegung. Most of this

material can be found separately in the literature.

3.1 Conformal symmetry

The word conformal means angle-preserving. Conformal transformations are trans-

formations of space-time that preserve angles. Conformal symmetry characterizes

systems that remain invariant under conformal transformations. Angles between vec-

tors in this 4-dimensional space are defined as

cos θ =
aµbµ

‖a‖‖b‖ ,

where ‖a‖2 = aµaµ. There is an ambiguity in the sign of the angle. Conformal

transformations that reverse the sign of the angle are improper1, and cannot be

1The determinant of the Jacobian is negative, this terminology is in analogy with consideration

of the Lorentz group, where transformations like time reversal are considered improper.

7
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obtained continuously from the identity and we are not going to consider them any

further in this thesis.

Spatial rotations, Lorentz boosts, and translations in space-time are all conformal

transformations. Further conformal transformations include dilatations and so-called

special conformal transformations. Dilatations are transformations of the form

xµ 7→ x̄µ = ρxµ,

where ρ is any non-zero real number. Special conformal transformations are of the

form

xµ 7→ x̄µ =
xµ − cµx2

1− 2cρxρ + c2x2

where cµ are constant coefficients.

Dilatations and special conformal transformations have a physical realization. Di-

latations are scale transformations, transformations that stretch space and time by

some common factor. Special conformal transformations can be viewed as transfor-

mations to accelerated frames.

We can show that the physical world is dilatationally-invariant: if the whole uni-

verse were dilated, no experiment could be performed to show it. If lengths are all

multiplied by some factor,

L 7→ λL,

masses also transform,

m2 7→ λ−2m2,

as is shown in Sec. (3.5). If lengths all change by a common factor, the ruler I use

for length measurement also changes by this same factor and I will obtain the same

numerical value. Likewise, the mass scale will measure the same mass in the old and

transformed systems. Thus dilatationally-invariant theories make sense, because
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measurement consists in taking the ratio of values to be measured with standard

values.

3.2 The conformal group

The set of all conformal transformations forms a group, which we call SO(4, 2). This

notation indicates that one may represent the conformal group using 6×6 special

orthogonal matrices with signature (4,2). The idea is that space-time can be repre-

sented by hexaspherical2 coordinates forming a 6-dimensional space, which represent

conformal transformations as rotations in this space. The metric for this space can

be diagonalized with 4 positive and 2 negative entries.

The conformal group, SO(4, 2), is the largest group under which Maxwell’s equa-

tions are covariant. It consists of (global) dilatations, special conformal transforma-

tions (local dilatations), Poincaré transformations, and other non-restricted transfor-

mations. The different groups are represented in Fig. (3.1).

Dilatations together with the Poincaré group form the so-called similitude group.

It is now shown that all members of the similitude group are angle preserving (and

thus are members of the conformal group). To this end, I now state the following

2The hexaspherical coordinates, (yµ, y+, y−) are related to the standard coordinates xµ by the

equations:

y− + y+ = −λ

yµ = λxµ

y+ − y− = λx2,

where λ is called the conformal factor. λ is in general a function of xµ and takes on particular values

for specific types of transformations, e.g., λ = 1−2xµcµ+c2x2 for a special conformal transformation

with parameters cµ.
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Figure 3.1 Subgroups of the conformal group.



3.3. CONFORMAL GENERATORS 11

proposition.

Proposition 3.2.1 Let M(1,3) be the Minkowski space with signature -2. Let φ :

M(1, 3) 7→ M(1, 3). Then φ is conformal (preserves angles) if the metric is transformed

as ηµν 7→ η̄µν = Ω(x)ηµν , where Ω(x) is a scalar factor depending on x.

The elements of the similitude group multiply the metric with a scalar factor.

This shows that the similitude group is a subgroup of the conformal group.

3.3 Conformal generators

In this section we present the generators of the conformal group. They are explicitly

derived in Appendix C up to an arbitrary scale factor. The generators of the Lorentz

group, which includes rotations and boosts are the Jµν , the angular momentum op-

erators,

Jµν = −i(xµ∂ν − xν∂µ). (3.1)

The equality between the generators of the Lorentz group and the angular momentum

operators is discussed in most quantum mechanics textbooks [3].

The generators of translations and the momentum operators, Pµ, are given by

Pµ = −i∂µ.

