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ABSTRACT

DEVELOPMENT OF AN ADAPTIVE EQUALIZATION ALGORITHM

USING ACOUSTIC ENERGY DENSITY

Panu Puikkonen

Department of Physics and Astronomy

Master of Science

Sound pressure equalization of audio signals using digital signal processors

has been a subject of ongoing study for many years. The traditional approach

is to equalize sound at a point in a listening environment, but because of its

specific dependence on the room frequency response between a source and

receiver position, this equalization generally causes the spectral response to

worsen significantly at other locations in the room.

This work presents both a time-invariant and a time-varying implemen-

tation of an adaptive acoustic energy density equalization filter for a one-

dimensional sound field. Energy density equalization addresses the aforemen-

tioned challenge and others that relate to sound equalization. The theory and

real-time implementation of time-invariant sound pressure and energy density

equalizers designed using the least-squares method are presented, and their

performances are compared. An implementation of a time-varying energy



density equalizer is also presented.

Time-invariant equalization results based on real-time measurements in

a plane-wave tube are presented. A sound pressure equalizer results in a

nearly flat spectral magnitude at the point of equalization. However, it causes

the frequencies corresponding to spatial nulls at that point to be undesirably

boosted elsewhere in the sound field, where those nulls do not exist at the same

frequencies. An energy density equalization filter identifies and compensates

for all resonances and other global spectral effects of the tube and loudspeaker.

It does not attempt to equalize the spatially varying frequency nulls caused

by local pressure nodes at the point of equalization.

An implementation of a time-varying energy density equalizer is also pre-

sented. This method uses the filtered-x filter update to adjust the filter coeffi-

cients in real-time to adapt to changes in the sound field. Convergence of the

filter over time is demonstrated as the closed end of the tube is opened, then

closed once again. Thus, the research results demonstrate that an acoustic

energy density filter can be used to time-adaptively equalize global spectral

anomalies of a loudspeaker and a one-dimensional sound field.
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Chapter 1

Introduction

The research presented in this thesis demonstrates that one can adaptively equal-

ize the total acoustic energy density at a point in a one-dimensional sound field to

produce better global equalization than one can achieve using traditional sound pres-

sure equalization techniques. However, before the impact of this result can be fully

appreciated, the reader must first come to understand the purpose of sound equal-

ization and past work that has been conducted in the field. This chapter accordingly

explains the motivations for and fundamental characteristics of equalization through

a descriptive and theoretical overview. It also presents needed historical background

of previous equalization research. It concludes with a discussion of research objectives

followed by an overview of the structure of the thesis.

1.1 Why Equalize?

High-fidelity sound playback attempts to deliver program material from a recorded

medium to a listener in its pure form. Ideally, a listener hears a recording identically

to how it was originally performed. This is not possible, however, as the signal is

1



2 Chapter 1 Introduction

colored during its travel. Linear coloration can be defined as either magnitude or

phase distortion of the signal [1]. As a recording is played back through a sound

system, the signal is distorted by the various audio elements that form the system.

Playback devices, amplifiers, and loudspeakers have nonuniform frequency responses

due to their imperfect components. This causes certain frequencies to be amplified

and others to be suppressed in the signal path.

Before sound reaches a listener it also travels through an acoustic space. A one-

dimensional sound field in an enclosure is discussed in this study; free-field equal-

ization was recently studied by Chester [2]. The coloration caused by the acoustic

environment is often much more significant than that of the audio system compo-

nents. Such an environment can be modeled as a linear system whose behavior at a

particular listening position is characterized by an impulse response [3]. The shape

of this impulse response is characterized in part by how rapidly sound attenuates in

the enclosure, which process is dependent on the surface materials, the geometry of

the space, and the source and listener positions [4]. The Fourier transform of the

impulse response describes its frequency and phase content. This is called the room

frequency response (RFR).

The sound arriving at a listener position can be grouped into three major cate-

gories: the direct sound, the sound reflected once from the surfaces of the enclosure

boundaries, and the sound waves that have experienced two or more reflections. The

reflections in the last category are responsible for the reverberant sound field [5].

These arrive later in time and tend to be more faint. Reflections cause constructive

or destructive interference of sound waves due to the superposition principle.

Sound at a specific location in a room can be amplified by a global room resonance

or attenuated due to a spectral null for a given frequency. Global resonances are

caused by the interaction of the sound source with its environment and a null is
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caused by a standing wave excited in the enclosure. Resonances may result in drastic

coloration of the perceived sound. The observability of such resonances depends on the

source and listener positions. If an enclosure is excited by a sinusoid with a frequency

corresponding to a room resonance, and neither the source nor the listener location is

near a null of a standing wave excited by that frequency, the room resonance amplifies

the tone. However, these resonances are not perceived everywhere in an enclosure.

A room resonance for a given frequency is not always present in the measured RFR.

This is due to a null at the listener (or source) position. The RFR varies for different

unique positions of the source and/or receiver.

A sound field can be passively or actively controlled in an effort to minimize the ef-

fects of coloration. For frequencies above the Schroeder frequency, which marks when

a sound field becomes statistically diffuse [6], passive methods of sound field control

are well established and understood. Individual reflections can be diffused by the

appropriate acoustical treatments, and the sound energy can be controlled by placing

absorptive materials into the enclosure. At lower frequencies, controlling the sound

field with passive methods becomes much more difficult because the wavelengths are

generally comparable to the dimensions of the room. In this frequency range active

control becomes more feasible because specific anomalies can be more readily located

in the RFR [7].

Analog equalization techniques have been used for years to try to manipulate

the frequency spectrum of program material [8]. They attempt to compensate for

the coloration introduced by audio and acoustic systems so that a flat or tailored

frequency spectrum is perceived by the listener. Such compensation can also be

accomplished with digital filters with greater accuracy and efficiency, as explained in

Sec. 1.4.1.
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1.2 Fundamental Inverse Filtering Theory

Before exploring the history of sound equalization, it is necessary to establish basic

concepts and vocabulary. The phrase“room equalization” is often used to describe a

broad category of DSP techniques that attempt to undo the physical and perceptual

artifacts generated by sound reproduction inside an enclosure [9]. These artifacts

are due to the imperfect mechanical loudspeaker response and the acoustic room

response.

The data presented in this thesis is digitally sampled, and in the discrete time

domain takes the form a(nT ) where a is the signal, n is the sampled number, and

T is the sampling period. The variable T is known to be present, but left out.

As recorded sound is being reproduced the loudspeaker and the room that it passes

through to the receiver act as a filter to color the sound. This process can be described

mathematically as linear convolution in the discrete time domain:

y(n) = x(n) ∗ h(n). (1.1)

Here y(n) is the received sound, x(n) is the original electrical input signal, and h(n)

is the loudspeaker/room response which takes into consideration the coloration in-

troduced by both. This system is shown in Fig. 1.1. The effect of an enclosure on

sound transmission can also be described by a linear, time-invariant filter H(k) in

the discrete frequency domain. Upper case letters are used to indicate values in the

discrete frequency domain, and the variable k denotes a discrete frequency bin in the

frequency domain. The filter H(k) represents the fast Fourier transform (FFT) of

the digital discrete-time impulse response h(n) such that

H(k) = FFT[h(n)]. (1.2)

Inverse filtering attempts to recover the original signal by convolving the colored

signal with the inverse RFR of the sound transmission path.
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Figure 1.1 Signal path from a source to a receiver

Digital equalization commonly attempts to correct both the magnitude and phase

response of the sound. While it can also attempt to compensate for nonlinear distor-

tion, the focus here is on linear distortion [10]. For real-time applications, this process

is accomplished by digitally prefiltering the audio signal with an inverse filter before

it is transmitted into the enclosure. A recorded signal can also be deconvolved by its

inverse filter in the post-processing stage [8, 11]. An ideal inverse filter, Hi(z) where

z represents the discrete z-domain, cancels the effects of the acoustic space perfectly,

such that

h(n) ∗ hi(n) = δ(n) (1.3)

where ∗ denotes linear convolution, and

δ(n) =

 1, n = 0

0, n 6= 0
, (1.4)

or

H(k)Hi(k) = 1, (1.5)

where

Hi(k) =
1

H(k)
. (1.6)

However, the goal of room equalization is not always to remove all reverberation

from an audio signal. Doing so makes every room sound like an anechoic chamber.
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Many listening areas benefit from some amount of reverberation, or ambiance, thus

the preferred equalization target is to reduce reverberation in a room by shaping the

transmitted sound with an appropriate inverse filter [12].

1.3 Minimum and Mixed Phase Explained

An RFR, which is a linear time-invariant system, can be expressed in the z-domain

as

H(z) =

M
Π
k=1

(1− ckz−1)

N
Π
k=1

(1− dkz−1)
, (1.7)

with zeros at z = ck and poles at z = dk. If such a system is inverted, the poles

become zeros and vice versa [13], and the inverse can be expressed as

Hi(z) =

N
Π
k=1

(1− dkz−1)

M
Π
k=1

(1− ckz−1)
. (1.8)

In order for a system to be stable and causal, all poles must be inside the unit circle.

When all of the poles and zeros are inside the unit circle (meaning that |ck| and |dk|

are less than one) its inverse Hi(f) is also stable and causal. Such a system is said to

be minimum phase.

If a frequency response is not minimum phase, it can be mixed-phase or maximum-

phase. A mixed-phase system exists when the criteria described above are not met

and some zeros are outside the unit circle. As these zeros become poles they make

the filter unstable. A simple example of such a system is a single zero filter with

a coefficient of 1.5. As the system is inverted this zero becomes a pole located at

z = 1.5 and a unit impulse causes the system to be unstable because of the feedback

loop created by the pole. If all zeros are outside the unit circle the system is said to

be maximum-phase. Such a system is rare and not practical to implement.
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An RFR can also be expressed as

H(z) = |H(z)|exp[iφ(z)] (1.9)

where |H(z)| is its magnitude and φ(z) is its phase. Furthermore, the phase can be

expanded to

φ(z) = φmin(z) + φap(z) (1.10)

where φmin(z) describes the minimum-phase portion, and φap(z) describes the all-pass

or nonminimum-phase portion of the room response. With these definitions H(z) can

be expressed as

H(z) = Hmin(z)Hap(z) (1.11)

where Hmin(z) is the minimum-phase component, and Hap(z) is the all-pass compo-

nent:

Hmin(z) = |H(z)|exp[iφmin(z)] (1.12)

and

Hap(z) = exp[iφap(z)]. (1.13)

This can be accomplished using a mathematical method called homomorphic decon-

volution [14,15]. The magnitude |Hap(z)| is always one. When φap(z) = 0, Hap(z) = 1

and H(z) is minimum phase [16].

If an RFR is minimum phase, an inverse filter theoretically exists and is guaranteed

to be minimum phase and causal as well, such that

Hi(z) = H(z)−1. (1.14)

For such cases, a minimum-phase filter completely removes the room effect from a

signal. However, in practice most RFRs are mixed-phase. If a mixed-phase room is

equalized with a minimum-phase inverse filter the all-pass portion remains, and its
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presence is often clearly audible [17–19]. This is due to the fact that the all-pass

component, even though it has a flat frequency spectrum, carries most of the rever-

berant energy according to a listening test performed by Johansen and Rubak [1]. A

minimum-phase filter has its energy concentrated toward the beginning of the time

record, so enclosures with late reflections and long reverberation times cannot be

completely equalized with such a method [20, 21]. The remaining room response is

perceived as actual reverberation or smearing of sound [11,22]. The research commu-

nity has not yet concluded whether it is only possible to equalize the minimum-phase

portion of a room response, or if the whole mixed-phase response can be equalized in

practice.

1.4 Historical Background

1.4.1 In the Beginning: Analog Equalizers and DSP Tech-

nology

The use of analog filtering to improve the quality of sound reproduction has been

practiced for over forty years. In the 1960s, Boner and Boner [23] used narrow band

equalization to decrease the effects of resonances in rooms, and Conner [24] devised a

method using 1/3 octave band measurements to determine the inverse response of a

room. Their work gave a new direction for development in audio. In his paper, Conner

remarks that over the preceding twenty five years the sound reinforcement equipment

in use had not changed much. Over the next decade this stagnant trend began to

change. 1/3 octave band equalization became common in a number of applications,

and different equalization needs were recognized for sound reinforcement, monitoring,

and hi-fi systems.
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Equalization technology continued to improve into the 1970s, and inverse filter-

ing a room response using DSP techniques was first seriously studied by Neely and

Allen in 1979 [16]. Their study discussed the invertibility of minimum and mixed-

phase RFRs. With the advent of DSP technology, equalization could then also be

approached from a time-domain perspective, which was previously not feasible [5].

The coming of age of DSP technology made it possible for researchers to apply more

complicated filtering schemes to attempt to overcome limitations of analog equaliza-

tion, but it wasn’t until the late 1980s that DSPs became powerful enough to be

used in commercial products [25, 26]. Since then, digital equalization has continued

to become more common in commercial technology.

1.4.2 Practical Problems

The most basic scenario for room equalization study involves one source, a loud-

speaker, and one receiver, a microphone. This setup is shown in Fig. 1.1. An exci-

tation signal is played from the source and it is received at the listening position. In

practice, an inverse filter describes the sound field at one unique listening location in

a room, or two according to the acoustic reciprocity principle [27]. More reciprocal

pairs may exist in rooms with perfect symmetry. A frequency response for the con-

necting space can be computed by knowing the output and input signals [28–31]. This

frequency response describes all the linear sound coloration that occurs between the

source and receiver during playback, which includes both the acoustic effects and the

audio system imperfections. In principle, it should be possible to compute a perfect

inverse filter for a given impulse response [26].

In practice, simulations have provided near perfect results [22] and real-time imple-

mentations have resulted in significant improvement in both the time and frequency-

domain responses at the equalization location [9, 32–35]. Single point equalization
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begins to fail as the listener/microphone is moved away from the point of equaliza-

tion. In fact, the sound quality away from the equalization point can become worse

than if no equalization had been applied at all. A study highlighting this problem

was recently published by Bharitkar, et. al [36].

Thus a change in the location of the source or the listener often not only elimi-

nates the benefit of equalization, but can actually have a strong negative impact on

sound quality. Changes as small as a few tenths of an acoustic wavelength can cause

significant degradation in the sound field [37,38]. This can be due to the directivity of

the loudspeaker system or the physical characteristics of the room [8]. Room modes

cause the sound field in a room to be nonuniform; changes in the environment such

as people moving, opening doors and windows, and rearranging furniture also modify

the RFR [22, 39, 40]. Two popular methods used to quantify the successfulness of

equalization are understanding the measure of distortion introduced as the receiver

is moved and describing the size of the effective area of equalization [4,37,41,42]. In

1985, Mourjopoulos proposed a method to analyze the error introduced during de-

convolution using an inverse filter that created an inexact match [22]. However, even

though the major problems associated with room equalization are clearly defined, no

standardized method is currently established to assess the errors introduced to sound

in an enclosure as a result of single point equalization.

1.4.3 Inverse Filter Design Considerations

Analog equalizers are usually graphic or parametric, shaping the spectrum using

minimum-phase filters. Such filters cannot equalize a mixed-phase response, and their

frequency resolution is limited in comparison to the much more complex RFR to be

equalized. As a result, ideal room equalization cannot be achieved by analog methods

[8]. In spite of these shortcomings, analog equalizers are used in a variety of venues
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such as movie theaters, recording studios, concert halls, and music venues. Analog

filters are usually made up of first and second order filters that try to match the inverse

of a measured RFR steady state magnitude, and they face practical challenges such

as the need to equalize over large listening areas and equalizing to nonflat frequency

response curves [32].

Digital equalization has continued to be the subject of significant research in

the fields of audio and acoustics since the late 1970s, and during that time many

approaches have been taken to study the problem. In hindsight, the work by Neely

and Allen in 1979 [16] established the nature of the equalization problem impressively

well. They described how a room response can be broken down to its minimum-

phase and all-pass parts. Since then the question of minimum-phase vs. mixed-phase

equalization has been the subject of ongoing study. Another focus of interest for

researchers is the quest for the optimal digital filter implementation. Several design

methods have been presented over the years concerning filters designed either in the

time or frequency domain. Each one of them tries to outperform previous methods

and overcome some of the formidable challenges that have surfaced.

The most prevalent filter design technique in the time domain is called the least-

squares (LS) method and the design of such filters is well documented [14,28,29,31].

This method finds the best solution to the problem, in the least squares sense, and

its goal is to design a finite impulse response (FIR) filter that deconvolves the room

response in the time domain. Such an inverse filter is by definition causal and finite.

The direct inverse of a mixed-phase room response is acausal (two-sided) and infinite

in length [14]. An approximate FIR inverse filter can also be designed for such a

system [14,21]; thus, a stable filter can be designed that attempts to equalize a mixed-

phase RFR. The LS inverse filter design method has been used in this research, and

the steps to design such a filter are detailed in Sec. 2.4.1.
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Also, several frequency-domain designs exist for filters. The simplest involves

inverting a complex RFR and computing the inverse FFT (IFFT) [16,43]. An auditory

problem may result because a multiplication or division in the frequency domain is

a circular operation in the time domain. Audible wrapping artifacts may be created

as a result. Such wrap-around effects can be lessened by zero padding the signal, but

not eliminated [8]. The theory of directly inverting an RFR to derive an inverse filter,

including associated drawbacks, is addressed in greater detail in Sec. 2.4.2.

The types of inverse filters designed in the z-domain can be broken up into three

categories: all-zero (numerator only), all-pole (denominator only), and the combina-

tion of the two, pole-zero. These filter types also have another electrical engineering

nomenclature associated with them. All-pole infinite impulse response (IIR) filters

are called autoregressive (AR), all-zero FIR filters are called moving average (MA),

and IIR filters that are a combination of the two are called ARMA [44]. All of

the aforementioned terms are used interchangeably in the literature to describe fil-

ter implementations. Many useful sources are available in the electrical engineering

literature that explain FIR and IIR filter designs [28,29,31,45].

Researchers have explored several different frequency-domain methods based on

the principle of multi-resolution equalization, where higher frequencies are analyzed

with decreasing frequency resolution to optimize the use of computing power. Some of

the methods include Bark frequency scale representations [10, 46], warped-frequency

FFT and Z-transform scales [10, 47, 48], the use of wavelets for time-dependent fre-

quency warping [46,49], nonuniform filter banks [50–53], and fractional octave trans-

forms [54,55].

Clearly, many different approaches have been taken to find the optimal equaliza-

tion method. A summary of possible choices made when choosing a filter implementa-

tion is presented in Fig. 1.2 (see also [56]). Hatziantoniou and Mourjopoulos claimed
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Figure 1.2 Digital filter design considerations

that none of the methods offered a generally effective solution to the equalization

problem [57]. They have recently proposed a new method called complex smooth-

ing to address issues discussed in Sec. 1.4.2. Fractional octave smoothing methods

in the past have only accounted for the magnitude response with the loss of phase

information. Their new method retains the phase information so that the proper

impulse response can be recovered. The authors claim that the method is success-

ful at achieving global equalization [9, 33, 34, 57, 58]. Recent studies using this same

algorithm conclude that the algorithm shows promise for improved global equaliza-

tion [59,60].
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1.4.4 Subjective Research

The subjective quality of equalization depends on the ability of the listener to

detect nonideal characteristics in sound. The definition of ideal sound varies as people

perceive and interpret sound differently. Thus the success of any particular method

is not determined merely by the shape of computer generated graphs, but by whether

the deconvolved signal actually sounds good to listeners. Such a result means that the

space is adequately dereverberated. Some overarching themes exist that characterize

deviations from the ideal sound, and their severity. The propagation of sound in

rooms is strongly influenced by wave effects, such as room nulls and resonances,

diffraction, and interference. The two latter effects may be even more prominent in

small rooms [61]. Also, resonances are often audible after the primary sound has

decayed because they are no longer masked by it.

Olive, et al. researched the detection and quantification of these resonances, build-

ing on similar work done earlier by other authors that involved studying the cases

of continuous broad-band and transient sounds individually [62,63]. The test results

revealed that low Q resonances are more audible in continuous signals, and high Q

resonances are more audible in transient signals. Furthermore, for low Q values, fre-

quency notches are as audible as resonances. As the Q value is increased notches

become less and less audible in broad band signals. Thus high Q notches in the in-

verse filter spectrum do not degrade the sound as much as high Q resonances when

a listener moves around an equalized space. The duration of reverberation is an

unreliable indicator for determining whether resonances are audible. Instead, their

audibility is based more on the frequency-domain characteristics of the sound. The

most significant result of the work by Toole and Olive is that in broad-band signals,

resonances are more audible than notches. Thus equalization should focus more on

the suppression of spectral peaks [64,65].
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A single reflection can also be audible and annoying. The audibility of such

a reflection depends on its level, delay time, direction, and signal type. Echos are

perceived for reflections wherein the delay time exceeds 30 ms [12]. An RFR describes

the level and frequency of post-echos present in the perceived sound. An undesired

time-domain effect that makes equalization difficult is generated by the actual inverse

filter itself. As a noncausal inverse filter is created either in the time or frequency

domain, pre-echoes are created due to inversion error which is a mismatch between

the room response and the inverse filter. This type of echo is introduced when a

modeling delay is added to a noncausal filter response, estimating a causal filter.

This effect can also be present in minimum-phase filters [32, 34].

Several listening tests have been performed by different researchers, but no univer-

sal method has been established to quantify the audible effectiveness of equalization.

Three such listening tests [8, 10,58] are presented here to demonstrate what types of

methods have been used to analyze the effectiveness of the physical implementation of

inverse filters. Because the end goal of equalization research is to create a successful

product, it is crucial that accurate listening tests are performed to evaluate whether

a given method is truly effective.

Worley, et al.

The first study [58] compared a pure reference signal with a signal filtered with

an anechoic loudspeaker and a complex smoothing inverse filter. The anechoic loud-

speaker filter attempts to only equalize the loudspeaker response, thus leaving the

room effects untouched while complex smoothing attempts to equalize the whole

RFR. Both equalization methods were also evaluated for their effectiveness when lis-

tener positions were changed. Eight people participated in this listening test, and the

tests were administered in different rooms where the subject would hear the sound
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from a pair of loudspeakers. The subjects reported that in general they perceived a

room to be smaller after the signal was filtered with complex smoothing, and that

they did not notice a deterioration in sound as they moved off axis from the speaker

to different locations in a room.

