Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-08-20

Implementation of Optical Spectra Calculations in
FIREBALL: A Local-Orbital Density Functional
Theory Approach

Ivan Grigoryevich Okhrimenko
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Astrophysics and Astronomy Commons, and the Physics Commons

BYU ScholarsArchive Citation

Okhrimenko, Ivan Grigoryevich, "Implementation of Optical Spectra Calculations in FIREBALL: A Local-Orbital Density Functional
Theory Approach” (2008). All Theses and Dissertations. 1592.
https://scholarsarchive.byu.edu/etd/1592

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations

by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.


http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1592?utm_source=scholarsarchive.byu.edu%2Fetd%2F1592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

IMPLEMENTATION OF OPTICAL SPECTRA CALCULATIONSIN FIREBALL:

A LOCAL-ORBITAL DENSITY FUNCTIONAL THEORY APPROACH

by

Ivan Grigoryevich Okhrimenko

A dissertation submitted to the faculty of
Brigham Y oung University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Physics and Astronomy
Brigham Y oung University

December 2008



BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Ivan Grigoryevich Okhrimenko

This dissertation has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Bret Hess, Chair
Date John Colton
Date Robert Davis
Date Gus Hart

Date Harold Stokes



BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, | have read the dissertation of Ivan G.
Okhrimenko inits final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements; (2) itsillustrative materials including figures, tables, and chartsare in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date Bret Hess
Chair, Graduate Committee

Accepted for the Department

J. Ward Moody, Graduate Coordinator
Department of Physics and Astronomy

Accepted for College

Thomas W. Sederberg, Associate Dean
College of Physical and Mathematical
Sciences



ABSTRACT

IMPLEMENTATION OF OPTICAL SPECTRA CALCULATIONSIN FIREBALL:

A LOCAL-ORBITAL DENSITY FUNCTIONAL THEORY APPROACH

Ivan G. Okhrimenko
Department of Physics and Astronomy

Doctor of Philosophy

We have expanded the capabilities of the ab initio tight-binding molecular
dynamics package FIREBALL to include calculations of optical properties. Basic zero
order approximation is based on transitions between Kohn-Sham states. Corrections for
electron-electron interactions are based on time dependant density functional theory
(TDDFT). Consistent with the FIREBAL L approach, we use pre-calculated integrals and

approximations to make the program faster.
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1  Introduction
1.1 Technology and nanoscience

Conventional technologies of microelectronics are limited not only by the
resolution of the photolithographic process, but also by the physical limits of materials
used. This limits the size of individual elements and the density of the elements on the
crystal. The challenges encountered on the road toward miniaturization include power
consumption, heat dissipation, the problem of the chemical heterogeneity of substrate and
the problem of structure defects. Eventually, we will reach the physical limits of
conventional silicon MOSFET (M etal Oxide Semiconductor Field Effect Transistor)
devices technology. The search for a principally new type of device is therefore under

way.

The single-electron tunneling (SET) transistor is one of the possible candidates
thought capable of filling this future need [1, 2]. On the practical side, it was
demonstrated that nanoclusters are good building blocks for those novel devices, even at
room temperature [3-5]. A system of multiple nanoparticles participating in atunneling
transfer of charge between electrodes (an exact solution is provided for a double-particle

system) istreated in [6].

Scientists are also researching the use of nanoparticles for medical applications
[7-10]. Future drug delivery, where nanoparticles would transport attached drugs to
specific cells or to specific locations in the body, and thereby activate the medication
upon an encounter with a specific condition or signal, might well revolutionize the future

pharmaceutical industry. Future medical providers may one day consider current medical



practice to be a primitive, indiscriminate “nuking” of the entire patient’s body with a drug
that really only need to kill afew germs, and instead treat the patients of the future with
local treatment delivery precisely where needed. An advance drug delivery would

presumably lead to better performance and fewer side effects.

The nanoparticles can be engineered to bond to specific types of cells (for
example cancer cells) by choosing specific antibodies or peptides as nanoparticle ligands.
Nanoparticles with high luminescence can be used as visible biological markers. When
activated (excited by ultraviolet radiation for example) the glowing nanoparticles
attached to targeted cells would be a great help for future surgeons. Another possible
application is a photodynamic therapy, during which nanoparticles attached to targeted
cellswould act on cells when triggered to do so. For example, this could be used to
destroy cancerous cells inside the tissue without cutting away “a pound of flesh” to

achieve the excision.

1.2 Need for simulation

With modern chemistry, or patterning technologies, one can synthesize
nanostructures with engineered structure and surface. One would like to know or model
physical properties before beginning the tremendous and almost impossible task of
experimentally trying and testing all possible structures. There is a definite need for
simulation and modeling of physical propertiesin order to narrow down the list of

potentially promising structures prior to any physical experimentation.

Calculation of optical properties is one of the critical aspects of modeling. Optical

analysis affords insight into the electronic levels structure, which in turn is quite



important for acquiring an accurate knowledge about the likely optical and electronic

properties of a material.

This dissertation describes the implementation of calculation of optical properties
within the computational FIREBALL package. Calculation of a decent size quantum
system cannot be exact and will always require inclusion of some approximations. The
complexity of the calculation task rapidly increases with the increasing size of the system
under investigation. Simulating nanosystems requires the ability to work with the systems

with one hundred atoms or more.

1.3 Tight-binding models

The tight-binding model is an approximate method for determining the electronic
structure of a system. Because most of tight-binding models are so loosely defined in
terms of the fundamental theory, there is no unique tight-binding model. One common
characteristic among all tight-binding modelsisthat they all use the local orbital
approach, meaning that only interactions with neighbors which are closer than a certain

distance are taken into account.

One can define two general classes of tight-binding models: semi-empirical and
ab-initio. While ab-initio models are based on a first principles approach, semi-empirical

models use a set of parameters fitted to experimental data or first principle theory results.

The need to fit parameters within a semi-empirical model severely limits
reliability, and restricts the results to avery specific case for which the parameters were
fitted. Also, imposed parameters are typically not transferable between systems through

the use of simple distance scaling [11].



14 FIREBALL

FIREBALL (“FB”) isa suite of programs designed to perform molecular
dynamics calculations using the ab initio tight-binding model. The program can calculate
avariety of characterigtics including, but not limited to, structure (atomic positions),
energy levels and charge distribution. The main parts of the FB suite are called CREATE

and FIREBALL.

The program achieves great time performance due to its use of pre-calculated
integrals. The part of the package called CREATE calculates all datafiles for auser-
selected set of atoms. During the work of the FFREBALL part, it need only to assemble
required integrals out of pre-calculated ones recorded in datafiles, interpolate, rotate as

necessary and keep track of the various indexing.

FB is based on Sankey-Niklewski (SN) ab-initio formalism [11], with significant
improvements such as going beyond the sp? basis set of SN allowing for double-numeric
basis sets with d-orbitals, and accommodating future provisions for f-orbitals. The atomic
cores are represented by pseudopotentials. This means that we are working only with
valence electrons, an approach which further improves time performance. FB operates

with slightly excited atomic-like local orbitals because of the cut-offs[11, 12].

Note that our work with FB has been focused on developing the capacity to

calculate optical properties within the package.



2  Theory
2.1 Thefull Hamiltonian
Speaking very generally, the Schrodinger equation we need to solve has the form

Hy =Ey . (2.1)
For the general purpose of solid state application, we can define the Hamiltonian

in the following terms:

H=T+V+V_, (2.2)
where
% [o] ~29
yo atz
T = - 2.
a5+ (23
E
d o eZZ
V=-aa—-, (2.4)
i=1l a ria
N 2
Ve=a —. (2.5)
i<j rij

The primary difficulty here isthat this is a many-particle equation with all
associated variables entangled. This equation is unsolvable for a general system. We must

therefore resort to approximations.

2.2 TheBorn-Oppenheimer approximation

Our first step toward a solution is the Born-Oppenheimer approximation, because

the mass of electrons is so much smaller than that of the nuclei, we can say that the



electrons respond instantaneously to changes in the positions of nuclei. Asan
approximation we can separate the electronic and nuclear degrees of freedom, while
nuclei are in static, classical potential derived from the total energy of the electrons. It is
then a good approximation to say that the electrons are aways in their ground state,
responding immediately to any changes of the nuclear positions. It further follows that
evaluation of the energies involved in moving nuclei depend upon the solution of the

electron problem. Thisis agood example of adiabatic approximation.

Asan analogy, imagine a swarm of flies (representing electrons) that is steadily
buzzing around a boat (representing atomic nuclei) that is slowly floating adrift inthe
middle of alake. Imagine further an attempt to mathematically characterize the collective
movement of the flies and the boat. Instead of attempting the difficult task of describing
the flies and boat together, the analysis could be deconstructed into an examination of the
boat separate from the flies. From the perspective of the tiny and fast-moving flies, the
much larger boat is effectively stationary at any given moment. As a result, flies achieve
their equilibrium positions very quickly, adjusting virtually instantaneously to every new

position of the boat.

Carrying this “boat-fly Hamiltonian” analogy forward, we would separate “boat”
terms and will need to solve “fly Hamiltonian” where “state of the boat” would only enter
as agenerator of a“fly potential” in which flies are moving. The assertion isthat the
process of flies achieving their equilibrium positions for a given “boat state’ is
ingtantaneous and does not affect the state of the boat. An approximation of this kind
breaks down with respect to any non-adiabatic events like non-adiabatic electron jumps

in chemical reactions or nonradiative transitions in solids. The latter breaks the



approximation because it involves phonons, and thus explicitly requires coupling

between electrons and nuclei.