That the generators of translation are the momentum operators is again discussed in

quantum texts. Together these ten generators form a basis for the Poincaré algebra

and generate the Poincaré group. We now give the additional generators needed

to extend the Poincaré group to the restricted conformal group. Dilatations are

generated by D where

D = −xν∂ν , (3.2)
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whereas the four generators of the special conformal transformations are

Cµ = −i(x2∂µ − 2xµxν∂
ν). (3.3)

We now have the 15 generators of the restricted conformal group Jµν , P µ, Cµ, and D.

3.4 Conformal algebra

The conformal algebra, so(4, 2), consists of all linear combinations of the genera-

tors given in the previous section. The structure of the algebra is specified by it’s

commutation relations, which are presented here.

We begin with the Poincaré algebra

(P µ, P ν) = 0 (3.4)

(Jµν , Pρ) = ηνρPµ − ηµρPν (3.5)

(Jµν , Jσρ) = ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ. (3.6)

We now add the remaining generators of the restricted conformal group: D and Cµ.

(D,D) = 0

(D, P ν) = P ν

(D, Jµν) = 0

(D,Cµ) = −Cµ (3.7)

(Cµ, Cν) = 0

(Jµν , Cρ) = ηνρCµ − ηµρCν

(Pµ, Cν) = −2ηµνD − 2Jµν

We see from these commutation relations that the algebra satisfies closure.
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3.5 Invariance

In this section we discuss many of the invariants of the conformal group. We also

discuss mass non-invariance under conformal transformations.

Properties that identify particles such as charge, color charge, etc. are some few

examples of invariants of the conformal group. Elements of the conformal group are

said to satisfy Weyl invariance, ie.,

ηµν 7→ η̄µν = Ω(x)ηµν ,

which, as has been stated, is equivalent to conformal invariance.

To understand how mass transforms under the action of the conformal group we

first need the Baker-Campbell-Hausdorff relation [4].

e−ABeA = B + [B, A] +
1

2!
[[B,A], A] +

1

3!
[[[B, A], A], A] . . . (3.8)

First, we must show how mass transforms under a dilatation ,

xµ 7→ x̄µ = λxµ.

We know that Pµ = i ∂
∂xµ transforms to λ−1Pµ. Using PµP

µ = m2 yields

m2 7→ λ−2m2.

This approach gets messy when we apply it to special conformal transformations.

Instead we use the Campbell-Hausdorff relation with A = −iαD, and B = P µPµ.

From Eq. (3.7) we know that

[B,A] = 2αB.

Therefore,

eiαDPµP
µe−iαD = P µPµ

(
1 + 2α +

1

2!
(2α)2 + . . .

)
= e2αPµP

µ = λ−2m2.
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We can derive a similar expression for the special conformal transformations,

m2 7→ σ(x)2m2,

where σ(x) is given by 1− 2cµx
µ + c2x2.

3.6 Dirac’s relativistic electron theory

In this section we derive the Dirac equation and we discuss some of its properties. We

write a Dirac-like equation using quantum relativity in the next chapter and we use

the results derived here to analyze the new equation. To obtain the Dirac equation

we start with Einstein’s expression for classical momenta, pµ,

pµpµ = m2. (3.9)

Now, in quantum theory the momentum operators, Pµ, can be represented as

P µ = i∂µ, (3.10)

which we insert into the quantum version of Eq. (3.9) and operate on a wavefunction

to obtain the Klein-Gordon equation

(∂µ∂
µ + m2)ψ(x) = 0. (3.11)

This equation is useful for describing scalar bosons, but it is not sufficient for particles

with nonzero spin. Dirac takes quite a different approach. He begins with Eq. (3.9),

quantizes, and assumes the factorization:

(γµP
µ −m)(ανPν + m) = 0. (3.12)

Where γµ and αµ have yet to be determined. Expanding Eq. (3.12) we obtain

γµα
νP µPν + m(γσP

σ − ασPσ)−m2 = P µPµ −m2,
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which implies that γν = αν , and thus since γµγ
νP µPν = P µPµ, we get

γµ · γν = gν
µ. (3.13)

Combining Eq. (3.10) with Eq. (3.12) we obtain

(iγµ∂µ −m)(iγµ∂µ + m)ψ = 0. (3.14)

Eq. (3.13) implies that there are 4 gamma symbols. Appendix A gives an explicit

representation of the gamma symbols as 4×4 matrices.