The conclusion that the listeners could move around the room without noticing

a deterioration in sound quality is significant because no previous study has made

such a bold claim. The anechoic loudspeaker was found to be inferior in all cases,

and no attention was drawn to what the loudspeaker filter was able to do well. This

test demonstrates that the room response cannot be ignored, and that neither filter

works well at equalizing low frequencies.

Norcross, et al.

In the second case [8], two methods, time-domain LS [66] and frequency deconvo-

lution [67], were compared for the application of loudspeaker response equalization.

This process is identical to loudspeaker/room response equalization in its method.

Measurements of a test signal (a maximum-length sequence) on-axis and 45 degrees

off-axis were taken in an anechoic chamber with an omnidirectional microphone. The

test audio sample was prefiltered off-line with the derived impulse responses from these

measurements and then with the derived inverse filters. The chosen test method was

to playback the audio samples via headphones. Before engaging in the actual experi-

ment the subjects completed a training session where the procedure of recording their

observations was explained to them.

The results of this study showed that the subjective performance of both filters was

highly dependent on the impulse response being inverted and sometimes, especially

with the frequency-domain method, the inverse filtered audio sounded worse. The

inverse filters were not successful in improving sound quality off-axis in any of the
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performed tests, and introducing a modeling delay to a minimum-phase LS inverse

filter degraded the quality of the filter. A frequency spectrum shaping method called

regularization [67] was also tested with the frequency-domain filter, and the amount

of regularization needed for acceptable equalization level varied greatly for different

impulse responses. Sometimes regularization also lowered the audio quality. Complex

smoothing was also applied to both filter methods, as described by Mourjopoulos and

Hatziantoniou [57]. This method improved performance in most cases, and never

degraded it. Complex smoothing created much better results than regularization.

Karjalainen, et al.

The third study [10] also focused on the equalization of a loudspeaker response.

Seven test subjects participated. The listener would sit in an anechoic chamber

and listen to sound samples from a loudspeaker that consisted of the original signal

prefiltered by one of the following filters: an FIR, a WFIR (warped), or a WIIR filter.

Each filter was implemented with five different lengths of coefficients. As expected,

the higher the filter order, the better the equalization. The results showed that the

FIR equalizer is the most computationally efficient, WFIR is 2.5 to 3.5 times slower,

and the WIIR is about 2 times slower. The subjective listening results varied greatly

for each combination of filter design method and filter order. The authors concluded

that a better testing procedure should be used, or that the listening tests should

be more carefully conducted to produce accurate results. One possible explanation

for the large variability in the results was an “inhomogeneous listening panel” with

varying amounts of listener training. The authors also suggested that an important

new direction would be to develop computational models that correspond to the

human auditory system.
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Summary

Clearly, an experiment comparing the effectiveness of all possible inverse filters

will never take place due to the great number of possible implementations. Listen-

ing tests can be administered in many different ways, such as via loudspeakers in a

room, in an anechoic chamber, or using headphones where the signal is prefiltered to

simulate a specific room. The quality of the experimental results depends on the the

participating listeners’ experience; the more nonhomogeneous the group, the more

general and descriptive the results. At times, drastic discrepancies arise between

theoretical results and the actual effectiveness of a filter. Thus computer-simulated

results do not guarantee that a given method successfully equalizes a sound field.

Listening tests are another aspect of room equalization where the best method has

not been discovered yet, and researchers continue to look for new and more accurate

ways to evaluate filter performance.

1.4.5 Extended Applications

Equalization research has primarily focused on the simplified case of a single source

and a single receiver. Such a setup is appealing because it is theoretically and prac-

tically the most straightforward to analyze, but most real world systems are more

complex. In fact, little of the music listened to comes from a single source to a

single listener. As stated earlier, it may be possible to equalize sound at a point

in a room, but such a method is not effective in improving the listening experience

in concert halls, living rooms, offices, cars, parks etc. Because of this discrepancy,

many researchers have explored solutions to these more challenging real-world prob-

lems. Some of the more popular explorations include the equalization of sound from

a stereo source [66,68–73], greater global control in rooms by using multiple measure-
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ment microphones [3, 25, 36, 73, 74], sound in cars [35, 75], loudspeaker equalization,

and modal equalization.

Stereo Sound

For years, stereo sound has been the most popular way to listen to music. This

includes headphones, computer speakers, television, boom boxes etc., and comes with

its own complex equalization challenges. The goal for optimal stereo listening is to

reproduce two sound recordings from two separate locations identically at two points

in the listening area, usually at human ears [72]. The most prevalent problem in stereo

equalization is acoustic crosstalk. An ear does not only receive the desired signal

from the appropriate source (i.e. the left ear hears the left loudspeaker), but also a

contribution from the other loudspeaker. The sound diffracts around the head, and

thus the crosstalk is frequency dependent; its negative effect diminishes with increased

frequency [68]. Much of the work focusing on digital equalization of stereophonic

sounds has been theoretical, with a focus on the mathematical derivation of the

filter, and thus the psychoacoustic effects have not been considered to a great extent.

However, Nelson et al. [72] did note that Schroeder successfully implemented analog

acoustic crosstalk cancelation [76] in the 1970s, which serves as motivation for current

work in the digital domain.

Cars

Cars are another specialized focus of sound equalization. As multiple loudspeaker

sound systems are becoming more common in high-end cars, an interest in the acous-

tics of car interiors continues to increase. Cars suffer from acoustic interference and

resonances in a similar way that rooms do. This creates a specific need for equalization

of low frequency resonances for smooth sound [35].
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Multiple Microphones

As room equalization research progresses, a natural transition is to attempt to

equalize sound for more listeners and a larger listening area. Several impulse responses

are measured at different locations, and the corresponding magnitude RFRs are aver-

aged [3]. This results in a magnitude-only frequency spectrum. The minimum-phase

response is then computed and inverted to create an inverse filter [74]. Bharitkar et

al. performed a listening test simulation with such a system and they found that

the size of the equalization region varied depending on the distance of the listener

from the source and frequency; it grew greater with greater distance and with lower

frequency.

In 1989, Elliott and Nelson presented an equalization method where the target was

to minimize the sum of the mean-square errors between various measurement points

in an enclosure [25]. They detected some improvement at each of the four locations

used in the process, although differences persisted. A later study [73] showed some

improvement in the RFR smoothing, but the multiple-microphone method is not able

to equalize as successfully at any point as when minimizing the squared error at only

one point. Both studies implemented a form of the filtered-x LMS algorithm [77],

which has its primary application in active noise control (ANC).

Loudspeaker Equalization

Equalization techniques similar to those presented here have also been applied

to loudspeaker response-only equalization in a free field environment where relevant

concepts such as off-axis behavior of an equalized loudspeaker and phase equalization

can be studied. An inverse filter derived for the on-axis response of a loudspeaker

does not perform as well off-axis [10]. Not only does the room response change as the

listener moves away from the point of equalization, but the speaker response changes
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as well. This further complicates the problem.

Modal Equalization

A less common method known as modal decay equalization has also been re-

searched as an alternative method to traditional room equalization techniques. Room

equalization attempts to completely remove the room response, where modal decay

equalization attempts to reduce reverberation time by controlling the decay lengths

of specific low-frequency modes. By shortening the decay times of the modes with

very long decay to the range of mid and high frequencies the modes become less

audible [7].

These examples have been presented to demonstrate the variety of applications

where digital sound equalization has been applied, and to illustrate that different

equalization applications provide their own unique challenges. These challenges will

not be overcome until the simple case of single source/single receiver equalization is

better understood.

1.4.6 Current Events

The study of room equalization or dereverberation continues to attract atten-

tion in the fields of acoustics, audio, and engineering. A recent paper in 2004 by

Hatziantoniou and Mourjopoulos reflects well the current state of this research [9].

The paper focuses on the inversion of a mixed-phase room response. Hatziantoniou

states that the early studies introduced more than twenty years ago highlighted sev-

eral important theoretical and practical problems. These include the aforementioned

challenges of a room having a noncausal, mixed-phase RFR, large variations in the

RFR between different source-listener locations in an acoustic space, the long filter

lengths required to accurately model an RFR with an FIR filter, and the instability
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of IIR filters. Their work presents a new approach to room equalization, which high-

lights the ongoing trend that even though many different methods have been studied

in search of a solution to the room response deconvolution problem, no best method

has been found.

1.5 Purpose of Current Research

1.5.1 Shortfalls of Past Work

Effective room equalization has many limitations and constraints set by principles

of room acoustics, psychoacoustics, and signal processing [56]. According to Neely

and Allen, a true causal inverse of an RFR does not exist in general because most

RFRs are mixed-phase. From an engineering perspective this means that not all of

the poles and zeros of the Laplace transform of the system lie in the left-hand plane,

or in the case of the Z-transform, are not within the unit circle [16]. In other words, an

exact inverse filter does not exist for many real-world systems. Thus the research has

been split between the two choices, developing a mixed-phase, noncausal filter which

can be unstable but attempts to equalize all of the room response, or a minimum-

phase filter which is stable, but only attempts to equalize the frequency magnitude

and leaves the all-pass portion of the frequency response unaccounted for [59].

It has been shown that the mixed-phase component of an RFR is audible and

cannot be ignored if optimal equalization is desired [1]. Satisfactory equalization

of an RFR can be achieved at a point in a room, but because of the dependence

of the RFR on the source and receiver positions, this equalization generally causes

the spectral response to worsen significantly at other locations in the room [3, 8, 32].

This places limitations on how large the listening area can be. A typical method

to increase the size of a listening area is to use multiple-point equalization. This
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method can be impractical to implement due to the hardware requirements, and the

resulting equalization is more inaccurate at any specific listening location because of

the spatial averaging. This method looks for an average inverse filter response for a

room which may not be the direct inverse for any point in the room. The tradeoff is

accuracy vs. size of the listening zone; as the optimal listening zone grows the quality

of equalization decreases.

Yet another challenge arises in time-adaptive equalization. The sound field in the

listening area can change due to variations in temperature gradients, the number of

listeners, listener positions, and other factors over time. Time-adaptive equalization

requires a sensor, usually a microphone, to be in the field being equalized. For

equalization of high frequencies, sensors need to be very close to the ear because of

the small zone of equalization. To meet this requirement, sensors would need to be

mounted in locations close to the head of a listener, such as in the head rest of a couch

or car seat, and this is often impractical [78]. A method that successfully improves

sound quality over a large listening area would overcome this and many of the other

challenges facing equalization today.

1.5.2 Needs of the Industry

Audio products that implement some form of room equalization technology have

been available on the market since the early 1990s. One of the earliest adaptive

implementations was a product from B&W loudspeakers developed by Craven and

Gerzon [26]. Their product, and others available today, implement a variation of the

methods previously described and suffer from similar shortcomings.

A demand for a better equalization method exists in the audio industry. Once

technology surfaces that is able to overcome many or all of the aforementioned short-

comings it will immediately find application in such areas as home stereo listening,
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multi-channel sound such as home theater systems, professional sound systems, cars,

and many other applications where audio systems are used.

1.5.3 Research Objectives

The objective of this research is to develop a time-adaptive equalization algorithm

using energy density that works in real-time in a one-dimensional environment. This

consists of the following intermediary goals:

• Conduct an in-depth literature search of research done in the field in the past.

• Choose an equalizer design method and develop a proof of concept in MATLAB.

• Take an existing DSP RTOS system and adapt it to perform equalization.

• Assemble a hardware setup that interacts with the DSP and the physical system.

• Implement an adaptive equalization inverse filter on the DSP that equalizes

acoustic energy density in a one-dimensional enclosure.

• Implement a time-adaptive equalization filter on the DSP that equalizes acoustic

energy density in a one-dimensional enclosure.

1.5.4 Plan of Development

This chapter presents a theoretical overview of the equalization challenge and a

historical overview of previous work done in the field of sound equalization. Chapter

2 discusses the theory behind inverse equalization in detail. First, the physical quan-

tities of sound pressure, particle velocity, and energy density are presented, as well

as their application to the sound equalization problem. The theory of convolution is

presented and two filter design methods are discussed along with their pros and cons.
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Much attention is devoted to the LS equalization filter design method as it has the

desirable quality of generating a minimum-phase energy density inverse filter. The

chapter concludes with a section that describes time-adaptive filters for both sound

pressure and energy density equalization.

Chapter 3 describes the hardware setup used to conduct the experiments. This

includes the DSP system and the audio rack unit used for input and output (IO)

control. The functionality of the hardware and signal flow are explained. This is

followed by a description of the time-adaptive equalization experiments.

Chapter 4 presents the measurement results. First, the ability of a pressure filter

to equalize the sound field in a plane-wave tube is discussed, and graphs are used

to illustrate that such a filter is able to only equalize sound pressure at a point

in the field. Next, the results of energy density equalization in the same tube are

presented. It is shown that an energy density inverse filter is able to detect and

equalize all resonances in the sound field. This is possible because the total energy in

a one-dimensional sound field is approximately uniform, thus the the energy density

spectrum is nearly uniform throughout the sound field. Lastly, the ability of an energy

density inverse filter to adapt to time-varying conditions via the filtered-x algorithm

update scheme is demonstrated. Chapter 5 provides a summary of the research results

and concluding remarks.
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Chapter 2

Theory

This chapter explains the theory pertaining to the gathering and analysis of data

presented in this research. First, the theory of sound pressure, particle velocity,

and energy density is presented. Then linear and circular convolutions are explained

with their application to filter design and an example that clarifies their fundamental

differences. Next, a discussion and examples of the direct inverse and least squares

inverse filter design methods are presented. The latter was used to obtain the time-

invariant experimental results. This chapter concludes with a description of time-

adaptive sound equalization algorithms.

2.1 Physical Quantities: Sound Pressure, Particle

Velocity, and Energy Density

2.1.1 Sound Pressure

The theory relating to sound pressure, particle velocity, and energy density as-

sumes that air behaves as a homogeneous, isotropic fluid wherein the speed of sound

27
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c is constant. Pierce states that air in its ambient state within an enclosure can be

characterized by two important properties: pressure and density (p0 and ρ0). An

acoustic disturbance, a “small-amplitude perturbation to an ambient state,” gener-

ates variations in the air density and pressure [79], such that the total pressure and

density become

pt(~r, t) = p0 + p(~r, t) (2.1)

and

ρt(~r, t) = ρ0 + ρ(~r, t), (2.2)

where p(~r, t) and ρ(~r, t) are the pressure and density variations introduced by the

acoustic disturbance as functions of both position ~r and time t. Both the acoustic

pressure and density satisfy the linear wave equation

∇2p(~r, t)− 1

c2

∂2p(~r, t)

∂t2
= 0, (2.3)

shown here with the dependent variable p(~r, t). Under time-harmonic conditions,

such that

p(~r, t) = Re
{
p̂(~r, ω)ejωt

}
= Re

{
ppk(ω)ejφp(ω)ejωt

}
, (2.4)

where ppk is the peak amplitude and φp is the phase of the pressure, the linear wave

equation reduces to the Helmholtz equation:

∇2p̂(~r, ω) + k2p̂(~r, ω) = 0. (2.5)

2.1.2 Particle Velocity

Sound pressure and particle velocity are related by the linearized Euler’s equation

[27,80]

ρ0
∂~u(~r, t)

∂t
= −∇p(~r, t). (2.6)
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Under time-harmonic conditions,

~u(~r, t) = Re
{
~̂u(~r, ω)ejωt

}
= Re

{
~upk(ω)ejφu(ω)ejωt

}
. (2.7)

In this case, Euler’s equation becomes

jωρ0~̂u(~r, ω) = −∇p̂(~r, ω), (2.8)

or

~̂u(~r, ω) =
−1

jωρo
∇p̂(~r, ω). (2.9)

Particle velocity at a position in an enclosure can be estimated from sound pressure

measurements. In a one-dimensional sound field with the independent spatial variable

x, the gradient becomes d
dx

that can be estimated with a linear approximation method.

Two pressure measurements,

p̂1 = p̂(x1, ω) (2.10)

and

p̂2 = p̂(x2, ω) (2.11)

are required from adjacent microphones separated by a distance

∆x = x2 − x1. (2.12)

This method could also be referred to simply as the point-slope method, as the

gradient is found by a straightforward rise over run computation:

dp̂(x, ω)

dx
≈ p̂(x2, ω)− p̂(x1, ω)

x2 − x1

=
p̂2 − p̂1

∆x
. (2.13)

Substituting Eq. (2.13) into Eq. (2.9) then yields

~̂u(x, ω) ≈ j

ωρo

( p̂2 − p̂1

∆x

)
~ex. (2.14)
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This expression is an estimate of the complex particle velocity amplitude at a point

x = x1 +
∆x

2
, (2.15)

halfway between the two measurement positions. The method of deriving particle

velocity presented here can also be used in a three-dimensional sound field using

three orthogonally arranged pairs of microphones. Since in Cartesian coordinates,

∇p̂(~r) =
∂p̂(~r, ω)

∂x
~ex +

∂p̂(~r, ω)

∂y
~ey +

∂p̂(~r, ω)

∂z
~ez, (2.16)

Eq. (2.14) can be adapted to compute the three directional components of particle

velocity, ûx, ûy, and ûz, such that

~̂u(~r) =
j

ωρo

{[
p̂(x2, ω)− p̂(x1, ω)

x2 − x1

~ex

]
+

[
p̂(y2, ω)− p̂(y1, ω)

y2 − y1

~ey

]
+

[
p̂(z2, ω)− p̂(z1, ω)

z2 − z1

~ez

]}
,

(2.17)

where

~r = (x1 +
∆x

2
)~ex + (y1 +

∆y

2
)~ey + (z1 +

∆z

2
)~ez. (2.18)

2.1.3 Energy Density

A sound source must deliver energy into the air in order to generate sound waves.

Beranek defines the energy density in a gas as “the sound energy in a given infinitesi-

mal part of the gas divided by the volume of that part of the gas,” in joules per cubic

meter [81].

As with mechanical energy, the total energy density consists of a sum of potential

and kinetic energy densities. The kinetic energy density comes from the motion

of air particles due to the wave, while the potential energy density is stored in air

compression [82]. Pierce defines the instantaneous acoustic kinetic energy density

as [83]

wk =
1

2
ρ0u

2(~r, t), (2.19)
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where u2(~r, t) is the squared vector magnitude of particle velocity

u2(~r, t) = |~u(~r, t)|2. (2.20)

He defines the instantaneous acoustic potential-energy density as

wp(~r, t) =
1

2

p2(~r, t)

ρ0c2
. (2.21)

The total energy density is then the sum of the two components:

wt(~r, t) = wp(~r, t) + wk(~r, t). (2.22)

All three quantities are real valued. As instantaneous particle velocity and sound

pressure are functions of position and time, the instantaneous energy density cannot

be assumed to be uniform throughout an enclosure. However, the time average of

Eq. (2.22), computed over an integral number of half periods or an interminably long

time period, gives the time-averaged energy density at any point in an enclosure as a

time independent expression [84],

〈wt(~r, t)〉t = 〈wp(~r, t)〉t + 〈wk(~r, t)〉t (2.23)

or

〈wt(~r, t)〉t =
1

4

|p̂(~r)|2

ρ0c2
+
ρ0

4
~̂u(~r) · ~̂u∗(~r), (2.24)

where ∗ denotes a complex conjugate (see [85]). The last term in this expression forms

the squared vector magnitude and complex modulus of the complex particle velocity

amplitude.

2.2 Hilbert Transform

This section outlines the process of computing the minimum-phase portion of an

impulse response or a mixed-phase frequency response. A relationship exists between
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the real and imaginary parts of the FFT of a causal sequence, but the same cannot

be said about the relationship between its magnitude and phase [86]. In fact, a given

magnitude spectrum can be represented by a number of different phase spectra. A

special case is the minimum-phase frequency spectrum. In this case, a unique Hilbert

transform relationship exists between the magnitude and phase of the spectrum. If

either the magnitude or phase is known the other can be approximated [87]. The

minimum-phase representation of any complex frequency spectrum can be determined

by forcing its complex cepstrum to be causal such that xc[k] = 0 for n < 0. The

cepstrum is indicated by the subscript c [88].

The process begins by computing the FFT of the impulse response:

H(k) = FFT[h(n)]. (2.25)

The natural log of the frequency response magnitude is then computed as

A(k) = ln |H(k)|. (2.26)

This result is then used to compute the minimum-phase response of the frequency

spectrum H(k). The cepstrum of the signal is found by computing the IFFT of A(k):

Ac(k) = IFFT[A(k)]. (2.27)

The minimum-phase frequency response by definition has no negative frequency in-

formation in its cepstrum [89]. The frequency response H(k) can be forced to be

minimum-phase by zeroing the negative frequencies of Ac(k), a periodic function, as

follows [90]:

Mc(k) =


Ac(k), k = 0, N/2

2Ac(k), 1 ≤ k < N/2

0, N/2 < k ≤ N − 1.

. (2.28)
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Here Mc(k) represents the modified cepstrum. This result is then transformed back

into the frequency domain by computing the reverse operations of equations 2.25

and 2.26 as follows,

M(k) = eFFT[Mc(k)]. (2.29)

The frequency responseM(k) is the minimum-phase equivalent of |H(k)|. A minimum-

phase impulse response can then be generated by computing the IFFT of M(k). This

same method can also be applied to a digital filter, either in the time or frequency do-

main, to compute its minimum-phase response. A minimum-phase impulse response

has the shortest possible time response for a given frequency spectrum; it thus has

minimum energy delay [91]. Minimum energy delay is a desirable quality for real-time

filtering because a filter is able to respond to variations in input more quickly as the

length of the effective response decreases. This quality also minimizes the rise and

fall times of the filter performance.

2.2.1 Equalizing Energy Density

A drawback of computing the minimum-phase of a frequency response as dis-

cussed in Sec. 1.3 is that the nonminimum-phase portion of the frequency response

is ignored. This is not a problem when designing an energy density inverse filter

because energy density is derived as a squared magnitude quantity and the resulting

frequency response contains no phase information. An energy density spectrum with

a bandwidth of 2 kHz, computed from experimental measurements in a plane-wave

tube (discussed in Sec. 3.2), is shown in Fig. 2.1 (c). The IFFT of this zero-phase

frequency response is shown in Fig. 2.1 (a). This is a mixed-phase impulse response,

and is nonideal for linear filtering because the nonzero values before the peak (direct

sound) may cause undesirable pre-ringing [32]. The minimum-phase impulse response

computed using the Hilbert transform introduced in Sec. 2.2 is shown in Fig. 2.1 (b).