Note that the Born-Oppenheimer approximation does not prohibit electrons in

excited states.

2.3 Exchange and Correlation

Electrons are charged particles. As such, they are constantly interacting with each
other. Each electron repels others for two reasons. The first one is Coulomb. The second
is exchange interaction due to the exclusion principle. Physically, both considerations
arise from the same Coulomb potential. The presence of an electron in a particular locale
depletes the probability of finding another electron within a certain vicinity of that same
locale. The region defined by the depleted probability of an additional electronis called

the exchange-correlation hole.

If we start thinking about electron-electron interactions, we would quickly realize
that a given electron is interacting with all other electrons. Consequently, we should not
be able to wholly describe electronic properties in terms of single electron states.
Nevertheless, single-electron theories and models do exist and do yield reasonable
results. The reason single-electron models works is because electrons are screening each
other, so agiven electron is predominantly influenced by a limited number of electronsin

itsimmediate vicinity [13].

To summarize, the avoidance of other electrons due to Coulomb repulsion is
known as corrdation. The avoidance of other electrons due to exclusion is known as

exchange.



2.4 Hartree

Even after the Born-Oppenheimer approximation is applied, the Schrodinger

eguation is a many-body problem and extremely difficult to solve.

The electronic problem is

HaF 2 (R = (RIF 2 (RTD), (26)

where {R} and {f } are the nuclei and electron coordinates respectively, and the

Hamiltonian of this electronic problemis

Py T—T (2.7)

Thefirst term of this latter equation is kinetic energy, the second term is electron-electron

interaction and the third term is electron-ion Coulomb interaction.

The Schrodinger equation has 3N degrees of freedom and a non-separable

electronic part.

The electron-electron interaction, if approached directly, entails a computational
burden that is often unacceptable from a practical standpoint. To resolve this, Hartree
(1928) developed approximation replacing the true electron-electron interaction with an
effective potential. In this approach, each electron movesin afield whichisa
superposition of the fields produced by all other electrons. In other words, electrons are

moving in a mean field produced by the sum of all other electrons.

We are solving a set of single-particle equations



Ry ()0 ()=ey () 29)

or

hi(r)=ey.(r), (2.9)

which are N separated Schrodinger equations and the wavefunction is a simple product:

FL AR =y (R L (0)y (0. (210)
The corresponding potential must be
Feen(rd
)= gpr 62 2.11)
i
wherenis the number density of electrons:
n({) = é lV j (Uz : (2.12)
]
The corresponding potential of electron-electron interaction then can be written as
Iy2
r
o-if)-88°, 7 & o1
i

i
occ

The Hamiltonian of full electronic problem is a sum of single-electron

Hamiltonians:

H = é h | (2.14)

ga h eOy.(r.)Q aed y.(E)é, (2.15)



which is N separate and decoupled single-electron equations. The energy is a sum of one-

electron energies.

E.=ly[Hy)=wlahl)=ae. (216

2.5 Hartree-Fock

The main fault of Hartree approximation isthat it does not take the exclusion
principle into account. Fock and Slater (1930) realized that if one renders the
wavefunctions antisymmetric, the exclusion principle will be enforced. It is easy to see,
that if we have an exchange operator C , then if we apply it twice, we should get back

where we started, with maybe a sign change:

ccly| = (x| (2.17)
Positive eigenvalue would land us in Bose-Einstein statistics, while negative eigenvalue

would lead to Fermi-Dirac.

The Fock and Slater approximation represents the wave function as an

antisymmetrized product of one-particle wave functions:

|_\
) QJOZ

r r s r r
y (rlsl"'rNSN):m (' 1)ysl(r151)--ysN(r151)
X

r
yl('rlsl) X yl(rNSN)

X X (2.18)

1
JN! X X
r
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Thisiscalled a Slater determinant. In this approximation all particles depend on each
other in an antisymmetric way and thus enforce the Pauli principle. This makes the
positions of electrons anticorrelated, meaning the acknowledged probability of finding an

electron close to another electron is lowered.

If we employ variational principle we should end up with new hi :

r ey (Y. (r)

-

ey, =h™Yy, +a ()Gjrj (2.19)

Overall this posesan N“problem.

Thisintegral (Fock term) is exact exchange energy assuming we have exact y ..

2.5.1 Hartree-Fock for free electron gas

A free electron has a known wavefunction, represented by a plane wave:

hy, @y, (f)=—=e*. (2.20)

1
W
Each wave-vector lessthan k. occurstwice (one for each spin orientation) in the Slater

determinant. These wave functions give a solution to the H-F equation for free electrons.

The potential term due to ions is cancelled by the potential term from electrons:

u™+u® =0 (2.21)
Only the exchange and kinetic energy terms survive, and they are easily evaluated

by writing them in terms of their Fourier transforms:

2 ror

e éiz iq(f - rJ):47Oe
q

‘ ‘® 4pe 2y dg 1 eiQ(frrfr')

> 1
— 0(7_ ‘ 2.22
ri _ rJ V 2p)3 q2 ( )

11



_hk? d’k 4pe’ _hk® 20 @k §

e = = k. F T,
““om Yoy k-k 2m p 7 Bk 5
where
_ 2
F(x)= 241Xy x
2 4x 1- X
For k <k., sumisover all k (N electrons)
o
0
Etot:N&EEF'§ekFi
57 4 p 5
or
E ez é3 2 3 u
—=——4a1k -—1k .
N 2a085( F3) 2p(Fao)H

where a, = 0.529A isaBohr radius. Using Fermi wave vector for free electrons:

k. = (3p2n)%,

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

where nis number density, one can easily see that energy can be written completely asa

function of density.

2.6 Density functional theory (DFT)

Density functional theory asserts that electron density as a function of coordinates

will contain all the information needed to solve the many-electron problem. This concept

was observed and proved by Hohenberg and Kohn (1964). One can think of expressing

every function (e.g. kinetic energy, ground-state energy and so on) as a function of the

density function. Hence the name, density functional theory (DFT).

12



Thomas-Fermi (Dirac) theory, which precedes DFT, can only give total energy of
the ground state. The significant break-through associated with DFT istwo theorems
proven by Hohenberg and Kohn which laid the theoretical justification for the density
function as a state function. This sub-chapter is a result of compilation between [11, 12,

14] and some personal lecture notes.

2.6.1 Thefirst Hohenberg and Kohn theorem

“For a given electron density which is the density of the ground state for some
system, there cannot be two different external potentials.”

Put another way, since external potential uniquely defines the state of the system,
every observable quantity of a (stationary) system is determined by ground-state density
alone. By external potential in the context of the theorem, we mean everything but kinetic

and electron-electron parts.

The forward proof — the dependence of density on the potential — is rather
straightforward: wavefunction dependence on potential is explicit in equation (2.1) and

dependence of density on the wavefunction is explicit from equation (2.12).

The proof for the other direction (that density uniquely defines potential) isa

classical contradiction proof.

a) If two potentials, V, and V, are different by more than a constant, they will not

produce the same wavefunction.

b) Two different ground states Y, of H, and Y, of H, cannot lead to the same

density.

13



Let’s assume that the same wavefunctions lead to different potentials. Then we

can write
(T Ve +V11Y1> = E1|Y1> (2.28)
(T Ve +V2)|Y2> = E2|Y2>- (2.29)

Setting wavefunctions equal to each other we can write

(Vl'V2)|Y>:(E1' EzXY>a (2.30)
which leadsto the conclusion that two potentials are different by no more than a constant,

indirect contradiction of assumption (@). Thus the opposite is true and potentials different

by a constant necessarily lead to the same wavefunction.

The second part of the relationship is based on the variational principle and the

fact that we are working with ground state:

By =(Ya[Hi| o) < (Yo Hi[Y ) = (Y, [H, +Vi - VY ) =

2.31
=€, + () vl =
E, = (Yo [Hy Vo) <(Ya[Ho[ Yo) = (Y [H, +V; - ViJYy) =
_ « (F r ry.,r (2.32)
=E, + (v (r)- v (r)Jor
Now if we set two densities equal, it will lead to this:

E,+E,<E +E,, (2.33)

which is an obvious contradiction.

Thus the first theorem proves unigueness (up to a constant for potential) and bi-

directionality with respect to the relationship between potential and density:

V«« Y« n, (2.34)

14



The ultimate consegquence is an ability to write any observable system variable as

afunction of density alone instead of as a function of wavefunction.

2.6.2 The second theorem

“ Given an electron density, the energy is bound from below.”
This means that an exact solution of the electronic part of the Hamiltonian yields
the minimum energy. Any approximation will be approaching this exact energy as a limit
from above. This theorem ensures that we can deploy variational methods and principles,

leading to the Kohn-Sham equations.

2.6.3 The Kohn-Sham equations

“ The ground state density of the interacting particle system can be calculated
as the ground state density of an auxiliary non-interacting system.”

Basically, we are to solve the one-electron Hohenberg-Kohn-Sham equationsin a

self-consistent way [11]:

A 2

gp_'*'é ion(lr_ |5|)+VNL(F' |5|)]+
a2m

+e Ore .‘dSr'+vxc(n(F))l’yi(F)=eyi(F)

r-r H
where V. = %Qnexc (n) isthe XC potential. Total energy can be written as
edng
2 € r. U

Eo = Zé € +e_§é. _ﬁ"'_' c\p(rr)darq‘rﬁlld?’l"@+

iocc 2 gll‘ ‘RI - RI‘ r- r| H (236)

+ (Mo (0)- Vi (n)]ar

15



Self-consistency is achieved when resulting density n,, ()= & v, (Y, () is

essentially the same as the input one or within certain limits.