Factorization of a quadratic expression as (x + a)(x + b) = 0, has two solutions

x = −a and x = −b, which are also solutions of (x + a), and (x + b) respectively.

Similarly, Eq. (3.14) has two classes of solutions, solutions that satisfy

(iγµ∂µ −m)ψ = 0,

and ones that satisfy

(iγµ∂µ + m)ψ = 0.

States that satisfy the first expression are interpreted to be particles, those that

satisfy the second, antiparticles. So for particles the Dirac equation becomes,

(iγµ∂µ −m)ψ = 0 (3.15)

3.7 Zitterbewegung

In this section we derive an effect first predicted by Schrödinger in 1930 [5]. This effect,

called Zitterbewegung, predicts that the free electron oscillates in a microscopic helix.
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We use standard Dirac theory, and begin with the free Dirac equation written in

a form similar to the Schrödinger equation:

i
∂ψ

∂t
= H ψ,

with H = γ0m + αip
i, and αk = γ0γk. We cite the Heisenberg equation for the

evolution of an operator in the Heisenberg picture,

− i
dA

dt
= [H , A]. (3.16)

First of all3, [xi, pk] = iδik gives the shift of position with the Hamiltonian,

[H , xk] = −iαk,

which implies

dxk

dt
= αk. (3.17)

In particular, this gives (
dxk

dt

)2

= 1

which implies that at every instant an electron will be measured to travel at the speed

of light. The expectation value of the velocity of the electron will however be less,

and will not violate special relativity. Now, it is straightforward to verify from our

definition of the Hamiltonian that

H αk + αkH = 2pk.

Using this expression and Eq. (3.16) we get

− i
dαk

dt
= H αk − αkH = 2(pk − αkH ) = 2(H αk − pk). (3.18)

Making the substitution,

ηk = αk − H −1pk, (3.19)

3In this section we drop the condition that observables are written as capital letters
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we obtain the differential equation

−i
dηk

dt
= −2ηkH = 2H ηk

(since H and pk are constants of the motion). Now solving for ηk,

ηk = ηo
ke

2iH t = e−2iH tηo
k. (3.20)

Where ηo
k, is the exponentiated integration constant4. Combining Eq. (3.17), Eq. (3.19),

and Eq. (3.20) we obtain the following differential equation,

dxk

dt
= H −1pk + ηo

ke
2iH t

which gives the solution,

xk = x0
k + H −1pkt− i

2
ηo

kH −1e2iH t,

which we decompose in to two parts: x̃k and ξk.

xk = x̃k + ξk

x̃k = αk + H −1pkt (3.21)

ξk = − i

2
ηo

kH −1e2iH t = − i

2
ηH −1 =

i

2
H −1ηk.

x̃k corresponds to the classical expression for a free particle,

x(t) = x0 + vt,

whereas ξk is an unexpected term, the Zitterbewegung.

Eq. (3.21) predicts that the free electron moves in a helical trajectory with angular

frequency

ω0 =
2E0

~
=

2mc2

~
≈ 1.55× 1021s−1,

4This constant is an operator!
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and with radius

λ0 = c/ω0 =
~

2mc
≈ 1.93× 10−13m

(compare with Compton wavelength). This result of relativistic electron theory il-

lustrates the difficulty of localizing an electron within the Compton wavelength. An

illustration of Zitterbewegung is given in Fig. (3.2).
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Chapter 4

Results and conclusions

This chapter contains, a derivation of the space-time localization operator Xν and

some possible applications of quantum relativity.

4.1 Space-time localization in M(1,1)

We begin by deriving an expression for the space-time localization operator. The

idea in this chapter is to intersect multiple propagating photons. The directions that

the photons propogate in satisfy certain conditions which have yet to be determined.

We define position in space-time as the point of intersection. By the invariance of the

speed of light we can define light-cone coordinates that are invariant for each photon.

t
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Figure 4.1 Light-cone coordinates defining location.
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For example, if the photon is propagating in the positive x direction, the coordinate

t− x is invariant on it’s worldline.

We begin with Minkowski 2-space, M(1,1), with one spatial dimension and one

temporal dimension. In this space we characterize position through the intersection

of two photons. We can construct the light-cone coordinate, u = t − x. So say we

have a light source that emits at time te and at a position xe, and say we detect the

light at time tr and position xr respectively. We can see that this coordinate is equal

for both receiver and emitter:

u = te − xe = tr − xr.