34 Chapter 2 Theory

(a)

(b)

(c)

Figure 2.1 An impulse response before and after the Hilbert transform is
used to find its minimum-phase response. (a) Zero-phase. (b) Minimum-
phase. (c) Their frequency magnitudes.
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The time signal in Fig. 2.1 (b), or the minimum-phase frequency response shown

in 2.1 (c) can be used to design an inverse filter with any of the conventional design

methods using an impulse or frequency response, as discussed in Sec. 1.4.3. Thus,

once the energy density frequency response has been computed, an energy density

inverse filter can be designed as easily as a sound pressure inverse filter.

2.3 Convolution

The discrete convolution sum has many applications in engineering and physics.

It is defined as

y(n) =
∞∑

l=−∞

h(l)x(n− l), (2.30)

where h(n) and x(n) are the two signals being convolved, y(n) is the output, and l is a

secondary discrete-time variable or position indicator. These limits of the summation

can be modified because both the input and output of the filters used in this research

are causal. By definition, the response cannot begin before the system receives an

input. Thus, the convolution sum can be expressed as

y(n) =
N−1∑
l=0

h(l)x(n− l), (2.31)

where N is the length of h(n), the convolution filter, in samples.

Linear Convolution

For linear convolution the sequences h(n) and x(n) can be of different lengths,

Nh and Nx, respectively, but they must be sampled at the same sampling rate. The

convolution may then be written as

y(n) = x(n) ∗ h(n) =
N−1∑
l=0

h(l)x(n− l), (2.32)
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where the length of y(n) is Nh +Nx− 1 and ∗ denotes the linear convolution process.

This can be computed in real-time, one sample at a time.

Circular (Periodic) Convolution

Circular convolution makes the assumption that the two signals being convolved

are periodic. It is performed by block processing in the frequency domain. When a

full buffer of data is available, the circular convolution is computed by multiplying

the FFTs of the two signals together and computing the IFFT,

x(n)⊗ h(n) = IFFT
{

FFT[x(n)]FFT[h(n)]
}
, (2.33)

where ⊗ denotes circular convolution and the two signals h(n) and x(n) are assumed

to have the same length N .

2.3.1 When Circular Convolution Equals Linear Convolution

For very long sequences it is more computationally efficient to perform the con-

volution in the frequency domain than in the time domain. For two blocks of data

of length N , the number of multiplications to perform circular convolution in the

frequency domain is 2
[
2N log2N

]
+ N , while for time-domain linear convolution the

number is 2N2 − N [92]. Under special circumstances, the circular convolution can

have a result equal to that of a linear convolution. The two major differences be-

tween the two convolutions are (1) that circular convolution assumes periodicity of

the two signals, and (2) that the length of the result of a circular convolution is

N = Nh = Nx, whereas that of the linear convolution is Nh +Nx − 1, where Nh and

Nx can be different.

To address these two issues, the signals h(n) and x(n) are zero padded for circular

convolution to be the length of the desired linear convolution result, Nh+Nx−1. This
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is accomplished by adding Nx − 1 zeros to h(n), and Nh − 1 zeros to x(n). Then the

FFTs of these two sequences are computed and multiplied together, and the resulting

IFFT gives the convolution result, which is also Nh +Nx − 1 samples long. This can

be expressed as

hNh+Nx−1(n)⊗ xNh+Nx−1(n) = IFFT
[
FFT[h(n)]FFT[x(n)]

]
= yNh+Nx−1(n), (2.34)

which yields the same result as the linear convolution

hNh
(n) ∗ xNx(n) = yNh+Nx−1(n). (2.35)

Figure 2.2 shows the sequential steps involved in the linear convolution of two

arbitrary sequences: h = [2 4] and x = [3 2 1]. According to Eq. (2.32) the

sequence x(n) is flipped across the point n = 0, and is then shifted to the right one

sample at a time. The left column of the figure shows the shifting of x by one sample

per plot, and the right column shows the corresponding output. The sum of the

product of the two overlapping sequences is computed each iteration; it is the result

for that iteration of the convolution. This shifting continues to produce a result every

iteration as long as the two sequences overlap, and the length of the convolution

result is Nh + Nx − 1 = 4. This is shown in Fig. 2.2 (d). The same result can be

generated by applying Eq. (2.34) to the zero-padded sequences h = [2 4 0 0] and

x = [3 2 1 0].
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(a)

(b)

(c)

(d)

Figure 2.2 Linear convolution: the left column shows the shift of the black
sequence, x(n), over the red sequence, h(n), one sample at a time. The right
column shows the cumulative convolution output. The steps are denoted by
plots (a) through (d).
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2.4 Methods of Inverse Filter Design

2.4.1 FIR Least-Squares Inverse Filter Design

Theory

Linear convolution is the preferred choice for performing real-time time-domain

filtering of a signal. The least squares criterion can be used to optimize a set of FIR

filter coefficients to minimize the error between the desired output d(n) and the actual

output y(n) of a system. Because an FIR filter is used, the total error is estimated

and the accuracy of the estimate is dependent on the length of the filter N:

e(n) = d(n)−
N−1∑
l=0

h(l)x(n− l), (2.36)

where x(n) represents the input sequence, and h(n) represents the filter coefficients.

The sum of the squares of the error is expressed as

ε =
∞∑
n=0

[
d(n)−

N−1∑
l=0

h(l)x(n− l)

]2

(2.37)

for a discrete-time signal x(n) of infinite length. When the input and the desired

output signals are known a solution can be found for h(n) that minimizes the squared

error by solving the following system of linear equations:

N−1∑
n=0

h(n)rxx(n− l) = rdx(l); l = 0, 1..., N − 1, (2.38)

where rxx(l) is the autocorrelation function of the input sequence, which is defined as

rxx(l) =
∞∑
n=0

x(n)x(n− l), (2.39)

and rdx(l) is the cross correlation between d(n) and x(n) which is defined as

rdx(l) =
∞∑
n=0

d(n)x(n− l). (2.40)
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The set of optimum inverse filter coefficients h(n) is an unknown, and when solved for

presents the least-squares solution to the problem. A filter derived from Eq. (2.38) is

known as the Wiener Filter, named after Norbert Wiener who introduced the subject

of optimum least-squares filtering in the 1940s [93, 94]. Next, two ways to solve for

these filter coefficients are presented.

When using this method to design a least-squares optimum inverse filter the de-

sired output response is a delta function,

d(n) = δ(n). (2.41)

This simplifies the system of linear equations as the cross correlation between the

input and the output is now also a delta function, such that

rdx(l) =

 x(0); l = 0

0; otherwise
. (2.42)

Equation (2.38) can be expressed in matrix form as

RxxhN = uN (2.43)

where bold lower case letters represent vectors and bold upper case letters represent

matrices, or

rxx(0) rxx(1) . . . rxx(N − 1)

rxx(1)
. . . rxx(N − 2)

...
. . .

...

rxx(N − 1) rxx(N − 2) . . . rxx(0)





h0

h1

...

hN−1


=



x(0)

0

...

0


(2.44)

It has the notable properties that all values along each diagonal are equal, and it is

symmetric. A matrix of this form is called a Toeplitz matrix. Equation (2.43) can be

solved for hN in the following manner:

(RH
xxRxx)hN = RH

xxuN . (2.45)
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This requires computing the Hermitian transpose of the autocorrelation matrix. Do-

ing so becomes computationally intensive as the size of Rxx becomes large. This

system of equations can be efficiently solved via the Levinson-Durbin recursion al-

gorithm [95, 96], which solves the system for hN as a close approximation to the

actual solution. The filter designed using this method is defined to be causal and

minimum-phase [14,29,31].

Practical Issues

Having the delta function as the desired output may not always provide the best

results. This method has been used in an attempt to equalize a mixed-phase room

response by substituting a delayed delta function δ(n−n0) in the place of δ(n). This

can better approximate the acausal behavior of a mixed-phase system having non

zero values before the filter peak in time [14,95]. In addition, the Simpson sidewards

recursion algorithm iteratively computes the error energy for each delay value, and

this energy quantity can be used to determine the optimal delay [14,97]. A down side

to this filter design method, according to Kim et al., is that equalization performance

can deteriorate significantly with small variations in measurement points [75].

Example

A system is excited by white noise that is band limited between 0 Hz and 2 kHz

and sampled at 4 kHz. Its computed impulse response is shown in Fig. 2.3 (a). The

above LS inverse filter design method was applied to compute its inverse impulse

response shown in 2.3 (b). Figure 2.3 (c) shows the result of the linear convolution of

the two impulse responses, which approximates a delta function. This is a desirable

result for deconvolution; the result shows that the FIR filter designed using this LS

method can be used to deconvolve a reverberant signal in the time domain, thus
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(a)

(b)

(c)

Figure 2.3 LS inverse filtering in the time domain. (a) Impulse response.
(b) LS Inverse impulse response. (c) Linear convolution of the two.
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removing the effects of the enclosure on the original sound. Figure 2.4 (a) shows the

magnitude spectra of the tube frequency response (TFR) and its inverse filter: the

room response is shown in black and the inverse filter response in red. The FFT of

the time-domain linear convolution of the two [Fig. 2.3 (c)] is shown in Fig. 2.4 (b).

The inverse filter does not perfectly deconvolve the signal; there are nonuniformities

at 825 Hz, 1155 Hz, 1485 Hz, and 1815 Hz in the filtered spectrum. These frequencies

correspond to the frequency nulls in the TFR. As evident in Fig. 2.4 (c), the coherence

between the input and output signals is poor at these frequencies.

2.4.2 Direct Inversion Method

The direct inversion filter design method is a straightforward process. The inverse

of a frequency response is computed as

Hi(k) =
1

H(k)
. (2.46)

However, as demonstated by the following example, this method does not perform as

well as the LS method. Figure 2.5 (a) shows a normalized minimum-phase impulse

response. An inverse filter is first computed for this impulse response using the LS

method described in the previous section, and then using the direct-inverse method.

Figure 2.5 (b) shows both sets of inverse filter coefficients: those computed using the

direct-inverse method in red, and those computed using the LS method in black. The

two responses appear similar. A major perceivable difference is that the LS filter

coefficients more closely approach zero at the end of the filter than the direct inverse

coefficients. Figure 2.5 (c) shows the frequency response magnitudes of these two

filters, which also appear to be very similar.

A direct inverse impulse response perfectly deconvolves a periodic signal [45], but

not a nonperiodic signal. This drawback is illustrated in Fig. 2.6. The graphs show
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(a)

(b)

(c)

Figure 2.4 LS inverse filtering in the frequency domain. (a) The frequency
response magnitude (in black) and the inverse filter magnitude (in red). (b)
The magnitude of the linear convolution of the two. (c) Correlation between
the input and output signals.
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(a)

(b)

(c)

Figure 2.5 The direct inversion method. (a) Original minimum-phase im-
pulse response. (b) The direct inverse and LS inverse filters in the time
domain. (c) Magnitude spectra for the two filters.
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the time and frequency-domain results of the impulse response linearly convolved

with the direct-inverse and LS inverse filters. Figure 2.6 (a) shows the time-domain

results of the convolutions. In the close up view of Fig. 2.6 (b), ripples are visible

following the initial impulse and again at halfway through the convolution.

Since in linear time-domain convolution a dot product of the two overlapping

sequences is performed at every iteration of the computation, if the two signals do

not completely overlap, zeros fill in the gaps as illustrated in the simple convolution

example in Sec. 2.3.1. This is not the case when the signal is periodic; the values being

shifted repeat themselves. The LS method compensates for this by forcing the filter

coefficients to approximately zero toward the end of the computed response. This

decreases the mismatch created by linear convolution, so the method provides better

results. As seen in Fig. 2.6 (b), the LS convolution result following the initial impulse

is nearly perfect, and the ripples present after the halfway point of the computation

result are much smaller than for the direct-inverse method.

Figure 2.6 (c) shows the frequency spectrum of the convolution results. The LS

result has been offset by 3 dB for comparison. Clearly, the LS inverse filter reduces

the undesired reverberation more than the direct inverse filter. The LS result has a

dynamic range of approximately 1 dB, where the direct-inverse result has a dynamic

range of approximately 5 dB. In fact, the LS method equalizes the impulse response

almost perfectly. The ideal result is an impulse in the time domain and a flat spectrum

in the frequency domain.

Other tests were performed for cases in which the impulse response was truncated

or zero padded. When the impulse response was truncated, the direct-inverse filter

performance deteriorated much more significantly than that of the LS filter. When

the impulse response was zero padded, the performance of the direct inverse method

improved and approached that of the LS method. Similar results were observed for
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mixed-phase impulse responses. In conclusion, for the same filter lengths, the LS

inverse filter performs better at equalization than a filter designed using the direct-

inverse method for time-domain FIR filtering.

2.5 Time-Adaptive Equalization

Several time-adaptive techniques are considered for this research. One approach

is to adapt the LS solution presented in the previous section continuously in real-

time on a DSP. With this method the TFR is computed periodically, and if the new

computed TFR is significantly different than the current one, a new set of minimum-

phase inverse filter coefficients is computed in the background while the current FIR

inverse filtering continues. When a new set of coefficients is finally computed, the

current inverse filter coefficients are slowly transformed (morphed) into the new set

to prevent an audible transition. Such a method is computationally intensive, and

not practical to implement on the available hardware.

Existing morphing techniques popular with parametric equalization filters are also

considered. Much of the published research on such techniques has been applied to

short filters no greater than fourth order [98–104]. The same principles cannot be

applied directly to the room equalization problem where the required filter lengths

may be on the order of hundreds or thousands, and an inverse filter is not parametric.

However, the research done on morphing filters does apply to the equalization problem

because much of it focuses on the perception of audible artifacts created by changing

the gain or the frequency position of a filter; both occur when an equalization filter

adapts to changes in the TFR.
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(a)

(b)

(b)

Figure 2.6 The direct inversion method. (a) The time-domain convolution
results of the impulse response convolved with the direct inverse and LS
inverse filters. (b) A close up of the time-domain convolution results. (c)
The frequency spectra of the time-domain convolution results.
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2.5.1 Introduction to the Filtered-x Algorithm

The LMS adaptive filter is a well-known time-adaptive filter design. It is inade-

quate for acoustical applications because the transfer function of the adaptive filter

W (z) is followed by the combined transfer function H(z) consisting of electronic

equipment, electroacoustic equipment, and an acoustic path. Because of the addi-

tional filtering of the reference signal by H(z), the cross correlation estimate used to

update the filter coefficients becomes invalid [31,105,106].

The filtered-x algorithm was developed as a modification to the LMS algorithm

to ensure convergence. It has been used extensively in the field of active noise control

(ANC). Its theory and functionality are well established, and discussed in many ref-

erences, such as Refs. [105–109]. The time-domain implementation of the algorithm

is typically used, but the frequency-domain implementation has also been a subject

of investigation [106,110–116]. Due to its popularity, the filtered-x algorithm and its

many variations have been the subjects of many studies in published research. See

for example Refs. [117–120].

The algorithm has been used for audio equalization in the time domain by Nelson,

Elliott, and others [25, 35, 121, 122], often with a focus on stereo and multi-channel

equalization [73,123–125]. A theoretical overview of the algorithm follows. For a de-

tailed derivation, see Refs. [105,106]. A version of the filtered-x algorithm that equal-

izes energy density in a plane-wave tube is subsequently presented. The equalization

algorithms presented here are modified versions of designs used for ANC applications

in a plane-wave tube [126].
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2.5.2 Filtered-x Theory Explained

The filtered-x algorithm is a feedforward system implemented with a series of FIR

filters. A block diagram representing the algorithm is shown in Fig 2.7. This system

performs sound pressure equalization. The reference signal is represented by x(n).

The desired signal d(n) is a time-delayed version of x(n), where D(z) represents the

time delay. The signal u(n) is the output of the adaptive inverse filter W (z) and r(n)

is the output of H̃(z), the estimate of the system response. The latter can be derived

either off-line or on-line; various methods for both cases are discussed in Ref. [105].

The signal y(n) is detected in the field at the point of equalization as the filtered

output of the system response H(z).

The signal x(n) is thus filtered by W (z) before it passes into H(z). As suggested

earlier, the latter includes the response of the audio system, the acoustic effects of

the listening environment, and the response of the error sensor. It also incorporates

a time delay between the adaptive filter and the error sensor. A modeling delay D(z)

is used to estimate this system delay and to produce the desired signal d(n). In order

for the error to be computed correctly, the modeling delay must be at least the length

of the time delay in H(z). If d(n) and y(n) are synchronized in time, W (z) converges

to a filter with minimum-phase coefficients. If the modeling delay is larger than the

system delay, the adaptive filter adjusts to the time delay difference by converging to

a nonminimum-phase filter response.

The error signal e(n) is computed as follows:

e(n) = d(n)−
N−1∑
l=0

h(l)u(n− l). (2.47)

Here N is the length of W (z) and r(n) is called the filtered-x signal. It is computed

as follows:

r(n) =
N−1∑
l=0

h̃(l)x(n− l). (2.48)
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Figure 2.7 Block diagram of the filtered-x LMS algorithm.

Filtering x(n) by H̃(z) aligns r(n) with e(n) in time to yield a valid cross correlation

estimate. This process gives the filtered-x algorithm its name. The LMS algorithm

uses the method of steepest descent as an iterative approach to finding the minimum

of a quadratic function. The algorithm adapts the w(n) coefficients in the direction of

the negative gradient of the mean-square error. This is represented mathematically

as

∂e2(n)

∂w(n)
= 2e(n)

∂e(n)

∂w(n)
= −2e(n)r(n). (2.49)

Thus, the filter coefficient update algorithm can be expressed as

w(n+ 1) = w(n) + µe(n)r(n). (2.50)

Again, vector quantities are printed as bold letters and r(n) is defined as

r(n) = [r(n) r(n− 1) ... r(n−N + 1)]T , (2.51)

and µ is the convergence parameter that controls how quickly the filter coefficients

converge to their optimum values and e(n) goes to zero. If µ is too large, the system

becomes unstable [105,106]. In the ideal case, where d(n) equals y(n) and e(n) is zero,

the signal is perfectly equalized. Because the gradient term has a negative sign, the

negative gradient has a positive sign. Thus, a positive sign is used for the filter update

in Eq. (2.50), as opposed to the negative sign typically seen in ANC applications.
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2.5.3 The Filtered-x Algorithm with On-line System Identi-

fication

If the system response H(z) is constant over time, the filtered-x algorithm con-

verges to optimal w(n) coefficients. However, H(z) is often time-varying. The room

response can vary greatly depending on where and when the audio is being repro-

duced. For example, a large hall may have a significantly different acoustical response

when it is full and when it is empty.

It is possible to use an LMS technique to update H̃(z) in real time to keep up with

system changes. For a full derivation of this method see Ref. [127]. The block diagram

in Fig. 2.8 shows how the approach is applied to audio equalization. A second LMS

filter tracks potential changes in the system response H(z). The program material

x(n) is sent through the delay D(z) as discussed earlier. The signal u(n) is filtered

through H̃(z) and the algorithm seeks to adapt the filter coefficients of H̃(z) in such

a manner that the output of H̃(z) is equal to the output of D(z). The error signal is

computed as follows:

e1(n) = a(n)−
N−1∑
l=0

h̃(l)u(n− l), (2.52)

where a(n) represents the output of D(z) and h̃(n) represents the filter coefficients

of H̃(z). The error e1(n) is the difference between a(n) and b(n), where b(n) is the

output of Ĥ(z). A new error signal e2(n) is defined as the difference between e(n)

and e1(n):

e2(n) = e1(n)− e(n), (2.53)

and is used to update H̃(z):

h̃(n+ 1) = h̃(n) + µHe2(n)u(n). (2.54)

The value µH is independent of µ, and must be separately optimized. As e(n) and
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Figure 2.8 Block diagram of the filtered-x LMS algorithm with on-line sys-
tem identification.

e1(n) approach zero H̃(z) converges to its optimal values making it possible for W (z)

to accurately approximate the inverse system response.

2.5.4 Adaptation for Energy Density Equalization

The filtered-x algorithm can be modified to equalize energy density. It has been

shown that instantaneous energy density, expressed as

wt(~r, t) =
1

2ρ0c2
p2(~r, t) +

1

2
ρ0u

2(~r, t), (2.55)

is a positive-definite quadratic function, such that a global minimum exists that

minimizes the function [128]. This means that energy density is a useful quantity

for LMS applications. A method to control the energy density for ANC in a one-

dimensional sound field is developed in [126]. The key modifications to adapt a

pressure-based filtered-x algorithm to an energy density based algorithm is presented

here. A detailed derivation can be found in Refs. [126,128].
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Figure 2.9 Block diagram of the filtered-x LMS algorithm adapted for energy
density equalization.

A block diagram of the energy density filtered-x algorithm for equalization in a

one-dimensional sound field is presented in Fig. 2.9. In this diagramHp1(z) andHp2(z)

represent the electroacoustic system transfer functions associated with the paths to

the two pressure sensors for energy density estimation. The filters H̃p1(z) and H̃p2(z)

are used to estimate these transfer functions. Two acoustic pressure measurements

are necessary to derive energy density at a point in a one-dimensional sound field, as

described in Sec. 2.1.3. A delay D(z) is used to estimate the time delay of Hp1(z)

in Sec. 2.5.2. In addition, the digital delay z−m compensates for the physical time

delay between the two transfer functions Hp1(z) and Hp2(z) and it is equal to the

separation of the incident pressure peaks in hp1(n) and hp2(n), given in samples (m).

For this method to produce an accurate estimate of particle velocity the delay m must

be greater than one sample, which requires the time for sound to propagate from one

microphone to the next to be greater than one sampling period, 1
fs

. This digital delay

also assumes that the plane-wave tube is a duct wherein sound propagates only in one

direction, when in fact the duct is a closed system wherein standing waves form from
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sound waves propagating in both directions. The transfer function W (z) represents

the adaptive energy density inverse filter.

Two pressure errors, e1(n) and e2(n), are calculated by

e1(n) = d(n)− y1(n) (2.56)

and

e2(n) = d(n−m)− y2(n), (2.57)

where d(n) is a delayed value of x(n) and d(n −m) is a delayed value of d(n). The

input signals to the DSP are represented by the electric signals y1(n) and y2(n). Since

the goal is to estimate the energy density halfway between the microphones used for

the pressure measurements, these two errors are used to compute an energy density

error for the LMS update equation. The general energy density update equation is

derived in Ref. [128]:

w(n+ 1) = w(n) + µ

(
1

ρ0c2
p(n)rp(n) +

D∑
l=1

ρ0ul(n)rul
(n)

)
, (2.58)

where p(n) is the average measured pressure, ul(n) is a directional component of

particle velocity, l is a position indicator, D is the number of dimensions for the

measurement, and the summation computes the average particle velocity from the D

directional components.