The only problem isthat there is no exact form of V, .. Thisis where we
absolutely must go into approximation. There are a variety of different methods available.
For example, local density approximation (LDA) deploys some functional form of V,. as

afunction of density within a vicinity of a point, and generalized gradient approximation

adds first order (and sometimes second order) gradients of a density to a functional form.

2.7 Time-dependent density functional theory (TDDFT)

Time dependent Hohenberg-Kohn-Sham formalism and its derivation is
drastically more complicated than DFT. First formulated in 1984 by Runge and Gross, it
issimilar to the formalism of Hohenberg-Kohn-Sham except for the “little” change of a
Schrédinger equation to atime-dependent one. The derivation or proof of TDDFT
formalism will not be presented here. For full formalism and proof, the reader is referred

to [15].

In simple terms, the aim of TDDFT (consistent with the aim of other theories for
excited states) isto find energies of transitions. Assume atransition between two states,

described by two wavefunctions y ;. and y . During the transition, the current state of the

system will be linear superposition of those two:

y(t)=cy explimt)+cy , explim,t). (2.37)

Inspecting the density represented by this wavefunction, we will get
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r)uly|* =ley " +lew o +eiey iy . explilw - w]t)+cc. (2.39)
The first two terms are constants, but the last terms represent “ oscillating” density

functional, which represents the transition.

They 'y . term represents an oscillating charge density. When we add electron-

electron interactions to the excited states, we will encounter integrals of the form

C\)’u("r)/ a('r)T_lr—y|('[)/a('[) (2.39)

‘I’-I’

This “four-psi” type of integral presented in (2.39) is needed when one is utilizing
TDDFT. Thisintegral presents a great computational challenge, and a straight-forward

approach to it is unreasonable due to time cost for a system of decent size.

2.8 First order and full TDDTF

For each of the transitions q° i ® a and q'° j ® bbetween initial states i (j)

and final states a (b), we calculate a Hartree term:

2

(al fula) = e by (F )ﬁy . (2.40)

and exchange-correlation term (q|f,.| o) done with LDA, one-center integrals:

_é0t
fyc = g_d?nexc (n)H (2.41)
”zno(rr)
NN , ~@d? u o r r
(alfxcla) = Ojar(yi (rr)ya(rr)) gwnexc(n)g ()/ H(ry o )) (2.42)
n=ny (f)
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Casida[16, 17] showed that energies and oscillator strengths could be obtained by

solving
GY =wY, (2.43)

where on-diagonal elements are:

Gy = (EP) +260((a|fu]a) +(al el ) (2.44)
and off-diagonal elements are:
G, = 2/EPEL (g, a)+(q fxc‘q'>). (2.45)

Here Eéo) denotes energy corresponding to transition g ° i ® abetween two Kohn-Sham

states i and a.

The eigenvalues are the squares of the corrected energies. If we just want afirst

order TDDFT (i.e. no coupling between transitions), than we can simply take

2
£ = (€0 + 2£0(al o) + (o foc| )] (2.46)
asour corrected energies, which is essentially a square root of the diagonal elements of

matrix C (2.44).

2.8.1 Oscillator strengths within TDDFT

We can calculate oscillator strengths by solving (2.43) for eigenvectors

-G
Yo =¢% = (2.47)

18



Then the corrected oscillator strengths are

fo. = 2m 6 aq"e"x F éa aq'a"yq éa ag™z F U, (2.48)

where

X, =(iqa), y, =(i]ya), 2z, =(il4a) (2.49)

2.9 Optical properties from energies and oscillator strengths
The dynamic polarizibility [16, 17]:

aW)=8 —,
T W - WA +ihw

(2.50)

where h is abroadening parameter. From this we can calculate the optical absorption

Cross-section:
s(w)=- LwTVblma (2.51)
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3  Implementation
3.1 General considerations

The design feature of FIREBALL (“FB”) which makes it very fast isthe pre-
calculation of all tables of integrals that are used to assemble all necessary integrals
during the FB calculation phase. For a given structure (or set of structures), there are only
so many different types of atoms involved. Consider, for example, two-center integrals.
For every different pair of types of atoms, we will pre-calculate given two-center
integrals for all the distances from zero up to the sum of chosen cut-offs with a certain
distance step. During this pre-calculation process, those atoms will be positioned a certain
way (along the z-axis). A similar method is used with all other integrals. The results of
the calculations of the integrals are then written into files collectively denoted as a*“data
set”. Only non-zero datais stored. Choices about the kind of atoms to work with, what
orbitals those atoms will have etc., are done at the stage of creating a data set. The part of
FB package which deals with data set creation is called CREATE. Thisisthe part of the
FB package that takes the longest to run, but the data sets produced after the CREATE

step is completed can be used and re-used many times over.

The part of the FB package which dealswith actual structureis likewise called
FIREBALL, and it handles the final step of the computation. Again, returning to the
example of two-center integrals, FIREBALL can determine the types, relative positions
and distances of a pair of atoms in the structure. FIREBALL can then read appropriate

data out of the data set, interpolate, and perform appropriate integral rotation.
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The FB package works with real spherical harmonic functions; refer to the
APPENDIX B for an overview of the relationships between FB functions and spherical

harmonics.

3.2 Optical absorption spectrum in zero order

3.2.1 Energies

The Kohn-Sham energy levels are known from the ground state calculation within
the FIREBALL. Taking all possible pairs of levels where one level is occupied and
another is not, and then computing the difference yielded zero order (Kohn-Sham)

transition energies.

3.2.2 Oscillator strengths

In zero order, the oscillator strengths are based on the dipole moments and thus

(3.2)

A lot of effort was required to program dipoles into the preexisting structure of

FIREBALL. For further reference, see APPENDIX C, APPENDIX D and APPENDIX E.

3.3 Implementation of first order and full TDDFT

In FIREBALL, wavefunctions are alinear combination of atomic-like orbitals
I o - I
Vi (I’ ) =a Cu 4 (I’) (3.2
al

and are represented by a set of coefficients ¢!, , where

al 1
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P |
cy =<j . (")ly, > (3.3)
.oy .o
/al(r):/I(r_ Ra)’ (3.4)
and where j isarotated orbital in FIREBALL. Applying the aforementioned to (2.40),

we obtain a general representation in FIREBALL:
2

<y \r r“y >
:Cﬁzrd3r'§l &) an (F )ac n/am(r)ﬁ'

a. m*jam( )a. m./am(lrl)
(3.5)

_ o o o o m“n ~p “As -
- a. a. a. a. Cam Ca'mca"/ﬁ Ca "m
am a'm a"mt a"m"

2

ST O e g o O ()

Adding the rotations from the CREATE coordinates to the “molecular”

coordinates in FIREBALL represented by coefficients athe above equation becomes

(3.6)
, O o] o] o ,
a. amla amu'a anw a amu
u u u" u
“h

au,a'v,a'u".a"u"

where hau,a w.a'u,amym 1IS@pre-calculated Hartree term.
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CREATE calculates f,. integrals for the neutral atoms. However, in FIREBALL

we do have a charge transfer Dg © Q. - q, representing a charge change in each shell

(sp,d). To calculate XC, we expand f,. from (2.41) in power series:

fuc » fxc

L+ & Do,

shellss 79,

+... (3.7)

Then (2.42) in FIREBALL terms:

a & & & acccalc.(2s)+

atoms orb onatorb onatorb onatorb onat

+Q [Dqs’ (dn)§234(1234)]+...% (3.8)
shdlss p
where
Ny, (1234) = o l(rr)/ 2(rr)/ 3({)/ 4('[)7xc[fin({)]2 _
=700 0 () o (0 fe(F) (3.9)

(an),(1234) = Zi o/, (Y () 5 Y ()
) S r r . (3.10
[fxc (I’ )‘qzqomqs - fxc (I’ )‘qzqo_aqs])

We drop derivatives that are higher than the first one, due to computational instabilities.

Full TDDFT, which accounts for transitions coupling, operates in the following

way. The transition matrix Cwith dimensions N, . qions ~ Niansions AN b€ huge,

unwieldy, and impractical to deal with. We addressed this challenge by choosing a
smaller set of sub-matrices positioned on the main diagonal of the original matrix.
Members of each sub-matrix are transitions that are separated from each other by no

more than a user-defined value. The assertion here isthat only transitions of sufficient
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proximity will couple with each other effectively. Proceeding on this basis, we then fill
those sub-matrices according to (2.44) and (2.45) and diagonalize them. First order
approximation simply does not compute and fill off-diagonal elements and thus does not

couple transitions.

3.4 Density projection approximation

So far we have not described the approximations we used for calculation of the

four-integrals<q| f ‘ q'> . Using (3.6) inits full form would impose unreasonable time

demands for very large systems. sum over c’srepresent N *calculations for each of the

~ N*?transitions. And this is just the first order! At this juncture, therefore, we explain

our approximation to maximize the speed of TDDFT calculation.

We project (y; (f)y (7)) notonto {j :(f ), (f )} but rather on {J/ m(rr)‘z} using a
Mulliken charge-like projection [18]. For each transition we pre-calculate the projection
coefficients g2 which we call gamma charges:

gi=a %(Cim*c,? S+ CL*Cf‘nSm). (3.11)

n

Here, S, stands for an overlap between two corresponding orbitals. One way to think

about this approximation is that one-half of atrue bond charge between two orbitalsis
being assigned to the “left” atom and another half of a bond charge is being assigned to

the “right” atom.