Now we may define position in this two-dimensional space-time in the following way.

Let two rays of light, forward and reverse propagating beams, intersect at a point in

space-time. Let u+ and u− be their respective light-cone coordinates:

u+ = t− x, u− = t + x.

Then we have, 


t

x


 =




u++u−
2

u−−u+

2


 .



4.1. SPACE-TIME LOCALIZATION IN M(1,1) 23

In our analysis thus far, we have not used any quantum notion. From quantum field

theory elements of the conformal algebra can be defined in terms of integrals [6]:

E =

∫
du e(u) (4.1)

D =

∫
du u e(u) (4.2)

C =

∫
du u2e(u) (4.3)

where e(u) is the energy density. Looking at Eq. (4.1) and Eq. (4.2) we define the

operator1,

U ≡ D · 1

E
,

in analogy to u.

We can now define two collections of conformal generators, ie., E+, D+, . . . , and

E−, D−, . . . which give two light-cone coordinates:

U+ =
D+

E+
(4.4)

U− =
D−

E− (4.5)

Let us derive relations between all these operators. In particular, we must connect

these operators that act on the single photon field states (labeled with + and −) with

their more general counterparts. The energy operator is2

E =
1

2
(E+ + E−)

1From this point through Sec. 4.2 all products are symmetrized.
2One should note that the operators which act on the forward propagating photon and those

that act on the reverse operating photon are in different Hilbert spaces. The notation used here is

slightly sloppy, we should for example write E = 1
2 (E+ ⊗ 1 + 1⊗E−). The notation, however, does

not lead to inconsistencies.
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the average of the energy operators of the forward and reverse propagating photons.

We know that the momenta of both photons are (P+, P−) = (E+,−E−), and the

momentum operator for the whole field state is the average of these operators,

P =
1

2
(E+ − E−).

In like fashion,

D =
1

2
(D+ + D−).

Determining the form of the generator of boosts requires Eq. (3.1)

J01 = X0·P 1−X1·P 0 = X0·P−X1·E =
1

4
[(U−+U−)·(E+−E−)−(U−−U+)·(E++E−)]

=
1

2
(U+E+ − U−E−) =

D+ −D−

2
≡ J.

J =
D+ −D−

2
(4.6)

Furthermore,

E2 − P 2 =
1

4
[(E+)2 + 2E+E− + (E−)2 − ((E+)2 − 2E+E− + (E−)2)] = E+E−.

Finally, we can define a quantum space-time position operator for this toy model:




X0

X1


 =




D+E−+D−E+

2E+E−

D+E−−D−E+

2E+E−


 .

This can be factorized as:



1
4E+E− [(D+ + D−)(E+ + E−)− (E+ − E−)(D+ −D−)]

1
4E+E− [(D+ + D−)(−E+ + E−) + (E+ + E−)(D+ −D−)]




Inserting the definitions for the total operators, we obtain




DE−PJ
E2−P 2

D(−P )−(P )(−J)
E2−P 2



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A M(1,3) generalization is given in Eq. (4.20).

The relationship Eq. (4.6) may seem puzzling. The following geometric description

may clear it up. Let the parameter α be taken to be log λ, where λ is any positive

real number. Any arbitrary position is transformed by J in the following way.

t− x 7→ λ(t− x) (4.7)

t + x 7→ 1

λ
(t + x) (4.8)

(4.9)

From this we obtain

t 7→ t̄ = 1+λ2

2λ
t + 1−λ2

2λ
x

x 7→ x̄ = 1−λ2

2λ
t + 1+λ2

2λ
x

.

We see that the rapidity, ϑ, satisfies the following identities,

cosh ϑ =
1 + λ2

2λ
(4.10)

sinh ϑ =
1− λ2

2λ
, (4.11)

and

cosh2 ϑ− sinh2 ϑ = 1 (4.12)

We can also see that the expression t2 − x2 is invariant,

t̄2 − x̄2 = t2 − x2. (4.13)

which implies that J generates the orthogonal group O(1, 1).

4.2 Sketch of localization in M(1,2) and M(1,3)

The problem of generalizing quantum relativity to M(1,2) and M(1,3) is non-trivial.

We show only a sketch of how we think it should be done.