In a one-dimensional sound field this update expression can be reduced [128] to

w(n+ 1) = w(n) + µ[ep(n) + ρ0ceu(n)]r(n), (2.59)

where ep(n) is the pressure error, eu(n) is the particle velocity error, and r(n) rep-

resents the vector of filtered-x pressure values. The reason for this is explained in

Sec. 2.5.2. The pressure error is computed by

ep(n) =
e1(n) + e2(n)

2
(2.60)
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and the particle velocity error is estimated by a discrete time-domain integral [126]

eu(n) = eu(n− 1)− 1

ρ0∆xfs

[
e2(n)− e1(n)

]
, (2.61)

where the subscript u represents particle velocity, eu(n − 1) represents the previ-

ous particle velocity approximation, ∆x is the microphone separation, and fs is the

sample rate. Equation 2.61 can be used to compute particle velocity from two pres-

sure measurements, or a particle velocity error from two pressure errors. A discrete

frequency-domain version of this computation for estimating particle velocity is given

in Eq. (2.14). The current value of rp(n) is computed by

rp(n) =
r1(n) + r2(n)

2
. (2.62)

The values r1(n) and r2(n) are the outputs of the filters H̃p1(z) and H̃p2(z). Using this

approximation the quantity ru(n) is not necessary [128]. This removes an extra filter

from the update function and reduces the computational complexity of the algorithm.

On-line system identification is necessary for both the H̃p1(z) and H̃p2(z) filters.

This is performed with the basic LMS update as follows:

h̃p1(n+ 1) = h̃p1(n) + µHeh1(n)u(n) (2.63)

and

h̃p2(n+ 1) = h̃p2(n) + µHeh2(n)u(n), (2.64)

as shown in Fig. 2.10. The variable µH is the convergence parameter. The errors

eh1(n) and eh1(n) are computed by

eh1(n) = y1(n)− a(n), (2.65)

where a(n) is the output of u(n) filtered by H̃p1(z), and

eh2(n) = y2(n)− b(n), (2.66)

where b(n) is the output of u(n) filtered by H̃p2(z).
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Figure 2.10 On-line system identification used with the energy density
filtered-x algorithm.

2.5.5 Other Methods of Equalization Using the Filtered-x

Algorithm

The method presented in the previous section is a direct application of the ANC

system used by Sommerfeldt et. al for ANC [128]. Other ways to equalize energy

density in the time domain were also considered and two of them are presented here.

The first represents a system where only one desired signal d(n) is available or pre-

ferred. The second presents a way to lower the time for the filtered-x algorithm to

converge to its optimal inverse filter coefficients.

A Modification to the Filtered-x Algorithm for a Single Desired Signal

A major difference between one-dimensional energy density ANC and equalization

is the lack of a second plant in the latter. This makes the energy density equaliza-

tion algorithm feasible for an implementation wherein one desired signal d(n) and

two observed signals y1(n) and y2(n) are used to compute the error for the LMS up-

date. A block diagram for this implementation is shown in Fig. 2.11. The on-line

system identification method presented in the previous section also works for this

implementation.
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In this method pressure and particle velocity errors are directly computed, whereas

in the the previous method two pressure errors are initially computed. The sound

pressure error signal is computed as follows:

ep(n) = d(n)− yp(n), (2.67)

where yp(n) is the average of the two microphone inputs samples:

yp(n) =
y1(n) + y2(n)

2
. (2.68)

A method for estimating particle velocity from two pressure measurements has been

presented in Sec. 2.1.2, but in this case only one sample is used for the desired signal

d(n). Thus, another estimate for particle velocity must be used. In a one-dimensional

sound field, the specific acoustic impedance Zs can be expressed as

Zs(x, ω) =
p̂(x, ω)

û(x, ω)
(2.69)

so the particle velocity may be expressed as

û(x, ω) =
p̂(x, ω)

Zs(x, ω)
. (2.70)

The specific acoustic impedance for a single plane wave in a free field is equal to

ρ0c. A set of minimum-phase filter coefficients can be computed from the specific

acoustic impedance magnitude in Eq. (2.69) using the method described in Sec. 2.2.

This filter can be used to compute a more accurate estimate for the desired particle

velocity signal du(n) than ρ0c, which is a constant.

Having an estimate for Zs, the particle velocity error can be computed as follows

if Zs is a constant:

eu(n) =
d(n)

Zs
− yu(n). (2.71)

A specific acoustic impedance filter Z−1
s (z), where

Z−1
s (z) =

1

Zs(z)
, (2.72)
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Figure 2.11 Block diagram of the modified energy density filtered-x LMS
algorithm for when a single desired signal d(n) is used.

can also be used to compute the desired particle velocity estimate du(n):

du(n) =
N−1∑
l=0

z−1
s (l)d(n− l), (2.73)

in which case Eq. (2.71) becomes

eu(n) = du(n)− yu(n). (2.74)

The sound field particle velocity yu(n) is

yu(n) = yu(n− 1)− 1

ρ∆xfs

[
y2(n)− y1(n)

]
, (2.75)

as described in the previous section. The same update equation is used as in the case

with two desired signals:

w(n+ 1) = w(n) + µ[ep(n) + ρceu(n)]r(n). (2.76)

Using a 1
Zs

estimate to compute du(n) assumes that sound pressure and particle

velocity at the point of equalization are constant over time. For this filtered-x algo-

rithm to perform accurate time-adaptive equalization the estimate must also be made

time adaptive.
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Figure 2.12 Block diagram of the modified filtered-x LMS algorithm.

Modified Filtered-x Algorithm

A method to perform sound equalization using the filtered-x algorithm without a

microphone in the sound field has been studied by Goetze et. al [121, 129]. A block

diagram of the algorithm is shown in Fig. 2.12. In this diagram d(n) is the desired

electric signal and y(n) is the output of the filtered-x signal filtered by W (z). The

latter is an estimate of the ideal equalized sound sample perceived at the listening

position. The computed error e(n) is used in a standard sound pressure update

equation to update both W (z) filters.

One of the drawbacks of the filtered-x algorithm in comparison to the LMS algo-

rithm is increased convergence time, which is a result of the time delay introduced

to the system by the path H(z), thus necessitating a lower µ for convergence. The

modified filtered-x algorithm compensates for this by using H̃(z) as the convergence

target as opposed to H(z). A sound field sensor is still needed for off-line identifica-

tion to determine H̃(z). Instead of computing the error between a desired electrical

signal and a sample recorded from the sound field, the difference between the desired

signal and the output of a second W (z) filter is computed. This error signal is used

to update both W (z) filters. As W (z) converges, it becomes the optimal inverse filter
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Figure 2.13 Block diagram of the modified filtered-x LMS algorithm with
on-line system identification.

for H̃(z). This is equivalent to a standard adaptive LMS filter, and has the added

benefit that the time delay of H̃(z) can be removed which guarantees that W (z)

converges to a minimum-phase inverse filter. The downside of this approach is that

H̃(z) cannot be updated in real time.

The ability of this algorithm to equalize sound pressure was tested and it performs

well under steady-state conditions. It can be made time-adaptive by adding the on-

line system identification function discussed in Sec. 2.5.3 to the algorithm, as shown in

Fig. 2.13. In this application a microphone is located in the sound field that provides

the input signal y(n). This sample and y(n) are used to compute an error signal eh(n)

used in the on-line system identification:

eh(n) = yh(n)− y(n). (2.77)

This error and u(n) are used to update H̃(z):

h̃(n+ 1) = h̃(n) + µeh(n)u(n). (2.78)

This eliminates the constraint that W (z) converges to a minimum-phase filter.
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Figure 2.14 Block diagram of the modified filtered-x LMS algorithm for
energy density equalization.

The application of this modified filtered-x algorithm to energy density is also

considered, and a possible block diagram is shown in Fig. 2.14. Here the errors

ep(n) and eu(n) are used together with rp(n) and ru(n) to update the energy density

inverse filter W (z) as described in Sec. 2.5.4. The filters W1(z) and W2(z) are pressure

inverse filters. This implementation faces the same challenge as the method presented

in Sec. 2.5.4; the energy density in the sound field must be approximated. With

the addition of another secondary path to the algorithm, the number of required

additional filters increases by two: H̃2(z) and W2(z). These two filters significantly

increase the number of computations per cycle and for this reason the algorithm was

not studied further. The algorithm is included here to present another approach to

time-domain equalization, which may find applications in the future.
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Experimental Setup

The primary goal of this research is to develop a system to adaptively equalize

a sound field in real-time using energy density. A two step process is used. First,

different filter design methods are tested in MATLAB, and the best method is chosen.

Then several C++ algorithms are developed and integrated into an existing RTOS

running on a Texas Instruments TMS320C6713 DSP processor. A hardware system

is designed and assembled from various components that has the appropriate amount

of inputs and outputs, and all necessary analog filtering, gain, and voltage regulation.

Much effort went into the adjustment of the hardware and software to produce reliable

results. This chapter first discusses the methods that are used to develop a proof of

concept and generate simulation results. It then provides a detailed explanation of

the experimental setup, including explanations of the hardware and signal flow. The

same experimental setup is used for time-adaptive equalization, and the the signal

flow of the time-adaptive filtered-x algorithm is explained.

63
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3.1 Development of the Equalization Method via

Off-Line Processing Techniques

All functions and algorithms implemented on the DSP are first developed and

tested on a computer using MATLAB. The following is a description of the process

used to test the effectiveness of the designed inverse filters. First, an impulse re-

sponse is acquired at a point in an enclosure. Its one-sided autocorrelation function

serves as the input to the Levinson-Durbin recursion that computes the inverse filter

coefficients.

The inverse filter coefficients are convolved with the impulse response to see how

well the room effect is neutralized. Ideally, the result is an impulse response in the

time domain and a flat magnitude response in the frequency domain. However, it is

not possible to obtain a flat magnitude response with the LS method as explained in

Sec. 2.4.1.

To hear how well an inverse filter deconvolves a room response, a reference sound

clip is first convolved with the impulse response, then with the computed inverse

filter response. In each case, the sample rate of the clip matches that of the impulse

response and inverse filter. The result is saved into a WAV file and the effectiveness of

the deconvolution is analyzed by listening to the result from a loudspeaker or through

headphones. Any perceived undesirable artifacts are also visible in the graphical result

of the impulse response deconvolution test described earlier. Results of such tests for

pressure and ED-based equalizations are presented in Sec. 4.1.
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3.2 Experimental Setup

This section provides details of the hardware used in the 1-D experimental setup.

A block diagram of the hardware system is shown in Fig. 3.1. The plane-wave tube

used is 70 cm long and has a radius of 10 cm, shown in Fig. 3.2. The signal flow of

the system is also described in detail.

Figure 3.1 Experimental Setup Block Diagram

Figure 3.2 Plane-Wave Tube
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Figure 3.3 The Rack Setup

3.2.1 Hardware

The hardware used for this research is assembled in a portable equipment rack for

easy transportation. It consists of two four channel dBX 1046 compressor/limiters,

a PCB 487B07 twelve channel ICP power supply, two four channel Krohn-Hite 3384

tunable analog filters, and a two channel Crown D-75 power amplifier, as seen in

Fig. 3.3. The amplifier is used to power the loudspeaker in the plane-wave tube

and the ICP power supply serves as a pre-amp for the system microphones. The

Krohn-Hite filters provide reconstructive low-pass filtering of the output signal and

anti-alias filtering of the microphone signals. The dBX units are used as voltage

limiters to protect the DSP inputs which have an operating range of +/- 2.5 volts,
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and also for fine tuning the system gain at different stages. Inputs and outputs for

each device are accessible through the BNC connectors on the front patch panel of

the rack unit. For sound pressure equalization, one microphone is used to probe

the sound field in the tube. Two microphones are used to derive the energy density

spectrum.

The Texas Instruments TMS320C6713 DSP chip is the heart of this experimental

setup. It is capable of performing up to 1350 million floating point operations per

second (MFLOPS) at 225 MHz. The chip is interfaced to a board manufactured by

Orsys (pictured in Fig. 3.4). It is equipped with 256 Kb of on-chip memory, 32 Mb

of off-chip RAM, and 8 Mb of nonvolatile off-chip memory. The DSP also interacts

with a separate board having 8 input and 4 output channels with 16 bit data at up

to 250 MHz.

Figure 3.4 DSP Board

3.3 Steady State LS Equalization Signal Flow

This section describes how the algorithms described in the previous chapter are

implemented in software. First a detailed description of how to compute a TFR is

presented, followed by an explanation of how this response is used to compute an
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inverse filter. A flow diagram of these processes is shown in Fig. 3.5. A description

of how these inverse filter coefficients are used to filter a signal in real-time is also

given.

System Identification

In order to design an inverse filter for a receiving point in an enclosure, it is first

necessary to identify the frequency response between the source and the receiver.

This section describes how to do this with two signals: an electrical reference signal

that is also output into the plane-wave tube via a loudspeaker, and an input signal

from a microphone. Figure 3.6 shows a close up of the measurement microphones in

the plane-wave tube. To derive a pressure frequency response only one microphone

is used, but to derive an ED frequency response both microphones are used.

A white noise signal is used to excite the plane-wave tube. An analog recon-

struction filter is used at the output and an anti-aliasing filter is used at the input

of the DSP. The DSP records a certain number of samples from the tube using a

microphone. The length of this recording, in samples, is equal to the desired FFT

length. The length of the recording, in seconds, is dependent on the DSP output

sample rate; for example, with a sample rate of 4 KHz, and with 2048 samples of

data, each recording is 512 ms long. At the end of the recording the DSP computes

the FFTs of the input and reference signals. These results are cumulatively summed

into buffers and scaled by the number of averaged recordings. For example, if the

DSP averages 30 recordings the scaling factor is 1
30

. The DSP can average any num-

ber of recordings. After the final recording is finished, the frequency response at the

measurement location is computed in the following manner:

H(k) =
Sxy(k)

Sxx(k)
. (3.1)
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Figure 3.5 System Identification Signal Flow
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Figure 3.6 Measurement Microphones

The system input and output are represented by x and y, and the term Sxx(k) rep-

resents the one-sided autospectral density function,

Sxx(k) =
1

nd

nd∑
i=1

X∗i (k)Xi(k), (3.2)

where nd is the number of ensemble averages. Sxy(k) represents

Sxy(k) =
1

nd

nd∑
i=1

X∗i (k)Yi(k). (3.3)

Many ways exist to estimate the frequency response of a system. Equation 3.1 is

optimal when a system does not have input noise, but uncorrelated output noise

is present [130]. The minimum-phase frequency response is found by computing

the Hilbert transform of the measurement frequency response. The IFFT of this

minimum-phase response yields a minimum-phase impulse response. Its one-sided

autocorrelation function is the input to the Levinson-Durbin recursion algorithm

producing the FIR inverse filter coefficients, which are then stored on the DSP. The

number of taps places constraints on how long of an inverse filter can be implemented

for a given sample rate in real-time. The filtering operation must take less time than

is available between outputs.

This process changes slightly when computing an ED based inverse filter. The
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ED frequency response is derived using the method explained in Sec. 2.1.3, then its

minimum-phase ED frequency response is computed using the Hilbert transform, and

the subsequent steps are the same as above.

Inverse Filtering

Program material is passed into the DSP where it is filtered by the inverse filter

coefficients in real-time, one sample per cycle, using a time-domain FIR filter. The

length of the cycle is determined by the sample rate of the DSP. The signal is then

passed to the loudspeaker. The sample rate of the program material should be at

least equal to the DSP sample rate. If it is higher, the DSP down-samples the signal

to match the sample rate of the DSP outputs.

3.4 Time-Adaptive Filtered-x Equalization Setup

and Signal Flow

A filtered-x algorithm is used to adapt the energy density inverse filter coeffi-

cients to match changing conditions in the physical system. The derivation of this

method is included in Sec. 2.5.4, and the block diagram is shown in Fig. 2.9. The

inverse filter W (z) is initialized to the normalized values of the W (z) values computed

during the system identification process described in the previous section. The two

filters estimating the physical paths between the loudspeaker and the measurement

microphones, H̃p1(z) and H̃p2(z), are initialized using an off-line system identification

process that utilizes a basic LMS filter update (shown in Fig. 3.7):

h̃p1(n+ 1) = h̃p1(n) + µHeh1(n)x(n) (3.4)
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Figure 3.7 Block diagram of the off-line system identification algorithm.

for H̃p1(z) and

h̃p2(n+ 1) = h̃p2(n) + µHeh2(n)x(n) (3.5)

for H̃p2(z), where µH is the convergence parameter for the adaptive H̃(z) filters, and

x(n) is the current sample of the excitation signal. The two errors are computed as

follows:

eh1(n) = y1(n)− a(n), (3.6)

where a(n) is the output of H̃p1(z) and

eh2(n) = y2(n)− b(n), (3.7)

where b(n) is the output of H̃p2(z).

Every sampling period, the algorithm computes the output of W (z), u(n), which

is sent to the loudspeaker, and the values of the two inputs y1(n) and y2(n) sampled
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by the two measurement microphones. The W (z), H̃p1(z), and H̃p2(z) coefficients are

updated. This process is explained in detail in Sec. 2.5.4. As the physical system

changes, these three filters slowly adapt to match the new conditions. The main

parameters that impact the performance of the algorithm are the sample rate, length

of W (z), length of H̃p1(z) and H̃p2(z), µH , and µ. These variables are all correlated

in function; changing one impacts how well the others perform. Filter lengths of

400 samples are used. When making modifications to the algorithm one might make

changes to the parameters in the order presented here until desirable results are

achieved.

For this research, the experimental setup for time adaptive-equalization is the

same as for steady state equalization with different system settings. The system is

again excited with white noise and a filter cutoff frequency of 1100 Hz is used, along

with a sample rate of 6000 Hz. The filtered-x algorithm has performance limitations;

in order for the system to remain stable for greater bandwidths (such as 1500 and

2000 Hz) µ must be such a low value that it prevents the algorithm from converging.

Otherwise after a period of time the system becomes unstable and the filter coefficients

diverge.
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Chapter 4

Results

This chapter presents the results of the research. The first section presents results

of time-invariant equalization in the plane-wave tube. The equalization filters are

computed using the LS method, which gives the optimal inverse filter coefficients

for a given tube frequency response (TFR). Results of sound pressure equalization

at two nonsymmetric locations in the plane-wave tube are presented. These results

are compared to the performance of two energy density inverse filters derived at

approximately the same locations. The second section discusses time-variant energy

density equalization where the plane-wave tube is modified to force a change in the

sound field. The filter coefficients derived using the LS method are used as initial

values for the time-adaptive filter. The adaptive filter updates are performed by

applying the filtered-x algorithm. All surface and contour plots presented in this

chapter consist of computed frequency response magnitude spectra.

75
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4.1 Time-Invariant Equalization Results

This section presents experimental results based on measurements taken in the

plane-wave tube at a sample rate of 5000 Hz. The LS method is capable of nearly

flat sound pressure equalization at a point, but the same filter applied to another

point in the tube does not improve the response due to the mismatch in TFRs. In

comparison, an energy density filter derived at any point in a one-dimensional field

performs equally well in compensating for the system resonances, but such a filter

does not address the nulls in the system. This is illustrated by comparing impulse

responses and inverse filters computed by the DSP, and their corresponding spectra,

at two locations in the plane-wave tube. (The impulse responses and inverse filters

are 2048 samples long.)

The impulse responses are convolved with filter responses via time-domain post-

processing for comparison and discussion. All conclusions are verified by a comparison

to waterfall plots of measurements taken during real-time DSP filtering of white noise

in the tube with each inverse filter. Figure 4.1 shows two dimensional spatial-spectral

plots of the pressure field in the tube excited with white noise; Fig. 4.1 (a) shows a

surface plot of the field and Fig. 4.1 (b) presents a top-down contour plot or color

map. The global resonances and spatial nulls are clearly visible in these plots, as the

spectra vary for each microphone position. These nulls are typically formed when a

microphone is placed where a node exists for that particular frequency. Recordings

of a band-limited (fc = 2000Hz) sound clip made at microphone positions 7 and 10

are included in Appendix A, as well as the original dry sound clip.

As shown in Fig. 3.2, the plane-wave tube has 14 microphone ports on the top that

either hold a half-inch microphone or a plug of the same size. The ports have 5 cm

center-to-center spacing, with the first being 2.3 cm from the end of the tube and 3.2
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(a)

(b)

Figure 4.1 Spatial-spectral plots of the pressure field in the plane-wave tube
excited with white noise. (a) Surface plot of the sound field. (b) Contour
plot of the sound field.
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Figure 4.2 Plane-wave tube with a loudspeaker and 14 microphone ports.

cm from the geometric center of the loudspeaker. These are referred to as microphone

positions 1− 14, with the first position closest to the source (shown in Fig. 4.2) and

the last 2.3 cm from the end of the tube. The total length of the tube is 69.7 cm.

Pressure equalization performance is compared between microphone positions 7 (33.2

cm from the source) and 10 (48.2 cm from the source).

Energy density filters are computed using microphone pairs at positions 7 and 8

(38.2 cm from the source), then positions 10 and 11 (53.2 cm from the source). The

energy density is effectively computed at positions 7.5 (35.7 cm from the source) and

10.5 (50.7 cm from the source), since the average pressure and particle velocity are

evaluated halfway between the two microphones in the pair. Results for pressure-

based equalization are presented first, followed by results for ED equalization. The

conclusions are verified by comparing the impulse response deconvolutions presented

to the actual filtered results in the tube.

4.1.1 Pressure Equalization

For the pressure-based equalization experiments, the TFR was computed at po-

sitions 7 and 10 to derive the minimum-phase impulse response and the inverse filter

coefficients using the LS method. The two normalized impulse responses and their

frequency responses, along with their normalized inverse filters and their frequency
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responses, are shown in Fig. 4.3 for position 7 and in Fig. 4.4 for position 10. All

time-domain expressions have been normalized such that their maximum magnitudes

are 1. All subsequent impulse responses presented in this section are also normal-

ized. The frequency responses are generated by computing the FFTs of the impulse

responses. The sound pressure inverse filters are as long as the time-domain window

length and converge to approximately zero by the end of the window.

The effects of global tube resonances and local nodes caused by standing waves

are clearly apparent in Fig. 4.3 (b) and Fig. 4.4 (b). The eight global resonances

formed in the tube are clearly visible in Fig. 4.3 (b), as is the loudspeaker resonance

at approximately 130 Hz and the loudspeaker cavity resonance at approximately 1030

Hz. A gradual downward slope can be observed in this frequency magnitude plot, as

in all the other spectra measured in the tube. This slope is caused by the nonideal

anechoic response of the loudspeaker. Because the two measurements were taken at

different locations, the nulls in the responses occur at different frequencies, as they

result from different standing waves.