With this approximation, our four-integrals become
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* 2 . , ,
b 0.0 S D)
_ ? _ (3.12)
W eie ke N Mﬁvnﬂz

Here we do not explicitly show the approximation in FIREBALL terms, so asto avoid

unnecessary clutter.

Out of al possible classes of four-integrals we are choosing the biggest
contribution: one and two center ones, where “left” and “right” functions are residing on

no more than two separate atoms.

Within gamma-charges approximation, the loop to compute <q| f ‘ q'> issimply

this:.
for all atoms K
for orbitals 17 on atom K
for all atoms L
for orbitals n on atom L
| =1+ G002 o ovnap (11710)
end for
end for
end for
end for

Here | .o o (7M1 10) is already rotated integral. This loop structure is by far faster than

the full loop structurein (3.6).
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4 Results and discussion

We have calculated the optical absorption of benzene (CsHg) and Cgo. TWO
different orbital data sets were used for calculation: single numeric (SN) and double
numeric with polarization (DNP). The single numeric set consists of the following
orbitals (element(orbitals)): H(s), C(s, p). The double numeric with polarization (DNP)
set consists of: H(s, s ), C(s, s, p, p , d). Both structures were first relaxed down to an
average kinetic energy below 5K using the DNP data set. After that, the optical branch of

FIREBALL was turned on. The resulting discrete set of oscillator strength vs.

energy f, (E, ) was then used to calculate optical absorption s (w) in accordance with

(2.50) and (2.51). A broadening parameterh = 0.30eV was employed, which is close to

the broadening utilized in experimental optical absorption.

26



4.1 Benzene
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Double numeric + pol
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30

Y
Figure 4.1 Optical absor ption of benzene, full TDDFT, comparing two data sets

Figure 4.1 demonstrates the importance of the data set choice. Restricting amount,
types of orbitals and empty orbitals makes calculation faster, but having too small data
set could lead a researcher to miss important transitions. Transition oversights would
occur dueto the fact that the participating orbitals are not in the data set. In addition, it is

apparent that transition coupling strongly affects the lowest transitions.

Figure 4.2 takes a DNP data set and examines three approximations: zero order
(which is based on Kohn-Sham states), first order TDDFT (no coupling between
transitions) and full TDDFT. Clearly, all three approximations agree pretty well, except

for the transitions below 10 eV.
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1st order -
full ==------

optical absorption, arb. units

Figure 4.2 Optical absor ption of benzene, DNP data set, TDDFT, comparing different
approximations

The comparison with experiment (Fig. 4.3) shows very good agreement for
energies and good agreement for oscillator strengths. Experiment [19] shows a srong
excitation at 6.9 eV and broad continuum-like absorption with a maximum at about 17.8
eV. Superimposing our computational result made with full TDDFT+DNP, and
experimental data, one can clearly see common features like a triple peak in the lowest
energy transitions. One may also notice the experimental peaks at around 10 eV are
missing from our calculation. We speculate that the peak discrepancies resulted from a

data set that was not sufficiently large.
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10 20 30 eV

Figure 4.3 Benzene absor ption spectra, full TDDFT +DNP (below) superimposed with
experimental [19] (above)

4.2 Cg

The calculations of Cgp Were performed similar to benzene, but with addition of a
block parameter of 0.2 V. Asareminder, a given block includes a sequence of

transitions which are separated by each other by no more than a given block parameter.

29



45 T T T T T

T T
Single numeric
Double numeric + pol

40 | -
35 | ; -
30 | i
25 | i

20 |

optical absorption, arb. units

eV
Figure 4.4 Optical absor ption of Ce, upper limit 7.5 ev, full TDDFT, comparing data sets

Let’s do some comparison with the experimental data presented in Fig. 4.5.
Experimentally, the lowest energy peaks are at about 3.8, 4.8, 5.4 and 5.9 eV. [20].
Calculations with SN data set yield peaks at about 3.0, 3.5, 4.2, 4.8, 5.2, 5.5and 6.2 V.
The DNP data set shows peaks at about 3.2 (small), 4.8, 5.6 and 6.2 €V. The DNP data
set shows better energy matching and the comparison reflects the importance of transition
coupling for the lowest transitions. A block parameter set to 0.2 eV resulted in blocks of

about 1.5t02.0 eV sze.

A trade-off between accuracy and speed isin play here. Setting the block
parameter to abig value and opening the resulting matrix of transitions coupling to afull
size (and thus taking into account more coupling effects) would make the calculation too
long. On the other hand, setting block parameter to a value too small gives results close to

thefirst order TDDFT.
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Figure 4.5 Absor ption spectrum of Cg (Ih) in n-hexane solution at room temperature.
Superimposed are TDDFT calculations of optically allowed transition energies corrected for
systematic errors by adding 0.35 eV. Oscillator strengths were normalized to experiment.

[20]
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Figure 4.6 Optical absor ption of Ce, Single numeric data set, TDDFT, comparing
approximations, full TDDFT limited to 7.5 ev

When comparing Fig. 4.6, Fig. 4.7 from FIREBALL and Fig. 4.8 calculated with
another semi-empirical theory [21], one notices a lot of similarities for both low and high
energies. Both methods yield a low-energy triple peak, as well as similar peaks and peaks
groups for the high energy range. This demonstrates that FIREBALL results agree with

other computational works.

Note that application of full TDDFT, even with the block parameter, had an effect
of collecting low energy peaks into afewer peaks. If we had the ability to diagonalize the
full transition matrix, we should likely have arrived at results similar to Fig. 4.9 [21],

which shows the formation of a collective plasmon oscillation in the region of 20-30 eV.
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Figure 4.7 Optical absor ption of Cgo, double numeric with polarization data set, comparing
approximations. Full TDDFT islimited to therange of 0to 7.5 ev.
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Figure 4.8 Freeresponse of Cg corresponding to Kohn-Sham levels, [21]
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5 Concluson and futurework

We have successfully implemented cal culation of optical properties by using
TDDFT into the FIREBALL suite. The approach implemented in FIREBALL suite is
general enough to work with any structure. We have successfully used FIREBALL to
calculate optical absorption of CgHg and Ceo. Those results show that the approximations
used to achieve faster calculations still produce good results and match quite well to the

experimental data, at least for the low-energy transitions.

From the standpoint of software engineering, FIREBALL would greatly benefit
from a systematic approach and careful review. Object-oriented programming would
represent a positive improvement, although re-writing FIREBALL package would

admittedly be a major undertaking.

A capability to more effectively extract eigenvalues and eigenvectors from huge
matrices is clearly needed. Currently we are using the “dsyev” diagonalization procedure
fromaLAPACK fortran library to diagonalize the matrices and extract eigenvalues and
eigenvectors needed for optical calculations. In the future, we hope to utilize more

effective algorithms, like the Lanczos or Davidson-Liu methods [22, 23].

Another important avenue for progress in the future will be programming truly
parallel computation of transition matrix routine. This portion of the calculation is by far
the most time-consuming. Elements of this matrix are calculated by the same routine and

are independent of each other, and therefore could benefit from parallel computing.

We did not calculate optical properties of nanoclusters or other large structures, as

our focus was on the development of FIREBALL’ s optical calculation branch. However,
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it is completely feasible from a time standpoint to run a structure with a size on the order
of 1000 atoms in the zero and first TDDFT orders. With future implementation of a better
“eigensolver” it should be possible to run full TDDFT aswell, at least for selected

eigenvalues.
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6 APPENDICES

6.1 APPENDIX A TABLE OF Y

1
L=0 Yo=_—_
0 /_4,0
; 3 . i
Y= ‘/%sn(Q)e J
3
L=1 Y, = @COS(Q)

5 a8 16
L=2 )= [—C-cos’(Q)- ==
* T\apé2 ) 20
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6.2 APPENDIX B FIREBALL Functionsas Y

6.2.1 Definitions of FB orbitals

Below we identify all of our functions along with their exact mathematical meaning:
S-Orbital:

-2

P-Orbhitals:

[y]= y%\/%
=222
= x%\/%

D-Orbitals:

[zz]:?’Zz-fzi\/l_TS
Viz r?\4p

6.2.2 Derivations of relationships

We first represent each of the functions as a combination of Y,™ *susing
x =rsin(Q)cosl/ )

y =rsin(Q)sin(j )

x=rcogQ)
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1 _o
[1]_ 4,0 Yo

[Y]—Y— e F\/;rsn )sin(j ) ——\/;gn( e/ - &)

_¥2 sn(Q)(e’ -el ):I—\/%sn(Q)( e +e)

2 8p 2
:ﬁ(Yll +Y1_l) :%GYl_l +in1)

4= —\/% —\/;rcos(Q 2Y0
b= @ F\/;rg )= \/7 n(Q)e’ +e)

%\/% n(Q)e’ +e )= % %g”(Q)(' e -e)
1

(- vt)= (- v2)

ﬁ\

iz\/4:r cos(Q)sin(Q)codj ) == 15 COS(Q)S'n( )(e’ +e'i/)
%é Vo sin(Q)eosQ)e’ e
1

T( -v;?)
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:%riz\/%r smz(Q)(cosz(/) sin?(j ))

=\ SN (Qoosz )= sin*(0)e” +e)
L35 e o)

— 1 2 -2

—E(Yz +Y, )

b= 2212 sn(Qost Janf )= 22 sn*(Qan(z

:%\/%snz((?)(ezf ez”)=%% 1—Zsin2(Q)(e2f e?)