26 CHAPTER 4. RESULTS AND CONCLUSIONS

We first examine the case of M(1,2). We see that in order to have a solution to

a system of equations, we need at least three equations (and thus three photons3).

Also, the third equation cannot be obtained from a linear combination of the other

two. We make the following choice of light-cone coordinates.




σ+

σ−

σ∗




=




x0 − x1

x0 + x1

x0 − x2




(4.14)

This equation has solution




x0

x1

x2




=
1

2




σ+ + σ−

σ− − σ+

σ+ + σ− − 2σ∗




(4.15)

As before, we define the light-cone operator

Σ =
D

E
.

We define the position operators in analogy to Eq. (4.15).




X0

X1

X2




=
1

2




Σ+ + Σ−

Σ− − Σ+

Σ+ + Σ− − 2Σ∗




=
1

2




D+E−+D−E+

E−E+

D−E+−D+E−
E−E+

D+E−+D−E+

E+E− − 2D∗E+E−
E∗




(4.16)

As before, we need to find relations between these operators.

P 0 = E =
1

2
(E+ + E−) =

1

2
(Ẽ + E∗),

where we have associated the symbol Ẽ with the energy of the reverse propagating

photon in the x2 direction.

P 1 =
1

2
(E+ − E−)

3It is unimportant to us how the photons were made to intersect.
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P 2 =
E∗ − Ẽ

2
=

2E∗ − E+ − E−

2

D =
D+ + D−

2
=

D̃ + D∗

2
.

To determine the generators of the Lorentz group, O(2, 1), we proceed as before:

J01 = J =
D+ −D−

2

J02 = X0P 2−P 0X2 =
1

4
[(Σ+ + Σ−)(2E∗−E+−E−)− (E+ + E−)(Σ+ + Σ−− 2Σ∗)]

=
1

4
(2E∗(Σ+ + Σ−)(E+ + E−) + 2Σ∗(E+ + E−))

J12 = X1P 2 −X2P 1

= (
D−E+ −D+E−

E−E+
)(

2E∗ − E+ − E−

2
)−(

D+E− + D−E+

E+E− −2
D∗E+E−

E∗ )(
1

2
(E+−E−))

etc. The challenge is to simplify these expressions. We will not examine M(1,2) any

further in this work.

Now we move to the M(1,3), the standard Minkowski space-time. In order to define

position in this four dimensional space, we need at least four equations, which come

from four light-cone coordinates. We therefore must have four non-parallel photons.

These photons could travel in the +z,-z,+x,+y directions respectively. They admit

the following variables, 


σ+

σ−

σ1

σ2




=




x0 − x3

x0 + x3

x0 − x1

x0 − x2




(4.17)

where x0, x1, x2, x3 are at the point of intersection. Eq. (4.17) can be solved for
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x0, x1, x2, x3 : 


x0

x1

x2

x3




=
1

2




σ+ + σ−

σ+ + σ− − 2σ1

σ+ + σ− − 2σ2

σ− − σ+




(4.18)

As before, we define the light-cone coordinate

Σ =
D

E
.

Using this definition, we define position in analogy to Eq. (4.18):



X0

X1

X2

X3




=
1

2




Σ+ + Σ−

Σ+ + Σ− − 2Σ1

Σ+ + Σ− − 2Σ2

Σ− − Σ+




=
1

2




D+E−+D−E+

E−E+

D+E−E1+D−E+E1−2D1E+E−
E1E+E−

D+E−E2+D−E+E2−2D2E+E−
E2E+E−

D−E+−D+E−
E−E+




(4.19)

Jaekel and Reynaud state the following definition of space-time which is a gener-

alization of what we have derived explicitly in the (1,1) case and which should reduce

to our expressions in M(1,2) and M(1,3) as well [7] [8]

Xρ =
P ρ ·D − Pσ · Jρσ

P 2
. (4.20)

4.3 Dirac theory in quantum relativity

Using our quantum algebraic methods we can derive a Dirac-like equation and a

corresponding algebra. To begin with we introduce the Pauli-Lubanski vector, Wµ,

W µ = −1

2
εµνρσJνρPσ.