The spectra in Figs. 4.3 and 4.4 have a dynamic range of nearly 80 dB. Prefilter-

ing a signal using a filter with such a wide dynamic range before playback presents

challenges. If the input signal to the DSP has spectral peaks that leave less than 40

dB of headroom on the DSP the signal will clip. To avoid this, the program material

must be delivered at a level low enough to not produce clipping at the digital-to-

analog converter (DAC). This general problem is present in all equalization systems

that use a prefiltering method to varying degrees, depending on the dynamic range

of the given inverse filter frequency response. These boosts to the system caused by

the inverse filter response that compensate for local nodes can cause physical damage

to the system.

Figure 4.5 (a) shows the TFR magnitude at position 7 overlaid with its inverse
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(a) (b)

(c) (d)

Figure 4.3 Sound pressure responses at microphone position 7. (a) The
impulse response. (b) The frequency response magnitude. (c) The inverse
filter coefficients. (d) The inverse filter magnitude.

filter spectrum. The LS algorithm provides a nearly perfect inverse of the system

response at that position. There is a drop in measured coherence at all frequencies

corresponding to resonances and nulls in the TFR, as is evident in Fig. 4.5 (b). The

LS algorithm is not able to perfectly account for the nulls located at 231 Hz, 691 Hz,

1154 Hz, and 1615 Hz in the TFR, but it is able to equalize all resonances, including

the loudspeaker and the cavity effects. It also compensates for the slope of the

anechoic loudspeaker response. This leads to an imperfect equalized spectrum as seen

in Fig. 4.5 (c). This magnitude spectrum presents the frequency-domain convolution
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(a) (b)

(c) (d)

Figure 4.4 Sound pressure response at microphone position 10. (a) The
impulse response. (b) The frequency response magnitude. (c) The inverse
filter coefficients. (d) The inverse filter magnitude.

result of the impulse response deconvolved by the inverse filter coefficients. The four

major deviations from the equalized response in Fig. 4.5 (c) correspond to the four

null frequencies in the TFR shown in Fig. 4.5 (a). The time-domain convolution

result shown in Fig. 4.5 (d) closely resembles a time-domain impulse. The TFR is

equalized almost perfectly, and an audio signal equalized at this position with this

filter sounds like the original recording.

Figure 4.6 shows a spectral-spatial surface plot of the plane-wave tube equalized in

real-time with the inverse filter derived at position 7. This figure consists of transfer
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(a)

(b)

(c)

(d)

Figure 4.5 Sound pressure equalization at microphone position 7. (a) The
tube frequency response and inverse filter frequency response magnitude. (b)
Coherence of frequency response magnitude. (c) The convolution result in
the frequency domain. (d) The convolution result in the time domain.
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functions computed at each of the microphone positions and it shows the flattened

frequency response at microphone position 7. This inverse filter equalizes the res-

onances and nulls detected at the microphone, but introduces new resonances as it

compensates for the nulls at position 7 elsewhere in the tube. In fact, as can be seen

in both Figs. 4.6 (a) and (b), the frequencies where the inverse filter compensates for

the nulls at position 7 are greatly amplified at the other locations in the tube where

these same pressure nulls do not exist. These new resonances present in the equalized

sound field occur at 231 Hz, 691 Hz, 1154 Hz, and 1615 Hz, as indicated earlier.

The sound pressure inverse filter derived at position 10 deconvolves the impulse

response at the same position very well as shown in Fig. 4.7. Similar observations

as for Fig. 4.5 can be made; the coherence function suffers at every frequency that

corresponds to a null or a resonance in the TFR [Fig. 4.7 (b)], and the deviations

in the magnitude spectrum of the convolution result occur at 387 Hz, 1156 Hz, and

1928 Hz, which correspond to the nulls in the TFR [Figs. 4.7 (a) and (c)]. The loud-

speaker effects are also equalized. The time-domain convolution result is nearly an

ideal impulse so that the reverberation at that location is almost completely removed

[Fig. 4.7 (d)]. Again, an audio signal equalized at this position with the inverse filter

sounds like the original recording.

Figure 4.8 shows the spectral-spatial plots of the plane-wave tube equalized in

real time with the inverse filter derived at position 10. The frequency response at

microphone position 10 is flattened by the inverse filter. While the spectrum is flat at

that position the inverse filter attempts to compensate for the nulls present at position

10, such that the null frequencies are greatly amplified at all other locations in the

tube where the nulls do not exist. These new resonances present in the equalized

sound field correspond to the following frequencies: 387 Hz, 1156 Hz, and 1928 Hz.

Figure 4.9 shows the equalization result of a sound pressure filter derived at posi-
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(a)

(b)

Figure 4.6 Spatial-spectral plots of the pressure field in the plane-wave tube
after being filtered in real time with an inverse sound pressure filter derived
at position 7. (a) Surface plot of the sound field. (b) Contour plot of the
sound field.
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(a)

(b)

(c)

(d)

Figure 4.7 Sound pressure equalization at microphone position 10. (a) The
tube frequency response and inverse filter frequency response magnitude. (b)
Coherence of frequency response magnitude. (c) The convolution result in
the frequency domain. (d) The convolution result in the time domain.
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(a)

(b)

Figure 4.8 Spatial-spectral plots of the pressure field in the plane-wave tube
after being filtered in real time with an inverse sound pressure filter derived
at position 10. (a) Surface plot of the sound field. (b) Contour plot of the
sound field.
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tion 10 used to attempt to deconvolve the tube response at position 7. The mismatch

of the two spectral magnitudes is evident in Fig. 4.9 (a). The magnitude spectrum of

the time-domain convolution result in Fig. 4.9 (b) shows that the mismatch results in

poor equalization. The pressure inverse filter at position 10 compensates for spectral

nulls that do not exist at position 7, thus great boosts result at 386 Hz and 1929 Hz.

The nulls at 231 Hz, 691 Hz, and 1615 Hz are not equalized because the same nulls

are not present at position 10. The two positions have a null near 1154 Hz so the

mismatched pressure inverse filter compensates for that, but not perfectly as can be

observed in Fig. 4.9 (b). This is due to the difference of 2 Hz between the two nulls.

Interestingly, the time-domain convolution result shows a larger decay than the

unequalized impulse response shown in Fig. 4.3 (a). The original impulse response

decayed in approximately 250 milliseconds, whereas the convolution result decays in

approximately 400 milliseconds. Clearly, this filter does not successfully deconvolve

the TFR at position 7. An audio signal equalized at this location with the mis-

matched filter sounds significantly worse than one equalized with the correct filter.

Furthermore, it also does not improve the clarity, and other subjective impressions of

the unequalized sound in the tube.

In a similar manner, Fig. 4.10 shows the equalization result of a sound pressure

filter derived at position 7 used to deconvolve the tube response at position 10. The

inverse filter magnitude is mismatched with the TFR. The global resonances are

uniform across the sound field, but they cannot be observed with a microphone at

all locations due to sound pressure nodes for a given frequency. Furthermore, the

combination of nulls in the TFR is unique for each nonsymmetric TFR. For example,

at position 7, spectral nulls exist at 231 Hz, 691 Hz, 1154 Hz, and 1615 Hz. Here

the boost in the inverse filter magnitude at 1154 Hz compensates for the null at

1156 Hz, but not perfectly as seen in Fig. 4.10 (b). The other three nulls do not
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(a)

(b)

(c)

Figure 4.9 The impulse response at position 7 filtered by the sound pressure
inverse filter computed at position 10. (a) The tube frequency response and
the inverse filter frequency response magnitude. (b) The convolution result
in the frequency domain. (c) The convolution result in the time domain.



4.1 Time-Invariant Equalization Results 89

exist at position 10 so there is an undesired boost at those frequencies caused by

the mismatched inverse filter. The inverse filter spectrum does not have peaks that

correspond to the nulls at position 10 so they are present in the equalized spectrum

as new resonances shown in Fig. 4.10 (b).

Similar subjective observations are made regarding the audio quality of filtered

program material as was made for the filter from position 10 used to deconvolve the

TFR at position 7. Again, the equalized audio sounds significantly worse than the

dry signal, and there is no improvement in clarity to the unequalized sound.

A sound-pressure-based equalizer cannot remove all resonances in an enclosure;

the inverted TFR has nulls that do not exist at other locations so these frequencies

are undesirably boosted at such locations. However, compensating for a resonance

does not create a similar problem. If an inverse filter that compensates for a specific

resonance is applied at a location where the resonance is not present due to a spatial

node the filter only deepens the frequency null, which does not have a significant

undesired effect on the perceived sound, as discussed in Sec. 1.4.4. This leads to

a discussion about energy density equalization in the tube, wherein only spectral

resonances are equalized.

4.1.2 Energy Density Equalization

Energy density TFRs for positions 7.5 and 10.5 are shown in Fig. 4.11 for position

7.5 and Fig. 4.12 for position 10.5 along with their impulse responses, inverse filter

spectra, and the inverse filter time-domain coefficients. The frequency responses were

generated by computing the FFTs of the impulse responses. The energy density

impulse responses do not hold practical meaning for this research, but are shown here

for completeness. The energy density spectra shown in Fig. 4.11 (b) and Fig. 4.12

(b) are nearly identical. They each show the various spectral resonances that are
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(a)

(b)

(c)

Figure 4.10 The impulse response at position 10 filtered by the sound pres-
sure inverse filter computed at position 7. (a) The tube frequency response
and the inverse filter frequency response magnitude. (b) The convolution re-
sult in the frequency domain. (c) The convolution result in the time domain.
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not all observable in the pressure TFRs shown in Fig. 4.3 (b) and Fig. 4.4 (b). All

resonances are identified because when energy density is measured at a given position,

both potential and kinetic energies are detected at that location.

The total energy density in a one-dimensional sound field is nearly uniform, so at

a point where a pressure minimum exists for a given frequency the particle velocity

amplitude will be great and that frequency can be correctly detected with a particle

velocity sensor. As a result, an energy density inverse filter does not attempt to

compensate for sound pressure nulls that exist at the equalization position. As shown

in the last section, such compensation leads to problems away from the equalization

position. However, the inverse filters do have an upward slope to compensate for the

gradual downward trend in the anechoic frequency response of the loudspeaker used

in the experiment.

Figure 4.13 shows the time-domain convolution results of the TFR at position 7

deconvolved by the energy density inverse filter derived at position 7.5. The magni-

tude spectra of these two responses are shown in Fig. 4.13 (a). The energy density

inverse filter spectrum has no frequency peaks, only nulls, save for one exception.

The inverse filter response includes a peak that compensates for the loudspeaker res-

onance. These nulls correspond to each of the resonances in the ED spectrum at

position 7. Fig. 4.13 (b) shows the magnitude TFR spectrum of the convolution

result. All the resonances are equalized, but the inverse filter does not attempt to

equalize any of the nulls. Thus, the nulls are still present at 231 Hz, 691 Hz, 1154

Hz, and 1615 Hz. However, an energy density inverse filter does provide the broad

frequency boost necessary to equalize the downward sloping anechoic response of the

loudspeaker, as well as the irregularity observed at the location of the speaker cavity

resonance around 1030 Hz. The time-domain result is not an ideal delta function as

seen in Fig. 4.13 (c). However, the response is significantly dereverberated. The dere-
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(a) (b)

(c) (d)

Figure 4.11 Energy density at microphone position 7.5. (a) The energy
density impulse response. (b) The energy density frequency response mag-
nitude. (c) The energy density inverse filter coefficients. (d) The energy
density inverse filter magnitude.

verberated audio does not sound like the original recording because of the presence

of spatial nulls.

Figure 4.14 shows similar results for the TFR at position 10 that is deconvolved

by the energy density inverse filter derived at position 10.5. All resonance peaks are

again accounted for, but the original frequency nulls caused by the sound pressure

field at that location are still present at 387 Hz, 1156 Hz, and 1928 Hz. The results in

Fig. 4.14 (b) and Fig. 4.14 (c) again show that the TFR is not perfectly equalized by
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(a) (b)

(c) (d)

Figure 4.12 Energy density at microphone position 10.5. (a) The energy
density impulse response. (b) The energy density frequency response mag-
nitude. (c) The energy density inverse filter coefficients. (d) The energy
density inverse filter magnitude.

the energy density inverse filter. The equalized audio sounds similar to the equalized

audio at position 7, but there are perceivable differences between the two microphone

positions because the spectral nulls occur at different frequencies.

Figure 4.15 shows the convolution result at position 7 using the energy density

inverse filter response derived at position 10.5. The equalization result is nearly the

same as if the energy density filter derived at position 7.5 was used. Also if the

energy density inverse filter derived at position 7.5 was used to deconvolve the TFR
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(a)

(b)

(c)

Figure 4.13 Energy density equalization at microphone position 7. (a)
The tube frequency response magnitude at position 7 and the inverse filter
frequency response magnitude at position 7.5. (b) The convolution result in
the frequency domain. (c) The time-domain convolution result.
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(a)

(b)

(c)

Figure 4.14 Energy density equalization at microphone position 10. (a)
The tube frequency response magnitude at position 10 and the inverse filter
frequency response magnitude at position 10.5. (b) The convolution result
in the frequency domain. (c) The time-domain convolution result.
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at position 10 the result is the same as if the filter derived at position 10.5 is used

as shown in Fig. 4.16. This is where the advantage of energy density equalization is

apparent. Even though the equalization result is not perfectly flat at any location in

tube, undesirable resonances are also not excited anywhere in the tube. The global

resonances are accurately detected by the energy density spectrum and equalized at

all positions in a one-dimensional tube, regardless of where the energy density inverse

filter is derived. However, the equalized response will still be spectrally different at

every location in the sound field due to the presence of unequalized pressure minima

at varying frequencies.

Figure 4.17 shows the sound pressure field equalized in real-time with an energy

density inverse filter derived at position 7.5. These plots consist of transfer function

computations at each of the microphone positions. Figure 4.17 (a) shows a surface

plot of the measured sound field and Fig. 4.17 shows a top-down contour plot view of

the field. All resonances are equalized in the enclosure, but the spatial nulls are still

present.

4.1.3 Listening Test

A listening test was administered to fourteen volunteers. The test consisted of two

experiments, each with the same two questions. In the first experiment, the volunteers

heard two sound recordings from the tube reproduced over a single loudspeaker in a

room. The excitation signal was a low-pass filtered (fc = 2000 Hz) speech recording

prefiltered by a sound pressure inverse filter derived at microphone position 7. The

recordings were from positions 7 and 10. The volunteers received no explanation

regarding the origin of the sound samples; they were merely asked to comment on

their differences. Sample A, the recording at the point of equalization (position 7)

was first played. Sample B, the recording at position 10, was subsequently played.
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(a)

(b)

(c)

Figure 4.15 The impulse response at position 7 deconvolved by the energy
density inverse filter computed at position 10.5. (a) The tube frequency
response and the inverse filter frequency response magnitude. (b) The con-
volution result in the frequency domain. (c) The convolution result in the
time domain.
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(a)

(b)

(c)

Figure 4.16 The impulse response at position 10 deconvolved by the sound
pressure inverse filter computed at position 7.5. (a) The tube frequency
response and the inverse filter frequency response magnitude. (b) The con-
volution result in the frequency domain. (c) The convolution result in the
time domain.
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(a)

(b)

Figure 4.17 Spatial-spectral plots of the pressure field in the plane-wave
tube after being filtered in real time with an energy density inverse filter
derived at position 7.5. (a) Surface plot of the sound field. (b) Contour plot
of the sound field.
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Question 1 was whether sample B was more, less, or about as intelligible as sample

A. Question 2 was whether sample B was more, less, or about as irritating as sample

A. Each volunteer reported that sample B was less intelligible and more irritating.

In the second experiment, the volunteers again heard two recordings and were

asked similar questions. This time sample A was recorded at position 7 in the sound

field excited by the same bandlimited speech recording, but prefiltered with an energy

density inverse filter derived at position 7.5. Sample B was recorded at microphone

position 10. For the first question, the participants responded with the following

percentages:

• 21% indicated that sample B was less intelligible than sample A

• 64% indicated that sample B was about as intelligible as sample A

• 15% indicated that sample B was more intelligible than sample A.

For the second question,

• 29% indicated that sample B was less irritating than sample A

• 57% indicated that sample B was about as irritating as sample A

• 14% indicated that sample B was more irritating than sample A.

The perceived differences between the two microphone positions for energy density

equalization were not as polarized. The results indicate that 79% of participants

perceived the sound farther away from the point of equalization about the same as

or more intelligible than near the point of equalization. For irritability, 86% of the

participants determined that the recording farther away from the point of equalization

was about the same as or less irritating than near the point of equalization. These

listening test results, although generated by a small focus group, demonstrate that
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energy density equalization enhances the system response not only near the point of

equalization, but also away from it. This is due to the equalization of global spectral

effects in the one-dimensional sound field.

4.1.4 Summary

A pressure-based inverse filter is able to equalize sound at a point in a one-

dimensional enclosure, but the same filter causes undesirable resonances to be ex-

cited at other locations. This happens because the filter attempts to compensate for

pressure nulls at the point of equalization corresponding to spatial nodes. A sound

pressure inverse filter is not able to equalize the TFR at any other location in the

tube due to the mismatch of spectral nulls.

An energy density inverse filter attempts to equalize the total sound energy in

an enclosure, and its spectrum accounts for all resonances and other global spectral

effects of the tube and loudspeaker. At positions where pressure is at a minimum, the

particle velocity amplitude is great and the total energy is still accurately detected

at that position. Because energy density is uniform in a one-dimensional field, an

energy density filter derived at any point in a one-dimensional field is nearly equal

to one derived at any other point. It equalizes all global resonances but does not

attempt to equalize the frequency nulls caused by pressure nodes. As a result, the

TFR is not equalized to a perfectly flat response at any location, but the overall

reverberation is significantly reduced due to the elimination of the undesirable long

ringing resonances.

While it is true that the frequency spectrum in the tube after equalization by

an energy density inverse filter is not completely flat, it is much more uniform over

frequency away from the point of equalization. Energy density equalization is inde-

pendent of position for a one-dimensional field. It equalizes not only the impact of
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the acoustical enclosure, but also the electrical system. The remaining nulls are much

less perceptible than resonances, as discussed in Sec. 1.4.4. Sound clips of the sound

pressure and energy density equalization experiments discussed here are included in

Appendix A.

4.2 Time-Varying Equalization Results

This section presents the result of three experiments using the time-adaptive en-

ergy density equalization filter presented in Sec. 2.5.4. The ability of the converged

algorithm to equalize the sound field in the plane-wave tube is first evaluated. The

rigid termination at the end of the tube is then removed and the system is allowed

to converge for several minutes. After the algorithm has again converged, its ability

to equalize the sound field in this altered system, a “closed-open” tube, is evaluated.

Lastly, waterfall plots are presented that show the convergence of the filter over time

as the closed end of the tube is opened, then closed once again. All the figures show

the frequency response from 0 to 1000 Hz, with the two microphones used to update

the filter located at positions 5 (23.2 cm from the source) and 6 (28.2 cm from the

source).

4.2.1 Time-Adaptive Equalization in a Closed Tube

The sound pressure field in the plane-wave tube is shown in Fig. 4.18, with four

notable tube resonances: 255, 495, 735, and 975 Hz. The frequency responses of the

two transfer function estimates H̃p1(z) and H̃p2(z) as well as that of W (z) are shown

in Fig. 4.19 (a). This figure shows that the time-adaptive filter correctly identifies

and compensates for the tube resonances while not attempting to compensate for the

spatial nulls present at either of the two microphone positions. The broad spectral
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(a)

(b)

Figure 4.18 Spatial-spectral plots of the pressure field in the plane-wave
tube excited with white noise. (a) Surface plot of the sound field. (b) Contour
plot of the sound field.



104 Chapter 4 Results

(a)

(b)

Figure 4.19 The converged time-adaptive energy density equalization filter
for the closed plane-wave tube. (a) The W(z) frequency response compared
to those of H̃p1(z) and H̃p2(z). (b) The W(z) coefficients in the time domain.

boost provided by the inverse filter to compensate for the downward slope of the

anechoic loudspeaker response is also clearly visible. The equalized sound field in the

tube is shown in Fig. 4.20. The time-adaptive energy density equalization filter com-

pensates for all global tube resonances and other global spectral effects as explained

in Sec. 4.1.2.

4.2.2 Time-Adaptive Equalization in an Open Tube

After the time-adaptive filter converged to the conditions in the tube, the rigid

end cap was removed, so as to drastically change the sound pressure field, as shown

in Fig. 4.21. In the new system the resonances are shifted to 90, 150, 360, 585, and
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(a)

(b)

Figure 4.20 The pressure field in the plane-wave tube equalized with a
time-adaptive energy density inverse filter derived at position 5.5. (a) Three
dimensional view of the equalized sound field. (b) Microphone position vs.
frequency.
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(a)

(b)

Figure 4.21 Spatial-spectral plots of the pressure field in the plane-wave
tube with the end removed and excited with white noise. (a) Surface plot of
the sound field. (b) Contour plot of the sound field.
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(a)

(b)

Figure 4.22 The converged time-adaptive energy density equalization filter
for the open-ended plane-wave tube. (a) The W(z) frequency response com-
pared to those of H̃p1(z) and H̃p2(z). (b) The W(z) coefficients in the time
domain.

810 Hz. The converged frequency responses of the two transfer function estimates

H̃p1(z) and H̃p2(z) as well as that of W (z) are shown in Fig. 4.22. These frequency

responses are clearly different than those in Fig. 4.19; they have adapted to accurately

describe the modified system. Again, the nulls in the W (z) response compensate for

all resonances and the gradual boost in magnitude compensates for the loudspeaker

response. The equalized sound field is shown in Fig. 4.23. All resonances and other

global spatial effects are equalized, but the filter does not attempt to compensate for

any of the spatial nulls.
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(a)

(b)

Figure 4.23 The pressure field in the plane-wave tube with the end re-
moved equalized with a time-adaptive energy density inverse filter derived at
position 5.5. (a) Three dimensional view of the equalized sound field. (b)
Microphone position vs. frequency.
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4.2.3 The Performance of the Filter Over Time

Tests were performed to evaluate the performance of the time-adaptive energy

density equalization filter over time. This section presents results from two experi-

ments: (1) how the system changes when the end of the tube is removed and (2) how

the system changes when the rigid end is replaced.