:%(YZZ'YZ_Z)

[l= | 2o cos@)an(@an( )= & 22 cosQlsn(fe - &)

— \/E\II J / / u

=i ;—Scos(Q)sn(Q)(e e )E

- L2 B ool r)= L Bl o

Yo,
23 [5a8 16
=— [—¢=cos(Q)- =+
J12 4,032 @ 2y
2

Now, put all of that together:

41



[xy];2 =%(\(22 : \(22)=%(i\(22 -iv2)
] =- %(Y; +Y21)=%(iY2'1 +iv})
L=y = S {20)

[ofs =~ - v 1)= (- )
- yl= o)

In fact, we can make a matrix representation of transformation betweenY," ’s and the
FIREBALL’s functions.

6.2.3 Matrix formof FB and Y,"'srelationship

1o =Yy

VA R

=50 V2 o

LY I VS A
Xy, i 0 0 0 -i |V’
oy, L Y,
__Zz__g :ﬁ 0 0 J2 0 of*Y
S 0O 1 0 -1 0| |Y;

2 - y2]? 1 0 0 0 1| |¥

The indexes for FIREBALL functions are as follows: the lower represents L and the
upper represents M according to FIREBALL notation.
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6.3 APPENDIXC XYZ Dipole selection Rules

6.3.1 Derivations of the dipole selection rules.

One way to derive those rules is to note that in order for integral to be non-zero,
all coordinatesx,y and z should come as even powers before integration. Otherwise, if

even one of the coordinates is odd, an even power will be produced after integration, and
then considering symmetric limits, the integral will be zero. Remember that
the z coordinate is a direction between two atoms (cylindrical coordinates), so it hasa

. d
constant - z+ /2

One of the examples is selection rules between p and d-orbitals:

Xy
y |x y(z'%)
z+% y2(z-d2)2-x2-y2
X |z é%)x

X2 - y?

If we, for example, take (z+ % )-(whatever)-( xy ), then all of the elements are entering

as odd powers of at least one coordinate, so this element is zero. On the other hand,

(z+%)-(y)-(y(z- %)) has zyyz and %yy% terms which render this term as a non-
Zero.
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6.3.2 Dipole selection rulesfor two identical atoms

N
—
i< a
a > |~ | x > & |2 |5 |%
S X
NN
)
LM 0,0 1-1 1,0 1,1 2,-2 2,-1 2,0 2,1 2,2
0,0 Y Z X Y Z X
1-1 Y Y X Z Y Y
1,0 Z Y X Y Z X
1,1 X X Y X Z X
2,-2 X Y X Y
2,-1 Y Z Y X Y Y
2,0 Z Y Z X Y X
2,1 X X Z Y X X
2,2 Y X Y X

This table represents non-zero combinations of FB functions with indicated dipole
operator.

Number of non-zero dipoles for given combinations of L values:

XIY] O 1 2 Z 0 1 2
0 0 1 1 0 0 1 1
1 2 | 4 1 1 0| 3

2 1 4 | 6 2 1 3|0

Remember that these are NOT usual wavefunctions, but rather combinations of them (so
they are real), and thus we are not dealing withasimple m, =m, 1.



6.3.3 Dipole selection rulesfor two different atoms

The integration performed in cylindrical coordinates. Z-direction might need
some more insight.

When two atoms are the same, the selection rules presented would be true.
Although, when those atoms are not the same type, and thus symmetry along z axisis
broken, we are only left with selection rules based solely on a phi-angle. Thisresultsin a
situation when some of dipole elements are non-zero in places not typical for dipoles, e.g.
ml=m2. Inthose places, some dipoleswill be zero (same atom types) and some will be
not (different atoms).

To achieve a uniformity of the FIREBALL code we have included those Z-
selections in a non-zero form.

N
—
£ X
- > |~ x > |& |8 |5 |%
o k3
NN
)
LM 0,0 1-1 1,0 1,1 2,-2 2-1 2,0 2,1 2,2
0,0 Z Y Z X Y Z X
1-1 Y Z Y Z X Z Y Z Y
1,0 Z Y Z X Y Z X
1,1 X Z X Z Y Z X Z X
2,-2 X Y Z X Y Z
2,-1 Y Z Y Z X Z Y Z Y
2,0 Z Y Z X Y Z X
2,1 X Z X Z Y Z X Z X
2,2 Y X Z Y X Z

This table represents non-zero combinations of FB functions with indicated dipole
operator.

Number of non-zero Z-dipoles for given combinations of L values:

Z 0 1 2

0 1 1 1
1 1 5 | 5
2 1 519
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6.4 APPENDIXD Dipole rotations from CREATE to FIREBALL

ZA

—

Here we have the following:

Oxyz - Crystal coordinate system

Oxyz - System of coordinates parallel to crystal and centered on atom #1

O'X'y'z - Atomic coordinate system — Atom #1 is at the center, atom#2ison O'z at
point A

r - Point of integration in crystal coordinates

Fl, FZ - Vectorsto the same integration point from atoms #1 and #2

d (not shown on the picture) — Vector from atom #1 to atom #2

We are looking to calculate dipole <j ) (rr - Il?)‘x‘/ R(rr - [Il?+ oll])> = (j L(rrl)|x|j R(rr2)>
in crystal coordinates out of pre-made dipoles in molecular coordinates.

The first step to consider is rotation of the dipole from O'x'y 'z intoOxy z .

We have matrices a, and arotating j | and j | which already exist in FIREBALL
anda.., which rotates x intox . Here we have a usual convention when repeating indices
are being summed over and capitals meaning the “ super-matrices’ of the FIREBALL.
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Gl =@ @), 6 PG ahiaa))
= AF L (ac), P F A = A fae) [F (PR A
= Afac), (@),

Note that (ac )g (d " )g is nothing more than a linear combination of the dipolesin

molecular coordinates, where coefficients a.. are coefficients which transform x intox .

So the recipe isto feed the center matrix for the rotation procedure in FIREBALL with
the correct linear combination of the dipoles.

The next step is transformation between O'x'y'z andOxyz.
Thisis quite simple, because both j | and j - depend only on , and T, . It does not

matter where the center of the coordinate system is. The center piece isthe only part of
our dipole which depends on the coordinate system origin.

G ()X R ()

=(j ()% + X[ w(5)

=(j X7 R+ X0 L)) ()
Where X is appropriate coordinate of shift vector I'?

Thus we need to add an integral already existing in the FIREBALL.

a7



6.5 APPENDIX E Rotations of p and d functions

6.5.1 Rotations summary

Let us assume that we have an € matrix describing the rotations from primed to
unprimed coordinates:

ell elZ elS
€= eZl 622 623
eSl 632 eS3

Each element of € is an appropriate dot product of unit vectors of primed and unprimed
systems. The transformation for p-functions is quite easy:

[l3= éIIJ i.e.

Py =€ Py +6,P, + 65D,
Py =€y P, * €y p;/ +e,D,
P, =€nPy+EuPy +enp,

Some math is required for the d-functions, but we will show the final result up in front:
(

%]’ %]’
[zy]'%l | Bl
ZE =07 [#k |
ok | [l

[Xz ) yz ; [Xz ) yz];2

where
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@ﬁz"? @ﬁs"? }@Qs’ %@1’9 aﬁs'@ }@1@1’ 9
bres breps €8 & beps €L0
@ﬁz"? @ﬁs"? }@ﬁs’ 92{%1'9 @1@3"9 }@ﬁl’ 9
beps  Sesd &8 & breag 8
~ | fﬁz' qu'g fﬁs' €£3'9 }ags' 2%3' 2%3' 2%1"'41"’9 B3 ‘%ﬁs'Q }ﬁl’ él_ él_ E
D= * x X = 1
&t ] &5 ] %él_ %2"'@2"‘%2 i} & ] Zg' gz"'éz"'éz&
ﬁﬁz"? 8@@#9 }@ﬁs’ qgl’? 8%%?9 }aﬁf 9
begs  Gesd A T T et
£ 9 BH: 9 }%3' él_ éz' 9 BE5 9 }%1’ él_ 9
ets  Bems  BEideds  Sems  Kdrds

6.5.2 Derivation of rotational formulas

St

The method here isto take the function f , apply rotation to it, then find the projection of

the result onto all non-primed functions thus obtaining the desired coefficients.
It isworth remembering that all odd terms vanish, and

=y =(2)
(v = (y°7) = ()

etc

Let R denote the appropriate rotation.