We now define a new mass operator M, given first in a Klein-Gordon-like equation

M2 = P σPσ − 2γWνP
ν . (4.21)
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We can see that this expression yields the more familiar P σPσ = M2, since the

term Pµε
µνρσJνρPσ contains P µPσ which is symmetric in µ and σ and εµνρσ which is

antisymmetric in µ and σ. We now factorize,

M2 = P 2 − 2γWµP
µ = (Pµ − 2γWµ)P µ. (4.22)

We now define

γµ =
Pµ − 2γWµ

M
, (4.23)

and substitute in Eq. (4.22) to obtain a Dirac-like equation

M = Pµγ
µ. (4.24)

Which is a Dirac-like equation. The gamma symbols Eq. (4.23) span the algebra

C`1,3(C), the Dirac algebra, as is given by the relation [9]

γµ · γν = ην
µ

4.4 Zitterbewegung in quantum relativity

When discussing Zitterbewegung in quantum relativity we can use the Dirac equation

Eq. (4.24)and essentially repeat the derivation given in Sec. 3.7 leading to Heisenberg

operators Xµ = X̃µ + Ξµ. This shows that at the level of first quantization the issues

related to Zitterbewegung are being reproduced in quantum relativity. A discussion

of Zitterbewegung using quantum relativity and QFT(second quantization) is given

by Jaekel and Reynaud in [9].

4.5 Conclusions

The purpose of this thesis consisted in contributing to unification in physics and in

particular to the unification of quantum mechanics with relativity. More specifically,
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I have considered the issue of space-time localization in quantum theory. I have

done this using the conformal group. This group has the attractive property of being

sufficiently restricted that it leaves Maxwell’s equations invariant but rich enough

to allow the construction of space-time localization operators from its generators.

I explored its invariance and algebraic properties. In the end I was able to give

justification to the definition of space-time first proposed by Jaekel and Reynaud.

My work is one small piece in a much larger unification effort in theoretical physics.

One advantage of quantum relativity is its ability to define physical quantities from

the fundamental concepts of symmetry and observable phenomena reminiscent of

Einstein’s approach to special relativity. A challenge is the increasing complexity

of the calculations involved. It remains to be seen how quantum relativity can be

productively incorporated in the general unification effort.



Appendix A

Conventions

1. Unless explicitly stated otherwise we use natural units with ~ = 1 = c.

2. Observables are denoted with capital letters, while variables are referred to by

lower case letters.

3. The usual metric signature, [+,−,−,−], is used unless stated otherwise.

4. Contravariant and covariant indices are denoted by superscript and subscript

letters.

5.

(A,B) =
1

i~
[A,B]

is the modified commutator.

6.

A ·B =
AB + BA

2

is the symmetrized product.

7. Einstein summation notation is used, where tµsµ denotes the sum

t0s0 + t1s1 + t2s2 + t3s3.

31
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8. States transform under G with parameter α as

G : |ψ > 7→ |ψ >= eαG|ψ >

9. Dirac gamma matrices are expressed in the standard representation.

γ0 =




I 0

0 −I


 γj =




0 σj

−σj 0


 γ5 =




0 I

I 0




10. The Pauli matrices are also represented in the standard representation.

σ1 =




0 1

1 0


 σ2 =




0 −i

i 0


 σ3 =




1 0

0 −1




11. Greek indices run from 0 to 3 while Latin indices run from 1 to 3.
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Group Theory

The purpose of this appendix is to define a group and give the basic properties of a

group. It is a quick overview of group theory, and is not completely mathematically

precise. The group is among the most essential algebraic structures used in physics

[10].

Definition A group is a set X endowed with a product ·, which is written (X, ·) with

the following properties:

1. Elements of the set satisfy closure, x · y ∈ X, ∀x, y ∈ X.

2. Elements of the set satisfy associativity, x · (y · z) = (x · y) · z.

3. The set contains a unique identity element, e with x · e = e · x = x,∀x ∈ X.

4. Elements of the set have a unique inverse, ∀x ∈ X, ∃x−1 ∈ X, such that

x · x−1 = x−1 · x = e.

Remark The notation a · b for the product of elements a and b is unnecessary. From

now on we will denote this by ab whenever it is clear what product we are using.

33
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There is also a specific type of group that is useful in many contexts, an Abelian

group:

Definition We say a group (G, · ) is Abelian if the elements satisfy commutativity,

ie xy = yx for all elements x, y ∈ G.

Now, groups can come in many sizes. Let me write some tables of some very small

groups. We will present these groups in what’s known as a Cayley table. Row

and column of the table correspond to the row’s element product with the column’s

element. For example, the first table, with only two elements e, x says by reading the

first row and the second column that e · x = x, etc.