The Tube Changed From a Closed-Closed to a Closed-Open System

In the first experiment the microphone at position 5 records sound in the tube for

five minutes. A series of frequency responses is computed from the sound pressure

measurement to create a series of frequency responses over time. Figure 4.24 shows

these frequency responses over time from 0 to 300 s. Over the time period 0 to 90

s, the system is in a steady state; all resonances are equalized and nulls exist at 180,

555, and 915 Hz. At 90 s, the rigid end of the tube is removed and the resonances

of the new system at 90, 150, 360, 585, and 810 Hz form. The spatial nulls also shift

to 330, 675, and 975 Hz. The time-adaptive filter adapts to the new system and

compensates for the new resonances in approximately 175 seconds. It also provides

a desirable boost at approximately 725 Hz as the inverse filter coefficients adjust to

their optimal values. This can be seen in Fig. 4.24 (b).

The Tube Changed From a Closed-Open to a Closed-Closed System

In the case of the system being changed from an open tube back to a closed

tube, the steady-state inverse filter initially equalizes all resonances as mentioned,

with nulls at 330, 675, and 975 Hz. Figure 4.25 shows this changing system over a

period of 300 seconds. As the end of the tube is placed back on at 90 seconds the

tube resonances at 255, 495, 735, and 975 Hz temporarily appear and the nulls shift

to 180, 555, and 915 Hz. Over time the time-adaptive filter coefficients adjust to
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(a)

(b)

Figure 4.24 The time-varying pressure spectrum at position 5 in the plane-
wave tube equalized with a time-adaptive energy density inverse filter derived
at position 5.5 in real-time. The rigid cap of the tube is removed at 90
seconds. (a) Surface plot of the frequency response at position 5 over time.
(b) contour plot of the frequency response at position 5 over time.
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compensate for the new system resonances, and after approximately 200 seconds the

resonances are removed from the system. The resonance at 975 is close to the cutoff

frequency of the excitation signal and the filtered-x algorithm compensates for this

resonance more slowly.

4.2.4 Time-Adaptive Equalization Summary

The filtered-x filter coefficient update scheme is used to implement a time-adaptive

energy density equalization filter. This algorithm updates the W (z) coefficients based

on a current estimate of the energy density halfway between the sensor locations.

Sound clips of the recordings used to generate Fig. 4.24 and Fig. 4.25 are included

in Appendix A. The fig:ta-waterfallOpenToClosed algorithm also adapts to drastic

changes in the system. This filter compensates for resonances and other global spatial

effects in the system without attempting to equalize the spatially varying nulls. This

method is subject to the limitations of the FIR LMS update: it models dips in the

system more quickly than boosts, and the convergence parameter µ must be small

enough for a specific configuration to ensure stability of the algorithm.

This time-adaptive equalizer was also used to prefilter program material such

as pop music and speech. It was found that a lower value for µ is necessary for the

algorithm to remain stable. This is especially important for the equalization of speech

where many pauses are present while the algorithm attempts to make adjustments

based on sound pressure measurements. Elliott and Nelson attribute this behavior to

the degree of correlation between the filtered-x samples, which is not the case when

a uncorrelated white noise excitation signal is used [25].
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(a)

(b)

Figure 4.25 The time-varying pressure spectrum at position 5 in the plane-
wave tube equalized with a time-adaptive energy density inverse filter derived
at position 5.5 in real-time. The rigid cap of the tube is replaced at 90
seconds. (a) Surface plot of the frequency response at position 5 over time.
(b) contour plot of the frequency response at position 5 over time.
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Conclusions

Control of acoustic energy density has been used for years in active noise control

applications, and this research shows that the acoustic energy density field in an

enclosure can also be successfully equalized for sound reproduction. The presented

research results show that equalizing the acoustic energy density in a one-dimensional

sound field compensates for all resonances and other global spectral effects of the tube

and loudspeaker, whereas pressure-based equalization is typically effective only at the

point of equalization. This chapter summarizes the significant research results and

presents recommendations for future work.

5.1 Significant Research Results

A practical pressure-based inverse filter approximates the ideal inverse frequency

response at a specific location in a sound field, compensating for the resonances and

nulls detected at that position. The equalization result at that point is nearly flat in

the frequency domain. However, a sound pressure inverse filter causes the frequencies

corresponding to spatial nulls at the point of equalization to be undesirably boosted

113
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elsewhere in the sound field, where those nulls do not exist at the same frequencies.

These extreme boosts may also result in a reduction of the dynamic range of the

audio system. A sound pressure inverse filter is thus only able to produce effective

equalization at the point where it is derived, often making the response elsewhere in

the sound field less acceptable. Generally, equalizing the sound pressure at a point in

a one-dimensional sound field cannot equalize the field globally.

An energy density inverse filter offers the following benefits for a one-dimensional

sound field:

• Because acoustic energy density is uniform in the field, an energy density equal-

ization filter designed at one position is nearly the same as for any other position.

• An energy density equalization filter identifies and compensates for all reso-

nances and other global spectral effects of the tube and the loudspeaker and

does not attempt to equalize the spatially varying spectral nulls caused by local

pressure nodes at the point of equalization.

• Because it primarily compensates for resonances, an energy density equalization

filter has a significantly shorter time response length than a sound pressure

equalization filter, which attempts to equalize both nulls and resonances.

• It also prevents reduction of dynamic range in an audio system that could result

from large boosts in the inverse filter.

Because an energy density equalization filter does not attempt to undo any of the

spatially dependent acoustic effects in a one-dimensional field, the equalized response

does not result in a flat magnitude response at any position. However, the filter

equalizes the global effects and the overall decay length in the enclosure is reduced

through the elimination of undesirable resonances.



5.2 Recommendations for Future Work 115

A method for time-adaptive energy density equalization demonstrated that a fil-

ter coefficient update method can accurately detect and compensate for changes in

the resonances and other global spectral effects in an enclosure without attempt-

ing to compensate for the nulls at the point of equalization. Waterfall plots clearly

demonstrate that the method adapts to drastic changes in the system over time and

returns again to a steady-state equalization. This method is subject to all limitations

associated with LMS algorithms.

The search for the best method of sound equalization has been pursued for several

decades using both analog and digital filters. Many products have entered the mar-

ket, which have implemented a type of sound pressure equalization with their own

benefits and drawbacks. With the significant benefits that it has to offer, acoustic

energy density equalization shows promise to overcome many of the major problems

of pressure-based inverse filter design.

5.2 Recommendations for Future Work

Many opportunities exist to pursue this research further. As mentioned in Sec. 1.4.1,

sound equalization using DSPs has been a subject of ongoing study for many years.

There are many possibilities to choose from when designing an inverse filter (see

Fig. 1.2). This research has focused on two of the possible options: the LS inverse

filter and the time-adaptive filtered-x algorithm. Because acoustic energy density can

be estimated in the time or frequency domain as discussed in Sec. 2.1.3 and Sec. 2.5.4,

it would be a natural choice to study the performance of well-known frequency domain

inverse filtering techniques such as regularization and complex smoothing applied to

energy density equalization. Other time-adaptive methods could also be applied to

equalize energy density, such as the filtered-x frequency-domain update scheme, or
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the method proposed in Sec. 2.5. Due to the requirement of computing FFTs to

perform frequency-domain computations in real time, these methods would be best

implemented with a DSP system that uses block processing.

Energy density equalization can also be expanded to three-dimensional enclosures.

However, this will provide its own new and unique challenges. The frequency response

at a point in a room is more complex than a frequency response in a one-dimensional

sound field. As a result, a finer frequency resolution may be necessary for the filter.

Three-dimensional room equalization also places greater demands on hardware; two

microphones are required to derive an estimate of particle velocity in a plane-wave

tube, while at least four are required for a three-dimensional sound field, as shown in

Eq. (2.17). The author recommends that further work be undertaken to explore these

and other possibilities of energy density sound field equalization for audio applications.
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Appendix A

Sound Recordings

The following recordings were made in the plane-wave tube to demonstrate the

real-time performance of the equalization filters presented in Ch. 4. First, record-

ings of the time-invariant pressure and energy density equalization are presented.

These are followed by recordings of the time-varying energy density equalization.

The steady-state background noise exciting the tube resonances in the equalized clips

is caused by noise in the system. Additional gain was required following the DSP to

compensate for a required reduction in its input signal level that prevented clipping at

the output. This is particularly noticeable with pressure equalization that introduced

large boosts corresponding to the nulls at the point of equalization.
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Table A.1 The original band-limited (fc = 2000 Hz) dry sound clip used for
time-invariant equalization testing and recordings from microphone positions
7 and 10 while the sound clip was played in the tube.

Dry sound.

Sound sample recorded at microphone position 7.

Sound sample recorded at microphone position 10.

Table A.2 Equalization results using a sound pressure equalization filter
derived at microphone position 7.

Sound sample recorded at position 7 with filter derived at position 7.

Sound sample recorded at position 10 with filter derived at position 7.



Blues

6.687365



Blues

6.73961



Blues

6.73961



Blues

6.556752



Blues

6.63512
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Table A.3 Equalization results using a sound pressure equalization filter
derived at microphone position 10.

Sound sample recorded at position 10 with filter derived at position 10.

Sound sample recorded at position 7 with filter derived at position 10.

Table A.4 Equalization results using an energy density equalization filter
derived at microphone position 7.5.

Sound sample recorded at position 7 with filter derived at position 7.5.

Sound sample recorded at position 10 with filter derived at position 7.5.

Table A.5 Equalization results using an energy density equalization filter
derived at microphone position 10.5.

Sound sample recorded at position 7 with filter derived at position 10.5.

Sound sample recorded at position 10 with filter derived at position 10.5.



Blues

6.556752



Blues

6.582875



Blues

6.4522624



Blues

6.4522624



Blues

6.5045075



Blues

6.42614
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Table A.6 Time-varying equalization results using an energy density equal-
ization filter derived at microphone position 5.5. Band-limited (fc = 1100
Hz) white noised was used as the excitation signal. In the first recording, the
cap of the tube is removed, and in the second it is replaced.

Sound sample recorded at position 5 in the plane-wave tube that is equalized

with a time-adaptive energy density inverse filter derived at position

5.5 in real time. The rigid cap of the tube is removed at time t = 10 seconds.

Sound sample recorded at position 5 in the plane-wave tube that is equalized

with a time-adaptive energy density inverse filter derived at

position 5.5 in real time. The rigid cap of the tube is replaced

at time t = 10 seconds.



Blues

221.95016



Blues

221.95016



Appendix B

C++ Code

The source code used to obtain the real-time experimental results while running

filtering on a DSP is included here. Also function stubs are included at the end for

the time-varying energy density equalization algorithms that were presented, but not

used in this research.

/***************************************************

*

* file : LOOP.c

* project : acoustic energy density equalization

* author : panu puikkonen

*

****************************************************

// extra includes for testing

#include <stdlib.h>

#include <stdio.h>

#include "Analog_IO.h"

#include "ProcTimer.h" /* for measuring computation time */

#include "6x11dsk.h"

#include "EDconstants.h"

#include "inverseFilter.h"
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// ~~~~~~~~~~ Timing Variables

float elapsedMicroseconds;

float elapsedMicroseconds1;

unsigned int startTime, endTime, timerOverhead;

// for the FFT function

#include <math.h>

#include "twiddletable.h"

#include "DSPF_sp_icfftr2_dif.h"

#include "DSPF_sp_cfftr2_dit.h"

#include "DSPF_sp_dotprod.h"

#include "DSPF_sp_maxval.h"

#include "DSPF_sp_fir_gen.h"

near float InSig [kMAXnumAnalogIN],

OutSig[kMAXnumAnalogOUT];

// ~~~~~~~~~~ Code Execution Switches

int filterOn = 0,

filteredXon = 0,

filteredXedOn= 0,

passThrough = 0,

runSystemID = 0,

computeDelay = 0;

/* panu’s box */

// I/O controls for channels

int filterIn = 0;

int refIn = 1;

int mic1in = 2;

int mic2in = 3;

int filterOut = 0;

// Text output controls, initialized to one when reached in code

int firstPassThrough = 0;

int firstFilter = 0;

int firstFilteredX = 0;

int firstFilteredXed = 0;

int firstComputeDelay= 0;

// ~~~~~~~~~~ filtered-x algorithm variables

// Fc = 1100 Hz
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float leak = 0.99999995; // leaky LMS algorithm

float mu = 4e-12; // for Wcoef

float muH = 1e-11; // for H1coef and H2coef

// a multiplier for the initialization of Wcoef after off-line sysID

float WcoefScale = 1;

float muE = 0;

float muEed = 0;

float muHe1 = 0;

float muHe2 = 0;

// filtered-x variables

// place holders for the various indeces used

// to keep track of C++ circular buffers

int start = 5;

int zLoc = 5;

int hLoc = 5;

int wLoc = 5;

// These three values are used with the time-domain integration

// of U (derived in Dr. Sommerfeldt’s papers cited in Panu’s thesis)

float lambda = 0.999666;

float alpha = 0;

float weight = 0.01;

float temp = 0;

float input = 0;

float d = 0;

float e = 0;

float y = 0;

float u = 0;

float r1 = 0;

float rVelocity = 0; // buffers for the LMS update

float rvMean = 0;

float velocity = 0;

float velMean = 0;

float r2 = 0;

float rp = 0;

float rv = 0;

float yp = 0;
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float yv = 0;

float ep = 0;

float ev = 0;

float uBuffer[kHcoef];

float H1coef[kHcoef];

float H2coef[kHcoef];

float hBuffer[kHcoef];

float r2Buffer[kWcoef];

float rvBuffer[kWcoef];

float rpBuffer[kWcoef];

float wBuffer[kWcoef];

float Wcoef[kWcoef];

float xBuffer[kWcoef];

float r1Buffer[kWcoef];

float zBuffer[kDelay];

float error[keBufferLength]; // these are to output error to a buffer

int eCount = 0;

float Pmag[kIDlength];

// ~~~~~~~~~~ updating energy density directly -

// Dr. Sommerfeldt’s alternative method

float muED = 1e-30; // this for ED adaptive filtering

float yED = 0;

float WcoefPrev[kIDlength];

// ~~~~~~~~~~ online system identification variables

float eH1 = 0;

float eH2 = 0;

float muEh1 = 0;

float muEh2 = 0;

// ~~~~~~~~~~ Delay estimation variables for delay()

float e1 = 0;

float e2 = 0;

float d1 = 0;

float d2 = 0;

float y1 = 0;
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float y2 = 0;

float dBuffer[kHcoef];

// ~~~~~~~~~~ FFT variables

int N = kIDlength;

float binWidth = 0;

float w[kIDlength]; // twiddle factors for fft

// ~~~~~~~~~~ sysID variables

int sample = 0;

int bufferLoc = 0;

int highPass = 75; // high pass filter zeroes bins of U

int avgCount = 1; // current iteration of averages

float numAvgs = 20; // number of averages

float coherence[kIDlength]; // coherence

float ED[kIDlength]; // ED magnitude

float FIRcoef[kIDlength];

float hMult[kIDlength]; // for the Hilbert transform

float impRes[kIDlength]; // impulse response coefficients

float mic1[kIDlength]; // records mic signal

float mic2[kIDlength]; // records mic signal

float mic1FFTmag[kIDlength]; // magnitude spectrum

float mic2FFTmag[kIDlength]; // magnitude spectrum

float omega[kIDlength]; // for particle velocity derivation

float refSig[kIDlength]; // filtered reference signal

double autocor[kIDlength]; // temp buffer

float Sxx[kIDlength]; // input autospectrum

float Syy[kIDlength]; // output autospectrum

float FR[kIDlength]; // transfer function

float window[kIDlength]; // time domain window

float avgPress[kIDlengthX2]; // holds (P2+P1)/2

float hComplex[kIDlengthX2]; // complex transfer function

float FRminPhase[kIDlengthX2]; // minimum phase transfer function

float mic1FFT[kIDlengthX2]; // complex fft

float mic2FFT[kIDlengthX2]; // complex fft

float refSigFFT[kIDlengthX2]; // complex fft

float Sxy[kIDlengthX2]; // input-output cross spectrum

float U[kIDlengthX2]; // complex particle velocity
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float hilbertScale = 0; // used for the hilbert transform

float scale = 0; // scales FFTs

float maxVal = 0;

/***********************************************************

loopInit()

This function runs once when the program is first started,

and before the system enters its normal sampling mode. All

necessary variables are initialized in this function.

************************************************************

void loopInit(void)

{

int i;

float index = 0;

// Initialize the proc timer

proc_timer_reset();

proc_timer_start();

startTime = proc_timer_read();

endTime = proc_timer_read();

timerOverhead = endTime-startTime;

// TIMER_COUNTS_PER_MICROSECOND found in ProcTimer.h

// for systemID

binWidth = (float)kDefaultSampleRate/kIDlength;

// for all FFTs of length N

gen_w_r2(w, N); // generates twiddle factors for use with the FFT

// The twiddle factors need to be bit reversed before FFT

bit_rev(w, N>>1);

for (i=0; i<N; i++) // initializes all buffers

{

autocor[i] = 0;

coherence[i] = 0;

ED[i] = 0;

FIRcoef[i] = 0;

FR[i] = 0;

hMult[i] = 0;

impRes[i] = 0;
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mic1[i] = 0;

mic1FFTmag[i] = 0;

mic2[i] = 0;

mic2FFTmag[i] = 0;

omega[i] = 0;

refSig[i] = 0;

Sxx[i] = 0;

Syy[i] = 0;

WcoefPrev[i] = 0; // this is for edUpdate()

window[i] = 0.5*(1-cos(2*PI*(index/N))); // hanning window

index++;

}

for (i=0; i<N*2; i++)// buffers for complex values

{

avgPress[i] = 0;

hComplex[i] = 0;

FRminPhase[i] = 0;

mic1FFT[i] = 0;

mic2FFT[i] = 0;

refSigFFT[i] = 0;

Sxy[i] = 0;

U[i] = 0;

}

for (i=0; i<kWcoef; i++) // These buffers are filtered by Wcoef

{

wBuffer[i] = 0;

xBuffer[i] = 0;

r1Buffer[i] = 0;

r2Buffer[i] = 0;

rpBuffer[i] = 0;

rvBuffer[i] = 0;

Wcoef[i] = 0;

H1coef[i] = 0;

H2coef[i] = 0;

}

// These buffers are filtered by H1coef and H2coef

for (i=0; i<kHcoef; i++)
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{

dBuffer[i] = 0;

uBuffer[i] = 0;

hBuffer[i] = 0;

H1coef[i] = 0;

H2coef[i] = 0;

}

// This buffer holds previous values of x(n)

for (i=0; i<kDelay; i++)

{

zBuffer[i] = 0;

}

// This can be used to record the error

for (i=0; i<keBufferLength; i++)

{

error[i] = 0;

}

// used to compute particle velocity

omega[0] = 1;

for (i=1; i<=N/2; i++)

{

omega[i] = 2*PI*binWidth*i;

}

for (i=1; i<N/2; i++)

{

omega[kIDlength-i] = omega[i];

}

// multiplier buffer for the Hilbert transform

for (i=0; i<N/2; i++)

{

if (i==0)

hMult[i] = 1;

else

hMult[i] = 2;

}

// Necessary scaling factor for the Hilbert transform
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hilbertScale = 1/(float) N;

// number of averages computed in the off-line sysID

scale = 1/numAvgs;

// used in time-domain integration of U

alpha = -1/(Rho*X*kDefaultSampleRate);

}

/*******************************************************

loop()

This function is called once at the beginning of a

sampling period and determines what computations are

performed during that time interval, 1/Fs. A simple

binary system is used to turn functions on and off and

a text prompt is displayed the first time a function

is called. The proc_timer computes how long it takes

to run all the code that iteration and the result is

displayed in the variable elapsedMicroseconds. This

function can be used anywhere in the code to benchmark

the performance of a block of code.

********************************************************

near void loop(void)

{

startTime = proc_timer_read();

if(passThrough)

{

dataPassThrough();

if (firstPassThrough==0)

{

printf("Data passing through!\n");

firstPassThrough = 1;

}

}

else if(runSystemID)

{

systemID();

}

else if(filterOn)
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{

FIR();

if (firstFilter==0)

{

printf("Filter Time!\n");

firstFilter = 1;

}

}

else if (filteredXon)

{

filteredX();

if (firstFilteredX==0)

{

printf("Filtered-x EQ!\n");

firstFilteredX = 1;

}

}

else if (filteredXedOn)

{

filteredXed();

if (firstFilteredXed==0)

{

printf("Filtered-x ED EQ!\n");

firstFilteredXed = 1;

}

}

else if (computeDelay)

{

delay();

if (firstComputeDelay==0)

{

printf("Computing delay!\n");

firstComputeDelay = 1;

}

}
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endTime = proc_timer_read();

elapsedMicroseconds =

(endTime - startTime)/TIMER_COUNTS_PER_MICROSECOND;

}

void systemID()

{

systemIDinput();

}

/********************************************************

systemIDinput()

The excitation signal is played separately into the tube,

and samples are recorded. After kIDlength samples have

been recorded computations() is called. This repeats

numAvgs times, and then the minimum phase inverse filter is

computed, and the filter coefficients are stored in Wcoef.

*********************************************************

void systemIDinput()

{

int i,j,k;

k = 0;

ADC_read(InSig);

if(sample < kIDlength)

{

// the input samples are windowed

mic1[sample] = window[sample]*InSig[mic1in];

mic2[sample] = window[sample]*InSig[mic2in];

refSig[sample] = window[sample]*InSig[refIn];

sample++;

}

else if(sample >= kIDlength && avgCount < numAvgs)

{

sample = 0; // restarts the count for the next block

avgCount++;
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computations();

}

else

{

avgCount = 1;

sample = 0;

bufferLoc = 0;

runSystemID = 0;

printf("Recording ended!\n");

computations();

transferFunction();

hilbertTransform();

// scales impRes

// finds maxVal of the computed minimum-phase impulse response

maxVal = DSPF_sp_maxval(impRes, N);

for (i=0; i<N; i++)

{

impRes[i] = impRes[i]/maxVal; // normalizes impRes

}

for (i=0; i<N; i++)

{

for (j=k; j<N; j++)

{

// computes the one sided autocorrelation function

autocor[i] += (impRes[j]*impRes[j-k]);

}

k++;

}

// computes the minimum-phase inverse filter coefficients

levinsonDurbin(autocor, FIRcoef);

// scales Wcoef

maxVal = DSPF_sp_maxval(FIRcoef, N); // finds the maxVal of FIRcoef

for (i=0; i<N; i++)

{
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FIRcoef[i] = FIRcoef[i]/maxVal; // normalizes FIRcoef

}

for (i=0; i<kWcoef; i++)

{

// assigns values to the time-adaptive coefficients

Wcoef[i] = FIRcoef[i]*WcoefScale;

}

printf("Inverse filter computed!\n");

}

}

/**********************************************************

computations()

Copies input buffers into arrays twice the length to prepare

for the complex FFT computation. Computes FFT of the two

microphone recordings and proceeds to call the appropriate

functions to derive the time averaged energy density from

these two recordings.