6.5.2.1 [xz - y2J

RHXZ } y2]> = (ellx tepyt 9132)2 - (ezlx teyyt 9232)2

= 9121)(2 + 9122 y2 + 912322 + 2911912Xy+ 2911913XZ+ Zelzelayz'

- eExXP+ely +eLz’ +2e,e,xXy+2e,e,X2+26e,,e,YyZ=

=(e2- )2 +(el - e2)y? +(ed - €3 )z +
2(911912 - ezlezz)xy + 2(911913 - 921623)XZ+ 2(912913 - ezzezs)yz
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[x2 - yz]‘R[x2 - y2]> ={Keeping only non - vanishing terms} =
(- y2Nlez - e )+ (et - e2)y? +(ed - e2)22) =
22

2f 2 2 \,2 2( .2 2\, 2 2 .2 2
-y (911' eZl)X -y (912 - ezz)y -y (913 - 923)

2

2 2 2 2 2,,2\[ 42 2 2 2 )_
(911' €n - 6 +922)' <X y >(911' € - 912'*'922)_
=(ef- € - eh +eR)x'- xy?) =

(efl - e, - e +e§2)<x4 - 2x%y? + y4> =

<[ZX]R[X2 - y2]> = <ZX2(911913 - 621623)Zx> =
=2(e e, - €465 )<(zx)2> -

= 2(911913 - 921923)

<[Zy]R[x2 ) y2]> = <zy2(912913 ' 622623)yz> =

= 2(912613 - 922923)<(zy)2> -

= 2(612 €3~ €x 923)
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<[22]R[x2- 2]>:<(32 -r X(ell eZl)x +(e12 ezz)y +( 923) ]>=
27% - X*- X X(ef_ll- e; )x +(912- 922)y +( e§3)22]>=
ell 921)x +27° (e12 ez?z)y2 +222(ef3 - e§3)22 -
911 921) - X (912 - esz)y2 - Xz(elza - 953)22 B =
21))(2 - yz(elzz - 6222)y2 - y2(6123 - 953)22
< 2913 2923 9121 + 9221 - 9122 + 9222)'
- (2)\- 26} + 26} - 26} +26L vl - eh v - eh vel - el el - €)=
=(z >(2913 2% - % + €% - e +e%)- <ZZX2>(26123 - 26l - e +el- el +ed)=
=(26%- 265 - & +€l- €2 +e§2)<z4 - 2)
For the future projections on |_ZZJ we will work out the <z4 - zzx2> term:

<z4 - 22x2> :%<z4 - 27°%% + x4> :%<x4 - 2x%y* + y4> =

=(26%- 2% - €2+ - el + e§2)<z“ - 2°x%) =
1, 2 2 2 2 2

- 5(2913 - 2923 -epte-ept 922)

6522 [z

R| ZX> = (eSlx tepyt 9332)(911X+ epyt 9132) =

= €,6; XX+ E,65 Xy + ;64 XZ+

T e YXT 6,65, YY T E,6,Y2+

tECRIX T €,C02Y + 1365, 72 =

— 2 2 2
_elleSlX +612632y +6136332 +

+ (612631 + 611632 )Xy + (613632 + elZ 633 )Zy + (elSeSl + elleS3 )ZX
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2 2 _ 2 2 2 2 2\ —
<[X -y :”R[ZX]> _<(X -y )[elleSlX TELELY T 63657 ]>_
_ XzelleSlXZ + X2612632y2 + X261363322 T\

- 2 2 2 2 2 2/

S Y 65X - YE,E,Y - Y €,3657

=(x*)ey e, - e,6,)+(X2y? e ey +exey - .6, - 6,65)=
1131 12532 y 12C32 1333 11¢31 1333

= <X4>(911931 - 912932)' <X2 y2>(911931 - 912932) =

1
= 5(611931 - 6,6 )<X4 - 2x%y? + y4> =

1
= E (911 €3 - 6,65 )

<[ZX]| R[ZX]> = <zx(elae31 + 911933)2X> =
= (enen +eney )<(ZX)2> -

= (613 eSl + 611633)

2 _ 2 2 2 2 2 2\ —
<[Z ]‘R[ZX]> _<(22 -X-y )(elleSlX TERERY + 63657 )> -
2 2 2 2 2 2

2z°e,6, X" +22°e,e,Y" +22°€,6,7° -
- 2 2 2 2 2 2 -
= - XEu65X - X€,65Y - X €3657 - -

2 2 2 2 2 2
- Y 65X - YE,6,Y - Y 63657

> 29139 €1.65 - € 932) -

2,2 _
> 29139 €,65 - € 932)' <Z X >(2913933 - €,6; - 612932)_

2 —
< > 2611631 - 2612 632 + elZ 632 + 613633 + elle?:l + 613633) -

26,65 - €46y - €,65 )2 - 2°X7) =

= % 2913933 - €165 - 912932)

(2Rl2) = (zv(enex + eres)zy) =

= (613632 + 612633 )<(Zy)2> =
= (613632 + elZ 633)

<[XY]|R[ZX]> _< (e €y 6,65 )XY> =
912 €y t 6,65 )<( >
)

= (elz €y +6,6y
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6523 |2]

R|[zy]> = (eSlX tepyt 9332)(921)( tepyt 6232) =
=656, XX+ 656, Xy + 656, X2+
T EREHYXT €560 YY T €5,6,YZ+
T ERCn X+t €336, 2y + €536, 77 =

— 2 2 2
- eSleZlX + 632 622 y + 633 6232 +
+ (631622 + eSZeZl)Xy + (632623 + 633622 )yz + (631623 + 633621)2)(

-y :”Rl[zy] <( )(631921X t €56 y’ +e 562372 )>
<x e e, x> +x2e,e,y’ +xle,e,z? - >_

y'euenX’ - yeneyy’ - yenen?
< > €316 - 932622)+<X2y2>(932922 t €350 - €316y - 933923) =
< > €316 - €65 )' <X2y2>(931621 B 932922):
=

2.2\ _
€56y - 932922)<X - Xy >—

1
= E(eslezl - 65,6, )<X - 2x%y? + y4> =

1
E (931 €y - €565 )

([ZR[2]) = (2(eness +exen)2) =
= (631623 + 633621)<(ZX)2> =

= (631623 + 633 eZl)

(R[] = (2v(eness + exer )y2) =
= (632623 + 633622 )<(Zy)2> =
)

= (632 623 + 633 622

<[XY]|RI[ZY]> = <XY(931922 + eszezl)XY> =
= (931922 + 932921)<(Xy)2> =
= (eslezz t €y eZl)
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<[22]‘R|[zy]> = <(222 - X - yz)(ealeﬂxz +eye,y’ + 93392322)> =

2 2 2 2 2 2
2z°e, e, X" +2z°e,e,, Y +22°€,6,,7° -

- Xzealezlxz - X2632622 y2 - Xzeaaezazz
- Yen8,X° - Y¥e,6,Y° - Yieue,7’
< > 2933923 €316 - 932922)'
<22X > 2636, - 26,6, + 3,6, + €56, +6;6, + 933923) =
(2

2,2 -
> 263,€y; - €36, - eszezz)' <Z X >(2933923 " €316y - 932922) -

= (2933923 - €56y - 932922)<Z4 - 22X2> =

1
- E (2933923 - €36, - € ezz)

6524 |%]

R|[Xy]> = (ellx tepyt 6132)(621X+ €xy+ 6232) =
= 6.6, XX+ €,6,Xy + 6,6, X2+
TEOLENYXTELELYY T E,0,YZ+
T 66y X+ €362y + €372 =

— 2 2 2
- ell eZl X"+ elZ 622 y + 613 623 z"+
+ (elleZZ + elZ eZl )Xy + (elZ 623 + 613622 )yz + (611623 + elSeZl )ZX

Y ]‘H[W] <( )(611921)( +e,e,y’ +e,e,z )>
<X ellQZlX + x? €,65 y +x2 9139232

y elleZlX y elzezzy - y 9139232

< 911921' €, ) < y >( € T 1365 - 6,6, - 913923):
< > €165 - 912922)' <X2y2>(611921 B 912622) =
=

€165 - 6,6, )<X4 - X2y2> =
1
= 5(611921 - 912922)<X4 - 2x%y? + y4> =

1
= E (911921 - 912622)



<[ZX]|R| [XY]> = <ZX(911923 + 913921)ZX> =
= (911923 t 636, )<(ZX)2> =
)

= (elleZS + elS eZl

2 _ 2 2 2 2 2 2\ —

<[Z ]‘RI[XV]>‘<(22 - X -y )(ellele TELELY T 636,57 )>‘

2 2 2 2 2 2

2z°e 6, X" +27°e,e, Yy +2z°e,6,7" -

— 2 2 2 2 2 2 _
= 7 XEEuX - XT€,E0%Y - X €36,5Z - -

2 2 2 2 2 2

S Y €LE,4X - YELELY - Y 636,52

—_ /54
=\Z >(2913923 - €165 - elzezz)'

— /4 2,2 _
=({Z >(2913623 - €6 - 912922)' <Z X >(2913923 - €6y - 612922)_

2 —
B <Z X >(' 26,6, - 20,6y, + 6,8, + €36, T 6,6, + 913923) -
= (2913923 - 616y - 912922)<Z4 - ZZX2> =

1
- 5(2913923 - €6 - 612922)

<[ZY]|R|[XY]> = <Zy(912923 + 613622)y2> =
= (912923 + 913922)<(Zy)2> =

= (elZ 623 + 613622)

<[XY]|RI[XV]> = <XY(911922 + 912921)XY> =
= (ellezz + 912921)<(Xy)2> =

= (elleZZ + elZ eZl)
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6525 |2

) =rzz - - ) -
— 2 2 2 _
- 2(631X + 932y+ 9332) - (ellx + €LY + el3z) - (eZlX + €Y + 6232) -
=2eix? +2e2y* +2e5,7° + de e, xy + de,e,yz + 4ee, 7X -

2,2 2,2 2.2
- EpX - epYy - 657 - zellelzxy' Zelzelayz' Zelaellzx'

2.2 2,2 252
- EuX - Ry - €357 - 2921922XY' 2622623y2- 29239212)(

= (293?l - e’ - ezzl)x2 + (2952 - e, - e )y2 + (2953 -e;- 9223)22 +
+ 2(2931932 - b - 6,65 )Xy+