· e x

e e x

x x e

· e x y

e e x y

x x y e

y y e x

· e x y z

e e x y z

x x y z e

y y z e x

z z e x y

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

All

of the groups shown above are Abelian, the smallest example of a non-Abelian group

is the dihedral group of order 6, D6

· e a b c d f

e e a b c d f

a a e d f b c

b b f e d c a

c c d f e a b

d d c a b f e

f f b c a e d

Definition The order of a group is the number of elements in the group. We say

that a group is of infinite order if it has an infinite number of elements.
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Now in physics, groups represent physical transformations. For example, we can talk

of the group of rotations. It is clear, that the group of rotations cannot be written

as a set of a finite number of rotations, because if that were so, we wouldn’t have

every rotation. In fact, groups such as the group of rotations, are a particular type

of infinite groups.

Definition A Lie group is a group whose elements form a smooth n-dimensional

surface (manifold), and where the product and inversion are smooth maps.

Examples of smooth manifolds include planes, spheres in n-dimensional space, etc.

Smooth means that they are differentiable.

Lie groups can be difficult to manage, since they are infinite. The following notion

makes it easier to attack Lie groups.

Definition A Lie Algebra L that generates a Lie group G is a set of all generators

(operators) g such that any element in the algebra can be composed of exponentials

of the operator with parameters. Thus G = {eax | x ∈ L, a ∈ C} . A Lie Algebra also

by definition satisfies some properties.

Let us examine this in some detail with the Lorentz group. The Lorentz group,

L ∼=O(3, 1) is the set of all origin fixing isometries. If R ∈ L then R(0, 0, 0, 0) =

(0, 0, 0, 0), and ‖xµ− yµ‖ = ‖Rxµ−Ryµ‖. The Lorentz group can be regarded as the

set of all rotations in Minkowski space-time. Now what generates the Lorentz group?

As can be shown the set A = {cµνJµν |cµν ∈ C} forms an algebra for the Lorentz

group.
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Appendix C

Derivations

C.1 A derivation of the Poincaré algebra

1. Determine the generators of the Lorentz group. A local Lorentz transformation

is

xµ 7→ eδαµνJµν

xν = (1 + δαµνJ
µν)xν = xµ + αµ

νx
ν .

This gives the solution

Jµν =
1

2
(xµ∂ν − xν∂µ).

2. Determine the generators of translations. A local translation is

xµ 7→ eδαµPµx = (1 + δαµPµ)xµ = xµ + δαµ,

gives the condition

δαµPµx
µ = δαµ,

yielding the solution Pµ = ∂µ.

37
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C.2 A derivation of the conformal algebra

An infinitesimal dilatation is of the form:

xµ 7→ eδαDxν = eδαxµ = (1 + δα)xµ = xµ + δαDxν .

Giving

D = xρ∂ρ.

An infinitesimal special conformal transformation admits the form:

xµ 7→ xµ + δcµx2

1 + 2δcρxρ + (δc)2x2
= xµ + δcµx2 − 2xµδcρxrho = (1 + δcλCλ)x

µ

which yields the solution

Cµ = x2∂ν − 2xµxν∂
ν .

C.3 Conformal transformations in cylindrical co-

ordinates

Let us look at the example of cylindrical coordinates. Using the x and y plane I can

show how r and θ transform. Let c ≡ c1,d ≡ c2. We know that

x 7→ x′ =
x + c(x2 + y2)

σ
(C.1)

and we know the corresponding equation for y. We use this to obtain the expression

for r′ and θ′.

r cos θ 7→ r′ cos θ′ =
r cos θ + cr2

1 + 2(cr cos θ + dr sin θ + (c2 + d2)r2

r sin θ 7→ r′ sin θ′ =
r sin θ + dr2

1 + 2(cr cos θ + dr sin θ + (c2 + d2)r2

r 7→ r′ =
√

(r′ cos θ′)2 + (r′ sin θ′)2 =
r√
σ

(C.2)



C.3. CONFORMAL TRANSFORMATIONS IN CYLINDRICAL COORDINATES39

tan θ′ =
sin θ + dr2

cos θ + cr

.

θ 7→ θ′ = arctan[
sin θ + dr2

cos θ + cr
]. (C.3)
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