***********************************************************

void computations() // called in systemIDinput()

{

int i;

for (i=0; i<N; i++) // test "input signal"

{

mic1FFT[2*i+1] = 0;

mic2FFT[2*i+1] = 0;

refSigFFT[2*i+1] = 0;

}

for (i=0; i<N; i++) // test "input signal"

{

mic1FFT[2*i] = mic1[i];

mic2FFT[2*i] = mic2[i];

refSigFFT[2*i] = refSig[i];

}
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// FFTs

DSPF_sp_cfftr2_dit(mic1FFT, w, N);

bit_rev(mic1FFT, N);

DSPF_sp_cfftr2_dit(mic2FFT, w, N);

bit_rev(mic2FFT, N);

DSPF_sp_cfftr2_dit(refSigFFT, w, N);

bit_rev(refSigFFT, N);

frequencyAverages();

particleVelocity();

energyDensity();

/*

//This part computes the IFFTs if ever necessary

bit_rev(mic1FFT, N);

DSPF_sp_icfftr2_dif(mic1FFT, w, N);

bit_rev(mic2FFT, N);

DSPF_sp_icfftr2_dif(mic2FFT, w, N);

// We are now in the time domain

divide(mic1FFT, N);

divide(mic2FFT, N);

*/

}

/*********************************************************

frequencyAverages()

Averages magnitude spectrums for mic1 and mic2, and refSig.

Computes the average pressure between the two microphone

locations. Computes the auto spectrum of the input, and

the cross spectrum between the input and the averaged

pressure. All buffers are averaged.

**********************************************************

void frequencyAverages() // called in computations()

{

int i;

// Visual check of the frequency content

for (i=0; i<N; i++)

{
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avgPress[2*i] = 0.5 * (mic1FFT[2*i] + mic2FFT[2*i]);

avgPress[2*i+1] = 0.5 * (mic1FFT[2*i+1]+mic2FFT[2*i+1]);

//magnitude = sqrt( A*conj(A))

mic1FFTmag[i] += scale*(mic1FFT[2*i]*mic1FFT[2*i]+

mic1FFT[2*i+1]*mic1FFT[2*i+1]);

mic2FFTmag[i] += scale*(mic2FFT[2*i]*mic2FFT[2*i]+

mic2FFT[2*i+1]*mic2FFT[2*i+1]);

Sxx[i] += scale*(refSigFFT[2*i]*refSigFFT[2*i] +

refSigFFT[2*i+1]*refSigFFT[2*i+1]);

Syy[i] += scale*(mic1FFT[2*i]*mic1FFT[2*i] +

mic1FFT[2*i+1]*mic1FFT[2*i+1]);

Sxy[2*i] += scale*(mic1FFT[2*i]*refSigFFT[2*i] +

mic1FFT[2*i+1]*refSigFFT[2*i+1]);

Sxy[2*i+1] += scale*(mic1FFT[2*i]*refSigFFT[2*i+1] -

mic1FFT[2*i+1]*refSigFFT[2*i]);

}

}

/******************************************************

particleVelocity()

computes particle velocity, U, according to the equation

U = (P2-P1)/(Rho*omega*X) explained in Panu’s thesis

*******************************************************

void particleVelocity() // called in computations()

{

float denominator = 0;

int i;

for (i=0; i<N; i++)

{

denominator = 1/(Rho*omega[i]*X);

U[2*i] = (mic1FFT[2*i+1]-mic2FFT[2*i+1])*denominator;

U[2*i+1] = (mic2FFT[2*i]-mic1FFT[2*i])*denominator;

}

// Zeros the first highPass/binWidth values on both ends,

// otherwise the values would be unnaturally large
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U[0] = 0;

U[1] = 0;

// compensates for the large error near 0 Hz

for (i=1; i<highPass/binWidth; i++)

{

U[2*i] = 0;

U[2*i+1] = 0;

U[kIDlengthX2+1-2*i] = 0;

U[kIDlengthX2 -2*i] = 0;

}

}

/************************************************************

energyDensity()

Determines average pressure (P1+P2)/2, and derives energy

density using the equation

ED = 1/4*rho*abs(U)^2 + 1/4*abs(P)^2/(rho*C^2)) explained in

Panu’s thesis.

*************************************************************

void energyDensity() // called in computations()

{

int i;

float velocity = 0;

float pressure = 0;

// derive ED

for (i=0; i<N; i++)

{

velocity = U[2*i]*U[2*i] + U[2*i+1]*U[2*i+1];

pressure = avgPress[2*i]*avgPress[2*i] +

avgPress[2*i+1]*avgPress[2*i+1];

//ED[i] += scale * (0.25/(Rho*C*C)*pressure +

0.25*Rho*velocity);

ED[i] += scale * (pressure + Rho*Rho*C*C*velocity);

}

printf("Computations done!\n");

}
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/************************************************************

transferFunction()

Here a pressure or an energy density transfer function can be

computed depending on which line of code you run. The ED TF

is computed as |ED|/|Sxx|

and the pressure TF is computed as explained in Chapter 3 of

Panu’s thesis. The coherence function is also computed here

between the output and the input to one of the microphones.

*************************************************************

void transferFunction() // called in systemIDinput()

{

int i;

// computes the tranfer function and coherence

for (i=0; i<N; i++)

{

// computes transfer function

FR[i] = sqrt(ED[i]/Sxx[i]);

/*

hComplex[2*i] = Sxy[2*i] /Sxx[i];

hComplex[2*i+1] = Sxy[2*i+1]/Sxx[i];

FR[i] = sqrt(hComplex[2*i]*hComplex[2*i] +

hComplex[2*i+1]*hComplex[2*i+1]);

//*/

coherence[i] = (Sxy[2*i]*Sxy[2*i]+Sxy[2*i+1]*Sxy[2*i+1])/

(Sxx[i]*Syy[i]);

}

}

/***************************************************************

hilbertTransform()

This is a line-by-line application of code developed in matlab.

matlab code to implement:

1. x = ifft(ed_log);

2. x_times_h = x.*h;

3. x_fft = fft(x_times_h);
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4. min_phase = exp(x_fft);

5. impulse_min_phase = real(ifft(min_phase));

****************************************************************

void hilbertTransform() // called in systemIDinput()

{

int i = 0;

float loc1 = 0;

float loc2 = 0;

// complex buffer for the transform

for (i=0; i<N; i++)

{

FRminPhase[2*i] = logf(FR[i]);

FRminPhase[2*i+1] = 0;

}

// 1.

bit_rev(FRminPhase, N);

DSPF_sp_icfftr2_dif(FRminPhase, w, N);

// 2.

for (i=0; i<N; i++)

{

FRminPhase[2*i]=hilbertScale*FRminPhase[2*i]*hMult[i];

FRminPhase[2*i+1]=hilbertScale*FRminPhase[2*i+1]*hMult[i];

}

// 3.

DSPF_sp_cfftr2_dit(FRminPhase, w, N);

bit_rev(FRminPhase, N);

// 4.

for (i=0; i<N; i++)

{

loc1 = FRminPhase[2*i];

loc2 = FRminPhase[2*i+1];

FRminPhase[2*i] = expf(loc1)*cos(loc2);

FRminPhase[2*i+1] = expf(loc1)*sin(loc2);

}

// 5.

bit_rev(FRminPhase, N);
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DSPF_sp_icfftr2_dif(FRminPhase, w, N);

for (i=0; i<N; i++)

{

impRes[i] = FRminPhase[2*i]/N;

}

}

/**********************************************************

delay()

estimates the delay of H(z). A block diagram for this

method is given in Chapter 3 of Panu’s thesis.

***********************************************************

//delay function

void delay()

{

// available variables are e,y,d,u,r

int i;

y1 = 0;

y2 = 0;

ADC_read(InSig);

input = InSig[filterIn];

d1 = InSig[mic1in];

d2 = InSig[mic2in];

hLoc--;

if (hLoc < 0)

hLoc = kHcoef-1;

dBuffer[hLoc] = input;

/////////////////////////////////////////////////

for (i=0; i<kHcoef; i++)

{

y1 += H1coef[i] * dBuffer[hLoc];
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y2 += H2coef[i] * dBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

/////////////////////////////////////////////////

// the LMS update

// at mic1 and mic2

e1 = d1 - y1;

e2 = d2 - y2;

muHe1 = muH*e1;

muHe2 = muH*e2;

for (i=0; i<kHcoef; i++)

{

H1coef[i] += muHe1 * dBuffer[hLoc];

H2coef[i] += muHe2 * dBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

/////////////////////////////////////////////////

// prepare data for output

for(i=0; i<kMAXnumAnalogOUT; i++)

{

OutSig[i] = 0;

}

// outputs the current inverse filtered sample

OutSig[filterOut] = input;

DAC_write(OutSig);

}

/*******************************************************
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filteredX()

This method is explained in detail in Chapter 2 of Panu’s

thesis. The index buffers are decremented every iteration,

and the newest sample is always at the location of the

index, and the oldest is at index-1. Checks are included to

ensure that wrapping around the ends of the buffer work.

********************************************************

// THIS IS FILTERED-X FOR PRESSURE

void filteredX()

{

int i;

u = 0;

r1 = 0;

ADC_read(InSig);

input = InSig[filterIn];

y = InSig[mic1in];

/////////////////////////////////////////////////

// updates current locations for the circular

// buffer shared by x, z, and w. They’re all the

// same length.

wLoc--; // buffer for W

if (wLoc < 0)

wLoc = kWcoef-1;

wBuffer[wLoc] = input;

hLoc--; // buffer for H1coef and H2coef

if (hLoc < 0)

hLoc = kHcoef-1;

hBuffer[hLoc] = input;

zLoc--; // digital delay for Z

if (zLoc < 0)

zLoc = kDelay-1;

zBuffer[zLoc] = input;
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if (zLoc > 0) // d(n)

d = zBuffer[zLoc-1];

else

d = zBuffer[kDelay-1];

/////////////////////////////////////////////////

// determine current u(n), r(n), and d(n)

// u(n) = w(n)^T x(n)

for (i=0; i<kWcoef; i++)

{

u += Wcoef[i] * wBuffer[wLoc];

wLoc++;

if(wLoc == kWcoef) // C++ circular buffer

wLoc = 0;

}

for (i=0; i<kHcoef; i++)

{

r1 += H1coef[i] * hBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef) // C++ circular buffer

hLoc = 0;

}

r1Buffer[wLoc] = r1;

uBuffer[hLoc] = u;

// THIS IS FILTERED-X FOR PRESSURE

/////////////////////////////////////////////////

// update W

e = d-y;

muE = mu*e;

for (i=0; i<kWcoef; i++)

{

Wcoef[i] = Wcoef[i] + muE * r1Buffer[wLoc];
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wLoc++;

if(wLoc == kWcoef)

wLoc = 0;

}

///////////////////////////////////////////////

// update H

y = 0;

for (i=0; i<kHcoef; i++)

{

y += H1coef[i] * uBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

//eH1 = d - y;

eH1 = (d - y) - e;

muEh1 = muH*eH1;

for (i=0; i<kHcoef; i++)

{

H1coef[i] = H1coef[i] + muEh1 * uBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

/////////////////////////////////////////////////

// prepare data for output

for(i=0; i<kMAXnumAnalogOUT; i++)

{

OutSig[i] = 0;

}

// outputs the current inverse filtered sample

OutSig[filterOut] = u;
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DAC_write(OutSig);

}

// THIS IS FILTERED-X FOR PRESSURE

/**********************************************************

filteredXed()

A block diagram and a detailed explanation of this methods

implementing two d(n)s is given in Chapter 2 of Panu’s thesis.

***********************************************************

// THIS IS FILTERED-X FOR ENERGY DENSITY

near void filteredXed()

{

int i;

u = 0;

r1 = 0;

r2 = 0;

ADC_read(InSig);

input = InSig[filterIn];

y1 = InSig[mic1in];

y2 = InSig[mic2in];

wLoc--; // buffer for W

if (wLoc < 0)

wLoc = kWcoef-1;

wBuffer[wLoc] = input;

hLoc--; // buffer for H1coef and H2coef

if (hLoc < 0)

hLoc = kHcoef-1;

hBuffer[hLoc] = input;

zLoc--; // digital delay for Z

if (zLoc < 0)

zLoc = kDelay-1;

zBuffer[zLoc] = input;

// if the delay between the two samples is more than
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// one sample this indexing system needs to adjusted

if (zLoc > 0) // d(n)

d1 = zBuffer[zLoc-1];

else

d1 = zBuffer[kDelay-1];

if (zLoc > 1) // d(n)

d = zBuffer[zLoc-2];

else if (zLoc == 1)

d = zBuffer[kDelay-1];

else

d = zBuffer[kDelay-2];

/////////////////////////////////////////////////

// determine current u(n), r(n), and d(n)

// u(n) = w(n)^T x(n)

for (i=0; i<kWcoef; i++)

{

u += Wcoef[i] * wBuffer[wLoc];

wLoc++;

if(wLoc == kWcoef)

wLoc = 0;

}

for (i=0; i<kHcoef; i++)

{

r1 += H1coef[i] * hBuffer[hLoc];

r2 += H2coef[i] * hBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

r1Buffer[wLoc] = r1;

r2Buffer[wLoc] = r2;

uBuffer[hLoc] = u;

Wupdate();
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HhatUpdate();

//edUpdate();

/////////////////////////////////////////////////

// prepare data for output

for(i=0; i<kMAXnumAnalogOUT; i++)

{

OutSig[i] = 0;

}

// outputs the current inverse filtered sample

OutSig[filterOut] = u;

DAC_write(OutSig);

}

// THIS IS FILTERED-X WITH AN ONLINE SYSTEM UPDATE

/*********************************************************

Wupdate()

Updates the filter coefficients for the filtered-x ED

algorithm; the theory for this update method is given in

Chapter 2 of Panu’s thesis.

**********************************************************

void Wupdate()

{

int i = 0;

e1 = d - y1;

e2 = d1 - y2;

velocity = lambda*velocity + alpha*(e2-e1); // u

velMean = weight*velocity + (1-weight)*velMean;

ev = velocity - velMean;

// pressure and particle velocity error signals

ep = (e1+e2)/2; // dp-yp

// filtered-x pressure and particle velocity

rp = (r1+r2)/2; // pressure
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rVelocity = lambda*rVelocity + alpha*(r2-r1); // u

rvMean = weight*rVelocity + (1-weight)*rvMean;

rv = rVelocity - rvMean;

rvBuffer[wLoc] = rv;

rpBuffer[wLoc] = rp;

e = ep + Rho*C*ev;

muEed = mu * e;

for (i=0; i<kWcoef; i++)

{

Wcoef[i] = leak*Wcoef[i] + muEed * rpBuffer[wLoc];

wLoc++;

if(wLoc == kWcoef)

wLoc = 0;

}

// error for output

if (eCount < keBufferLength)

{

error[eCount] = e;

eCount++;

}

/*

// tests HhatUpdate()

e = d-y1;

muE = mu*e;

for (i=0; i<N; i++)

{

Wcoef[i] += muE * r1Buffer[start];

start++;

if(start == N)

start = 0;

}

*/

}
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/*****************************************************

HhatUpdate()

Online system identification to adaptively estimate H1

and H2, the transfer functions to the two field

microphones. The theory for this function is

explained in Chapter 2 of Panu’s thesis.

******************************************************

void HhatUpdate()

{

int i = 0;

d1 = y1;

d2 = y2;

y1 = 0;

y2 = 0;

for (i=0; i<kHcoef; i++)

{

y1 += H1coef[i] * uBuffer[hLoc];

y2 += H2coef[i] * uBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;

}

eH1 = d1-y1 ;//- e;

eH2 = d2-y2 ;//- e;

muEh1 = muH*eH1;

muEh2 = muH*eH2;

for (i=0; i<kHcoef; i++)

{

H1coef[i] += muEh1 * uBuffer[hLoc];

H2coef[i] += muEh2 * uBuffer[hLoc];

hLoc++;

if(hLoc == kHcoef)

hLoc = 0;
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}

}

/***************************************************

edUpdate()

Online system identification to adaptively estimate

H1 and H2, the transfer functions to the two field

microphones.

****************************************************

/*

void edUpdate()

{

int i = 0;

// pressure and particle velocity from microphones

velocity = lambda*velocity + alpha*(y2-y1); // u

velMean = weight*velocity + (1-weight)*velMean;

yv = velocity - velMean;

yp = (y1+y2)/2;

yED = (1/(2*Rho*C*C)*yp*yp + Rho/2*yv*yv); // y^2(t)

e = d*d - yED; // d^2(t) - y^2(t)

ep = e; // ep is the previous e^2(t)

for (i=0; i<N; i++)

{ temp = (e - ep)/(Wcoef[i] - WcoefPrev[i]);

Wcoef[i] = leak*Wcoef[i] + temp;

// current becomes previous for next iteration

WcoefPrev[i] = Wcoef[i];

}

}

*/

/******************************************************

FIR()

reads in a sample and filters it through a Wcoef length

FIR filter. If you want to perform non-time adaptive

filtering this is the function to call, and the

coefficients that are the output from levinsonDurbin()

are used.

*******************************************************
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void FIR()

{

int i;

double y = 0;

ADC_read(InSig);

// FIR filter

start--;

if (start < 0)

start = N-1;

xBuffer[start] = InSig[filterIn];

// This implements a circular buffer

for (i=0; i<N; i++)

{

y += FIRcoef[i] * xBuffer[start];

start++;

if(start > N-1)

start = 0;

}

// prepare data for output

for(i=0; i<kMAXnumAnalogOUT; i++)

{

OutSig[i] = 0;

}

OutSig[filterOut] = y; // ED

DAC_write(OutSig);

}

/***********************************************

dataPassThrough()

reads in twelve values and outputs them.

************************************************
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void dataPassThrough(void)

{

int i;

ADC_read(InSig);

for(i=0; i<12; i++)

OutSig[i] = InSig[i];

for(i=0; i<kMAXnumAnalogOUT; i++)

{

OutSig[i] = 0;

}

OutSig[0] = InSig[0];

DAC_write(OutSig);

}

//~~~~~~~~~~~~~~~~~~~~~~

// Alternative Functions

//~~~~~~~~~~~~~~~~~~~~~~

////////////////////////////////////////////

// The 1/(rhoc) approximation method

////////////////////////////////////////////

/*******************************************

Wupdate()

Replace the other Wupdate() with this function. Also

in filteredXed(), replace the existing d(n) section

with the following that only uses a single d(n)

if (zLoc > 0) // d(n)

d = zBuffer[zLoc-1];

else

d = zBuffer[kDelay-1];

Using this method a 1/(rhoc) approximation is made
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for particle velocity U.

Updates the filter coefficients for the filtered-x

ED algorithm according to the theory explained in

Chapter 2 of Panu’s thesis under the "acoustic

impedance filter" method using the 1/(rhoc) plane

wave in a free field approximation.

********************************************

/*

void Wupdate()

{

int i = 0;

// pressure and particle velocity from microphones

velocity = lambda*velocity + alpha*(y2-y1); // u

velMean = weight*velocity + (1-weight)*velMean;

yv = velocity - velMean;

// pressure and particle velocity error signals

ep = d - (y1+y2)/2; // dp-yp

ev = d/(Rho*C) - yv; // dv-yv

// filtered-x pressure and particle velocity

rp = (r1+r2)/2; // pressure

rVelocity = lambda*rVelocity + alpha*(r2-r1); // u

rvMean = weight*rVelocity + (1-weight)*rvMean;

rv = rVelocity - rvMean;

rvBuffer[wLoc] = rv;

rpBuffer[wLoc] = rp;

e = ep + Rho*C*ev;

muEed = mu * e;

for (i=0; i<kWcoef; i++)

{

Wcoef[i] = leak*Wcoef[i] + muEed * rpBuffer[wLoc];

wLoc++;

if(wLoc == kWcoef)
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wLoc = 0;

}

// error for output

if (eCount < keBufferLength)

{

error[eCount] = e;

eCount++;

}

}

*/

////////////////////////////////////////////

// The acoustic impedance filter, Zs, method

////////////////////////////////////////////

/*******************************************************

acousticImpedanceFilter()

Call this function at the end of systemIDinput().

This filter estimates the specific acoustic impedance at

the sensor location - used to derive d_v(n) from d_p(n)

********************************************************

/*

void ZsFilter()

{

int i = 0;

float loc1 = 0;

float loc2 = 0;

for (i=0; i<N; i++)

{

FR[i] = sqrt(Umag[i]/Pmag[i]);

if (FR[i] == 0)

FR[i] = 1e-10;

}

// complex buffer for the transform

for (i=0; i<N; i++)

{

FRminPhase[2*i] = logf(FR[i]);

FRminPhase[2*i+1] = 0;
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}

// 1.

bit_rev(FRminPhase, N);

DSPF_sp_icfftr2_dif(FRminPhase, w, N);

// 2.

for (i=0; i<N; i++)

{

FRminPhase[2*i] = hilbertScale*FRminPhase[2*i] *

hMult[i];

FRminPhase[2*i+1] = hilbertScale*FRminPhase[2*i+1]*

hMult[i];

}

// 3.

DSPF_sp_cfftr2_dit(FRminPhase, w, N);

bit_rev(FRminPhase, N);

// 4.

for (i=0; i<N; i++)

{

loc1 = FRminPhase[2*i];

loc2 = FRminPhase[2*i+1];

FRminPhase[2*i] = expf(loc1)*cos(loc2);

FRminPhase[2*i+1] = expf(loc1)*sin(loc2);

}

// 5.

bit_rev(FRminPhase, N);

DSPF_sp_icfftr2_dif(FRminPhase, w, N);

for (i=0; i<N; i++)

{

Zcoef[i] = FRminPhase[2*i]/N;

}

}*/

/***************************************************

Wupdate()

Replace the other Wupdate() with this function. Also

in filteredXed(), replace the existing d(n) section
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with the following that only uses a single d(n)

if (zLoc > 0) // d(n)

d = zBuffer[zLoc-1];

else

d = zBuffer[kDelay-1];

Using this method particle velocity U is approximated

by a Zs filter.