+ 2(2932933 - 6,63 - 922923)y2+

+ 2(2933931 - 6136 - 923921)ZX

-y :”F#[Z ]> <( -y )[(2931 121 9221))(2 +(2€§2 - 9122 - 9222 )y2 + (29:53 - 9123 -

2 2 2 2 2 2 2 2 2 2
2931 - eZl)x + X (2932 -e,- 922)y + X (2933 -e5- 923)2 -

2\,2 2 2 2 2 \\,2 2 2 2 2 \.,2
2931 911 eZl)X -y (2932 -6y 6y )y -y (2933 - 63" 923)2

4 2 2 2 2
X 2931 911 € - 2932 + €n + 922)'

< >(' 2932 + 9122 + 922 29 + 913 + 923 + 2931 921 + 29 13 - 923)

(6% - €2 - € - 265 + € +922)< - XPy?) =

2 2 2 2 2 2
(2931 - €h €y 2932 + €n + 922)

N

[ZX:“R‘[Z ]> ZX2 263,63 - €56, - 923921) >_

= 2(2933631 - €36 - €56, )<(ZX)2>

= 2(2933931 - €56 - 923921)
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<[zz]‘RH22]> :<(222 - x2- y?)(2e2 - e%- @)X +(26% - € - e )y? + (263 - €3 - 223)22]> =

27° (2651 - efl - ezzl)x2 + 222(2652 - e12 ezz)y +27° (Ze33 e - e5)z° -
=(-X (2931 921)x X (2932 922)y X (Ze e’ - 23)22 =
-y (2931 - 911 - 921))( -y (2932 - 912 - ezz)y -y (2933 - 913 - 923)22

=(2')(ae% - 262 - 262, - 262 + €% + €2 - 267, + el + e,;;)-
, \& del +2el +2e; - del, +2e), +2e;, +2e5, - e, - e;, +2e5- e - e5, +0

< > +29§1' 9121' e§1+2933' 913' 923 a

<z“>(4e33 22 - 2% - 265 + €} + €% - 26 + el +el)-

(z 2x2>(4e§3 - 26} - 262, - 2e% + el + el - 26% +el +el)=

= (ae2 - 262 - 2% - 262 + €% + €% - 26 + €l + e§2)<z“ - 2°%%) =

1
= E(4e33 2e% - 265, - 2e; +el +e5 - 265 +el + 9222)

<[zy]|Rsz]> = <Zy2(2932933 - 66y - 622623)yz> =

= 2(2632633 - €,65 - 622623)<(Zy 2> =

= 2(2632933 - €,6; - 922923)

[Xy]H[Z ]> Xy2 (2eqe, - enes, - enes, )XY>:

- 2(2931932 €nép - 921922)<(Xy )2>
= 2(2931632 - e,6, - 921922)
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6.6 APPENDIX F Geometry of a perfect tetrahedron

On many occasions while constructing atomic positions of nanoclusters, it was necessary
to refer to the information summarized below.

Point O isthe center of the tetrahedron.

A
CE=EB
DG =a>DA
DH =b:DC
B
C
1
1. cos(DAED):5
2. If side of FCCcubezl:AFzﬁ,AO:ﬁ,OF:E
3 4 12
If AB=1: AFzE, O:£,OF:E
3 4 12

3. bFAD I%DAED

4. cogDFAD)

IS
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5. cos DAOD) = -

Wl

- 1[1- 4a]
6. cosDAOG)=—3

\/;(3 8a+8a?

N—
Blow- gl
w w

For a= % ,cos(DAOG)

For a= % ,cos(DAOG)

For a= % ,cos(PAOG) =

1

3,1- 8h+8p2
3 3
11

7. cos(DAOH ) = -

For b= % b cos(PAOH)

8.  cosDADE)= =

V3

6.6.1 Proofs of the identities mentioned

1. cosPAED) :%
DAEC :
pAEC =P
2

_ A5 3

AE= [12- == =22
e2g 2

DAED :

AD? = AE? + ED? - 2xAE xED >cos(DAED)
AE = ED

AD? = 2xAE2(1- cos(DAED))

1= g (1- cos(DAED))

cos(DPAED) = %
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If side of FCC cube = 1: AF :E,AO:E,OF :@
3 4 12
If AB=1: AF zﬁ,AO:@,oF :@
3 4 12

To provethis, it is most convenient to assign some coordinates.
I magine our tetrahedron isinside the usual FCC cube (cube side = 1)
Then the coordinates:

ZA
3 Q
/0 ——> Y
X /
.
0.4(1,11)
1:%(11,0) 13:%(- 1,0,1)
1 , S0 vectors 1
2:5 (1L0) 12:5 (0-11)
1
3: 2(0,11)

The plane is defined by vectors 12 and 13:

i ol |72 P2t

X=lo [t +|- t,+ 3 =1%-t,
1 1 0| |t +t,

0-O line is defined by
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r
x = [lt,

Solving the system of three simple equations to find t, at which OA

intersects plane 123, we can find that t, = %

So the intersect point coordinate is>r< = %H , and its distance isg :
Since the distance to point O IST , subtraction will reveal the last value.

J2

Making the cube side = 1 had made our edge length :7 :
So rescaling to edge length = 1 will yield the last results.

3. bFAD I%DAED

DAED :

DPAED +BDEAD +DADE =p
DEAD =bADE

2DADE + DAED =p

paDE =P . PAED
2 2

DFAD :
DAED

DEAD :%- DADE =

4. cogDFAD) = 2

V6

Using the result of 2, where we choose AB = 1 and cosine theorem on the
DOAB:

OB? = OA? + AB? - 2* OA* AB* cos(DOAB)

Substituting and solving for cosDOAB) gives the result immediately.

5. cos DAOD) = -

Wl
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DAOD :

AD? = AO? + OD? - 2xA0 xOD »cos(PAOD)
AO =0D
AD? = 2xA0?(1- cosDAOD))

1?2 = 2?/76%2 (1- cos(PAOD))
cos(PAOD) = - %

- ;[1- 4a]

COdDAOG) ) \/1 (3- 8a+ 8az)
3

For a= % ,cos(PAOG) = 1

glog

For a= % ,cos(PAOG) =

Let us now set coordinates in the following way:

OZ isalong OA,

QY isinthe AOD plane,

Point O is zero.

Since we are looking for angles, linear sizes do not matter,
so we will make OA = 1.

Using our previous knowledge on angles:

OA=(0,01)
oD = go\F 1?
9" 33

X 8 40
DA=OA- OD = o\f_
€93

OG =0D +axDA= 0\/:[1- al.- E[1- 4a]9
é’ 9 '3 o

0G| :\/g(l- a)2+é(1- 4a)° :\/%(3- 8a+8a’)
|OA =1

OG- OA=- %[1- 4a]:\/:—13(3- 8a +8a) cos(PAOG)
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- 1[1- 4a]
cosPAOG) = —3

\/;(3 8a+8a2)

Finally, substitution of a:% and azg will give the particular cases.

1

3./1- §b+§b2
3 3

-1 = |2
b=2p cos(PAOH ) \/;

For coordinates like in the previous section, add Ox pointing towards you.
(We found ourselves in a left-handed system, but that did not pose a

cos(DAOH ) = -

problem)
OA=(0,01)
0
oD = goﬁ-i
ﬂ
e 0
OoC = E_ﬂ,_ii
3 3" 35
e 0
DC=0C- OD = \E,-\/E,Oj
3 o
e 2 g 10
OH =OD + DH = 0D +bxDC = b\E,\/E‘fg- pt- 12
V3B 3
OA =1
.2
OH| = [2b?+ 28 b0 + 1= J1- 8y By
3 e3 g 9 3 3
OA-OH =- 1= 1-§b+8b2cos(DAOH)
3 37 3
cos(DAOH ) =- !

3,/1- §b+§b2
3 3

-1 =_ |3
b=2Pp cos(DAOH ) \/;
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V3

AE=DE=\/§
4

AE? = DA? + DE? - 2xDAXDE xcosDADE)

8.  cosDADE)

3-p43. 2><1x—”3cos(DADE)
4 4 2
1
cos(DADE) = —
t ) V3



6.7 APPENDIX G Various Programs

6.7.1 Calculator

This program is a simple utility which allows one to calculate some numbers recorded in
reverse polish notation. The other utilities described below are using same calculator
format notation in their respective configuration files.

To execute:

> /Calculator <name of config file>

config file—file containing an algebraic expression enclosed between the opening and
closing tokens. One can change opening and closing tokens by changing the macrosin
the code and recompiling the program. Currently the tokens are square brackets: [ ]
The rules of calculator arein the calc.rulestxt file shown below

Cal cul ator rules file.

This calculator will calculate a result of expression
bet ween OPEN and CLOSE tokens which you can define in the calling
program Those tokens should be sonething unique, for exanple [ and ].

Any ot her token inbetween OPEN and CLOSE will be processed by
cal cul at or.

Tokens processed should be valid tokens.

Tokens shoul d be separated by at | east one SPACE

Invalid tokens will result in calc_error and abort.

Cal cul ator is polish (stack) notation

i.e. you need to fill stack and then say what operations to do.
For exanple to calculate sqrt(3)/2 you will need to enter

[3 sgrt 2 div]

O to get sin(pi/3) you will need to enter
[Pl 3 div sin]

It behaves exactly like the HP calculators

Valid tokens include NUVBERS, CONSTANTS and OPERANDS
NOTE: ALL constants and operands are CASE SENSI Tl VE !
so if you will put SQRT, it will NOT recognize it
ALL tokens must be separated by spaces.