Updates the filter coefficients for the filtered-x ED

algorithm according to the theory explained in Chapter 2

of Panu’s thesis under the "acoustic impedance filter"

method.

*****************************************************

/*

void Wupdate()

{

int i = 0;

zsOut = 0;

start--;

if (start < 0)

start = N-1;

zsBuffer[start] = d;

for (i=0; i<N; i++)

{

zsOut += Zcoef[i] * zsBuffer[start];

start++;

if(start == N)

start = 0;

}

ev = zsOut - yv;

ep = d - (y1+y2)/2; // dp-yp

///////////////////trial for Zs////////////

// filtered-x pressure and particle velocity
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rp = (r1+r2)/2; // pressure

rVelocity = lambda*rVelocity + alpha*(r2-r1); // u

rvMean = weight*rVelocity + (1-weight)*rvMean;

rv = rVelocity - rvMean;

rvBuffer[wLoc] = rv;

rpBuffer[wLoc] = rp;

e = ep + Rho*C*ev;

muEed = mu * e;

for (i=0; i<kWcoef; i++)

{

Wcoef[i] = leak*Wcoef[i] + muEed * rpBuffer[wLoc];

wLoc++;

if(wLoc == kWcoef)

wLoc = 0;

}

// error for output

if (eCount < keBufferLength)

{

error[eCount] = e;

eCount++;

}

}

*/



Appendix C

MATLAB Code

This file includes some of the short, handy bits of code for different functions

I’ve needed to implement in MATLAB during my research. Hopefully you will find

something useful here. The code is divided into cells with each new topic beginning

with %%.

%% white noise

% Creates a white noise signal

fs = 44100; % Hz

t = 900; % sec.

noise = randn(1,t*fs);

noise = noise ./(max(abs(noise)))*0.95;

% noise = filter(lowPass,1,noise);

% subplot(2,1,1)

% plot(noise)

% subplot(2,1,2)

% plot(20*log10(abs(fft(noise))));

wavwrite(noise,fs,’noise44100Hz’)
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%% low pass FIR filter

[audio, Fs] = wavread(’noise-3dB@44kHz’);

audio1 = filter(lowPass,1,audio);

wavwrite(audio1,Fs,’noise-3dBLP1900Hz@44kHz’)

% plots

N = 4096;

Fs = 44100;

freqScale = 0:Fs/N:Fs-(Fs/N);

xLim = Fs/2; % Hz

figure

plot(freqScale,20*log10(abs(fft(audio,N))),’k’);

hold on;

plot(freqScale,20*log10(abs(fft(audio1,N))));

xlim([0 Fs/2])

% surface plot

% This code is a stub; it will not run. For my applications

% F corresponds to my frequency axis, X corresponds to tube

% positions, and A holds the values to fill the plot with

[F,X] = ndgrid(f,x);

A = [impRes10 impRes10ED impRes7 impRes7ED];

surf(X,F,A)

%% looks at how signal level changes after filtering

% with the non-normalized levinson filter the output is

% magnified about five fold

load FIRcoef.dat;

load FIRcoefED.dat;

FIRcoef = FIRcoefED;

fs = 4000; % Hz

t = 5; % sec.
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noise = randn(1,t*fs);

noiseNorm = noise./(max(abs(noise)));

noiseFilt = filter(FIRcoef,1,noiseNorm)*.15; % .15 pressure, .2 ED

% average peak value

avgBefore = sum(abs(noiseNorm))/length(noiseNorm)

avgAfter = sum(abs(noiseFilt))/length(noiseNorm)

ratio = avgAfter/avgBefore

% plots

N = length(noiseFilt);

Fs = 4000;

freqScale = 0:Fs/N:Fs-(Fs/N);

xLim = Fs/2; % Hz

tLength = N/Fs;

increment = tLength/N;

t = 0:increment:tLength-increment;

tLim = max(t);

figure

subplot(2,1,1)

plot(t,noiseFilt,’:’)

hold on;

plot(t,noiseNorm,’k’)

subplot(2,1,2)

plot(freqScale,20*log10(abs(fft(noiseNorm))),’k’);

hold on;

plot(freqScale,20*log10(abs(fft(noiseFilt))));

title(’after’)

legend(’before’,’after’,4)

xlim([0 fs/2])

%% Hilbert transform

hzLog = log(abs(hz));

x = ifft(hzLog)’;

% creates the h vector

N = length(hz);

h = zeros(N,1);
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h(1) = 1;

h(2:round(N/2)) = 2;

h(round(N/2+1)) = 1;

hzMinPhase = exp(fft(x.*h)); % frequency domain

impMP = real(ifft(hzMinPhase)); % time domain

%% reading and writing a wave file

[audio, Fs] = wavread(’file’);

wavwrite(z,Fs,’file’)

%% computing particle velocity from two pressure measurements

load mic1FFT.dat;

load mic2FFT.dat;

load omega.dat;

rho = 1.21;

X = 0.05;

for i = 1:length(mic1FFT)/2

p1(i) = mic1FFT(2*i-1)+mic1FFT(2*1);

p2(i) = mic2FFT(2*i-1)+mic2FFT(2*1);

end

U = j*(p2-p1)./(omega*rho*X)’;

% plots

N = length(p1);

Fs = 4000;

freqScale = 0:Fs/N:Fs-(Fs/N);

figure

subplot(2,2,1)

plot(freqScale,20*log10(abs(j*(p2-p1))),’k’);

xlim([0 Fs/2])

subplot(2,2,2)

plot(freqScale,abs(j*(p2-p1)),’k’);

xlim([0 Fs/2])
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subplot(2,2,3)

plot(freqScale,omega*rho*X)

xlim([0 Fs/2])

subplot(2,2,4)

plot(freqScale,20*log10(abs(j*(p2-p1)./(omega*rho*X)’)),’k’)

hold on;

plot(freqScale,20*log10(abs(U)),’:’)

xlim([0 Fs/2])

%% look at the plot of particle velocity, U

close all; clear all;

load U.dat

N = length(U)/2;

Fs = 8000;

freqScale = 0:Fs/N:Fs-(Fs/N);

xLim = Fs/2;

u = zeros(length(U)/2,1);

for k = 1:N

u(k) = U(2*k-1) + j*U(2*k);

end

% plots

figure

plot(freqScale,20*log10(abs(u)),’k’);

title(’particle velocity’);

xlim([0 xLim])

%% FIRcoef.h output

% Creates an output file of filter coefficients that

% can be loaded on to the DSP

% function Coutput(FIRcoef,name)
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fid=fopen(name,’w’);

fprintf(fid,’float FIRcoef[kFiltLength]={’);

fprintf(fid,’%f,\n’,FIRcoef(1:length(FIRcoef)-1));

fprintf(fid,’%f};\n’,FIRcoef(end));

fclose(fid);

% to call this function:

% coutput(FIRcoef,’FIRcoef.h’)

%% compares two signals in time and frequency domain

load FIRcoef.dat

load impRes.dat

%%%%%%%

% plots

N = length(impRes);

Fs = 8000;

binWidth = Fs/N;

freqScale = 0:Fs/N:Fs-(Fs/N);

xLim = Fs/2;

figure

plot(freqScale,20*log10(abs(fft(impRes))), ’r’)

hold on;

plot(freqScale,20*log10(abs(fft(impResED))), ’k’)

title(’a*(f)b(f)/a*(f)a(f)’); xlim([0 xLim])

legend(’pressure FR’,’ED FR’,3)

figure

subplot(1,2,1)

plot(impRes)

subplot(1,2,2)

plot(impResED)

%% complex math

% Complex math computations when real and imaginary

% terms are stored in separate bins.
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clc; close all;

a = 4;

b = -0.37;

c = -14;

d = 0.001;

A = 4-j*0.37;

B = -14 +j*0.001;

% complex multiplication

res1 = a*c-b*d + j*(a*d+b*c)

res2 = A*B

% complex division

res3 = (a*c+b*d)/(c^2+d^2) + j*(b*c-a*d)/(c^2+d^2)

res4 = A/B

% 1 divided by a complex number

res5 = a/(a^2+b^2) - j*b/(a^2+b^2)

res6 = 1/A

% complex exponential, e^(a+jb)

a = 3.4445223;

b = -1.5555432;

complex = a + b*j;

num1 = exp(complex)

num2 = exp(a)*cos(b) + j*exp(a)*sin(b)

%% autocorrelation

clc; close all;

x = [0 1 2 3 4 5 4 3 2 1];

autocor = zeros(1,length(x));

l = 1;

% first method

for m = 1:length(x)

for n = l:length(x)
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autocor(m) = autocor(m) + x(n)*x(n-l+1);

end

l = l+1;

end

% matlab convolution

matCor = conv(x,x);

% plots

stem(autocor,’.’)

hold on;

stem(matCor(length(autocor)+1:length(matCor)),’r:.’)

%% simple circular buffer

clc; close all;

i = 1:32;

array = i.*ones(1, 32);

start = 17;

filtC = 0.5 * ones(1,32);

for j = 1:32

startCount(j) = array(start);

temp(j) = array(start)*filtC(j);

start = start + 1;

if(start > 32)

start = 1;

end

end

start

%% calculates twiddle factors on the DSP

clc; close all;

n = 128;

w = zeros(1,n);



181

delta = 2 * pi / n;

for i=1:1:n/2

w(2*i-1) = cos((i-1)*delta);

w(2*i) = sin((i-1)*delta);

end

w(1:n)’

%% calculates omega on the DSP

% The way the FFT works in CCS is that the right

% half has two less values than the left, and

% [512] in C is the midpoint

x=0:7;

fs = 10;

binWidth = fs/length(x);

omega = zeros(1,length(x));

for k=0:length(x)/2

omega(k+1) = 2*pi*binWidth*k;

end

for k = 1:length(x)/2

omega(length(omega)+1-k) = 2*pi*binWidth*k;

end

%% Convolution

% I have found through my own tests that the results of

% my linear convolution function match the results of

% the matlab conv( ) function, which runs much faster,

% thus I have chosen to do my testing using the matlab

% function knowing the process is equivalent to the DSP

% convolution

load impRes7.dat;

load FIRcoef7.dat;

load FIRcoef7ED.dat;

impRes = impRes7;

Wcoef = FIRcoef7;



182 Chapter C MATLAB Code

EDcoef = FIRcoef7ED;

[audio, fs1] = wavread(’5kHzSound-0dB@.wav’);

% deconvolution, tests impRes and FIRcoef together

z = conv(audio,impRes);

y = conv(z,FIRcoef);

wavwrite(z./(1.05*max(z)),Fs,’pressure@7’)

wavwrite(y./(1.05*max(y)),Fs,’pressure@7filter@7’)

% energy density

z = conv(audio,impRes);

wavwrite(z./(1.05*max(z)),’ED@7filter@7’)

%% Sound pressure filtered-x algorithm with online systemID

% setup parameters

H = impResDiffPos’;

Hhat = impRes’;

idealFIR = FIRcoefDiffPos’;

% W = ones(1,numCoefs)*0.001; %white noise

% W(length(W)/2) = 0.5;

% W = FIRcoefPlugsRem’;

W = FIRcoef’*0.5;

t = 600; % run time in seconds

fs = 3000; % Hz

stop = t*fs;

% random noise

x = randn(1,t*fs);

x = x./max(abs(x));

% filter lengths

numCoefs = length(impRes);

% mu

% mu = 0.0007; % for FIRcoefPlugsRem

% mu1 = 0.002; % for FIRcoefPlugsRem

mu = 0.0005; % for FIRcoefDiffPos
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mu1 = 0.005; % for FIRcoefDiffPos

% delay

delay = 150;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initialize filters

Z = zeros(1,delay);

Z(delay) = 1;

rBuffer = zeros(1,numCoefs);

uBuffer = zeros(1,numCoefs);

xBuffer = zeros(1,numCoefs);

zBuffer = zeros(1,delay);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% the filtered-X algorithm

e = zeros(1,stop);

% algorithm

for n = 1:stop

% first stage

% previous inputs to W and Hhat

xBuffer = [x(n) xBuffer(1:numCoefs-1)];

% delay buffer for d(n)

% zBuffer = [x(n) zBuffer(1:delay-1)];

% d = sum(Z.*zBuffer);

% output of W

u = sum(W.*xBuffer);

% previous inputs to H

uBuffer = [u uBuffer(1:numCoefs-1)];

% system output

dHat = sum(H.*uBuffer);

% W update

d = x(n);

e(n) = d - dHat;

eMu = e(n)*mu; % computes new error signal
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% output of Hhat

r = sum(Hhat.*xBuffer);

% stored for error update

rBuffer = [r rBuffer(1:numCoefs-1)];

% LMS update; updates W coefficients

W = W + eMu.*rBuffer;

% H update

HhatOut = sum(Hhat.*uBuffer);

e2 = x(n)-HhatOut;

e3 = e2-e(n);

e3mu1 = e3*mu1; % computes new error signal

% LMS update; updates H coefficients

Hhat = Hhat + e3mu1.*uBuffer;

end

%% energy density filtered-x algorithm with online systemID

load impRes7.dat; % Fs = 3000 Hz

load impRes8.dat;

load FIRcoef7ED.dat;

load H1coefLP600Fs2000.dat;

load H2coefLP600Fs2000.dat;

% setup parameters

impRes1 = H1coefLP600Fs2000./max(abs(H1coefLP600Fs2000));

impRes2 = H2coefLP600Fs2000./max(abs(H2coefLP600Fs2000));

% impRes1 = filter(lowPass,1,impRes1);

% impRes2 = filter(lowPass,1,impRes2);

idealFIR = FIRcoef7ED; % compare converged coefs to this

W = zeros(1,length(idealFIR)); %initialize W

% W(1) = 0.2;

% W = FIRcoef7ED’*0.5;
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mu = 1e-5; % mu 2e-4 works with unscaled impRes

const = 0.01; % 0.03 convergence constant for v(n) averaging

% 0.1 too big,

delay = 12; % holds x(n)

rho = 1.21;

c = 343;

delx = 0.05;

t = 300; % run time in seconds

fs = 2000; % Hz

stop = t*fs;

% random noise

x = randn(1,t*fs);

x = x./max(abs(x));

% x = filter(highPass,1,x);

% initialize filters

numCoefs = length(impRes1); % filter lengths

H1 = zeros(1,numCoefs);

H2 = zeros(1,numCoefs);

H1hat = zeros(1,numCoefs);

H2hat = zeros(1,numCoefs);

H1 = impRes1’;

H2 = impRes2’;

H1hat = impRes1’;

H2hat = impRes2’;

rpBuffer = zeros(1,numCoefs);

rvBuffer = zeros(1,numCoefs);

uBuffer = zeros(1,numCoefs);

xBuffer = zeros(1,numCoefs);

Z = zeros(1,delay); % holds x(n)

Z(delay) = 1;

zBuffer = zeros(1,delay);

alpha = -1/(rho*delx*fs); %*exp(-1/fs);

lambda = 0.999666;

yp = 0;
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yv = 0;

ep = 0;

ev = 0;

v = 0;

rv = 0;

rvCurr = 0;

vMean = 0;

rvMean = 0;

e = zeros(1,stop);

% the filtered-X algorithm

% algorithm

for n = 1:stop

% FIR filtering

% previous inputs to W and Hhat

xBuffer = [x(n) xBuffer(1:numCoefs-1)];

% delay buffer for d(n)

zBuffer = [x(n) zBuffer(1:delay-1)];

d = sum(Z.*zBuffer);

% output of W

u = sum(W.*xBuffer);

% previous inputs to H

uBuffer = [u uBuffer(1:numCoefs-1)];

y1 = sum(H1.*uBuffer); % system output

y2 = sum(H2.*uBuffer);

% measured pressure and particle velocity

yp = (y1+y2)/2; % pressure

% particle velocity error

v = lambda*v + alpha*(y2-y1);

vMean = const*v + (1-const)*vMean;

yv = v-vMean;
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% compute errors

ep = d - yp;

ev = d/(rho*c) - yv;

% filtered-x

H1hatout = sum(H1hat.*xBuffer);

H2hatout = sum(H2hat.*xBuffer);

rp = (H1hatout+H2hatout)/2; % pressure estimate

% estimated particle velocity

rvCurr = lambda*rvCurr + alpha*(H2hatout-H1hatout);

rvMean = const*rvCurr + (1-const)*rvMean;

rv = rvCurr - rvMean; % particle velocity estimate

% stored for error update

rpBuffer = [rp rpBuffer(1:numCoefs-1)];

rvBuffer = [rv rvBuffer(1:numCoefs-1)];

W = W + mu*(ep + rho*c*ev)*rpBuffer; % LMS update

e(n) = ep + rho*c*ev;

end

%% FIR filter expanded

load impRes.dat;

load FIRcoef.dat;

[audio, Fs] = wavread(’sound8kHz’);

x = audio;

impRes = impRes;

% linear convolution with the system

y = 0;

M = length(impRes);

xBuffer = zeros(size(impRes));

start = round(M/2);
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% FIR filter w/ circular buffer

for n = 1:length(x)

start = start - 1;

if(start < 1)

start = M;

end

temp = 0;

xBuffer(start) = x(n);

for j = 1:M

temp = temp + impRes(j) * xBuffer(start);

start = start + 1;

if(start > M)

start = 1;

end

end

z(n) = temp;

end

%% Creating a waterfall plot from a time recording

% (frequency vs. time)

clear all; close all; clc;

fid=fopen(’ID004_004.bin’,’r’);

rec=fread(fid,inf,’single’)’;

fid=fopen(’ID004_007.bin’,’r’);

ref=fread(fid,inf,’single’)’;

fs = 6000;

N = 2048;

xLim = 1000; % Hz

tScale = 0:1/fs*N:length(rec)/fs - (1/fs*N);

freqScale = 0:fs/N:fs-(fs/N);

p = round(length(rec)/N); % # of possible averages
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recFFT = zeros(p,N); % FFT

refFFT = zeros(1,N); % FFT

%hanning window on blocks

n = 0:N-1;

hann = 0.5*(1-cos(2*pi*(n./N)));

recTW = 0; % applies time window

refTW = 0;

% averaged reference magnitude

for i=1:p

refTW = ref((1+(i-1)*N):(N*i)).*hann;

refFFT = refFFT + 1/p*abs(fft(refTW));

end

% averaged pressure magnitude divided by reference

for i=1:p

recTW = rec((1+(i-1)*N):(N*i)).*hann;

recFFT(i,:) = 20*log10(abs(fft(recTW) ./ refFFT)) + 38;

end

%********************************************************

% plots

% 3D surface plot

start = 35; % 4096

stop = 685;

start = 18; % 2048

stop = 343;

f = freqScale(start:stop);

x = tScale;

[F,X] = ndgrid(f,x);

A = recFFT(1,start:stop)’;

for i=2:p

A = [A recFFT(i,start:stop)’];

end
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figure

surf(X,F,A)

shading interp

xlabel(’Time (s)’); ylabel(’Frequency (Hz)’);

zlabel(’Magnitude (dB)’)

view([150 60])

axis square

colorbar

set(gcf,’Position’, [157 37 790 686])

figure

surf(X,F,A)

shading interp

xlabel(’Time (s)’); ylabel(’Frequency (Hz)’);

zlabel(’Magnitude (dB)’)

view([0 90])

colorbar

set(gcf,’Position’, [157 37 790 686])

%% Creating 3D spectral plots from several

% simultaneous recordings in a sound field

% Parameters to be changed:

clear all; close all; clc;

testname = ’ID’;

ID = 017;

fs = 5000;

CH = 0:15;

numChan = length(CH);

N = 4096;

for n=1:numChan

if ID<10

IDstring=’00’;

elseif ID<100

IDstring=’0’;

else

IDstring=’’;

end

if CH(n)<10
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CHstring=’00’;

elseif CH<100

CHstring=’0’;

else

CHstring=’’;

end

filename=[testname,IDstring,int2str(ID),...

’_’,CHstring,int2str(CH(n)),’.bin’];

fid=fopen(filename,’r’);

x=fread(fid,inf,’single’);

Data(n,:)=x;

fclose(fid);

end

%%%%%%%%%%%%%%%%%%%%%%

%Loading data complete

%%%%%%%%%%%%%%%%%%%%%%

%part a

p = length(Data(1,:))/N; % # of possible averages

FFTavg = zeros(numChan,N); % FFT

FFTpress = zeros(numChan,N); % FFT

FR = zeros(numChan,N); % FR

%hanning window on blocks

n = 0:N-1;

hann = 0.5*(1-cos(2*pi*(n./N)));

timeWindowed = 0;

% first half

for i=1:16

temp = Data(i,:);

for j=1:p

timeWindowed = (temp((1+(j-1)*N):(N*j))).*hann;

FFTavg(i,:) = FFTavg(i,:) + 1/p*abs(fft(timeWindowed));

end

end

%********************************************************

% plots
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freqScale = 0:fs/N:fs-(fs/N);

xLim = 2000; % Hz

magScale = 1500;

% % pressure

% for i=1:numChan-2

% figure

% FFTpress(i,:) = 20*log10(FFTavg(i,:).*0.7);

% plot(freqScale,FFTpress(i,:))

% xlim([0 2000])

% end

% transfer function

for i=1:7

% figure

FR(i,:) = 20*log10(FFTavg(i,:)./(FFTavg(15,:)).*magScale);

% plot(freqScale,FR(i,:))

% xlim([0 xLim])

end

for i=8:14

% figure

FR(i,:) = 20*log10(FFTavg(i,:)./(FFTavg(16,:)).*magScale);

% plot(freqScale,FR(i,:))

% xlim([0 xLim])

end

% 3D surface plot

start = 42; % N = 4096

stop = 1639;

f = freqScale(start:stop);

x = 1:numChan-2;

[F,X] = ndgrid(f,x);

A = FR(1,start:stop)’;

for i=2:numChan-2

A = [A FR(i,start:stop)’];

end

figure
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surf(X,F,A)

shading interp

xlabel(’Microphone Position’); ylabel(’Frequency (Hz)’);

zlabel(’Magnitude (dB)’)

caxis([-55 50])

axis([1 14 50 2000 -50 45])

view([150 60])

axis square

colorbar

set(gcf,’Position’, [157 37 790 686])

figure

surf(X,F,A)

shading interp

xlabel(’Microphone Position’); ylabel(’Frequency (Hz)’);

zlabel(’Magnitude (dB)’)

caxis([-55 50])

axis([1 14 50 2000 -100 50])

view([0 90])

colorbar

set(gcf,’Position’, [157 37 790 686])
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