- NUMBERS

Can be any nunber in any fornmat.
I f you want negative, put mnus sign in front.
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There should be no spaces between neg.sign and nunber.
Pl us sign al so avail abl e.

Exanpl es:
1
-1
1.0
-1.0E-5
- CONSTANTS
Pl = 3.1415..
EE = base of natural |og
- OPERANDS
St ack ops:
sdv - renove and Discard top stack val ue
scv - Copy top stack value into next stack cel
( push top val ue once nore )
Menory ops:
# =0 ... MAX_MEM - integer index
nca - Al mem=0
#nc - men# is set to O
(X) # ns - mem# = X, Xremuins in stack unchanged
(X) # mt - mem# += X, X remains in stack unchanged
(X) # m - mem# -= X, Xrenmains in stack unchanged
# ngy - Value from nmen# bei ng pushed into stack
( # is renoved fromstack before all nmem ops )
Mat h ops:
neg - negates nunber on the top of the stack
mul - multiply 2 nunber on the top of the stack
div - division
add - addition
sub - substraction
sqrt - square root
sqr - X squared
sin - sin
cos - cos
tan - tan
asin - arc sin
acos - arc cos
atan - arc tan
| og - natural |og
| 0g10 - | og base 10
exp - natural exponent (e to the power of x)
expl0 - 10 to the power of x
pow - x to the power of y (y is the last entered, on the top of
st ack)
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6.7.2 CrSab

The purpose of this utility isto facilitate creation of nanostructures which are cut out of
periodic structure.
The boundary is composed of a sphere and any number of planes.

To execute:

> /CrSlab <name of config file>
where <config file> is filename of your file containing information about your structure.
The example config file is shown below (some comments and explanations are following
thefile)

# This is exanple config file for CrSlab

# Feel free to change hel ps/ nunbers,

# but not the order of arguments in this file.

#

# Whenever you can see [], you can use cal cul ator expressions.
# For rules and avail abl e conmands see file calc.rul es.txt
# Limtations of calc due to CrSlab

# MAX |l ength of control string = 1020 synbol s

# MAX stack is 64 nunbers

# OPEN and CLOSE tokens = [ and ] respectively

#

# This exanple creates a one FCC cube

# Qutput filenanme, should never exceed 1024 - 1 synbol
fcc. xyz

# Number of "sublattices"

# plain nunber, no calc

1

# Here we have one type of species for one sub-lattice.
# Tell me Z of every sub-lattice

# Pl ain nunber, no calc

48.0

# Now tell the origins of every sub-lattice
# first sub-lattice
[0.00] [0.00] [0.00]

# And basis vectors for every sub-lattice
# first sub-lattice

[0.5] [0.5] [0.0]

[0.5] [0.0] [0O.5]

[0.0] [0.5] [0.5]

# The sphere information
# Sphere origin
[0.0] [0.0] [0.0]

# Sphere radius - should be either boundary
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# or a maxi mum sphere including all your structure
[2.0]

# Now the pl anes.
# Tell the nunber of planes:

[6]

# Tell me vector defining each plane:

# Format is [<scale factor>] [<x>] [<y>] [<z>]

# You dont need to put + or - in front of nunber,
# 1 put it just to align nunbers nicely

[1.0] [+1.1] [+0.0] [+0.0]

[1.0] [-0.1] [+0.0] [+0.0]

[1.0] [+0.0] [+1.1] [+0.0]
[1.0] [+0.0] [-0.1] [+0.0]

[1.0] [+0.0] [+0.0] [+1.1]
[1.0] [+0.0] [+0.0] [-0.1]

sublattice — a simple structure defined by three basis vectors and an origin. Y ou can have
any number of those. For example CdSe structure could be described astwo FCC
sublattices.

spher e and planes — are boundaries of the structure.

Sphere is defined by origin coordinates and radius; it is also used in calculation of
maximum indices for your structure. So even if you not using it, do not make it smaller
than your structure, but at the same time don’t make it too big.

Planes are defined by vectors from the coordinate origin. Those vectors are perpendicular
to the planes and they are defining the distances from origin to the planes. Scale factors
are introduced for the convenience — one has an option to use unit vectors and put the
length into scale factor.

6.7.3 MicroCluster

Sometimes you need to create a smple or small structure for FIREBALL, but also need
to use a calculator for the coordinates. The MicroCluster isatool you might consider
using in such a situation.
To execute:

> /MicroCluster <in-file> <out-file>
in-file — file containing FIREBALL-like format, but with Calculator expressions.
The format is:

<number-of-atoms>

Z[X1 M4

Microcluster will read only <number-of-atoms> non-empty lines from top to bottom.
out-file — file with resulting coordinates.

As an example, the ideal benzene file is included below.

Notice the usage of calculator memory to avoid repetition of the same calculations.
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=
N

[3 sqrt 8 div 0 ns] [0Omy 1.4 div O ng add 1 nms sdv 0] [O]
[Ong 2 div2mnms] [0 nmg 3 sqrt 2 div mul 3 ns] [0]
[2 mg neg] [3 ny] [0]

[0 mg neg] [O] [O]
[2 mg neg] [3 nmg neg] [O]
[2 o] [3 my neg] [O]

00000
cocoocoo

1 nmy 2div4ans] [1ng 3sqgrt 2 div mul 5 nms] [0]
4 ng neg] [5 ny] [0]

1 ng neg] [O] [O]

j ng neg] [5 ng neg] [OQ]

1

PREREEPRPE
cocoococoo

ng] [5 mg neg] [O]
ng] [ 0] [ 0]
6.7.4 Cluster

This program will create a structure out of sub-clusters. One can create a number of
“Lego building blocks’ and then use Cluster to put them together. There is no need to
create anumber of ligands if you can use same one rotated and positioned appropriately!
This program can rotate, shift, scale and insert a comment for correct VMD file format.
To execute:

> /Cluster <config file>

The simplest example of config file isin cfg.example.Cluster.txt file shown below

# Exanple config file for Cluster program

# Put comment for VMD?

# The coment will be ONLY in the LAST fragnent,

# Fragments are |ike separate runs of program bundl ed toget her
#1.e. Al files after fragment is done are closed and witen,
# so in the next fragnent you can use result of previous one.
# Coment or NO (NO is Case sensitive)

A coment

# Total nunber of fragnents

1

# For each fragnent:
# Qutput filename, max length is 1024-1 = 1023
out . xyz

# Nunber of sub-clusters
1
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For each sub-cluster,
tell some data in the follow ng format:

<fil enane> - filenanme of sub-cluster
max | ength = 1024-1 = 1023

<coord.option> - x, y, z coords belowis:
-1 - do not shift, leave Rotational Center (RQ
where it was
0 - cartesian [x] [yl [z]
1 - polar spherical [rho] [theta] [phi]
(i n radi ans)
in the case of polar, only rho is being scal ed

[scale vector] [x] [vy] [Z]
- where to put RC of this sub-cluster
( depend on the above option)

[scale cluster] - Wth respect to RC, scal e coordinats
by mul tiplying by this nunber

<rc.option> 0O - rotate WRto center of the cluster
(xyz of RCwill be replaced by center)
1 - rotate about coordi nates given

[x] [yl [z] - RC coordiantes (cartesian only!)
[a] [b] [c] - Turn angl es as expl ai ned bel ow.

Turn angl es expl ai ned:
This is nost common Eul er angl es.
Rotation is performed around RC of the sub-cluster

a - phi - rotation about Z
b - theta - rotation about new X
C - psi - rotation about new Z

all angles is in radi ans!

Not e:

First it finds vector of a point with respect to RC
Next it scales it (WRto RC)

Then rotates (about RC!)

And finally shifts RC into given coordinates X

HHHFEHFFEHFFEHFFEHFEHFFEHFFHFEHFFEFHEF TR HFHEFEEF TSR

fcc. xyz

0

[1.0] [0.0] [0.0] [0.0]
[3.5]

0
[0] [0] [O]
[Pl 4 div] [0.0] [O0.0]

The better explanation of configuration file for the Cluster programis presented in a
block diagram below.
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# A comment for VMD? Put NO (case sensitive) for none

# 1t will be on the last fragment
A comment

# Total number of fragments
N

# Output filename of fragment
fragment_1 out.txt

# Number of sub-clusters
M

sub_cluster_input _1.xyz
0

[1.0] [0.0] [0.0] [0.0]
[3.5]

0
[0] [0] [O]
[Pl 4 div] [0.0] [0.0]

sub_cl uster_i nput _M xyz
0

[1.0] [0.0] [0.0] [0.0]
[3.5]

0
[0] [O] [O]

[Pl 4div] [0.0] [0.0] \

Fragment
header

M of those blocks
describing the
positioning of each
sub-cluster
NO comments
inside each block!

J

X

repeat for

each of the
N

fragments

J

<coord. opti on>

[scal e cluster]
thi s number
<rc.option>
[X] [Y] [Z]
[phi] [theta] [psi]

<sub-cluster input filenane>

-1 - do not shift,

0 - cartesian

1 - polar spherical
[scale vector] [x] [vy] [Z]

Shift Vector of this sub-cluster

(depend on above coord. option)

Descri bes where Rotati onal

0 — RCis geonetrical
1 — RC coordinates are given bel ow

RC coordi nates — Cartesian.

| eave Rot ati onal

[x] [y] [z]

[rho] [theta] [phi]

Rot ati onal angles with respect to RC

Center (RO will

center of the cluster

Center where it was

be put

Wth respect to RC, scale coordinates by nultiplying by

Ignored if rc.option = 0
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